The invention relates to a device for the additive manufacturing of workpieces under protective gas, which device is provided with a manufacturing chamber designed as a pressure chamber, said manufacturing chamber being fluidically connected to a pressure container via a gas extraction line, which is provided with a vacuum pump, and via a gas return line. After the manufacturing of a first workpiece, the protective gas present in the manufacturing chamber is evacuated, temporarily stored in the pressure container and, prior to the manufacturing of a second workpiece, is introduced into the manufacturing chamber.
A device for producing dry ice pellets comprises a pressing cylinder, into which an inlet opening for feeding liquid carbon dioxide leads and which is equipped with a die, which has one or more openings, and with a piston, which is longitudinally movable in the pressing cylinder. Liquid carbon dioxide is fed to the pressing cylinder, is expanded at the inlet opening, is at least partially converted into carbon dioxide snow and is pressed against and through the die by the movement of the piston. The die is in the form of a cylindrical body that can be connected to the pressing cylinder and is equipped with feed-throughs, which are oriented parallel to a longitudinal axis of the die and are dimensioned in such a way that the length and the diameters of the feed-throughs correspond to the length and the diameters of the dry ice pellets to be produced.
B01J 2/20 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes en exprimant une substance à travers un crible et fragmentation de l'extrudat
Apparatus for transmitting electrical energy with a superconducting current carrier, in which the superconducting current carrier to be cooled is accommodated in a first cooling channel, which first cooling channel is connected by way of a coolant feed line to a supply device for a first cooling medium and is surrounded by at least one second cooling channel, for conducting through a second cooling medium, which is flow-connected to a coolant-discharge line for heated second cooling medium, wherein a supercooled, liquefied gas is used as the first cooling medium, is characterized according to the invention in that a liquefied gas is used as the second cooling medium and the second cooling channel is equipped with means for removing a gas phase occurring due to evaporation of the second cooling medium.
H01B 12/14 - Conducteurs, câbles ou lignes de transmission supraconducteurs ou hyperconducteurs caractérisés par la disposition de l'isolation thermique
H01B 12/16 - Conducteurs, câbles ou lignes de transmission supraconducteurs ou hyperconducteurs caractérisés par le refroidissement
4.
DEVICE AND METHOD FOR PROCESSING PIECES OF MEAT USING DRY ICE PELLETS
The invention relates to a device for processing pieces of meat using dry ice pellets, comprising a conveying device for transporting pieces of meat along a transport path, means for the temporary fixing the pieces of meat in at least one plane, at least one injection device for injecting dry ice pellets into the piece of meat or into a plurality of pieces of meat and a positioning device for positioning the injection device(s) in the direction of the region to be processed in the fixed piece of meat or in the fixed pieces of meat during injection.
A22B 5/00 - Accessoires utilisés pendant ou après l'abattage
A22C 17/00 - Autres dispositifs pour le traitement de la viande ou des os
A23B 4/09 - CongélationDégel ultérieurRéfrigération avec addition de produits chimiques avant ou pendant la réfrigération avec contact direct entre l'aliment et les produits chimiques, p. ex. N2 liquide, à des températures cryogéniques
A23B 4/32 - Appareils pour la conservation utilisant des solides
5.
DEVICE AND METHOD FOR ADDITIVE MANUFACTURING UNDER PROTECTIVE GAS
The invention relates to a device for the additive manufacturing of workpieces under protective gas, which device is provided with a manufacturing chamber designed as a pressure chamber, said manufacturing chamber being fluidically connected to a pressure container via a gas extraction line, which is provided with a vacuum pump, and via a gas return line. After the manufacturing of a first workpiece, the protective gas present in the manufacturing chamber is evacuated, temporarily stored in the pressure container and, prior to the manufacturing of a second workpiece, is introduced into the manufacturing chamber.
B22F 12/00 - Appareils ou dispositifs spécialement adaptés à la fabrication additiveMoyens auxiliaires pour la fabrication additiveCombinaisons d’appareils ou de dispositifs pour la fabrication additive avec d’autres appareils ou dispositifs de traitement ou de fabrication
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B29C 64/371 - Conditionnement de l’environnement en utilisant un environnement autre que l’air, p. ex. un gaz inerte
The invention relates to a method for additive manufacture of a workpiece under protective gas, wherein a workpiece is assembled from a sequence of workpiece contours, each of which is manufactured by selective sintering or melting of a powdery or wire-like material by applying an energy beam thereto, wherein a workpiece contour is manufactured under the effect of a protective gas consisting of carbon dioxide and an inert gas. According to the invention, the chemical composition of each workpiece contour is modified according to a specified program by variation of the composition of the protective gas. Heat treatment occurring after manufacture of the workpiece contour provides for defined mechanical and technological quality values of the workpiece contour. A workpiece having zones with defined mechanical and technological quality values is produced in this manner.
B23K 15/00 - Soudage ou découpage par faisceau d'électrons
B22F 3/00 - Fabrication de pièces ou d'objets à partir de poudres métalliques, caractérisée par le mode de compactage ou de frittageAppareils spécialement adaptés à cet effet
B22F 10/00 - Fabrication additive de pièces ou d’objets à partir de poudres métalliques
B23K 26/12 - Travail par rayon laser, p. ex. soudage, découpage ou perçage sous atmosphère particulière, p. ex. dans une enceinte
In a method for cooling a consumer by means of a cryogenic cooling medium, thermal contact of the cooling medium with the consumer is established in a cryostat. The cooling medium in the cryostat is brought to a low temperature by sucking gaseous cooling medium away from the cryostat using a vacuum pump. The cooling medium conveyed by the vacuum pump is reliquefied in a condenser and is expanded at a throttle element to the pressure prevailing in the cryostat. In accordance with the invention, the cooling medium pumped out of the cryostat is brought into thermal contact with the cooling medium in the condenser upstream of the vacuum pump. Efficiency of the cooling process is significantly improved in this way.
F25B 9/00 - Machines, installations ou systèmes à compression dans lesquels le fluide frigorigène est l'air ou un autre gaz à point d'ébullition peu élevé
8.
METHOD FOR ADDITIVE MANUFACTURING UNDER PROTECTIVE GAS USING A LASER BEAM
The invention relates to a method for the additive manufacturing of workpieces under protective gas using a laser beam, characterised in that the protective gas used is carbon dioxide with a purity of at least 99.99% by volume.
The invention relates to a device for generating and storing carbon dioxide snow, comprising a container into which an expansion nozzle connected to a supply line for liquid carbon dioxide and a gas extraction line open, a removal device for removing carbon dioxide snow out of the container, and a measuring device for detecting the fill level of the carbon dioxide snow in the container. According to the invention, the measuring device comprises a photoelectric sensor unit which is arranged at a vertical distance to the base of the container and which comprises a light-emitting transmitter and a light-sensitive receiver.
In a method for producing nitric acid, nitrogen oxides are first created in an ammonia combustion plant (2) and are cooled in a condenser (3), thereby producing a solution containing nitric acid. The solution containing nitric acid is then supplied to at least one absorption tower, (4, 5), in which the nitrogen oxides are brought into contact with water and oxygen, wherein the nitrogen-containing gas mixture reacts at least partially with the water and the oxygen, forming an aqueous solution containing nitric acid, which solution collects at the bottom of the absorption tower, (4, 5) and is then compressed and supplied back to the absorption tower (4, 5) via a line (12, 14, 21). To minimise the concentration of nitrogen oxides in the waste gas of such a plant and to increase the efficiency of the process, according to the invention ozone is fed into a connection line (12) which leads from the condenser (3) to a first absorption tower and which conducts the solution containing nitric acid.
An apparatus for generating a temperature-controlled cold gas stream, having a storage tank and an extraction line which is connected to the storage tank and which serves for the extraction of liquefied gas from the storage tank, and having an evaporator unit which is integrated in the extraction line and which is equipped with a heat exchanger surface for the indirect thermal contact of the liquefied gas with a heat carrier fluid, is characterized according to the invention in that a liquid line branches off from the extraction line downstream of the storage tank and upstream of the evaporator unit, which liquid line opens into the extraction line downstream of the evaporator unit at an introduction device, wherein the introduction device is equipped with a sensor for detecting the temperature in the extraction line and with a control valve which is operatively connected to the sensor and which serves for controlling the introduction of liquefied gas into the extraction line.
F17C 9/02 - Procédés ou appareils pour vider les gaz liquéfiés ou solidifiés contenus dans des récipients non sous pression avec changement d'état, p. ex. vaporisation
F17D 3/12 - Dispositions pour la surveillance ou la commande des opérations de fonctionnement pour injecter une composition dans le conduit
12.
METHOD AND DEVICE FOR PURIFYING GAS FLOWS BY MEANS OF CONDENSATION
The invention relates to a method for purifying a gas flow by means of condensation, wherein a carrier gas flow loaded with at least one condensable substance is brought into indirect heat exchange with a coolant on a first heat exchange surface in a condenser and cooled to a temperature below the dew point of the at least one condensable substance, and the condensed substance is withdrawn from the condenser as a liquid condensate, and said method is characterized according to the invention in that the condensate is supplied to a second heat exchange surface and brought into indirect heat exchange with the carrier gas flow thereon.
B01D 53/00 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols
F25J 3/06 - Procédés ou appareils pour séparer les constituants des mélanges gazeux impliquant l'emploi d'une liquéfaction ou d'une solidification par condensation partielle
F25J 3/08 - Séparation des impuretés gazeuses des gaz ou des mélanges gazeux
13.
DEVICE FOR INTRODUCING DRY ICE PELLETS INTO FRESH MEAT
The invention relates to an apparatus for introducing dry ice pellets into fresh meat, comprising a housing (2), in which at least one injection device (3, 4, 5, 6) for introducing dry ice pellets (27) is arranged, and guide channels (11a, 11b, 12a, 12b), which lead to a front face (15) of the housing, for axially movably guiding a penetration needle (8, 9), which is tapered at the distal end thereof, and a drive device for axially moving the penetration needle (8, 9). A loading unit (25) can be inserted between a rear portion (13) and a front portion (14) of the housing (2), which loading unit is provided with a number of feedthroughs (26a, 26b), which can be equipped with dry ice pellets (27) and which can be brought into a position in alignment with the guide channels (11a, 11b, 12a, 12b). During operation of the apparatus, penetration channels are first produced, by means of the penetration needles (8, 9), in a piece of meat to be cooled, into which penetration channels the dry ice pellets (27) are subsequently introduced from the feedthroughs (26a, 26b) of the loading unit, also using the penetration needles (8, 9). The feedthrough enables efficient introduction of dry ice pellets into a piece of meat.
A23B 4/32 - Appareils pour la conservation utilisant des solides
A22B 5/00 - Accessoires utilisés pendant ou après l'abattage
A22C 17/00 - Autres dispositifs pour le traitement de la viande ou des os
A23B 4/09 - CongélationDégel ultérieurRéfrigération avec addition de produits chimiques avant ou pendant la réfrigération avec contact direct entre l'aliment et les produits chimiques, p. ex. N2 liquide, à des températures cryogéniques
14.
DEVICE AND METHOD FOR PRODUCING AND TRANSPORTING DRY ICE PELLETS
The invention relates to a device for producing dry ice pellets comprising a pressing cylinder, into which an inlet opening for feeding liquid carbon dioxide leads and which is equipped, at an end, with a die, which has one or more openings, and with a piston, which is longitudinally movably accommodated in the pressing cylinder. During use, liquid carbon dioxide is fed to the pressing cylinder. Said carbon dioxide is expanded at the inlet opening, is at least partially converted into carbon dioxide snow and is pressed against and through the die by the movement of the piston. According to the invention, the die is in the form of a cylindrical body that can be connected to the pressing cylinder and is equipped with feed-throughs, which are oriented parallel to a longitudinal axis of the die and are dimensioned in such a way that the length and the diameters of the feed-throughs correspond to the length and the diameters of the dry ice pellets to be produced.
The invention relates to an apparatus for introducing dry ice pellets into fresh meat, comprising a housing (2), in which at least one injection device (3, 4, 5, 6) for introducing dry ice pellets (27) is arranged, and guide channels (11a, 11b, 12a, 12b), which lead to a front face (15) of the housing, for axially movably guiding a penetration needle (8, 9), which is tapered at the distal end thereof, and a drive device for axially moving the penetration needle (8, 9). A loading unit (25) can be inserted between a rear portion (13) and a front portion (14) of the housing (2), which loading unit is provided with a number of feedthroughs (26a, 26b), which can be equipped with dry ice pellets (27) and which can be brought into a position in alignment with the guide channels (11a, 11b, 12a, 12b). During operation of the apparatus, penetration channels are first produced, by means of the penetration needles (8, 9), in a piece of meat to be cooled, into which penetration channels the dry ice pellets (27) are subsequently introduced from the feedthroughs (26a, 26b) of the loading unit, also using the penetration needles (8, 9). The feedthrough enables efficient introduction of dry ice pellets into a piece of meat.
A22B 5/00 - Accessoires utilisés pendant ou après l'abattage
A22C 17/00 - Autres dispositifs pour le traitement de la viande ou des os
A23B 4/09 - CongélationDégel ultérieurRéfrigération avec addition de produits chimiques avant ou pendant la réfrigération avec contact direct entre l'aliment et les produits chimiques, p. ex. N2 liquide, à des températures cryogéniques
16.
DEVICE AND METHOD FOR PRODUCING AND TRANSPORTING DRY ICE PELLETS
The invention relates to a device for producing dry ice pellets comprising a pressing cylinder, into which an inlet opening for feeding liquid carbon dioxide leads and which is equipped, at an end, with a die, which has one or more openings, and with a piston, which is longitudinally movably accommodated in the pressing cylinder. During use, liquid carbon dioxide is fed to the pressing cylinder. Said carbon dioxide is expanded at the inlet opening, is at least partially converted into carbon dioxide snow and is pressed against and through the die by the movement of the piston. According to the invention, the die is in the form of a cylindrical body that can be connected to the pressing cylinder and is equipped with feed-throughs, which are oriented parallel to a longitudinal axis of the die and are dimensioned in such a way that the length and the diameters of the feed-throughs correspond to the length and the diameters of the dry ice pellets to be produced.
In order to meter carbon dioxide snow, a storage container has an output unit, which comprises: - an output opening, which is arranged laterally in the bottom region of the storage container; and - a horizontally movable sliding element, which cooperates with the output opening. In order to fill the storage container with carbon dioxide snow, at least two snow horns are provided on the storage container, in which snow horns liquid carbon dioxide is converted into a mixture of carbon dioxide snow and carbon dioxide gas. The mouth openings of the snow horns point toward each other at least in one direction component so that the material flows exiting therefrom are directed at least partially toward each other. This facilitates the separation of snow and gas and increases the efficiency of the device.
In order to meter carbon dioxide snow, a storage container has an output unit, which comprises: - an output opening, which is arranged laterally in the bottom region of the storage container; and - a horizontally movable sliding element, which cooperates with the output opening. In order to fill the storage container with carbon dioxide snow, at least two snow horns are provided on the storage container, in which snow horns liquid carbon dioxide is converted into a mixture of carbon dioxide snow and carbon dioxide gas. The mouth openings of the snow horns point toward each other at least in one direction component so that the material flows exiting therefrom are directed at least partially toward each other. This facilitates the separation of snow and gas and increases the efficiency of the device.
F25D 3/12 - Dispositifs utilisant d'autres agents froidsDispositifs utilisant des récipients conservant le froid utilisant des gaz solidifiés, p. ex. de la neige carbonique
19.
PRODUCT TRANSPORT CONTAINER WITH A DESIRED TEMPERATURE RANGE
The present invention relates to the transport of products at a desired maintenance temperature range, comprising: - a case (2) which is made of insulating material and which delimits a compartment which is open at the top, has a volume less than 150 litres and is capable of containing the products, the case (2) having a predetermined calorific dissipation power; - a cover (4) which is made of insulating material and can be adapted to the case (2) in order to close the compartment; - a diffusing intermediate wall (5) which is positioned between the case (2) and the cover (4) in order to delimit, with the cover (4), a chamber with a surface (7) for receiving at least one refrigerant charge (6) which emits a calorific power, the cover (4) and the intermediate wall (5) comprising mutually complementary locking/unlocking means (9). The invention is characterised in that the calorific energy emitted by the refrigerant charge (6) and the thermal diffusion coefficient of the intermediate wall (5) are adjusted so that, at predetermined transport and maintenance temperatures and for a desired time after receipt of the refrigerant charge (6) and exposure of the container (1) to the transport temperature, the calorific power diffused by the intermediate wall (5) to the compartment is equal to or at a maximum 20% greater than the calorific power dissipated by the case (2).
F25D 3/14 - Dispositifs utilisant d'autres agents froidsDispositifs utilisant des récipients conservant le froid utilisant des gaz solidifiés, p. ex. de la neige carbonique portatifs, c.-à-d. adaptés pour être facilement transportables par une personne
20.
METHOD AND DEVICE FOR SEPARATING A GAS MIXTURE CONTAINING DIBORANE AND HYDROGEN
In order to separate diborane from a gas mixture containing diborane and hydrogen, the gas mixture is normally cooled in a storage tank using liquid nitrogen, wherein the diborane freezes out. In order to enable an extensively continuous separation of the diborane from the gas mixture, according to the invention, the gas mixture is brought into thermal contact with a liquefied gas in a heat exchanger, which liquefied gas is held at a pressure such that the diborane is liquefied by the thermal contact with the coolant, and the liquefied diborane is then discharged from the first heat exchanger and supplied to a storage tank. In a downstream, second heat exchanger, the diborane remaining in the gas mixture can then be caused to freeze out.
B01D 53/00 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols
21.
COOLING SYSTEM FOR STORING AND COOLING PRODUCTS DURING TRANSPORT ON A REFRIGERATED TRANSPORT VEHICLE
A cooling system using carbon dioxide as a coolant comprises a cooling chamber (3) for storing products to be cooled during transport and a cooling unit (10) for cooling the atmosphere in the cooling chamber. The Cooling chamber and the cooling unit are mounted on or integrated in a cooling vehicle (2) like a truck, a railway wagon or a ship. The cooling unit comprises a carbon dioxide storage compartment (11) and at least one cooling channel (12, 30, 31) through which air is led from and to the cooling chamber. The carbon dioxide storage compartment and the cooling channel are separated from each other by a thermal well-conducting but gas-tight plate (13) serving as a heat exchanger between the carbon dioxide in the carbon dioxide storage compartment and the air in the cooling channel.
F25D 11/00 - Dispositifs autonomes déplaçables associés à des machines frigorifiques, p. ex. réfrigérateurs ménagers
F25D 3/12 - Dispositifs utilisant d'autres agents froidsDispositifs utilisant des récipients conservant le froid utilisant des gaz solidifiés, p. ex. de la neige carbonique
F25D 29/00 - Disposition ou montage de l'appareillage de commande ou de sécurité
F25D 17/06 - Dispositions pour la circulation des fluides de refroidissementDispositions pour la circulation de gaz, p. ex. d'air, dans les enceintes refroidies pour la circulation de gaz, p. ex. convection naturelle par circulation d'air forcée
22.
METHOD FOR FINISHING A WORKPIECE MADE BY ADDITIVE MANUFACTURING
According to the invention, a metal workpiece made by additive manufacturing is subjected, following the additive manufacturing process, to a cold treatment in which the workpiece is cooled to a lower target temperature of less than minus 30°C in a cooling phase and is then heated up to an upper target temperature in a heating phase. The cold treatment significantly improves the properties of the workpiece in respect of the mechanical quality thereof.
B22F 3/00 - Fabrication de pièces ou d'objets à partir de poudres métalliques, caractérisée par le mode de compactage ou de frittageAppareils spécialement adaptés à cet effet
B22F 3/105 - Frittage seul en utilisant un courant électrique, un rayonnement laser ou un plasma
B33Y 40/00 - Opérations ou équipements auxiliaires, p. ex. pour la manipulation de matériau
B33Y 40/20 - Posttraitement, p. ex. durcissement, revêtement ou polissage
C21D 6/04 - Durcissement par refroidissement au-dessous de 0° C
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
B22F 3/24 - Traitement ultérieur des pièces ou objets
23.
DEVICE FOR CHARGING A REFRIGERANT-RECEIVING COMPARTMENT OF A COOLING CONTAINER WITH DRY ICE
For charging a refrigerant-receiving compartment of a cooling container with dry ice, a reservoir vessel has a dispensing opening and a dispensing unit which cooperates therewith and by means of which dry ice blocks stored in stacks in a magazine of the reservoir vessel are ejected one after the other from the reservoir vessel and are respectively inserted into a refrigerant-receiving compartment of a respectively provided cooling container. This makes it possible to provide cooling containers in rapid succession with a precisely metered quantity of dry ice as refrigerant.
F25D 3/12 - Dispositifs utilisant d'autres agents froidsDispositifs utilisant des récipients conservant le froid utilisant des gaz solidifiés, p. ex. de la neige carbonique
When welding with a consumable wire electrode, current contacting occurs when the electrode wire passes by a readily electrically conductive contact element. In order to improve the current contacting and reduce the wear of the contact element in particular, the invention proposes subjecting contact elements to a cold treatment prior to using same. The cold treatment has a cooling phase during which the temperature of the contact element is reduced to a lower target temperature, a subsequent holding phase in which the contact element is substantially held at the target temperature, and a final heating phase, in which the contact element is brought to an upper target temperature. The use of contact elements treated using the method according to the invention leads to a substantial increase of the wear resistance compared to untreated contact elements.
B23K 9/12 - Alimentation automatique en électrodes ou en pièces ou déplacement automatique des électrodes ou des pièces pour le soudage ou le découpage à l'arc en lignes continues ou par points
C21D 1/18 - DurcissementTrempe avec ou sans revenu ultérieur
C21D 6/04 - Durcissement par refroidissement au-dessous de 0° C
C21D 9/00 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet
The invention relates to a method for cold treating wire electrodes, having a cooling phase during which the temperature of the workpiece is reduced to a lower target temperature, a subsequent holding phase in which the workpiece is substantially held at the target temperature, and a final heating phase, in which the workpiece is brought to an upper target temperature. The use of wire electrodes treated using the method according to the invention leads to substantial improvements in the welding result compared to untreated wire electrodes, in particular a reduction of a welding spatter tendency.
B23K 35/40 - Fabrication de fils ou de barres pour le brasage ou le soudage
C21D 6/04 - Durcissement par refroidissement au-dessous de 0° C
C21D 9/52 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour fils métalliquesTraitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour bandes métalliques
C21D 9/00 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet
The invention relates to a method for cold treating rod electrodes, having a cooling phase during which the temperature of the electrode is reduced to a lower target temperature, a subsequent holding phase in which the electrode is substantially held at the target temperature, and a final heating phase, in which the electrode is brought to an upper target temperature. The use of rod electrodes treated using the method according to the invention leads to substantial improvements in the welding result compared to untreated rod electrodes, in particular a reduction of a welding spatter tendency, and allows a welder to more easily achieve a uniform welding seam with pronounced and uniform bead ripples.
B23K 9/173 - Soudage ou découpage à l'arc utilisant des gaz de protection et une électrode consommable
B23K 35/02 - Baguettes, électrodes, matériaux ou environnements utilisés pour le brasage, le soudage ou le découpage caractérisés par des propriétés mécaniques, p. ex. par la forme
B23K 35/40 - Fabrication de fils ou de barres pour le brasage ou le soudage
C21D 1/18 - DurcissementTrempe avec ou sans revenu ultérieur
C21D 6/04 - Durcissement par refroidissement au-dessous de 0° C
C21D 9/00 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet
27.
METHOD FOR IMPROVED CURRENT CONTACTING WHEN WELDING USING A CURRENT-CARRYING WIRE ELECTRODE
When welding with a consumable wire electrode, current contacting occurs when the electrode wire passes by a readily electrically conductive contact element. In order to improve the current contacting and reduce the wear of the contact element in particular, the invention proposes subjecting contact elements to a cold treatment prior to using same. The cold treatment has a cooling phase during which the temperature of the contact element is reduced to a lower target temperature, a subsequent holding phase in which the contact element is substantially held at the target temperature, and a final heating phase, in which the contact element is brought to an upper target temperature. The use of contact elements treated using the method according to the invention leads to a substantial increase of the wear resistance compared to untreated contact elements.
B23K 9/12 - Alimentation automatique en électrodes ou en pièces ou déplacement automatique des électrodes ou des pièces pour le soudage ou le découpage à l'arc en lignes continues ou par points
C21D 1/18 - DurcissementTrempe avec ou sans revenu ultérieur
C21D 6/04 - Durcissement par refroidissement au-dessous de 0° C
C21D 9/00 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet
The invention relates to a device for cooling a superconducting element (2), which device comprises a cryostat (3) that is designed as a closed pressure vessel, is thermally connected to the superconducting element and is fluidically connected to a reservoir (4) for a cryogenic cooling medium by means of a liquid balancing line (8, 11). A heat exchanger (16) is provided in the cryostat or is thermally connected to the cyrostat at a heat exchanger surface (14), which heat exchanger is fluidically connected to the reservoir by means of a supply line equipped with an expansion valve (17) and in which heat exchanger there is a lower pressure than in the surrounding cryostat. In this way, the cooling medium in thermal contact with the superconducting element is subcooled; in the event of a sudden pressure increase in the cryostat, for example because of quenching of the superconductor, the reservoir acts as an expansion vessel.
F25D 3/10 - Dispositifs utilisant d'autres agents froidsDispositifs utilisant des récipients conservant le froid utilisant des gaz liquéfiés, p. ex. de l'air liquide
F25B 19/00 - Machines, installations ou systèmes utilisant l'évaporation d'un frigorigène mais sans récupération de vapeur
The invention relates to a method for recycling argon from an industrial process, which is characterized in that the gaseous argon is compressed after the use thereof in the industrial process, is fed to a main heat exchanger and is cooled there in contact with a first cooling medium, the compressed and cooled argon is fed to a rectification column or another cryogenic separating device and is liquefied there by direct heat exchange with a second cooling medium and is freed of low-boiling substances by rectification, and the liquefied argon is drawn from the bottom of the rectification column and, after use as the first cooling medium in the main heat exchanger, is fed back into the industrial process, the raw argon being brought into direct or indirect thermal contact with cryogenically liquefied pure argon in the main heat exchanger and/or the rectification column. The product argon that results is highly pure and can be fed back to the industrial process.
For the transmission of electrical current, determined superconducting current carriers are accommodated in a cryostat, in which they are cooled with an undercooled cryogenic cooling medium, e.g. liquid nitrogen. The current carrier is electrically connected at the ends thereof to two normally conducting current supply means. The cooling medium is undercooled from a storage container to a temperature below its boiling temperature and supplied to the cryostat via a cooling medium inlet, brought into thermal contact with the superconducting current carrier, and subsequently discharged via a cooling medium outlet of the cryostat. According to the invention, the cooling medium from the cryostat is to be used for cooling at least one of the normally conducting current supply means.
F25B 19/00 - Machines, installations ou systèmes utilisant l'évaporation d'un frigorigène mais sans récupération de vapeur
F25B 25/00 - Machines, installations ou systèmes utilisant une combinaison des principes de fonctionnement compris dans plusieurs des groupes
F25D 3/10 - Dispositifs utilisant d'autres agents froidsDispositifs utilisant des récipients conservant le froid utilisant des gaz liquéfiés, p. ex. de l'air liquide
H02G 15/34 - Accessoires de câble pour câbles cryogéniques
31.
DEVICE AND PROCESS FOR FILLING A MOBILE REFRIGERANT TANK WITH A CRYOGENIC REFRIGERANT
12211, whereby the liquefied refrigerant is present in the conditioning vessel in the supercooled state. Subsequently, the supercooled, liquefied refrigerant is supplied to the tank to be filled. By means of the device according to the invention and the process according to the invention, evaporation losses during the filling process can be substantially avoided.
F17C 5/02 - Procédés ou appareils pour remplir des récipients sous pression de gaz liquéfiés, solidifiés ou comprimés pour le remplissage avec des gaz liquéfiés
F17C 9/00 - Procédés ou appareils pour vider les gaz liquéfiés ou solidifiés contenus dans des récipients non sous pression
32.
METHOD FOR MANUFACTURING METALLIC COMPONENTS BY MEANS OF GENERATIVE PRODUCTION
In a method for manufacturing metallic components by means of generative production, a layer of metal powder is selectively melted or sintered by being exposed to an energy beam in an evacuated radiation chamber. When the radiation chamber is subsequently flooded with a cooling gas, the melted or sintered part solidifies to form a solid contour. Instead of the previously common practice of using helium, which is expensive and not readily available, as the cooling gas, it is proposed according to the invention to use a gas that contains hydrogen. Hydrogen has a higher thermal conductivity than helium and does not impair the surface of the workpiece, or only to a negligible extent.
In a method for manufacturing metallic components by means of generative production, a layer of metal powder is selectively melted or sintered by being exposed to an energy beam in an evacuated radiation chamber. When the radiation chamber is subsequently flooded with a cooling gas, the melted or sintered part solidifies to form a solid contour. Instead of the previously common practice of using helium, which is expensive and not readily available, as the cooling gas, it is proposed according to the invention to use a gas that contains hydrogen. Hydrogen has a higher thermal conductivity than helium and does not impair the surface of the workpiece, or only to a negligible extent.
Surfaces must be partially roughened before being painted and coated. This usually is done by blasting the surface with sand or glass particles. In this type of pre-treatment sand or other blasting medium accumulates and can contaminate the part to be cleaned. In particular in the food, automotive, and medical sectors, entrainment of blasting medium is undesirable. According to the invention, during the treatment of surfaces a blasting material is used which consists of solid carbon dioxide obtained by freezing of liquid carbon dioxide. In this way a residue-free sublimating blasting medium is attained. By comparison with dry ice particles which have been produced by compression of carbon dioxide snow, the blasting medium according to the invention has a significantly higher hardness and ensures a substantially greater mechanical abrasion of the treated surface.
B24C 1/00 - Méthodes d'utilisation de jet abrasif en vue d'effectuer un travail déterminéUtilisation d'équipements auxiliaires liés à ces méthodes
B24C 1/06 - Méthodes d'utilisation de jet abrasif en vue d'effectuer un travail déterminéUtilisation d'équipements auxiliaires liés à ces méthodes pour réaliser des surfaces mates, p. ex. sur les matériaux plastiques, sur le verre
B24C 3/32 - Machines ou dispositifs de traitement au jet abrasifInstallations de traitement au jet abrasif prévus pour le travail de pièces particulières, p. ex. de surface intérieure de blocs cylindres
35.
METHOD AND DEVICE FOR THE REGULATED TRANSFER OF A GAS INTO A FLUID MEDIUM
During the metering of liquid carbon dioxide or other liquefied gases into a fluid medium, there is the risk that the liquefied gas already partially evaporates in the feed line and the exact quantity of gas which is fed in per unit time can be determined only with difficulty as a result. According to the invention, a pressure loss is measured continuously at a flow obstacle (5) in the region of the transfer point of the gas into the line (2) which conducts the fluid medium, and is used as a regulating parameter for controlling a regulating valve (6) which is arranged in the feed line (3). As a result, the feed of liquefied gas can be set in a manner which is dependent on a change in the pressure loss and, as a result, errors which are caused by way of the partial evaporation of the liquefied gas in the feed line (3) can be compensated for during the metering of the gas.
C02F 1/66 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par neutralisationAjustage du pH
C02F 1/68 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par addition de substances spécifiées, pour améliorer l'eau potable, p. ex. par addition d'oligo-éléments
G05D 11/13 - Commande du rapport des débits de plusieurs matériaux fluides ou fluents caractérisée par l'usage de moyens électriques
B01F 3/04 - Mélange, p.ex. dispersion, émulsion, selon les phases à mélanger de gaz ou de vapeurs avec des liquides
36.
METHOD AND DEVICE FOR PRODUCING SUBCOOLED CARBON DIOXIDE SNOW
The invention relates to a method for producing subcooled carbon dioxide snow, wherein liquid carbon dioxide is introduced into an expansion chamber (5) at an expansion nozzle (2), in which expansion chamber the liquid carbon dioxide is expanded, a mixture of carbon dioxide gas and carbon dioxide snow thus being produced, and then the mixture is separated into a phase consisting predominantly of carbon dioxide snow and a phase consisting predominantly of carbon dioxide gas. Said method is characterized in that a vacuum is produced at least in the region of the expansion nozzle (2) by means of a flow in the expansion chamber (5) produced during the expansion of the liquid carbon dioxide, into which vacuum the liquid carbon dioxide is expanded. A finely powdered, subcooled carbon dioxide snow is thereby produced.
F25D 3/12 - Dispositifs utilisant d'autres agents froidsDispositifs utilisant des récipients conservant le froid utilisant des gaz solidifiés, p. ex. de la neige carbonique
The invention relates to a device for improving a vacuum in the housing of a machine, in particular a centrifugal-mass energy store, comprising a rotor, for example a shaft (4) having a centrifugal mass (3) arranged thereon, which rotor is supported on at least one superconducting bearing (5) in a contactless manner and is arranged in a vacuum container (2). In order to maintain the operating state of the superconducting bearing, the superconducting bearing (5) is thermally connected to a cold source (8) cooled by a cryogenic medium. According to the invention, the vacuum in the vacuum container (2) is improved by means of an adsorber (20) thermally connected to a cooling apparatus. The cooling of the adsorber (20) occurs preferably by means of evaporated cooling medium from the superconducting bearing (5).
F04B 37/08 - Pompes spécialement adaptées aux fluides compressibles et ayant des caractéristiques pertinentes non prévues dans les groupes ou présentant un intérêt autre que celui visé par ces groupes pour l'évacuation par moyens thermiques par condensation ou réfrigération, p. ex. pompes cryogéniques
F03G 7/08 - Mécanismes produisant une puissance mécanique, non prévus ailleurs ou utilisant une source d'énergie non prévue ailleurs récupérant l'énergie produite par le balancement, le roulement, le tangage ou des mouvements semblabes, p. ex. par les vibrations d'une machine
F16F 15/315 - Volants caractérisés par la disposition du support, p. ex. montages, cages, fixation de l'élément d'inertie à l'arbre
F16C 32/04 - Paliers non prévus ailleurs faisant usage de moyens de support magnétiques ou électriques
B01D 53/04 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse avec adsorbants fixes
According to the prior art, a super-cooled liquid medium, for example a super-cooled liquid nitrogen, is pumped through a sub-cooler and is thereby cooled by the same medium that evaporates in the vacuum. This super-cooled nitrogen is then used as a coolant for a consumer. If only a small amount of heat is emiited by the consumer to the nitrogen, the liquid medium can be guided in the circuit, in which the sub-cooler is arranged. For compensating volume fluctuations, such a circuit requires a compensation vessel which, however, is very expensive and can furthermore only be operated in the presence of a super-cooled medium when either a part of the medium is heated using external energy, or an inert gas which boils at very low temperatures has to be used as a pressure compensation medium. According to the invention, it is proposed that the supply container for the liquid medium is integrated into the cooling circuit and is used as a compensation vessel. As a result, the use of a separate compensation vessel can be dispensed with.
According to the prior art, a super-cooled liquid medium, for example a super-cooled liquid nitrogen, is pumped through a sub-cooler and is thereby cooled by the same medium that evaporates in the vacuum. This super-cooled nitrogen is then used as a coolant for a consumer. If only a small amount of heat is emiited by the consumer to the nitrogen, the liquid medium can be guided in the circuit, in which the sub-cooler is arranged. For compensating volume fluctuations, such a circuit requires a compensation vessel which, however, is very expensive and can furthermore only be operated in the presence of a super-cooled medium when either a part of the medium is heated using external energy, or an inert gas which boils at very low temperatures has to be used as a pressure compensation medium. According to the invention, it is proposed that the supply container for the liquid medium is integrated into the cooling circuit and is used as a compensation vessel. As a result, the use of a separate compensation vessel can be dispensed with.
In a process for preparing nitric acid, nitrogen oxides are first generated in an ammonia combustion plant (2), and these are then supplied to at least one absorption tower (4, 5). In the absorption tower (4, 5), the nitrogen oxides are contacted in the water and oxygen, with at least partial reaction of the nitrogen-containing gas mixture with the water and the oxygen to form an aqueous nitric acid-containing solution which collects at the base of the absorption tower (4, 5) and is subsequently compressed and introduced via a riser line (12, 14, 21) back into the absorption tower (4, 5). In order to minimize the concentration of nitrogen oxides in the offgas from such a plant, it is proposed in accordance with the invention that oxygen be introduced in liquid form or gaseous form into a region of the riser line (12, 14, 21) that is lower in a geodetic sense. This promotes the dissolution of the oxygen and the reaction of the oxygen with likewise dissolved nitrogen oxides to give nitric acid.
The invention relates to a method for cooling objects, in which a cooling medium is supplied from a first storage container (3) via a first cooling medium line (5) to an object (2) to be cooled, is brought into thermal contact with the latter and is then discharged via a second cooling medium line (16), which is characterised according to the invention in that after thermal contact with the object (2) the cooling medium is supplied via the second cooling medium line (16) to a second storage container (17) and stored there until a predefined level is reached in the first or second storage container (3, 17). The cooling medium is then supplied from the second storage container (17) to the object (2) for the purpose of cooling and brought into thermal contact with the latter, and then fed back into the first storage container (3), whereupon it is available again for cooling the object. Because the cooling medium is conducted in alternating directions between the two storage containers (3, 17), the same flow paths can at least partially be used in both flow directions. The invention is in particular suited to cooling superconductive cables.
F25D 3/10 - Dispositifs utilisant d'autres agents froidsDispositifs utilisant des récipients conservant le froid utilisant des gaz liquéfiés, p. ex. de l'air liquide
F25B 19/00 - Machines, installations ou systèmes utilisant l'évaporation d'un frigorigène mais sans récupération de vapeur
42.
DEVICE AND METHOD FOR CHANGING THE TEMPERATURE OF OBJECTS
According to the invention, in a device for controlling the temperature of an object by means of a heat-transfer medium conducted in a line network, the line network is connected to an inlet and an outlet of the object and comprises a pumping apparatus for pumping the heat-transfer medium, a heating apparatus and a cooling apparatus for heating and cooling the heat-transfer medium, and a first heat accumulator and a second heat accumulator, wherein the second heat accumulator is held at a lower operating temperature than the first heat accumulator during the operation of the device. During the operation of the device, the heat stored in the heat accumulators can be used in both the cooling and the heating of the object by appropriately switching the line network. At the same time, the heat (cold) retained during cooling (heating) can be temporarily stored in the corresponding heat accumulator and applied to a later use.
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
Produits et services
Chemicals used in industry, namely food gases, in particular
oxygen, nitrogen, carbon dioxide, dinitrogen monoxide,
sulphur dioxide, hydrogen, in gaseous, liquid or solid form,
for use as additives or processing aids in the food
industry, in particular for refrigerating, freezing,
preserving and treating foodstuffs.
44.
METHOD AND DEVICE FOR TREATING ABRASIVE SLURRIES CONTAINING SI/SIC
The invention relates to reclaiming silicon and/or silicon carbide from siliceous abrasive slurries, wherein the abrasive slurries are first subjected to a method for high-pressure extraction by means of liquid or supercritical carbon dioxide, wherein components comprising oil and polyethylene are dissolved in carbon dioxide. The resulting intermediate product containing Si/SiC and in powder form is subjected under vacuum or inert gas atmosphere to a separating process (16) for separating into a fraction comprising silicon carbide and a fraction comprising silicon. Said separating process (16) preferably consists of separating in a fine screen, a sieve, or a cyclone (16). In particular high-purity silicon can be reclaimed by means of the method according to the invention.
B28D 5/00 - Travail mécanique des pierres fines, pierres précieuses, cristaux, p. ex. des matériaux pour semi-conducteursAppareillages ou dispositifs à cet effet
45.
METHOD AND DEVICE FOR PRODUCING SOLID CARBON DIOXIDE PARTICLES
The invention relates to a method for producing solid carbon dioxide particles, wherein liquid carbon dioxide is brought into thermal contact with a coolant in a heat exchanger and is cooled to a temperature just above the solidification temperature thereof. The cooled liquid carbon dioxide is subsequently guided in a nozzle assembly cooled by contact with a coolant, in which it is cooled further by thermal contact with said nozzle assembly before it escapes from an opening of said assembly. Said thus produced cold-solidified carbon dioxide particles have a higher resistance than the conventionally produced CO2-particles.
In a process for chlorine-alkali electrolysis, use is made of an oxygen depletion cathode. The process is run with a high excess of oxygen. The oxygen needed for this is provided for a device of the gas separation, for example a VPSA plant or an air fractionation plant. The large quantities of oxygen produced lead to considerable costs of the process. According to the invention, the oxygen-rich atmosphere remaining after passing through the process is fed back into the device for gas separation as input gas. The device the gas separation is therefore operated with an oxygen-rich input gas and therefore produces a larger quantity of oxygen-rich gas, which in turn is fed to the oxygen depletion cathode. As a result of the circulation of the gas, the economy of the overall process is increased considerably.
C25B 1/46 - Production simultanée d'hydroxydes des métaux alcalins et de chlore, de ses oxyacides ou de ses sels, p. ex. électrolyse chlore-alcali dans des cellules à diaphragmes
C25B 15/08 - Alimentation ou vidange des réactifs ou des électrolytesRégénération des électrolytes
47.
PROTECTIVE GAS MIXTURE FOR ARC WELDING OF ALUMINUM AND ALLOYS THEREOF
The protective gas according to the invention for MIG/WIG welding of aluminum comprises a quaternary mixture of argon, helium, nitrogen and dinitrogen oxide, wherein the fraction of dinitrogen oxide is up to 70 vpm, preferably 50 to 70 vpm and wherein the nitrogen fraction is between 250 and 1000 vpm, but increases within these limits as the helium fraction increases. A good welding result is accomplished through the gas mixture according to the invention and the situation with regard to environmental and work safety is substantially improved.
The invention relates to a method and an apparatus for removing gas from a container in which the gas is stored in the liquid phase. For the removal of the gas, the most commonly used methods today include air vaporizers, wherein the danger of icing exists, however. According to the invention, the gas in the fluid state comes to an evaporation heat exchanger in which the gas is vaporized with a heat exchange medium. Also, the gas, which is at least partially vaporized in the evaporation heat exchanger is used to evaporate the fluid gas after further heating in a second heat exchanger or a heating device. The fluidized gas thus no longer comes into thermal contact, or only partially so, with ambient air. The risk of icing of the evaporation heat exchanger is thus significantly reduced.
The feeding of shielding gas to the torch in MIG, MAG and TIG welding takes place by means of a separate supply line, the control of the stream of shielding gas taking place by means of a solenoid valve. This solenoid valve is generally in the so-called wire feed box. Between the wire feed box and the nozzle assembly of the torch there is generally a gas supply line a few metres long, in which foreign matter such as air or moisture accumulates during breaks in work and impairs the welding result when materials that are particularly sensitive to gas are used, in particular aluminium or aluminium alloys. The invention proposes a novel welding torch for gas-shielded welding, in which a shielding gas line (19) with a built-in shut-off valve (20, 35) is arranged in the nozzle assembly (5, 30) or in the torch barrel (4). The shut-off valve is preferably a nonreturn valve or a pressure-maintaining valve, with which a predetermined positive pressure of shielding gas with respect to the surrounding atmosphere is ensured in the shielding gas supply line. The flow shut-off device directly ahead of the gas outlet on the nozzle assembly reliably avoids the concentration of foreign matter inside the shielding gas supply line.
A necessary part of the production of fresh concrete is to cool the cement or other mixing material mixed with the fresh concrete. According to a known method, said cooling is accomplished, for example, by feeding liquid nitrogen through a feed line to the pneumatic cement feed. The liquid nitrogen evaporates immediately upon contact with the cement. The associated increase in pressure leads to a short-term break in the conveyance of cement. As a result, periodic blow-off of dust occurs through the exhaust unit of the silo, which leads to placing a burden on workers and the environment. According to the invention, it is suggested to arrange a second feed line, parallel to the existing feed line between the supply silo and scale or mixing unit, wherein at least part of the flow of each mixing material is diverted and fed through a cooling unit. In the cooling unit, the mixing material contacts a cooling material which is removed from the cooling unit at the end of the cooling process. For the cooling process, a cryogenic cooling material, for example nitrogen or carbon dioxide, is preferably used. The cooling unit is preferably a fluidized screw cooler or a fluidized bed reactor. The invention allows an exact dosing and temperature target for the cooled mixing material.
B28C 7/00 - Commande de l'opération de production des mélanges d'argile ou de ciment avec d'autres substancesAlimentation ou dosage des ingrédients pour les mélanges ci-dessusDéchargement du mélange
C04B 40/06 - Inhibition de la prise, p. ex. pour mortiers du type à action différée contenant de l'eau dans des récipients frangibles
Obtaining inert gas by means of decomposition of air involves great efforts and low yields due to the low inert gas content of air. According to the invention the production of inert gas from a gas mixture is improved in that a process step for the enriching of the gas flow intended for decomposition, the gas flow having a partial gas flow containing inert gas, is introduced to the decomposition of the gas. The partial gas flow can be, for example, a process gas rich in inert gas, or a gas that has been charged with inert gas during the course of a process. By means of the invention the inert gas content is increased in a gas flow supplied to an air decomposition system, thus improving the yield of inert gases during air decomposition.
F01K 23/06 - Ensembles fonctionnels caractérisés par plus d'une machine motrice fournissant de l'énergie à l'extérieur de l'ensemble, ces machines motrices étant entraînées par des fluides différents les cycles de ces machines motrices étant couplés thermiquement la chaleur de combustion provenant de l'un des cycles chauffant le fluide dans un autre cycle
F25J 3/02 - Procédés ou appareils pour séparer les constituants des mélanges gazeux impliquant l'emploi d'une liquéfaction ou d'une solidification par rectification, c.-à-d. par échange continuel de chaleur et de matière entre un courant de vapeur et un courant de liquide
F25J 3/04 - Procédés ou appareils pour séparer les constituants des mélanges gazeux impliquant l'emploi d'une liquéfaction ou d'une solidification par rectification, c.-à-d. par échange continuel de chaleur et de matière entre un courant de vapeur et un courant de liquide pour l'air
In order to improve the combustibility and the calorific value of fuels, these fuels are subjected to different pretreatment methods. In order to improve the cost-effectiveness of the pretreatment of fuels, it is proposed to remove noncombustible, gaseous constituents from the fuels and to convey said constituents in a gas stream to a further use. In particular the gas stream is subjected to a gas-splitting method through which gas constituents extracted from the fuel can be presented in pure form.
C10L 3/10 - Post-traitement de gaz naturel ou de gaz naturel de synthèse
C10L 9/08 - Traitement des combustibles solides en vue d'améliorer leur combustion par traitement thermique, p. ex. calcination
C10G 31/06 - Raffinage des huiles d'hydrocarbures, en l'absence d'hydrogène, par des méthodes non prévues ailleurs par chauffage, refroidissement ou traitement par la pression
B01D 53/22 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par diffusion
F25J 3/04 - Procédés ou appareils pour séparer les constituants des mélanges gazeux impliquant l'emploi d'une liquéfaction ou d'une solidification par rectification, c.-à-d. par échange continuel de chaleur et de matière entre un courant de vapeur et un courant de liquide pour l'air
53.
POLLUTANT-REDUCING PROTECTIVE GAS MIXTURE FOR THE MAG WELDING OF UNALLOYED OR LOW-ALLOYED STEELS
In welding processes, harmful substances, such as for example nitrogen oxides, ozone, dusts and the like, occur on a considerable scale. In order to comply with occupational health and accident prevention regulations, sophisticated equipment such as ventilation and extraction devices have to be used. The use of a protective gas for the MAG welding of unalloyed steels with an active gas component of 1 to 8% carbon dioxide and/or 0.3 to 4% oxygen significantly reduces the occurrence of pollutants while maintaining approximately the same good welding result.
According to the invention, a diffuser (11) is arranged after an expansion nozzle (2), which reduces the flow speed of a flow of carbon dioxide gas and carbon dioxide snow to a value at which the carbon dioxide snow falls evenly on the product (15). Said diffuser (11) may, for example, be a tube of cylindrical or conical shape with gas-permeable walls. The occurrence of turbulent flow is effectively prevented by application of said device.
F25D 3/12 - Dispositifs utilisant d'autres agents froidsDispositifs utilisant des récipients conservant le froid utilisant des gaz solidifiés, p. ex. de la neige carbonique