Databricks, Inc.

États‑Unis d’Amérique

Retour au propriétaire

1-100 de 128 pour Databricks, Inc. Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 114
        Marque 14
Juridiction
        États-Unis 116
        International 9
        Canada 2
        Europe 1
Date
Nouveautés (dernières 4 semaines) 6
2025 avril (MACJ) 4
2025 mars 7
2025 février 4
2025 janvier 7
Voir plus
Classe IPC
G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage 32
G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet 19
G06F 16/2453 - Optimisation des requêtes 18
G06F 16/2455 - Exécution des requêtes 16
G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie 14
Voir plus
Classe NICE
42 - Services scientifiques, technologiques et industriels, recherche et conception 13
09 - Appareils et instruments scientifiques et électriques 10
Statut
En Instance 33
Enregistré / En vigueur 95
  1     2        Prochaine page

1.

DATA ASSET SHARING BETWEEN ACCOUNTS AT A DATA PROCESSING SERVICE USING CLOUD TOKENS

      
Numéro d'application 18491500
Statut En instance
Date de dépôt 2023-10-20
Date de la première publication 2025-04-24
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Sun, Xiaotong
  • Chakankar, Abhijit
  • Chandra, Ramesh

Abrégé

A data processing service receives indication that a recipient will request access to data assets of a provider and provides a request for credentials from a recipient governance module. The recipient governance module stores a recipient metastore including an object for a provider metastore. In response to determining that the assets are associated with the provider metastore, the service provides a request for credentials to a provider governance module. The provider governance module stores the provider metastore describing data assets of the provider and permissions for accessing data assets. The provider metastore includes a recipient object attached to the data assets with an identifier for the recipient metastore. In response to verifying that the recipient was provided access to the data assets, the service provides a token to the recipient governance module. The service then provides the token to a computing resource to provide access to the data assets.

Classes IPC  ?

  • G06F 21/31 - Authentification de l’utilisateur

2.

DATA SHARING FOR NETWORK CONNECTED SYSTEMS

      
Numéro d'application 18958728
Statut En instance
Date de dépôt 2024-11-25
Date de la première publication 2025-04-24
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Zaharia, Matei
  • Zhu, Shixiong
  • Sun, Xiaotong
  • Chandra, Ramesh
  • Armbrust, Michael Paul
  • Ghodsi, Ali

Abrégé

The present application discloses a method, system, and computer system for providing access to data. The method includes receiving, by a data manager service from a data requesting service, a request using an identifier for a high-level data object to access a set of data associated with the high-level data object, determining, by the data manager service, low-level data object(s) corresponding to the set of data based on the identifier for the high-level data object, determining whether a user associated with the request has permission to access at least a subset of the low-level data object(s), and in response to determining that the user associated has permission to access the at least the subset of the low-level data object(s), generating, by the data manager service, a uniform resource locator (URL) via which the at least the subset of the one or more low-level data objects is accessible by the user.

Classes IPC  ?

  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • G06F 21/60 - Protection de données

3.

AUTO MAINTENANCE FOR DATA TABLES IN CLOUD STORAGE

      
Numéro d'application 18986345
Statut En instance
Date de dépôt 2024-12-18
Date de la première publication 2025-04-24
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Prabhakaran, Vijayan
  • Raja, Himanshu
  • Potharaju, Rahul
  • Bhanoori, Naga Raju
  • Ma, Lin
  • Parangi Sharabhalingappa, Rajesh
  • Liang, Jintian
  • Schuermann, Zachary Vaughn
  • Ting, Kam Cheung

Abrégé

Disclosed is a configuration for managing the organization of data tables in cloud-based storage. The configuration receives metrics for data processing operations on the data table. Metrics include at least one of a size of the data table, a size of each file in the data table, and metadata describing the data table. The configuration automatically executes a cost-benefit analysis based on the one or more metrics for each candidate maintenance operation in a plurality of candidate maintenance operations. The configuration automatically selects a maintenance operation from the candidate maintenance operations to automate based on the cost-benefit analysis of the one or more candidate maintenance operations. The selected maintenance operation is automated and scheduled on the data table.

Classes IPC  ?

  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

4.

USING LLM FUNCTIONS TO EVALUATE AND COMPARE LARGE TEXT OUTPUTS OF LLMS

      
Numéro d'application 18518155
Statut En instance
Date de dépôt 2023-11-22
Date de la première publication 2025-04-17
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Gupta, Ridhima
  • Kannan, Prithvi
  • Sheth, Sunish Sohil
  • Uhlenhuth, Kasey
  • Zub, Hubert
  • Zumar, Corey

Abrégé

A method for evaluating textual output of one or more machine-learned language models is presented. The method includes receiving, from a user of a client device, a first prompt for input to one or more machine-learned language models, providing the first prompt to the one or more models for execution, and receiving a set of generated responses to the first prompt from the one or more models. The method further includes generating a user interface (UI) on the client device displaying the first prompt and generated responses as a table user interface element. The method applies a selected evaluation function to the generated response to evaluate the response with respect to an evaluation objective and identifies words that influence the evaluation. The method generates one or more UI elements on the UI to display the results of the evaluation for the generated responses.

Classes IPC  ?

  • G06F 40/40 - Traitement ou traduction du langage naturel
  • G06F 40/103 - Mise en forme, c.-à-d. modification de l’apparence des documents
  • G06F 40/30 - Analyse sémantique

5.

CONCURRENT OPTIMISTIC TRANSACTIONS FOR TABLES WITH DELETION VECTORS

      
Numéro d'application 18928982
Statut En instance
Date de dépôt 2024-10-28
Date de la première publication 2025-03-27
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Samwel, Bart
  • Stavrakakis, Christos

Abrégé

A disclosed configuration receives a first indication that a first transaction is committed to update a first subset of records in a data table at a first version to generate a second version of the data table and receiving a second indication to commit a second transaction to update a second subset of records in a data file of the data table at the first version. The configuration determines a logical prerequisite based on whether the first subset of records changes content of one or more records in the second subset of records and determining a physical prerequisite on whether the second subset of records corresponds to respective data records in data files of the second version of the data table. The configuration commits the second transaction to generate a third version of the data table by updating elements of the deletion vector if the prerequisites are satisfied.

Classes IPC  ?

6.

Clean room generation for data collaboration and executing clean room task in data processing pipeline

      
Numéro d'application 18474708
Numéro de brevet 12260003
Statut Délivré - en vigueur
Date de dépôt 2023-09-26
Date de la première publication 2025-03-25
Date d'octroi 2025-03-25
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Chau, William
  • Chakankar, Abhijit
  • Mahoney, Stephen Michael
  • Morris, Daniel Seth
  • Weiss, Itai Shlomo

Abrégé

A data processing service facilitates the creation and processing of data processing pipelines that process data processing jobs defined with respect to a set of tasks in a sequence and with data dependencies associated with each separate task such that the output from one task is used as input for a subsequent task. In various embodiments, the set of tasks include at least one cleanroom task that is executed in a cleanroom station and at least one non-cleanroom task executed in an execution environment of a user where each task is configured to read one or more input datasets and transform the one or more input datasets into one or more output datasets.

Classes IPC  ?

  • G06F 21/00 - Dispositions de sécurité pour protéger les calculateurs, leurs composants, les programmes ou les données contre une activité non autorisée
  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès

7.

RESOURCE MANAGEMENT WITH INTERMEDIARY NODE IN KUBERNETES ENVIRONMENT

      
Numéro d'application 18368919
Statut En instance
Date de dépôt 2023-09-15
Date de la première publication 2025-03-20
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Davidson, Aaron Daniel
  • Garnier, Thomas
  • Guo, Lin
  • He, Zhe
  • Li, Manlin
  • Liu, Yang
  • Wang, Feng
  • Zhang, Hong
  • Zhu, Weirong

Abrégé

A resource management configuration may receive an API request from an API server. The API request specifies task information from a plurality of tenants. The configuration transmits status information of a plurality of VMs to the API server to assign tasks to one or more VMs based on the task information and the status information. Tasks assigned to a VM of the plurality of VMs are for one tenant of the plurality of tenants. The configuration configures on an untrusted network, network security groups for managing communications of tenants such that a network security group configured for a tenant permits communications between VMs assigned to the same tenant but prevents communications between VMs assigned to different tenants. The configuration pins each assigned VM of the one or more assigned VMs to perform the task based on the task information of the corresponding tenant.

Classes IPC  ?

  • G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
  • G06F 9/54 - Communication interprogramme

8.

STRUCTURED CLUSTER EXECUTION FOR DATA STREAMS

      
Numéro d'application 18745847
Statut En instance
Date de dépôt 2024-06-17
Date de la première publication 2025-03-13
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Armbrust, Michael Paul
  • Das, Tathagata
  • Xin, Shi
  • Zaharia, Matei

Abrégé

A system for executing a streaming query includes an interface and a processor. The interface is configured to receive a logical query plan. The processor is configured to determine a physical query plan based at least in part on the logical query plan. The physical query plan comprises an ordered set of operators. Each operator of the ordered set of operators comprises an operator input mode and an operator output mode. The processor is further configured to execute the physical query plan using the operator input mode and the operator output mode for each operator of the query.

Classes IPC  ?

9.

K-D Tree Balanced Splitting

      
Numéro d'application 18772758
Statut En instance
Date de dépôt 2024-07-15
Date de la première publication 2025-03-13
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Samwel, Bart
  • Jain, Prakhar

Abrégé

A system for clustering data into corresponding files comprises one or more processors and a memory. The one or more processors is/are configured to: 1) determine to cluster a set of data into a set of files; 2) determine a set of split points in a corresponding set of dimensions of the set of data to determine the set of files, wherein each file of the set of files has an approximate target size; and 3) store one or more items of the set of data into a corresponding file of the set of files based at least in part on the set of split points. The memory is coupled to the one or more processors and configured to provide the processor with instructions.

Classes IPC  ?

  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

10.

Reducing cluster start up time

      
Numéro d'application 17514988
Numéro de brevet 12248818
Statut Délivré - en vigueur
Date de dépôt 2021-10-29
Date de la première publication 2025-03-11
Date d'octroi 2025-03-11
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Mao, Yandong
  • Davidson, Aaron Daniel

Abrégé

The present application discloses a method, system, and computer system for starting up and maintaining a cluster in a warmed up state, and/or allocating clusters from a warmed up state. The method includes instantiating a set of virtual machines, wherein instantiating the set of virtual machines includes setting a temporary security credential for each virtual machine of the set of virtual machines, receiving a virtual machine allocation request associated with a workspace, a customer, or a tenant, in response to the virtual machine allocation request: allocating a virtual machine, wherein allocating the virtual machine comprises replacing the temporary security credential with a security credential associated with the workspace, the customer, or the tenant.

Classes IPC  ?

  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • G06F 21/45 - Structures ou outils d’administration de l’authentification

11.

Data lineage tracking

      
Numéro d'application 18162562
Numéro de brevet 12242441
Statut Délivré - en vigueur
Date de dépôt 2023-01-31
Date de la première publication 2025-03-04
Date d'octroi 2025-03-04
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Feng, Tao
  • Sun, Menglei
  • Wang, Zhuoying

Abrégé

The present application discloses a method, system, and computer system for managing lineage data for data entities. The method includes generating lineage data, wherein generating the lineage data, and storing and indexing, in a data structure, the lineage data in association with the selected data entity. The generating the lineage data includes selecting a selected data entity, obtaining a query tree that was used to generate the selected data entity, and determining lineage data for the selected data entity based at least in part on the query tree.

Classes IPC  ?

  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet
  • G06F 11/07 - Réaction à l'apparition d'un défaut, p. ex. tolérance de certains défauts
  • G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/23 - Mise à jour
  • G06F 16/906 - GroupementClassement
  • G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques

12.

Automated Processing of Multiple Prediction Generation Including Model Tuning

      
Numéro d'application 18738025
Statut En instance
Date de dépôt 2024-06-09
Date de la première publication 2025-02-20
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Wilson, Benjamin Thomas
  • Zumar, Corey

Abrégé

The present application discloses a method, system, and computer system for building a model associated with a dataset. The method includes receiving a data set, the dataset comprising a plurality of keys and a plurality of key-value relationships, determining a plurality of models to build based at least in part on the dataset, wherein determining the plurality of models to build comprises using the dataset format information to identify the plurality of models, building the plurality of models, and optimizing at least one of the plurality of models.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06F 18/20 - Analyse
  • G06F 18/2132 - Extraction de caractéristiques, p. ex. en transformant l'espace des caractéristiquesSynthétisationsMappages, p. ex. procédés de sous-espace basée sur des critères de discrimination, p. ex. l'analyse discriminante

13.

STATE REBALANCING IN STRUCTURED STREAMING

      
Numéro d'application 18822023
Statut En instance
Date de dépôt 2024-08-30
Date de la première publication 2025-02-20
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Balikov, Alexander
  • Das, Tathagata
  • Ramasamy, Karthikeyan

Abrégé

A data processing service performs a rebalancing process for rebalancing stateful tasks on a cluster computing system. In one instance, the method for rebalancing stateful tasks is performed such that the per-operator partitions are spread across available executors of a cluster of the cluster computing system with respect to one or more statistics of the tasks. In one instance, the method for rebalancing stateful tasks is also performed such that the total number of stateful tasks are balanced per executor as long as this rebalancing does not imbalance the per-operator placements. In this way, the processing of stateful tasks can be spread across multiple executors in a relatively uniform manner, even though there may be an upfront cost of breaking the local caching on an executor.

Classes IPC  ?

  • G06F 16/27 - Réplication, distribution ou synchronisation de données entre bases de données ou dans un système de bases de données distribuéesArchitectures de systèmes de bases de données distribuées à cet effet
  • G06F 16/2455 - Exécution des requêtes

14.

Checkpoint and restore based startup of executor nodes of a distributed computing engine for processing queries

      
Numéro d'application 18412438
Numéro de brevet 12229137
Statut Délivré - en vigueur
Date de dépôt 2024-01-12
Date de la première publication 2025-02-18
Date d'octroi 2025-02-18
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Ge, Xinyang
  • Ao, Lixiang
  • Jing, Haonan
  • Davidson, Aaron Daniel

Abrégé

A system performs efficient startup of executors of a distributed computing engine used for processing queries, for example, database queries. The system starts an executor node and processes a set of queries using the executor node to warm up the executor node. The system performs a checkpoint of the warmed-up executor node to create an image. The image is restored in the target executor nodes. The system may store a checkpoint image for each configuration of an executor node. The configuration is determined based on various factors including the hardware of the executor node, memory allocation of the processes, and so on. The user or restore based on checkpoint images improves efficiency of execution of the startup of executor nodes.

Classes IPC  ?

15.

Clustering key selection based on machine-learned key selection models for data processing service

      
Numéro d'application 18501830
Numéro de brevet 12229169
Statut Délivré - en vigueur
Date de dépôt 2023-11-03
Date de la première publication 2025-02-18
Date d'octroi 2025-02-18
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Kim, Terry
  • Ma, Lin
  • Mahadev, Rahul Shivu
  • Potharaju, Rahul

Abrégé

The disclosed configurations provide a method (and/or a computer-readable medium or system) for determining, from a table schema describing keys of a data table, one or more clustering keys that can be used to cluster data files of a data table. The method includes generating features for the data table, generating tokens from the features, generating a prediction for each token by applying to the token a machine-learned transformer model trained to predict a likelihood that the key associated with the token is a clustering key for the data table, determining clustering keys based on the predictions, and clustering data records of the data table into data files based on key-values for the clustering keys.

Classes IPC  ?

  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet
  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

16.

MESSAGING DEDPULICATION IN PUBLISH / SUBSCRIBE SYSTEM

      
Numéro d'application 18224981
Statut En instance
Date de dépôt 2023-07-21
Date de la première publication 2025-01-23
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Anand, Pranav
  • Gattu, Praveen
  • Shrigondekar, Anish
  • Wang, Huanli

Abrégé

A device for using message identifiers for Publish/subscribe messaging deduplication is described. The system may fetch one or more sets of data records from a data source, and each data record is associated with a message identifier. The system may store the one or more sets of data records in a data file, which is associated with a metadata comprising the message identifier, a file path and a row number for each data record. The system may determine whether one or more of the data records are duplicated based on the associated message identifiers. In response to determining that the one or more data records are duplicated, the system may generate a second metadata comprising the file paths and row numbers associated with the duplicated data records.

Classes IPC  ?

  • G06F 16/174 - Élimination de redondances par le système de fichiers
  • G06F 16/14 - Détails de la recherche de fichiers basée sur les métadonnées des fichiers
  • G06F 16/16 - Opérations sur les fichiers ou les dossiers, p. ex. détails des interfaces utilisateur spécialement adaptées aux systèmes de fichiers

17.

MODEL ML REGISTRY AND MODEL SERVING

      
Numéro d'application 18885322
Statut En instance
Date de dépôt 2024-09-13
Date de la première publication 2025-01-16
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Davidson, Aaron Daniel
  • Mewald, Clemens
  • Nykodym, Tomas

Abrégé

A system includes an interface, a processor, and a memory. The interface is configured to receive a version of a model from a model registry. The processor is configured to store the version of the model, start a process running the version of the model, and update a proxy with version information associated with the version of the model, wherein the updated proxy indicates to redirect an indication to invoke the version of the model to the process. The memory is coupled to the processor and configured to provide the processor with instructions.

Classes IPC  ?

  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 16/955 - Recherche dans le Web utilisant des identifiants d’information, p. ex. des localisateurs uniformisés de ressources [uniform resource locators - URL]
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance

18.

Clean room generation for data collaboration

      
Numéro d'application 18473992
Numéro de brevet 12197400
Statut Délivré - en vigueur
Date de dépôt 2023-09-25
Date de la première publication 2025-01-14
Date d'octroi 2025-01-14
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Chau, William
  • Chakankar, Abhijit
  • Mahoney, Stephen Michael
  • Morris, Daniel Seth
  • Weiss, Itai Shlomo

Abrégé

A data processing service receives a request from a first collaborator to create a clean room for data sharing collaboration with at least a second collaborator. In response, the data processing service creates an execution environment separate from the data environment of the first collaborator and the second collaborator. The first and second collaborators can then add content into the clean room in the form of data tables and executable notebooks. Approval from each collaborator is required before a notebook can be executed using any data table shared into the clean room. Upon receiving notebook approval from each collaborator, the data processing service creates a notebook job to execute the notebook on one or more cluster computing resources of the data processing service to generate an output.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/21 - Conception, administration ou maintenance des bases de données

19.

Efficient Merging of Tabular Data with Post-Processing Compaction

      
Numéro d'application 18769269
Statut En instance
Date de dépôt 2024-07-10
Date de la première publication 2025-01-09
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Samwel, Bart
  • Das, Tathagata
  • Kroll, Lars
  • Cui, Yijia
  • Sompolski, Juliusz
  • Van Bussel, Tom
  • Jain, Prakhar

Abrégé

A method, system, and computer system for performing an operation with respect to a target table are disclosed. The method includes performing first and second jobs, obtaining one or more other resulting files based at least in part on unmatched rows, and obtaining a set of processed files based at least in part on performing a post-processing operation with respect to the set of resulting files. The set of processed files has less files than the set of resulting files. Performing the first job includes determining a set of matching target table files and storing target table information indicating for each of the set of matching target table files, a particular set of rows having matching rows. Performing the second job includes performing a matching action based on matched rows and obtaining the second job resulting file(s).

Classes IPC  ?

  • G06F 16/2453 - Optimisation des requêtes
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

20.

DATA FILE CLUSTERING WITH KD-CLASSIFIER TREES

      
Numéro d'application 18218410
Statut En instance
Date de dépôt 2023-07-05
Date de la première publication 2025-01-09
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Jain, Prakhar
  • Johnson, Frederick Ryan
  • Kim, Terry
  • Prabhakaran, Vijayan
  • Samwel, Bart

Abrégé

A data processing service generates a data classifier tree for managing data files of a data table. The data classifier tree may be configured as a KD-classifier tree and includes a plurality of nodes and edges. A node of the data classifier tree may represent a splitting condition with respect to key-values for a respective key. A node of the data classifier tree may be associated with one or more data files assigned to the node. The data files assigned to the node each include a subset of records having key-values that satisfy the conditions represented by the node and parent nodes of the node. The data processing service may efficiently cluster the data in the data table while reducing the number of data files that are rewritten when data is modified or added to the data table.

Classes IPC  ?

  • G06F 16/16 - Opérations sur les fichiers ou les dossiers, p. ex. détails des interfaces utilisateur spécialement adaptées aux systèmes de fichiers
  • G06F 16/13 - Structures d’accès aux fichiers, p. ex. indices distribués

21.

DATA FILE CLUSTERING WITH KD-EPSILON TREES

      
Numéro d'application 18218766
Statut En instance
Date de dépôt 2023-07-06
Date de la première publication 2025-01-09
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Jain, Prakhar
  • Johnson, Frederick Ryan
  • Samwel, Bart

Abrégé

A data tree for managing data files of a data table and performing one or more transaction operations to the data table is described. The data tree is configured as a KD-epsilon tree and includes a plurality of nodes and edges. A node of the data tree may represent a splitting condition with respect to key-values for a respective key. A leaf node of the data tree may correspond to a data file for a data table that includes a subset of records having key-values that satisfy the condition for the node and conditions associated with parent nodes of the node. A parent node may correspond to a file including a buffer that stores changes to data files reachable by this parent node, and also includes dedicated storage to pointers of the child nodes. By using the data tree, the data processing system may efficiently cluster the data in the data table while reducing the number of data files that are rewritten.

Classes IPC  ?

  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/2453 - Optimisation des requêtes
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

22.

Data Retrieval Using Distributed Workers in a Large-Scale Data Access System

      
Numéro d'application 18771892
Statut En instance
Date de dépôt 2024-07-12
Date de la première publication 2025-01-02
Propriétaire DATABRICKS, INC. (USA)
Inventeur(s)
  • Khurana, Amandeep
  • Li, Nong

Abrégé

Disclosed herein provides enhancements for operating a data access application service executing on a data access server system and an external computing system. In the data access server system, a request is received from a client device executing at least one of multiple application services for a dataset from one or more of multiple storage systems. In the data access server system, a data retrieval instruction is generated for the client device to access the dataset from the one or more of the multiple storage systems. The data retrieval instruction comprises task descriptions and a temporary credential. The data retrieval instruction is transferred to the external computing system via the client device and the requested dataset is retrieved and deployed based on the task descriptions and the temporary credential from the one or more of the multiple storage systems.

Classes IPC  ?

  • G06F 16/27 - Réplication, distribution ou synchronisation de données entre bases de données ou dans un système de bases de données distribuéesArchitectures de systèmes de bases de données distribuées à cet effet
  • G06F 9/54 - Communication interprogramme
  • G06F 16/2455 - Exécution des requêtes
  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

23.

Data sharing for network connected systems

      
Numéro d'application 18162353
Numéro de brevet 12182292
Statut Délivré - en vigueur
Date de dépôt 2023-01-31
Date de la première publication 2024-12-31
Date d'octroi 2024-12-31
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Zaharia, Matei
  • Zhu, Shixiong
  • Sun, Xiaotong
  • Chandra, Ramesh
  • Armbrust, Michael Paul
  • Ghodsi, Ali

Abrégé

The present application discloses a method, system, and computer system for providing access to data. The method includes receiving, by a data manager service from a data requesting service, a request using an identifier for a high-level data object to access a set of data associated with the high-level data object, determining, by the data manager service, low-level data object(s) corresponding to the set of data based on the identifier for the high-level data object, determining whether a user associated with the request has permission to access at least a subset of the low-level data object(s), and in response to determining that the user associated has permission to access the at least the subset of the low-level data object(s), generating, by the data manager service, a uniform resource locator (URL) via which the at least the subset of the one or more low-level data objects is accessible by the user.

Classes IPC  ?

  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • G06F 21/00 - Dispositions de sécurité pour protéger les calculateurs, leurs composants, les programmes ou les données contre une activité non autorisée
  • G06F 21/60 - Protection de données

24.

FEATURE FUNCTION BASED COMPUTATION OF ON-DEMAND FEATURES OF MACHINE LEARNING MODELS

      
Numéro d'application 18206460
Statut En instance
Date de dépôt 2023-06-06
Date de la première publication 2024-12-12
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Zaharia, Matei
  • Singh, Avesh
  • Parkhe, Mani
  • Lukiyanov, Maxim
  • Meng, Xiangrui
  • Talati, Aakrati
  • Liang, Chenen
  • Uhlenhuth, Kasey

Abrégé

A system performs training and execution of machine learning models that use on-demand features using feature functions. The system receives commands for registering metadata associated with a machine learning model. The machine learning model may process a set of features including on-demand features as well as other features such as batch features. The system executes the command by storing an association between the machine learning model and the feature functions associated with any on-demand features processed by the machine learning model. The feature functions are executed using an end point of a data asset service. The use of the data asset service for invoking the feature functions ensures that the same set of instructions is executed during model training and model inferencing, thereby avoiding model skew.

Classes IPC  ?

25.

Fetching Query Results Through Cloud Object Stores

      
Numéro d'application 18614380
Statut En instance
Date de dépôt 2024-03-22
Date de la première publication 2024-11-28
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Ghit, Bogdan Ionut
  • Sompolski, Juliusz
  • Xin, Shi
  • Samwel, Bart

Abrégé

The system is configured to: 1) receive a client request; 2) determine executor(s) to generate a response to the user request; 3) provide each of the executor(s) with an indication; 4) receive for each indication a response including an output of either a cloud output or an in-line output to generate a group of in-line outputs and a group of cloud outputs; 5) determine whether the group of in-line outputs comprises all outputs; and 6) in response to the group of in-line outputs not comprising all the outputs for the client request: a) convert the group of in-line outputs to a converted group of cloud outputs; b) generate metadata for the converted group of cloud outputs and the group of cloud outputs; and c) provide response to the client request including the metadata for the converted group of cloud outputs and the group of cloud outputs.

Classes IPC  ?

  • G06F 16/2458 - Types spéciaux de requêtes, p. ex. requêtes statistiques, requêtes floues ou requêtes distribuées
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 16/242 - Formulation des requêtes
  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données

26.

Hash based rollup with passthrough

      
Numéro d'application 18162093
Numéro de brevet 12153558
Statut Délivré - en vigueur
Date de dépôt 2023-01-31
Date de la première publication 2024-11-26
Date d'octroi 2024-11-26
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Behm, Alexander
  • Dave, Ankur

Abrégé

A system includes a plurality of computing units. A first computing unit of the plurality of computing units comprises: a communication interface configured to receive an indication to roll up data in a data table; and a processor coupled to the communication interface and configured to: build a preaggregation hash table based at least in part on a set of columns and the data table by aggregating input rows of the data table; for each preaggregated hash table entry of the preaggregated hash table: provide the preaggregated hash table entry to a second computing unit of the plurality of computing units based at least in part on a distribution hash value; receive a set of received entries from computing units of the plurality of computing units; and build an aggregation hash table based at least in part on the set of received entries by aggregating the set of received entries.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/13 - Structures d’accès aux fichiers, p. ex. indices distribués
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/242 - Formulation des requêtes
  • G06F 16/2455 - Exécution des requêtes
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

27.

Data sharing for network connected systems

      
Numéro d'application 17733485
Numéro de brevet 12147555
Statut Délivré - en vigueur
Date de dépôt 2022-04-29
Date de la première publication 2024-11-19
Date d'octroi 2024-11-19
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Zaharia, Matei
  • Zhu, Shixiong
  • Sun, Xiaotong
  • Chandra, Ramesh
  • Armbrust, Michael Paul
  • Ghodsi, Ali

Abrégé

The present application discloses a method, system, and computer system for providing access to data. The method includes receiving, by a data manager service from a data requesting service, a request using an identifier for a high-level data object to access a set of data associated with the high-level data object, determining, by the data manager service, low-level data object(s) corresponding to the set of data based on the identifier for the high-level data object, determining whether a user associated with the request has permission to access at least a subset of the low-level data object(s), and in response to determining that the user associated has permission to access the at least the subset of the low-level data object(s), generating, by the data manager service, a uniform resource locator (URL) via which the at least the subset of the one or more low-level data objects is accessible by the user.

Classes IPC  ?

  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • G06F 21/00 - Dispositions de sécurité pour protéger les calculateurs, leurs composants, les programmes ou les données contre une activité non autorisée
  • G06F 21/60 - Protection de données

28.

Auto maintenance for data tables in cloud storage

      
Numéro d'application 18144647
Numéro de brevet 12204510
Statut Délivré - en vigueur
Date de dépôt 2023-05-08
Date de la première publication 2024-11-14
Date d'octroi 2025-01-21
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Prabhakaran, Vijayan
  • Raja, Himanshu
  • Potharaju, Rahul
  • Bhanoori, Naga Raju
  • Ma, Lin
  • Parangi Sharabhalingappa, Rajesh
  • Liang, Jintian
  • Schuermann, Zachary Vaughn
  • Ting, Kam Cheung

Abrégé

Disclosed is a configuration for managing the organization of data tables in cloud-based storage. The configuration receives metrics for data processing operations on the data table. Metrics include at least one of a size of the data table, a size of each file in the data table, and metadata describing the data table. The configuration automatically executes a cost-benefit analysis based on the one or more metrics for each candidate maintenance operation in a plurality of candidate maintenance operations. The configuration automatically selects a maintenance operation from the candidate maintenance operations to automate based on the cost-benefit analysis of the one or more candidate maintenance operations. The selected maintenance operation is automated and scheduled on the data table.

Classes IPC  ?

  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

29.

Short query prioritization for data processing service

      
Numéro d'application 18140323
Numéro de brevet 12210521
Statut Délivré - en vigueur
Date de dépôt 2023-04-27
Date de la première publication 2024-10-31
Date d'octroi 2025-01-28
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Gudesa, Venkata Sai Akhil
  • Van Hövell Tot Westerflier, Herman Rudolf Petrus Catharina
  • Nakandala, Supun Chathuranga

Abrégé

A cluster computing system maintains a first set of queues for short queries and a set second set for longer queries. The first set is allocated a majority of the cluster's processing resources and processes queries on a first in first out basis. The second set is allocated a minority of the cluster's processing resources which are shared among queries in the second set. Accordingly, the system assigns each query to the first set of queues for a fixed amount of resource time. While a query is processing, the system monitors the query's resource time and reassigns the query to the second set of queues if the query has not completed within the allotted amount of resource time. Thus, short queries receive the necessary resources to complete quickly without getting stuck behind longer queries while ensuring that longer queries continue to make progress.

Classes IPC  ?

  • G06F 16/24 - Requêtes
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 16/2453 - Optimisation des requêtes
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

30.

Retrieval and caching of object metadata across data sources and storage systems

      
Numéro d'application 18135078
Numéro de brevet 12204523
Statut Délivré - en vigueur
Date de dépôt 2023-04-14
Date de la première publication 2024-10-17
Date d'octroi 2025-01-21
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Li, Zhaoxing
  • Singh, Rayman Preet
  • Efeoglu, Fuat Can
  • Tenedorio, Daniel
  • Cai, Sarah

Abrégé

A system for retrieving and caching metadata from a remote data source is described. The system may receive a request from a client device. The request is to perform a query operation on a set of data objects stored in the remote data source. The system may access a metadata cache storing metadata information on one or more data objects of the remote data source and identify metadata corresponding to the set of data objects for the query operation in the metadata cache. The system may determine whether the identified metadata for the set of data objects meets an update condition. In response to the identified metadata meeting the update condition, the system may fetch updated metadata for at least the set of data objects from the remote data source, and store the updated metadata in the metadata cache.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/23 - Mise à jour
  • G06F 16/2455 - Exécution des requêtes

31.

Multiple pass sort

      
Numéro d'application 17875176
Numéro de brevet 12105690
Statut Délivré - en vigueur
Date de dépôt 2022-07-27
Date de la première publication 2024-10-01
Date d'octroi 2024-10-01
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Armstrong, Timothy
  • Krishnan, Arvind Sai
  • Guliyev, Khayyam

Abrégé

A system for multipass sort includes a communication interface and a processor. The communication interface is configured to receive from a client device a request to sort a dataset that includes a plurality of rows. The processor is configured to perform a first sort pass on the dataset in part by: extracting prefixes associated with a first schema element associated with the dataset for the plurality of rows; and sorting the extracted prefixes utilizing an integer sort algorithm based on a sort order included in the request to sort the dataset, where sorting the extracted prefixes includes utilizing NULL values to resolve a tied range that includes at least two rows of the plurality of rows having a same extracted prefix.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/2455 - Exécution des requêtes

32.

Scaling delta table optimize command

      
Numéro d'application 18093916
Numéro de brevet 12079167
Statut Délivré - en vigueur
Date de dépôt 2023-01-06
Date de la première publication 2024-09-03
Date d'octroi 2024-09-03
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Mahadev, Rahul Shivu
  • Yavuz, Burak
  • Das, Tathagata

Abrégé

The interface is to receive an indication to execute an optimize command. The processor is to receive a file name; determine whether adding a file of the file name to a current bin causes the current bin to exceed a threshold; associate the file with the current bin in response to determining that adding the file does not cause the current bin to exceed the bin threshold; in response to determining that adding the file to the current bin causes the current bin to exceed the bin threshold: associate the file with a next bin, indicate that the current bin is closed, and add the current bin to a batch of bins; determine whether a measure of the batch of bins exceeds a batch threshold; and in response to determining that the measure exceeds the batch threshold, provide the batch of bins for processing.

Classes IPC  ?

  • G06F 16/172 - Mise en cache, pré-extraction ou accumulation de fichiers
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

33.

Data ingestion using data file clustering with KD-epsilon trees

      
Numéro d'application 18218400
Numéro de brevet 12072863
Statut Délivré - en vigueur
Date de dépôt 2023-07-05
Date de la première publication 2024-08-27
Date d'octroi 2024-08-27
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Jain, Prakhar
  • Johnson, Frederick Ryan
  • Samwel, Bart

Abrégé

A data tree for managing data files of a data table and performing one or more transaction operations to the data table is described. The data tree is configured as a KD-epsilon tree and includes a plurality of nodes and edges. A node of the data tree may represent a splitting condition with respect to key-values for a respective key. A leaf node of the data tree may correspond to a data file for a data table that includes a subset of records having key-values that satisfy the condition for the node and conditions associated with parent nodes of the node. A parent node may correspond to a file including a buffer that stores changes to data files reachable by this parent node, and also includes dedicated storage to pointers of the child nodes. By using the data tree, the data processing system may efficiently cluster the data in the data table while reducing the number of data files that are rewritten.

Classes IPC  ?

  • G06F 16/20 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet de données structurées, p. ex. de données relationnelles
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/23 - Mise à jour
  • G06F 16/245 - Traitement des requêtes
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

34.

Data maintenance transaction rollbacks

      
Numéro d'application 17580475
Numéro de brevet 12072843
Statut Délivré - en vigueur
Date de dépôt 2022-01-20
Date de la première publication 2024-08-27
Date d'octroi 2024-08-27
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Jain, Prakhar
  • Samwel, Bart
  • Yavuz, Burak

Abrégé

The present application discloses a method, system, and computer system for managing a data in a storage system. The method includes receiving a first transaction that modifies or deletes first data stored in a storage system, determining that the first data is subject to an intervening re-arrangement transaction, and in response to determining that the first data is subject to the intervening re-arrangement transaction, rolling back the re-arrangement transaction at least with respect to the first data and committing the first transaction.

Classes IPC  ?

  • G06F 16/174 - Élimination de redondances par le système de fichiers

35.

MULTI-CLUSTER QUERY RESULT CACHING

      
Numéro d'application 18221735
Statut En instance
Date de dépôt 2023-07-13
Date de la première publication 2024-08-08
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Garg, Saksham
  • Ghit, Bogdan Ionut
  • Stevens, Christopher
  • Stuart, Christian

Abrégé

A multi-cluster computing system which includes a query result caching system is presented. The multi-cluster computing system may include a data processing service and client devices communicatively coupled over a network. The data processing service may include a control layer and a data layer. The control layer may be configured to receive and process requests from the client devices and manage resources in the data layer. The data layer may be configured to include instances of clusters of computing resources for executing jobs. The data layer may include a data storage system, which further includes a remote query result cache Store. The query result cache store may include a cloud storage query result cache which stores data associated with results of previously executed requests. As such, when a cluster encounters a previously executed request, the cluster may efficiently retrieve the cached result of the request from the in-memory query result cache or the cloud storage query result cache.

Classes IPC  ?

  • G06F 16/2453 - Optimisation des requêtes
  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

36.

Multi-cluster query result caching

      
Numéro d'application 18222343
Numéro de brevet 12189625
Statut Délivré - en vigueur
Date de dépôt 2023-07-14
Date de la première publication 2024-08-08
Date d'octroi 2025-01-07
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Ghit, Bogdan Ionut
  • Garg, Saksham
  • Stuart, Christian
  • Stevens, Christopher

Abrégé

A multi-cluster computing system which includes a query result caching system is presented. The multi-cluster computing system may include a data processing service and client devices communicatively coupled over a network. The data processing service may include a control layer and a data layer. The control layer may be configured to receive and process requests from the client devices and manage resources in the data layer. The data layer may be configured to include instances of clusters of computing resources for executing jobs. The data layer may include a data storage system, which further includes a remote query result cache Store. The query result cache store may include a cloud storage query result cache which stores data associated with results of previously executed requests. As such, when a cluster encounters a previously executed request, the cluster may efficiently retrieve the cached result of the request from the in-memory query result cache or the cloud storage query result cache.

Classes IPC  ?

  • G06F 16/24 - Requêtes
  • G06F 16/2453 - Optimisation des requêtes
  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

37.

RUNTIME ERROR ATTRIBUTION FOR DATABASE QUERIES SPECIFIED USING A DECLARATIVE DATABASE QUERY LANGUAGE

      
Numéro d'application CN2023073691
Numéro de publication 2024/156113
Statut Délivré - en vigueur
Date de dépôt 2023-01-29
Date de publication 2024-08-02
Propriétaire DATABRICKS , INC. (USA)
Inventeur(s)
  • Fan, Wenchen
  • Rielau, Serge
  • Shen, Entong

Abrégé

A system executes database queries specified using a declarative database query language such as the structured query language (SQL). The system determines whether a runtime error is encountered during execution of a query, for example, a division by zero error, resource usage errors such as out of memory error, time out error, and so on. The system reports such runtime errors encountered during execution of a database query. The system identifies one or more origins of the runtime error in the database query. The origin identifies a portion of the database query that represents a cause of the runtime error. Reporting the origin of a runtime error in the database query simplifies the task of development and testing of database queries.

Classes IPC  ?

  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 16/24 - Requêtes

38.

STATIC APPROACH TO LAZY MATERIALIZATION IN DATABASE SCANS USING PUSHED FILTERS

      
Numéro d'application 18160850
Statut En instance
Date de dépôt 2023-01-27
Date de la première publication 2024-08-01
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Palkar, Shoumik
  • Behm, Alexander
  • Mokhtar, Mostafa
  • Krishnamurthy, Sriram

Abrégé

Disclosed herein is a method for determining whether to apply a lazy materialization technique to a query run. The method includes receiving a request to perform a new query in a columnar database containing a plurality of columns. A step in the method includes accessing a set of data in a column of the plurality of columns based on the query. The method includes generating an input to a machine-learned model comprising characteristics of the set of data in the column. From the machine-learned model, the method includes generating a likelihood value indicative of whether a filter of a first portion of the set of data in the column has greater efficiency than a download followed by a filter of the set of data in the column. The method further includes comparing the likelihood value to a threshold value. Based on the comparison, the method includes filtering the first portion of the set of data before downloading the set of data if the likelihood value is equal to or above the threshold value.

Classes IPC  ?

  • G06F 16/2453 - Optimisation des requêtes
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

39.

Adaptive approach to lazy materialization in database scans using pushed filters

      
Numéro d'application 18160861
Numéro de brevet 12124450
Statut Délivré - en vigueur
Date de dépôt 2023-01-27
Date de la première publication 2024-08-01
Date d'octroi 2024-10-22
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Palkar, Shoumik
  • Behm, Alexander
  • Mokhtar, Mostafa
  • Krishnamurthy, Sriram

Abrégé

Disclosed herein is a method for determining whether to apply a lazy materialization technique to a query run. A data processing service receives a request to perform a query identifying a filter column and a non-filter column in a columnar database. The data processing service accesses a first task of contiguous rows in the filter column from a cloud-based object storage. The data processing service applies a filter defined by the query to the first task. The data processing service generates filter results for the first task that may include a percentage of the first task discarded and a run-time. The data processing service determines, based on the filter results for the first task, a likelihood value that indicates a likelihood of gaining a performance benefit by applying the lazy materialization technique to a second task of the query.

Classes IPC  ?

  • G06F 16/2453 - Optimisation des requêtes
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

40.

Evaluating expressions over dictionary data

      
Numéro d'application 18162607
Numéro de brevet 12210528
Statut Délivré - en vigueur
Date de dépôt 2023-01-31
Date de la première publication 2024-08-01
Date d'octroi 2025-01-28
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Agarwal, Utkarsh
  • Palkar, Shoumik
  • Behm, Alexander
  • Krishnamurthy, Sriram

Abrégé

Disclosed herein is a method, system, or non-transitory computer readable medium for evaluating a query on a columnar dataset comprising one or more dictionaries associated with columns in the dataset. The method includes receiving a request to perform a query comprising at least an operator for a columnar dataset on cloud storage. At least one column in the dataset is based on a dictionary, and the dictionary maps one or more values for a column to one or more respective identifiers. The method evaluates the operator on one or more values of the dictionary to generate an updated dictionary comprising updated values. The method may decode the updated dictionary into an updated column comprising updated data values.

Classes IPC  ?

  • G06F 16/2455 - Exécution des requêtes
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

41.

Dictionary filtering and evaluation in columnar databases

      
Numéro d'application 18162616
Numéro de brevet 12242485
Statut Délivré - en vigueur
Date de dépôt 2023-01-31
Date de la première publication 2024-08-01
Date d'octroi 2025-03-04
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Agarwal, Utkarsh
  • Palkar, Shoumik
  • Behm, Alexander
  • Krishnamurthy, Sriram

Abrégé

Disclosed herein is a method, system, or non-transitory computer readable medium for evaluating a query on a columnar dataset comprising one or more dictionaries associated with columns in the dataset. The method includes receiving a request to perform a query comprising at least a operator and a request to return information about a value of interest in a columnar dataset stored on cloud storage. At least one column in the columnar dataset is based on a dictionary. The dictionary maps one or more values for a column to one or more respective identifiers. The method determines whether to perform dictionary filtering for the query by calculating a metric based on one or more factors. Responsive to the metric being below a threshold, which may be predetermined, the method performs the dictionary filtering.

Classes IPC  ?

  • G06F 16/24 - Requêtes
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/2455 - Exécution des requêtes

42.

EXECUTION AND ATTESTATION OF USER DEFINED FUNCTIONS IN DATABASES

      
Numéro d'application 18161475
Statut En instance
Date de dépôt 2023-01-30
Date de la première publication 2024-08-01
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Grund, Martin
  • Van Hövell Tot Westerflier, Herman Rudolf Petrus Catharina
  • Leone, Stefania

Abrégé

A system executes user defined functions (UDFs) invoked by database queries. The UDF includes UDF code specified using a programing language distinct from a database query language. A hash value from the UDF code provided by a client application for creating the UDF is compared with a hash value generated from UDF code invoked by database queries to determine whether the two UDF codes match. If the two hash values fail to match, the system takes an action, for example, storing an indication of UDF code mismatch or disabling subsequent executions of the database queries invoking the UDF. The system may use encoded UDF code that is decoded by the system at runtime using a key obtained from a separate system such as the client application. The client application can disable execution of database queries executing the UDF code by refusing to provide the key.

Classes IPC  ?

  • G06F 16/242 - Formulation des requêtes
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 21/60 - Protection de données

43.

NUMA AWARENESS ARCHITECTURE FOR VM-BASED CONTAINER IN KUBERNETES ENVIRONMENT

      
Numéro d'application 18162659
Statut En instance
Date de dépôt 2023-01-31
Date de la première publication 2024-08-01
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Chen, Shuo
  • Qiao, Yuming
  • Liu, Anders

Abrégé

Disclosed herein is a method for resource management in a web-based container orchestrating environment. A disclosed method includes initializing a set of micro-virtual machines (VMs) within a macro-VM environment. The method each container within a micro-VM based sandbox. The method assigns a virtual central processing unit (vCPU) to a micro-VM based on an estimated memory required by the micro-VM and the estimated available memory associated with the vCPU. The method pins the vCPU with a physical CPU based on the pod location of the physical CPU and an estimated available memory associated with the vCPU and an available local memory of the physical CPU. The method maintains a state of the vCPU and the physical CPU in a resource manager.

Classes IPC  ?

  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation

44.

RUNTIME ERROR ATTRIBUTION FOR DATABASE QUERIES SPECIFIED USING A DECLARATIVE DATABASE QUERY LANGUAGE

      
Numéro d'application 18296876
Statut En instance
Date de dépôt 2023-04-06
Date de la première publication 2024-08-01
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Wang, Gengliang
  • Fan, Wenchen
  • Rielau, Serge
  • Shen, Entong

Abrégé

A system executes database queries specified using a declarative database query language such as the structured query language (SQL). The system determines whether a runtime error is encountered during execution of a query, for example, a division by zero error, resource usage errors such as out of memory error, time out error, and so on. The system reports such runtime errors encountered during execution of a database query. The system identifies one or more origins of the runtime error in the database query. The origin identifies a portion of the database query that represents a cause of the runtime error. Reporting the origin of a runtime error in the database query simplifies the task of development and testing of database queries.

Classes IPC  ?

  • G06F 11/36 - Prévention d'erreurs par analyse, par débogage ou par test de logiciel
  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données
  • G06F 16/901 - IndexationStructures de données à cet effetStructures de stockage

45.

Concurrent optimistic transactions for tables with deletion vectors

      
Numéro d'application 18156109
Numéro de brevet 12147412
Statut Délivré - en vigueur
Date de dépôt 2023-01-18
Date de la première publication 2024-07-18
Date d'octroi 2024-11-19
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Samwel, Bart
  • Stavrakakis, Christos

Abrégé

A disclosed configuration receives a first indication that a first transaction is committed to update a first subset of records in a data table at a first version to generate a second version of the data table and receiving a second indication to commit a second transaction to update a second subset of records in a data file of the data table at the first version. The configuration determines a logical prerequisite based on whether the first subset of records changes content of one or more records in the second subset of records and determining a physical prerequisite on whether the second subset of records corresponds to respective data records in data files of the second version of the data table. The configuration commits the second transaction to generate a third version of the data table by updating elements of the deletion vector if the prerequisites are satisfied.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/23 - Mise à jour

46.

State rebalancing in structured streaming

      
Numéro d'application 18219314
Numéro de brevet 12099525
Statut Délivré - en vigueur
Date de dépôt 2023-07-07
Date de la première publication 2024-06-20
Date d'octroi 2024-09-24
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Balikov, Alexander
  • Das, Tathagata
  • Ramasamy, Karthikeyan

Abrégé

A data processing service performs a rebalancing process for rebalancing stateful tasks on a cluster computing system. In one instance, the method for rebalancing stateful tasks is performed such that the per-operator partitions are spread across available executors of a cluster of the cluster computing system with respect to one or more statistics of the tasks. In one instance, the method for rebalancing stateful tasks is also performed such that the total number of stateful tasks are balanced per executor as long as this rebalancing does not imbalance the per-operator placements. In this way, the processing of stateful tasks can be spread across multiple executors in a relatively uniform manner, even though there may be an upfront cost of breaking the local caching on an executor.

Classes IPC  ?

  • G06F 16/27 - Réplication, distribution ou synchronisation de données entre bases de données ou dans un système de bases de données distribuéesArchitectures de systèmes de bases de données distribuées à cet effet
  • G06F 16/2455 - Exécution des requêtes

47.

SYSTEMS AND METHODS FOR A VIRTUAL SANDBOX DATABASE

      
Numéro d'application 18429163
Statut En instance
Date de dépôt 2024-01-31
Date de la première publication 2024-05-23
Propriétaire DATABRICKS, INC. (USA)
Inventeur(s)
  • Khurana, Amandeep
  • Li, Nong

Abrégé

Various embodiments of the present technology generally relate to management of big data storage and data access control systems. In some embodiments, a data access system for use in multiple application service and multiple storage service environments comprises a sandbox database for users, wherein the sandbox database is a virtual database environment via which a user may access datasets according to one or more access policies. In some embodiments, the data access system receives a user request to access a dataset stored in a database into the sandbox environment, wherein the database is associated with the data access system. In response to the request, the data access system may retrieve the corresponding data from the database, determine any associated sandbox access policies, and generate an anonymized data table in the sandbox environment.

Classes IPC  ?

  • G06F 21/53 - Contrôle des utilisateurs, des programmes ou des dispositifs de préservation de l’intégrité des plates-formes, p. ex. des processeurs, des micrologiciels ou des systèmes d’exploitation au stade de l’exécution du programme, p. ex. intégrité de la pile, débordement de tampon ou prévention d'effacement involontaire de données par exécution dans un environnement restreint, p. ex. "boîte à sable" ou machine virtuelle sécurisée
  • G06F 16/248 - Présentation des résultats de requêtes
  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès

48.

Model ML registry and model serving

      
Numéro d'application 18512028
Numéro de brevet 12117983
Statut Délivré - en vigueur
Date de dépôt 2023-11-17
Date de la première publication 2024-05-09
Date d'octroi 2024-10-15
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Davidson, Aaron Daniel
  • Mewald, Clemens
  • Nykodym, Tomas

Abrégé

A system includes an interface, a processor, and a memory. The interface is configured to receive a version of a model from a model registry. The processor is configured to store the version of the model, start a process running the version of the model, and update a proxy with version information associated with the version of the model, wherein the updated proxy indicates to redirect an indication to invoke the version of the model to the process. The memory is coupled to the processor and configured to provide the processor with instructions.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 16/955 - Recherche dans le Web utilisant des identifiants d’information, p. ex. des localisateurs uniformisés de ressources [uniform resource locators - URL]
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance

49.

EFFICIENTLY VECTORIZED IMPLEMENTATION OF OPERATIONS IN A GLOBAL GRID INDEXING LIBRARY

      
Numéro d'application 18501839
Statut En instance
Date de dépôt 2023-11-03
Date de la première publication 2024-05-09
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Cheong Zhi Xi, Desmond
  • Karavelas, Menelaos

Abrégé

A data processing service generates for iteratively applying a geospatial function to geospatial data. The generated code includes at least a first iterative loop and a second iterative loop. The data processing service compiles the generated code to generate compiled code that vectorized at least the second iterative loop. The data processing service receives a request from a client device to perform one or more data processing operations including applying the geospatial function to a data table of geospatial cell indices. The data processing service compiles the request into one or more tasks including at least a vectorized operation based on the compiled code and executes the one or more tasks by at least invoking the vectorized operation on the set of worker nodes.

Classes IPC  ?

50.

Fetching query results through cloud object stores

      
Numéro d'application 17841946
Numéro de brevet 11960494
Statut Délivré - en vigueur
Date de dépôt 2022-06-16
Date de la première publication 2024-04-16
Date d'octroi 2024-04-16
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Ghit, Bogdan Ionut
  • Sompolski, Juliusz
  • Xin, Shi
  • Samwel, Bart

Abrégé

The system is configured to: 1) receive a client request; 2) determine executor(s) to generate a response to the user request; 3) provide each of the executor(s) with an indication; 4) receive for each indication a response including an output of either a cloud output or an in-line output to generate a group of in-line outputs and a group of cloud outputs; 5) determine whether the group of in-line outputs comprises all outputs; and 6) in response to the group of in-line outputs not comprising all the outputs for the client request: a) convert the group of in-line outputs to a converted group of cloud outputs; b) generate metadata for the converted group of cloud outputs and the group of cloud outputs; and c) provide response to the client request including the metadata for the converted group of cloud outputs and the group of cloud outputs.

Classes IPC  ?

  • G06F 16/2458 - Types spéciaux de requêtes, p. ex. requêtes statistiques, requêtes floues ou requêtes distribuées
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 16/242 - Formulation des requêtes
  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données

51.

Function creation for database execution of deep learning model

      
Numéro d'application 18162291
Numéro de brevet 11948084
Statut Délivré - en vigueur
Date de dépôt 2023-01-31
Date de la première publication 2024-04-02
Date d'octroi 2024-04-02
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Hong, Sue Ann
  • Xin, Shi
  • Hunter, Timothee
  • Ghodsi, Ali

Abrégé

A function creation method is disclosed. The method comprises defining one or more database function inputs, defining cluster processing information, defining a deep learning model, and defining one or more database function outputs. A database function is created based at least in part on the one or more database function inputs, the cluster set-up information, the deep learning model, and the one or more database function outputs. In some embodiments, the database function enables a non-technical user to utilize deep learning models.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/063 - Réalisation physique, c.-à-d. mise en œuvre matérielle de réseaux neuronaux, de neurones ou de parties de neurone utilisant des moyens électroniques
  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance
  • G06F 16/14 - Détails de la recherche de fichiers basée sur les métadonnées des fichiers
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

52.

EFFICIENT MERGE OF TABULAR DATA USING A PROCESSING FILTER

      
Numéro d'application 17895872
Statut En instance
Date de dépôt 2022-08-25
Date de la première publication 2024-02-29
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Samwel, Bart
  • Das, Tathagata
  • Kroll, Lars
  • Cui, Yijia
  • Sompolski, Juliusz
  • Van Bussel, Tom

Abrégé

A method, system, and computer system for performing an operation with respect to a target table are disclosed. The method includes performing first, second and a third jobs, and obtaining a resulting table based at least in part on the second job resulting file(s) and third job resulting file(s). Performing the first job includes determining a set of matching target table files and storing target table information indicating for each of the set of matching target table files, a particular set of rows having matching rows. Performing the second job includes performing a matching action based on matched rows and obtaining the second job resulting file(s). Performing the third job includes determining unmatched rows for target table files and storing the unmatched rows in third job resulting file(s).

Classes IPC  ?

  • G06F 7/14 - Interclassement, c.-à-d. association d'au moins deux séries de supports d'enregistrement, chacun étant rangé dans le même ordre de succession, en vue de former une série unique rangée dans le même ordre de succession
  • G06F 16/14 - Détails de la recherche de fichiers basée sur les métadonnées des fichiers
  • G06F 16/16 - Opérations sur les fichiers ou les dossiers, p. ex. détails des interfaces utilisateur spécialement adaptées aux systèmes de fichiers

53.

Efficient merging of tabular data with post-processing compaction

      
Numéro d'application 17895877
Numéro de brevet 12056126
Statut Délivré - en vigueur
Date de dépôt 2022-08-25
Date de la première publication 2024-02-29
Date d'octroi 2024-08-06
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Samwel, Bart
  • Das, Tathagata
  • Kroll, Lars
  • Cui, Yijia
  • Sompolski, Juliusz
  • Van Bussel, Tom
  • Jain, Prakhar

Abrégé

A method, system, and computer system for performing an operation with respect to a target table are disclosed. The method includes performing first and second jobs, obtaining one or more other resulting files based at least in part on unmatched rows, and obtaining a set of processed files based at least in part on performing a post-processing operation with respect to the set of resulting files. The set of processed files has less files than the set of resulting files. Performing the first job includes determining a set of matching target table files and storing target table information indicating for each of the set of matching target table files, a particular set of rows having matching rows. Performing the second job includes performing a matching action based on matched rows and obtaining the second job resulting file(s).

Classes IPC  ?

  • G06F 17/30 - Recherche documentaire; Structures de bases de données à cet effet
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/2453 - Optimisation des requêtes
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

54.

EFFICIENT MERGE OF TABULAR DATA USING MIXING

      
Numéro d'application 17895882
Statut En instance
Date de dépôt 2022-08-25
Date de la première publication 2024-02-29
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Samwel, Bart
  • Das, Tathagata
  • Kroll, Lars
  • Cui, Yijia
  • Sompolski, Juliusz
  • Van Bussel, Tom

Abrégé

A method, system, and computer system for performing an operation with respect to a target table are disclosed. The method includes performing first and second jobs, and obtaining other resulting files based at least in part on a second set of unmatched rows among the target table and the source table that results from the first set of unmatched rows having been processed in the second job, and obtaining a resulting table based on (i) second job resulting file(s), and (ii) other resulting files. Performing the first job includes determining a set of matching target table files and storing target table information indicating for each of the set of matching target table files, a particular set of rows having matching rows. Performing the second job includes performing a first matching action based on matched rows and a second matching action based on a subset of unmatched rows.

Classes IPC  ?

  • G06F 16/2455 - Exécution des requêtes
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

55.

Efficient merge of tabular data with deletion indications

      
Numéro d'application 17895890
Numéro de brevet 12045220
Statut Délivré - en vigueur
Date de dépôt 2022-08-25
Date de la première publication 2024-02-29
Date d'octroi 2024-07-23
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Samwel, Bart
  • Das, Tathagata
  • Kroll, Lars
  • Cui, Yijia
  • Sompolski, Juliusz
  • Stavrakakis, Chirstos

Abrégé

A method, system, and computer system for performing an operation with respect to a target table are disclosed. The method includes performing first and second jobs, and persist, in one or more deletion vector files, one or more deletion vectors for corresponding rows of the one or more target table files, and obtaining a resulting table based at least in part on the second job resulting file(s). Performing the first job includes determining a set of matching target table files and storing target table information indicating for each of the set of matching target table files, a particular set of rows having matching rows. Performing the second job includes performing a matching action based on matched rows and one or more deletion of vectors associated with previously removed rows of the matching target table files and obtaining the second job resulting file(s).

Classes IPC  ?

  • G06F 17/30 - Recherche documentaire; Structures de bases de données à cet effet
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

56.

Scan parsing

      
Numéro d'application 18162366
Numéro de brevet 12189628
Statut Délivré - en vigueur
Date de dépôt 2023-01-31
Date de la première publication 2024-02-22
Date d'octroi 2025-01-07
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Menon, Prashanth
  • Behm, Alexander
  • Krishnamurthy, Sriram

Abrégé

The present application discloses a method, system, and computer system for parsing files. The method includes receiving an indication that a first file is to be processed, determining to begin processing the first file using a first processing engine based at least in part on one or more predefined heuristics, indicating to process the first file using a first processing engine, determining whether a particular error in processing the first file using the first processing engine has been detected, in response to determining that the particular error has been detected, indicate to stop processing the first file using the first processing engine and indicate to continue processing using a second processing engine, and storing in memory information obtained based on processing the first file by one or more of the first processing engine and the second processing engine.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/2453 - Optimisation des requêtes
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

57.

Scan parsing

      
Numéro d'application 17892376
Numéro de brevet 12072880
Statut Délivré - en vigueur
Date de dépôt 2022-08-22
Date de la première publication 2024-02-22
Date d'octroi 2024-08-27
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Menon, Prashanth
  • Behm, Alexander
  • Krishnamurthy, Sriram

Abrégé

The present application discloses a method, system, and computer system for parsing files. The method includes receiving an indication that a first file is to be processed, determining to begin processing the first file using a first processing engine based at least in part on one or more predefined heuristics, indicating to process the first file using a first processing engine, determining whether a particular error in processing the first file using the first processing engine has been detected, in response to determining that the particular error has been detected, indicate to stop processing the first file using the first processing engine and indicate to continue processing using a second processing engine, and storing in memory information obtained based on processing the first file by one or more of the first processing engine and the second processing engine.

Classes IPC  ?

  • G06F 9/00 - Dispositions pour la commande par programme, p. ex. unités de commande
  • G06F 16/2453 - Optimisation des requêtes
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

58.

Update and query of a large collection of files that represent a single dataset stored on a blob store

      
Numéro d'application 18236516
Numéro de brevet 12189607
Statut Délivré - en vigueur
Date de dépôt 2023-08-22
Date de la première publication 2023-12-07
Date d'octroi 2025-01-07
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Armbrust, Michael Paul
  • Zhu, Shixiong
  • Yavuz, Burak

Abrégé

A system includes an interface and a processor. The interface is configured to receive a table indication of a data table and to receive a transaction indication to perform a transaction. The processor is configured to determine a current position N in a transaction log, determine a current state of the metadata; determine a read set associated with a transaction; attempt to write an update to the transaction log associated with a next position N+1; in response to a transaction determination that a simultaneous transaction associated with the next position N+1 already exists, determine a set of updated files; and in response to a determination that there is not an overlap between the read set associated with the current transaction and the set of updated files associated with the simultaneous transaction, attempt to write the update to the transaction to the transaction log associated with a further position N+2.

Classes IPC  ?

  • G06F 16/14 - Détails de la recherche de fichiers basée sur les métadonnées des fichiers
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/23 - Mise à jour

59.

K-D tree balanced splitting

      
Numéro d'application 17738609
Numéro de brevet 12061586
Statut Délivré - en vigueur
Date de dépôt 2022-05-06
Date de la première publication 2023-11-09
Date d'octroi 2024-08-13
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Samwel, Bart
  • Jain, Prakhar

Abrégé

A system for clustering data into corresponding files comprises one or more processors and a memory. The one or more processors is/are configured to: 1) determine to cluster a set of data into a set of files; 2) determine a set of split points in a corresponding set of dimensions of the set of data to determine the set of files, wherein each file of the set of files has an approximate target size; and 3) store one or more items of the set of data into a corresponding file of the set of files based at least in part on the set of split points. The memory is coupled to the one or more processors and configured to provide the processor with instructions.

Classes IPC  ?

  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

60.

QUERY WATCHDOG

      
Numéro d'application 18200316
Statut En instance
Date de dépôt 2023-05-22
Date de la première publication 2023-11-09
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Luszczak, Alicja
  • Shankar, Srinath
  • Xin, Shi

Abrégé

A system for monitoring job execution includes an interface and a processor. The interface is configured to receive an indication to start a cluster processing job. The processor is configured to determine whether processing a data instance associated with the cluster processing job satisfies a watchdog criterion; and in the event that processing the data instance satisfies the watchdog criterion, cause the processing of the data instance to be killed.

Classes IPC  ?

  • G06F 11/07 - Réaction à l'apparition d'un défaut, p. ex. tolérance de certains défauts
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 11/30 - Surveillance du fonctionnement

61.

Automated processing of multiple prediction generation including model tuning

      
Numéro d'application 17896281
Numéro de brevet 12033041
Statut Délivré - en vigueur
Date de dépôt 2022-08-26
Date de la première publication 2023-08-03
Date d'octroi 2024-07-09
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Wilson, Benjamin Thomas
  • Zumar, Corey

Abrégé

The present application discloses a method, system, and computer system for building a model associated with a dataset. The method includes receiving a data set, the dataset comprising a plurality of keys and a plurality of key-value relationships, determining a plurality of models to build based at least in part on the dataset, wherein determining the plurality of models to build comprises using the dataset format information to identify the plurality of models, building the plurality of models, and optimizing at least one of the plurality of models.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06F 18/20 - Analyse
  • G06F 18/2132 - Extraction de caractéristiques, p. ex. en transformant l'espace des caractéristiquesSynthétisationsMappages, p. ex. procédés de sous-espace basée sur des critères de discrimination, p. ex. l'analyse discriminante

62.

OPTIMIZATION OF TUNING FOR MODELS USED FOR MULTIPLE PREDICTION GENERATION

      
Numéro d'application 17587793
Statut En instance
Date de dépôt 2022-01-28
Date de la première publication 2023-08-03
Propriétaire Databricks Inc. (USA)
Inventeur(s)
  • Wilson, Benjamin Thomas
  • Zumar, Corey

Abrégé

The present application discloses a method, system, and computer system for tuning a set of models. The method includes determining a set of one or more models to optimize, determining a plurality of optimizer modules with which to optimize the set of one or more models, causing the plurality of optimizer modules to respectively perform a respective optimizing process with respect to at least one model of the set of one or more models, and deploying an optimized model obtained based at least in part on optimizing metrics of the set of the one or more models.

Classes IPC  ?

63.

ACCESS OF DATA AND MODELS ASSOCIATED WITH MULTIPLE PREDICTION GENERATION

      
Numéro d'application 17587820
Statut En instance
Date de dépôt 2022-01-28
Date de la première publication 2023-08-03
Propriétaire Databricks Inc. (USA)
Inventeur(s)
  • Wilson, Benjamin Thomas
  • Zumar, Corey

Abrégé

The present application discloses a method, system, and computer system for querying a model associated with a dataset. The method includes providing an input interface via which a first entity inputs a dataset, receiving the dataset, and providing a selection interface that exposes to a second entity the plurality of models determined for the dataset and/or the plurality of results corresponding to the plurality of models using the index entries. The dataset comprises a plurality of keys and a plurality of key-value relationships, and the dataset is formatted according to a predefined format, wherein index entries are generated for a plurality of models and a plurality of results corresponding to the plurality of models.

Classes IPC  ?

64.

AUTOMATED PROCESSING OF MULTIPLE PREDICTION GENERATION INCLUDING MODEL TUNING

      
Numéro d'application US2022014580
Numéro de publication 2023/146549
Statut Délivré - en vigueur
Date de dépôt 2022-01-31
Date de publication 2023-08-03
Propriétaire DATABRICKS INC. (USA)
Inventeur(s)
  • Wilson, Benjamin, Thomas
  • Zumar, Corey

Abrégé

The present application discloses a method, system, and computer system for building a model associated with a dataset. The method includes receiving a data set, the dataset comprising a plurality of keys and a plurality of key- value relationships, determining a plurality of models to build based at least in part on the dataset, wherein determining the plurality of models to build comprises using the dataset format information to identify the plurality of models, building the plurality of models, and optimizing at least one of the plurality of models.

Classes IPC  ?

  • G06N 7/00 - Agencements informatiques fondés sur des modèles mathématiques spécifiques
  • G06N 20/00 - Apprentissage automatique

65.

Systems and methods for a virtual sandbox database

      
Numéro d'application 18170585
Numéro de brevet 11971981
Statut Délivré - en vigueur
Date de dépôt 2023-02-17
Date de la première publication 2023-06-22
Date d'octroi 2024-04-30
Propriétaire DATABRICKS, INC. (USA)
Inventeur(s)
  • Khurana, Amandeep
  • Li, Nong

Abrégé

Various embodiments of the present technology generally relate to management of big data storage and data access control systems. In some embodiments, a data access system for use in multiple application service and multiple storage service environments comprises a sandbox database for users, wherein the sandbox database is a virtual database environment via which a user may access datasets according to one or more access policies. In some embodiments, the data access system receives a user request to access a dataset stored in a database into the sandbox environment, wherein the database is associated with the data access system. In response to the request, the data access system may retrieve the corresponding data from the database, determine any associated sandbox access policies, and generate an anonymized data table in the sandbox environment.

Classes IPC  ?

  • G06F 21/53 - Contrôle des utilisateurs, des programmes ou des dispositifs de préservation de l’intégrité des plates-formes, p. ex. des processeurs, des micrologiciels ou des systèmes d’exploitation au stade de l’exécution du programme, p. ex. intégrité de la pile, débordement de tampon ou prévention d'effacement involontaire de données par exécution dans un environnement restreint, p. ex. "boîte à sable" ou machine virtuelle sécurisée
  • G06F 16/248 - Présentation des résultats de requêtes
  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès

66.

Hash based rollup with passthrough

      
Numéro d'application 17099467
Numéro de brevet 11675767
Statut Délivré - en vigueur
Date de dépôt 2020-11-16
Date de la première publication 2023-06-13
Date d'octroi 2023-06-13
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Behm, Alexander
  • Dave, Ankur

Abrégé

A system includes a plurality of computing units. A first computing unit of the plurality of computing units comprises: a communication interface configured to receive an indication to roll up data in a data table; and a processor coupled to the communication interface and configured to: build a preaggregation hash table based at least in part on a set of columns and the data table by aggregating input rows of the data table; for each preaggregated hash table entry of the preaggregated hash table: provide the preaggregated hash table entry to a second computing unit of the plurality of computing units based at least in part on a distribution hash value; receive a set of received entries from computing units of the plurality of computing units; and build an aggregation hash table based at least in part on the set of received entries by aggregating the set of received entries.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet
  • G06F 16/242 - Formulation des requêtes
  • G06F 16/2455 - Exécution des requêtes
  • G06F 16/13 - Structures d’accès aux fichiers, p. ex. indices distribués

67.

Model ML registry and model serving

      
Numéro d'application 18162579
Numéro de brevet 11853277
Statut Délivré - en vigueur
Date de dépôt 2023-01-31
Date de la première publication 2023-06-08
Date d'octroi 2023-12-26
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Davidson, Aaron Daniel
  • Nykodym, Tomas
  • Mewald, Clemens

Abrégé

A system includes an interface, a processor, and a memory. The interface is configured to receive a version of a model from a model registry. The processor is configured to store the version of the model, start a process running the version of the model, and update a proxy with version information associated with the version of the model, wherein the updated proxy indicates to redirect an indication to invoke the version of the model to the process. The memory is coupled to the processor and configured to provide the processor with instructions.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 16/955 - Recherche dans le Web utilisant des identifiants d’information, p. ex. des localisateurs uniformisés de ressources [uniform resource locators - URL]
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance

68.

FEATURE STORE WITH INTEGRATED TRACKING

      
Numéro d'application 18162625
Statut En instance
Date de dépôt 2023-01-31
Date de la première publication 2023-06-08
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Parkhe, Mani
  • Mewald, Clemens
  • Zaharia, Matei
  • Singh, Avesh

Abrégé

The present application discloses a method, system, and computer system for managing a plurality of features and storing lineage information pertaining to the features. The method includes obtaining one or more datasets, determining a first feature, wherein the first feature is determined based at least in part on the one or more datasets, and storing the first feature in a feature store. The first feature is stored in association with a dataset indication of the one or more datasets from which the first feature is determined. The feature store comprises a plurality of features.

Classes IPC  ?

  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet
  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p. ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle

69.

Integrated native vectorized engine for computation

      
Numéro d'application 18158258
Numéro de brevet 11874832
Statut Délivré - en vigueur
Date de dépôt 2023-01-23
Date de la première publication 2023-05-25
Date d'octroi 2024-01-16
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Xin, Shi
  • Behm, Alexander
  • Palkar, Shoumik
  • Van Hovell Tot Westerflier, Herman Rudolf Petrus Catharina

Abrégé

A system comprises an interface, a processor, and a memory. The interface is configured to receive a query. The processor is configured to: determine a set of nodes for the query; determine whether a node of the set of nodes comprises a first engine node type or a second engine node type, wherein determining whether the node of the set of nodes comprises the first engine node type or the second engine node type is based at least in part on determining whether the node is able to be executed in a second engine; and generate a plan based at least in part on the set of nodes. The memory is coupled to the processor and is configured to provide the processor with instructions.

Classes IPC  ?

  • G06F 16/2453 - Optimisation des requêtes
  • G06F 16/2458 - Types spéciaux de requêtes, p. ex. requêtes statistiques, requêtes floues ou requêtes distribuées
  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données

70.

Structured cluster execution for data streams

      
Numéro d'application 17976361
Numéro de brevet 12032573
Statut Délivré - en vigueur
Date de dépôt 2022-10-28
Date de la première publication 2023-05-11
Date d'octroi 2024-07-09
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Armbrust, Michael Paul
  • Das, Tathagata
  • Xin, Shi
  • Zaharia, Matei

Abrégé

A system for executing a streaming query includes an interface and a processor. The interface is configured to receive a logical query plan. The processor is configured to determine a physical query plan based at least in part on the logical query plan. The physical query plan comprises an ordered set of operators. Each operator of the ordered set of operators comprises an operator input mode and an operator output mode. The processor is further configured to execute the physical query plan using the operator input mode and the operator output mode for each operator of the query.

Classes IPC  ?

71.

Dataflow graph processing

      
Numéro d'application 18089349
Numéro de brevet 12019682
Statut Délivré - en vigueur
Date de dépôt 2022-12-27
Date de la première publication 2023-05-04
Date d'octroi 2024-06-25
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Armbrust, Michael Paul
  • Neumann, Andreas
  • Murthy, Mukul
  • Mio, Jonathan

Abrégé

A system for dataflow graph processing comprises a communication interface and a processor. The communication interface is configured receive an indication to generate a dataflow graph, wherein the indication includes a set of queries and/or commands. The processor is coupled to the communication interface and configured to: determine dependencies of each query in the set of queries on another query; determine a DAG of nodes based at least in part on the dependencies; determine the dataflow graph by determining in-line expressions for tables of the dataflow graph aggregating calculations associated with a subset of dataflow graph nodes designated as view nodes; and provide the dataflow graph.

Classes IPC  ?

  • G06F 16/901 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/245 - Traitement des requêtes

72.

Function creation for database execution of deep learning model

      
Numéro d'application 15610062
Numéro de brevet 11599783
Statut Délivré - en vigueur
Date de dépôt 2017-05-31
Date de la première publication 2023-03-07
Date d'octroi 2023-03-07
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Hong, Sue Ann
  • Xin, Shi
  • Hunter, Timothee
  • Ghodsi, Ali

Abrégé

A function creation method is disclosed. The method comprises defining one or more database function inputs, defining cluster processing information, defining a deep learning model, and defining one or more database function outputs. A database function is created based at least in part on the one or more database function inputs, the cluster set-up information, the deep learning model, and the one or more database function outputs. In some embodiments, the database function enables a non-technical user to utilize deep learning models.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/063 - Réalisation physique, c.-à-d. mise en œuvre matérielle de réseaux neuronaux, de neurones ou de parties de neurone utilisant des moyens électroniques
  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance
  • G06F 16/14 - Détails de la recherche de fichiers basée sur les métadonnées des fichiers
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

73.

Scaling delta table optimize command

      
Numéro d'application 17384486
Numéro de brevet 11567900
Statut Délivré - en vigueur
Date de dépôt 2021-07-23
Date de la première publication 2023-01-31
Date d'octroi 2023-01-31
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Mahadev, Rahul Shivu
  • Yavuz, Burak
  • Das, Tathagata

Abrégé

The interface is to receive an indication to execute an optimize command. The processor is to receive a file name; determine whether adding a file of the file name to a current bin causes the current bin to exceed a threshold; associate the file with the current bin in response to determining that adding the file does not cause the current bin to exceed the bin threshold; in response to determining that adding the file to the current bin causes the current bin to exceed the bin threshold: associate the file with a next bin, indicate that the current bin is closed, and add the current bin to a batch of bins; determine whether a measure of the batch of bins exceeds a batch threshold; and in response to determining that the measure exceeds the batch threshold, provide the batch of bins for processing.

Classes IPC  ?

  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/172 - Mise en cache, pré-extraction ou accumulation de fichiers

74.

Managed metastorage

      
Numéro d'application 17514982
Numéro de brevet 12277237
Statut Délivré - en vigueur
Date de dépôt 2021-10-29
Date de la première publication 2022-11-24
Date d'octroi 2025-04-15
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Zaharia, Matei
  • Lewis, David
  • Lian, Cheng
  • Huo, Yuchen
  • Ghodsi, Ali

Abrégé

The present application discloses a method, system, and computer system for providing access to information stored on system for data storage. The method includes receiving a data request from a user, determining data corresponding to the data request, determining whether the user has requisite permissions to access the data, and in response to determining that the user has requisite permissions to access the data: determining a manner by which to provide access to the data, wherein the data comprises a filtered subset of stored data, and generating a token based at least in part on the user and the manner by which access to the data is to be provided.

Classes IPC  ?

  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • G06F 3/06 - Entrée numérique à partir de, ou sortie numérique vers des supports d'enregistrement

75.

FEATURE STORE WITH INTEGRATED TRACKING

      
Numéro d'application 17514997
Statut En instance
Date de dépôt 2021-10-29
Date de la première publication 2022-11-24
Propriétaire Databricks Inc. (USA)
Inventeur(s)
  • Parkhe, Mani
  • Mewald, Clemens
  • Zaharia, Matei
  • Singh, Avesh

Abrégé

The present application discloses a method, system, and computer system for managing a plurality of features and storing lineage information pertaining to the features. The method includes obtaining one or more datasets, determining a first feature, wherein the first feature is determined based at least in part on the one or more datasets, and storing the first feature in a feature store. The first feature is stored in association with a dataset indication of the one or more datasets from which the first feature is determined. The feature store comprises a plurality of features.

Classes IPC  ?

  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet
  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p. ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle

76.

FEATURE STORE WITH INTEGRATED TRACKING

      
Numéro d'application US2022027387
Numéro de publication 2022/245536
Statut Délivré - en vigueur
Date de dépôt 2022-05-03
Date de publication 2022-11-24
Propriétaire DATABRICKS INC. (USA)
Inventeur(s)
  • Parkhe, Mani
  • Mewald, Clemens
  • Zaharia, Matei
  • Singh, Avesh

Abrégé

The present application discloses a method, system, and computer system for managing a plurality of features and storing lineage information pertaining to the features. The method includes obtaining one or more datasets, determining a first feature, wherein the first feature is determined based at least in part on the one or more datasets, and storing the first feature in a feature store. The first feature is stored in association with a dataset indication of the one or more datasets from which the first feature is determined. The feature store comprises a plurality of features.

Classes IPC  ?

  • G06F 8/65 - Mises à jour
  • G06F 8/60 - Déploiement de logiciel
  • G06F 8/71 - Gestion de versions Gestion de configuration
  • G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques
  • G06N 20/00 - Apprentissage automatique

77.

LIFO based spilling for grouping aggregation

      
Numéro d'application 17116230
Numéro de brevet 11481398
Statut Délivré - en vigueur
Date de dépôt 2020-12-09
Date de la première publication 2022-10-25
Date d'octroi 2022-10-25
Propriétaire Databricks Inc. (USA)
Inventeur(s)
  • Behm, Alexander
  • Dave, Ankur
  • Deng, Ryan
  • Palkar, Shoumik

Abrégé

A system for spilling comprises an interface and a processor. The interface is configured to receive an indication to perform a GROUP BY operation, wherein the indication comprises an input table and a grouping column. The processor is configured to: for each input table entry of the input table, determine a key, wherein the key is based at least in part on the input table entry and the grouping column; add the key to a grouping hash table, wherein adding the key to the grouping hash table comprises last-in, first-out (LIFO) spilling when necessary; create an output table based at least in part on the grouping hash table; and provide the output table.

Classes IPC  ?

  • G06F 16/2455 - Exécution des requêtes
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

78.

Automated processing of multiple prediction generation including model tuning

      
Numéro d'application 17587806
Numéro de brevet 11468369
Statut Délivré - en vigueur
Date de dépôt 2022-01-28
Date de la première publication 2022-10-11
Date d'octroi 2022-10-11
Propriétaire Databricks Inc. (USA)
Inventeur(s)
  • Wilson, Benjamin Thomas
  • Zumar, Corey

Abrégé

The present application discloses a method, system, and computer system for building a model associated with a dataset. The method includes receiving a data set, the dataset comprising a plurality of keys and a plurality of key-value relationships, determining a plurality of models to build based at least in part on the dataset, wherein determining the plurality of models to build comprises using the dataset format information to identify the plurality of models, building the plurality of models, and optimizing at least one of the plurality of models.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques

79.

Dataflow graph processing

      
Numéro d'application 17362450
Numéro de brevet 11567998
Statut Délivré - en vigueur
Date de dépôt 2021-06-29
Date de la première publication 2022-09-29
Date d'octroi 2023-01-31
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Armbrust, Michael Paul
  • Neumann, Andreas
  • Murthy, Mukul
  • Mio, Jonathan

Abrégé

A system for dataflow graph processing comprises a communication interface and a processor. The communication interface is configured receive an indication to generate a dataflow graph, wherein the indication includes a set of queries and/or commands. The processor is coupled to the communication interface and configured to: determine dependencies of each query in the set of queries on another query; determine a DAG of nodes based at least in part on the dependencies; determine the dataflow graph by determining in-line expressions for tables of the dataflow graph aggregating calculations associated with a subset of dataflow graph nodes designated as view nodes; and provide the dataflow graph.

Classes IPC  ?

  • G06F 16/901 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/245 - Traitement des requêtes
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

80.

DATAFLOW GRAPH PROCESSING WITH EXPECTATIONS

      
Numéro d'application US2022020378
Numéro de publication 2022/203903
Statut Délivré - en vigueur
Date de dépôt 2022-03-15
Date de publication 2022-09-29
Propriétaire DATABRICKS INC. (USA)
Inventeur(s)
  • Armbrust, Michael Paul
  • Neumann, Andreas
  • Murthy, Mukul
  • Mio, Jonathan

Abrégé

A system for dataflow graph processing comprises a communication interface and a processor. The communication interface is configured receive an indication to generate a dataflow graph, wherein the indication includes a set of queries. The processor is coupled to the communication interface and is configured to: determine dependencies of each query in the set of queries on another query; determine a DAG of nodes based at least in part on the dependencies; insert a node in the DAG of nodes to generate an updated DAG to enforce an expectation; determine a dataflow graph based on the updated DAG; and provide the dataflow graph.

Classes IPC  ?

81.

Dataflow graph processing with expectations

      
Numéro d'application 17362456
Numéro de brevet 12008040
Statut Délivré - en vigueur
Date de dépôt 2021-06-29
Date de la première publication 2022-09-29
Date d'octroi 2024-06-11
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Armbrust, Michael Paul
  • Neumann, Andreas
  • Murthy, Mukul
  • Mio, Jonathan

Abrégé

A system for dataflow graph processing comprises a communication interface and a processor. The communication interface is configured receive an indication to generate a dataflow graph, wherein the indication includes a set of queries. The processor is coupled to the communication interface and is configured to: determine dependencies of each query in the set of queries on another query; determine a DAG of nodes based at least in part on the dependencies; insert a node in the DAG of nodes to generate an updated DAG to enforce an expectation; determine a dataflow graph based on the updated DAG; and provide the dataflow graph.

Classes IPC  ?

  • G06F 16/901 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/245 - Traitement des requêtes

82.

Update and query of a large collection of files that represent a single dataset stored on a blob store

      
Numéro d'application 17695411
Numéro de brevet 11775499
Statut Délivré - en vigueur
Date de dépôt 2022-03-15
Date de la première publication 2022-08-11
Date d'octroi 2023-10-03
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Armbrust, Michael Paul
  • Zhu, Shixiong
  • Yavuz, Burak

Abrégé

A system includes an interface and a processor. The interface is configured to receive a table indication of a data table and to receive a transaction indication to perform a transaction. The processor is configured to determine a current position N in a transaction log; determine a current state of the metadata; determine a read set associated with a transaction; attempt to write an update to the transaction log associated with a next position N+1; in response to a transaction determination that a simultaneous transaction associated with the next position N+1 already exists, determine a set of updated files; and in response to a determination that there is not an overlap between the read set associated with the current transaction and the set of updated files associated with the simultaneous transaction, attempt to write the update to the transaction to the transaction log associated with a further position N+2.

Classes IPC  ?

  • G06F 16/14 - Détails de la recherche de fichiers basée sur les métadonnées des fichiers
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/23 - Mise à jour

83.

INTEGRATED NATIVE VECTORIZED ENGINE FOR COMPUTATION

      
Numéro d'application US2021050581
Numéro de publication 2022/066490
Statut Délivré - en vigueur
Date de dépôt 2021-09-16
Date de publication 2022-03-31
Propriétaire DATABRICKS INC. (USA)
Inventeur(s)
  • Xin, Shi
  • Behm, Alexander
  • Palkar, Shoumik
  • Van Hovell Tot Westerflier, Herman Rudolf Petrus Catharin

Abrégé

A system comprises an interface, a processor, and a memory. The interface is configured to receive a query. The processor is configured to: determine a set of nodes for the query; determine whether a node of the set of nodes comprises a first engine node type or a second engine node type, wherein determining whether the node of the set of nodes comprises the first engine node type or the second engine node type is based at least in part on determining whether the node is able to be executed in a second engine; and generate a plan based at least in part on the set of nodes. The memory is coupled to the processor and is configured to provide the processor with instructions.

Classes IPC  ?

  • G06F 12/126 - Commande de remplacement utilisant des algorithmes de remplacement avec maniement spécial des données, p. ex. priorité des données ou des instructions, erreurs de maniement ou repérage
  • G06T 1/60 - Gestion de mémoire
  • G06F 16/20 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet de données structurées, p. ex. de données relationnelles

84.

Integrated native vectorized engine for computation

      
Numéro d'application 17237979
Numéro de brevet 11586624
Statut Délivré - en vigueur
Date de dépôt 2021-04-22
Date de la première publication 2022-03-31
Date d'octroi 2023-02-21
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Xin, Shi
  • Behm, Alexander
  • Palkar, Shoumik
  • Van Hövell Tot Westerflier, Herman Rudolf Petrus Catharina

Abrégé

A system comprises an interface, a processor, and a memory. The interface is configured to receive a query. The processor is configured to: determine a set of nodes for the query; determine whether a node of the set of nodes comprises a first engine node type or a second engine node type, wherein determining whether the node of the set of nodes comprises the first engine node type or the second engine node type is based at least in part on determining whether the node is able to be executed in a second engine; and generate a plan based at least in part on the set of nodes. The memory is coupled to the processor and is configured to provide the processor with instructions.

Classes IPC  ?

  • G06F 16/2453 - Optimisation des requêtes
  • G06F 16/2458 - Types spéciaux de requêtes, p. ex. requêtes statistiques, requêtes floues ou requêtes distribuées
  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données

85.

Model ML registry and model serving

      
Numéro d'application 17324907
Numéro de brevet 11693837
Statut Délivré - en vigueur
Date de dépôt 2021-05-19
Date de la première publication 2022-03-24
Date d'octroi 2023-07-04
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Davidson, Aaron Daniel
  • Nykodym, Tomas
  • Mewald, Clemens

Abrégé

A system includes an interface, a processor, and a memory. The interface is configured to receive a version of a model from a model registry. The processor is configured to store the version of the model, start a process running the version of the model, and update a proxy with version information associated with the version of the model, wherein the updated proxy indicates to redirect an indication to invoke the version of the model to the process. The memory is coupled to the processor and configured to provide the processor with instructions.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 16/955 - Recherche dans le Web utilisant des identifiants d’information, p. ex. des localisateurs uniformisés de ressources [uniform resource locators - URL]
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance

86.

Query watchdog

      
Numéro d'application 17537124
Numéro de brevet 11693723
Statut Délivré - en vigueur
Date de dépôt 2021-11-29
Date de la première publication 2022-03-17
Date d'octroi 2023-07-04
Propriétaire Databricks, Inc. (USA)
Inventeur(s)
  • Luszczak, Alicja
  • Shankar, Srinath
  • Xin, Shi

Abrégé

A system for monitoring job execution includes an interface and a processor. The interface is configured to receive an indication to start a cluster processing job. The processor is configured to determine whether processing a data instance associated with the cluster processing job satisfies a watchdog criterion; and in the event that processing the data instance satisfies the watchdog criterion, cause the processing of the data instance to be killed.

Classes IPC  ?

  • G06F 11/07 - Réaction à l'apparition d'un défaut, p. ex. tolérance de certains défauts
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 11/30 - Surveillance du fonctionnement

87.

MOSAICML

      
Numéro de série 90788504
Statut Enregistrée
Date de dépôt 2021-06-22
Date d'enregistrement 2022-08-23
Propriétaire DATABRICKS, INC. ()
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Providing temporary use of online non-downloadable computer software for use in accessing algorithmic speed-up modules in standard deep learning frameworks; Providing temporary use of online non-downloadable computer software for use in visualizing costs and performance for deep learning training jobs; Providing temporary use of online non-downloadable computer software for use in training employees in deep learning, including performance analysis, visualization and computing resources

88.

MOSAICML

      
Numéro de série 90788499
Statut Enregistrée
Date de dépôt 2021-06-22
Date d'enregistrement 2022-08-23
Propriétaire DATABRICKS, INC. ()
Classes de Nice  ? 09 - Appareils et instruments scientifiques et électriques

Produits et services

Downloadable computer software for use in accessing algorithmic speed-up modules in standard deep learning frameworks; Downloadable computer software for use in visualizing costs and performance for deep learning training jobs; Downloadable computer software for use in training employees in deep learning, including performance analysis, visualization and computing resources

89.

Systems and methods for a virtual sandbox database

      
Numéro d'application 16935690
Numéro de brevet 11609986
Statut Délivré - en vigueur
Date de dépôt 2020-07-22
Date de la première publication 2021-06-10
Date d'octroi 2023-03-21
Propriétaire DATABRICKS, INC. (USA)
Inventeur(s)
  • Khurana, Amandeep
  • Li, Nong

Abrégé

Various embodiments of the present technology generally relate to management of big data storage and data access control systems. In some embodiments, a data access system for use in multiple application service and multiple storage service environments comprises a sandbox database for users, wherein the sandbox database is a virtual database environment via which a user may access datasets according to one or more access policies. In some embodiments, the data access system receives a user request to access a dataset stored in a database into the sandbox environment, wherein the database is associated with the data access system. In response to the request, the data access system may retrieve the corresponding data from the database, determine any associated sandbox access policies, and generate an anonymized data table in the sandbox environment.

Classes IPC  ?

  • G06F 21/53 - Contrôle des utilisateurs, des programmes ou des dispositifs de préservation de l’intégrité des plates-formes, p. ex. des processeurs, des micrologiciels ou des systèmes d’exploitation au stade de l’exécution du programme, p. ex. intégrité de la pile, débordement de tampon ou prévention d'effacement involontaire de données par exécution dans un environnement restreint, p. ex. "boîte à sable" ou machine virtuelle sécurisée
  • G06F 16/248 - Présentation des résultats de requêtes
  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès

90.

Data retrieval using distributed workers in a large-scale data access system

      
Numéro d'application 17026772
Numéro de brevet 12050619
Statut Délivré - en vigueur
Date de dépôt 2020-09-21
Date de la première publication 2021-03-25
Date d'octroi 2024-07-30
Propriétaire DATABRICKS, INC. (USA)
Inventeur(s)
  • Khurana, Amandeep
  • Li, Nong

Abrégé

Disclosed herein provides enhancements for operating a data access application service executing on a data access server system and an external computing system. In the data access server system, a request is received from a client device executing at least one of multiple application services for a dataset from one or more of multiple storage systems. In the data access server system, a data retrieval instruction is generated for the client device to access the dataset from the one or more of the multiple storage systems. The data retrieval instruction comprises task descriptions and a temporary credential. The data retrieval instruction is transferred to the external computing system via the client device and the requested dataset is retrieved and deployed based on the task descriptions and the temporary credential from the one or more of the multiple storage systems.

Classes IPC  ?

  • G06F 16/27 - Réplication, distribution ou synchronisation de données entre bases de données ou dans un système de bases de données distribuéesArchitectures de systèmes de bases de données distribuées à cet effet
  • G06F 9/54 - Communication interprogramme
  • G06F 16/2455 - Exécution des requêtes
  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

91.

BACKGROUND DATASET MAINTENANCE

      
Numéro d'application 16935654
Statut En instance
Date de dépôt 2020-07-22
Date de la première publication 2021-03-18
Propriétaire DATABRICKS, INC. (USA)
Inventeur(s)
  • Khurana, Amandeep
  • Li, Nong

Abrégé

Various embodiments of the present technology generally relate to management of big data storage and the physical removal of data via data access systems for large data processing environments having multiple application services and multiple storage services. In some embodiments, a method of physically removing data from a storage system provides for identifying one or more files needing data removal treatment, determining that a file needing data removal treatment should be queued, and populating a queue with the file. Determining that a file should be queued is based, at least in part, on a staleness tolerance. The method further provides for treating the file and replacing a previous version of the file in storage with the updated file. In some implementations, treating the file includes removing data from the file to create an updated file and may further include additional changes to the file.

Classes IPC  ?

  • G06F 16/16 - Opérations sur les fichiers ou les dossiers, p. ex. détails des interfaces utilisateur spécialement adaptées aux systèmes de fichiers
  • G06F 16/17 - Détails d’autres fonctions de systèmes de fichiers
  • G06F 16/23 - Mise à jour
  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • G06F 9/54 - Communication interprogramme

92.

DELTA ENGINE

      
Numéro d'application 1577778
Statut Enregistrée
Date de dépôt 2021-01-25
Date d'enregistrement 2021-01-25
Propriétaire Databricks, Inc. (USA)
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Software as a service (SAAS) services; software as a service (SAAS) services featuring cloud-based software for performing data queries; software as a service (SAAS) services featuring cloud-based software for use in data optimization, data processing, data analytics, data integration, data warehousing, data mining, data sharing, data collection, data interpretation, and data visualization.

93.

REDASH

      
Numéro d'application 1575917
Statut Enregistrée
Date de dépôt 2020-12-23
Date d'enregistrement 2020-12-23
Propriétaire Databricks, Inc. (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Downloadable software for use in data visualization, data queries, data analytics, data processing, data integration, data warehousing, data mining, data sharing, data collection, and data interpretation. Software as a service (SAAS) services featuring cloud-based software for use in data visualization, data queries, data analytics, data processing, data integration, data warehousing, data mining, data sharing, data collection, and data interpretation.

94.

DELTA LIVE TABLES

      
Numéro de série 90495216
Statut Enregistrée
Date de dépôt 2021-01-28
Date d'enregistrement 2022-09-20
Propriétaire Databricks, Inc. ()
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Software as a service (SAAS) services featuring cloud-based software for building data pipelines; Software as a service (SAAS) services featuring cloud-based software for data transformation (ETL); Software as a service (SAAS) services featuring cloud-based software for use in data optimization, data processing, data analytics, data integration, data warehousing, data mining, data sharing, data collection, data interpretation, and data visualization

95.

DELTA ENGINE

      
Numéro de série 90478105
Statut Enregistrée
Date de dépôt 2021-01-20
Date d'enregistrement 2022-01-11
Propriétaire Databricks, Inc. ()
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Software as a service (SAAS) services featuring cloud-based software for performing data queries; Software as a service (SAAS) services featuring cloud-based software for use in data optimization, data processing, data analytics, data integration, data warehousing, data mining, data sharing, data collection, data interpretation, and data visualization

96.

Update and query of a large collection of files that represent a single dataset stored on a blob store

      
Numéro d'application 16941227
Numéro de brevet 11308071
Statut Délivré - en vigueur
Date de dépôt 2020-07-28
Date de la première publication 2021-01-14
Date d'octroi 2022-04-19
Propriétaire Databricks Inc. (USA)
Inventeur(s)
  • Armbrust, Michael Paul
  • Zhu, Shixiong
  • Yavuz, Burak

Abrégé

A system includes an interface and a processor. The interface is configured to receive a table indication of a data table and to receive a transaction indication to perform a transaction. The processor is configured to determine a current position N in a transaction log; determine a current state of the metadata; determine a read set associated with a transaction; attempt to write an update to the transaction log associated with a next position N+1; in response to a transaction determination that a simultaneous transaction associated with the next position N+1 already exists, determine a set of updated files; and in response to a determination that there is not an overlap between the read set associated with the current transaction and the set of updated files associated with the simultaneous transaction, attempt to write the update to the transaction to the transaction log associated with a further position N+2.

Classes IPC  ?

  • G06F 16/23 - Mise à jour
  • G06F 16/14 - Détails de la recherche de fichiers basée sur les métadonnées des fichiers
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

97.

Autoscaling using file access or cache usage for cluster machines

      
Numéro d'application 17020573
Numéro de brevet 11379272
Statut Délivré - en vigueur
Date de dépôt 2020-09-14
Date de la première publication 2020-12-31
Date d'octroi 2022-07-05
Propriétaire Databricks Inc. (USA)
Inventeur(s)
  • Shankar, Srinath
  • Liang, Eric Keng-Hao

Abrégé

The allocation system comprises an interface and a processor. The interface is configured to receive an indication to deactivate idle cluster machines of a set of cluster machines. The processor is configured to determine a list of cluster machines storing one or more intermediate data files of a set of intermediate data files; determine a set of idle cluster machines of the set of cluster machines that are neither running one or more tasks of a set of tasks executing or pending on the set of cluster machines nor storing the one or more intermediate data files of the set of intermediate data files, where the set of intermediate data files is associated with the set of tasks executing or pending on the cluster machines; and deactivate each cluster machine of the set of idle cluster machines.

Classes IPC  ?

  • G06F 9/46 - Dispositions pour la multiprogrammation
  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
  • G06F 9/38 - Exécution simultanée d'instructions, p. ex. pipeline ou lecture en mémoire
  • H04L 67/5682 - Politiques ou règles de mise à jour, de suppression ou de remplacement des données stockées

98.

Miscellaneous Design

      
Numéro d'application 1564813
Statut Enregistrée
Date de dépôt 2020-10-02
Date d'enregistrement 2020-10-02
Propriétaire Databricks, Inc. (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Downloadable computer software for big data analysis; downloadable computer software for use in data integration, data warehousing, data mining, data processing, data sharing, data collection, data interpretation, data queries, data visualization, and data analytics; downloadable computer software platforms for data integration, data warehousing, data mining, data processing, data sharing, data collection, data interpretation, data queries, data visualization, and data analytics; downloadable cloud computer software for data integration, data warehousing, data mining, data processing, data sharing, data collection, data interpretation, data queries, data visualization, and data analytics; downloadable computer software for application database integration; desktop and mobile computing and operating platforms consisting of data transceivers, wireless networks and gateways, for collection, analysis, sharing, interpretation and management of data. Data mining; software as a service (SAAS) services, namely, hosting software for use by others for big data processing; software as a service (SAAS) services, namely, hosting software for use by others for data integration, data warehousing, data mining, data processing, data sharing, data collection, data interpretation, data queries, data visualization, and data analytics; providing temporary use of nondownloadable analytics software for data importing, data wrangling, data mining, data processing, data sharing, data collection, data interpretation, data queries, and data visualization; custom design and development of computer software; software as a service (SAAS) services featuring software for big data processing and analytics; development and creation of computer programs for data processing and analysis; software as a service (SAAS) services featuring software for data storage, data computation, data analysis, data processing, and database management; computer services, namely, hosting of search platforms on the Internet to allow users to index, integrate, warehouse, mine, process, share, collect, interpret, research, query, visualize, and analyze data; platform as a services (PAAS) featuring computer software platforms for use in data management, integration, warehousing, mining, interpretation, processing, sharing, collecting, research, queries, visualization, and analysis; providing temporary use of on-line non-downloadable cloud computing software for big data processing; providing temporary use of on-line non-downloadable cloud computing software for data integration, data warehousing, data mining, data processing, data sharing, data collection, data interpretation, data queries, data visualization, and data analytics; application service provider, namely, hosting, managing, developing and maintaining applications, and software of others in the fields of data importing, data storage, data management, data queries, data processing, data interpretation, data analytics, and data visualization.

99.

Autoscaling using file access or cache usage for cluster machines

      
Numéro d'application 16188989
Numéro de brevet 10810051
Statut Délivré - en vigueur
Date de dépôt 2018-11-13
Date de la première publication 2020-10-20
Date d'octroi 2020-10-20
Propriétaire Databricks Inc. (USA)
Inventeur(s)
  • Shankar, Srinath
  • Liang, Eric Keng-Hao

Abrégé

The allocation system comprises an interface and a processor. The interface is configured to receive an indication to deactivate idle cluster machines of a set of cluster machines. The processor is configured to determine a set of tasks executing or pending on the set of cluster machines; determine a set of idle cluster machines of the set of cluster machines that are neither running one or more tasks of the set of tasks nor storing one or more intermediate data files of a set of intermediate data files, where the set of intermediate data files is associated with a set of tasks executing or pending on the cluster machines; and deactivate each cluster machine of the set of idle cluster machines.

Classes IPC  ?

  • G06F 9/46 - Dispositions pour la multiprogrammation
  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
  • G06F 9/38 - Exécution simultanée d'instructions, p. ex. pipeline ou lecture en mémoire
  • H04L 29/08 - Procédure de commande de la transmission, p.ex. procédure de commande du niveau de la liaison

100.

CHEVRON DESIGN

      
Numéro d'application 206978400
Statut Enregistrée
Date de dépôt 2020-10-02
Date d'enregistrement 2023-09-27
Propriétaire Databricks, Inc. (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

(1) Downloadable computer software for big data analysis; downloadable computer software for use in data integration, data warehousing, data mining, and data visualization; downloadable computer software for use in data processing, data sharing, data collection, data interpretation, data queries, and data analytics, namely, computer software that provides real-time, integrated business management intelligence by combining information from various databases, for database management, and for software for the integration of artificial intelligence and machine learning in the field of Big Data; downloadable computer software platforms for data integration, data warehousing, data mining, and data visualization; downloadable computer software platforms for data processing, data sharing, data collection, data interpretation, data queries, and data analytics, namely, computer software that provides real-time, integrated business management intelligence by combining information from various databases, for database management, and for software for the integration of artificial intelligence and machine learning in the field of Big Data; downloadable cloud computer software for data integration, data warehousing, data mining, and data visualization; downloadable cloud computer software for data processing, data sharing, data collection, data interpretation, data queries, and data analytics, namely, computer software that provides real-time, integrated business management intelligence by combining information from various databases, for database management, and for software for the integration of artificial intelligence and machine learning in the field of Big Data; downloadable computer software for application database integration; desktop and mobile computing and operating platforms consisting of data transceivers, wireless networks and gateways, for collection, analysis, sharing, interpretation and management of data, namely, database management software. (1) Data mining; software as a service (SAAS) services, namely, hosting software for use by others for big data processing; software as a service (SAAS) services, namely, web hosting of computer software applications of others for data integration, data warehousing, data mining, data processing, data sharing, data collection, data interpretation, data queries, data visualization, and data analytics; providing temporary use of non-downloadable analytics software for data wrangling, data mining and data visualization; providing temporary use of non-downloadable analytics software for data importing, data processing, data sharing, data collection, data interpretation, and data queries, namely, for providing real-time integrated business management intelligence by combining information from various databases, for database management, and for software for the integration of artificial intelligence and machine learning in the field of Big Data; custom design and development of computer software; software as a service (SAAS) services featuring software for big data processing and analytics; development and creation of computer programs for data processing and analysis; software as a service (SAAS) services featuring software for data storage, namely, providing cloud storage facilities for use as a data center for others, data computation, data analysis, and data processing, namely, database management; computer services, namely, providing search platforms to allow users to index, integrate, warehouse, mine, process, share, collect, interpret, research, query, visualize, and analyze data; platform as a services (PAAS) featuring computer software platforms for use in data integration, warehousing, mining, and visualization; platform as a services (PAAS) featuring computer software platforms for use in data management, interpretation, processing, sharing, collecting, research, queries, and analysis, namely, for providing real-time integrated business management intelligence by combining information from various databases, for database management, and for software for the integration of artificial intelligence and machine learning in the field of Big Data; providing temporary use of on-line non-downloadable cloud computing software for big data processing; providing temporary use of on-line non-downloadable cloud computing software for data integration, data warehousing, data mining, and data visualization; providing temporary use of on-line non-downloadable cloud computing software for data processing, data sharing, data collection, data interpretation, data queries, and data analytics, namely, for providing real-time integrated business management intelligence by combining information from various databases, for database management, and for software for the integration of artificial intelligence and machine learning in the field of Big Data; application service provider, namely, hosting, managing, developing and maintaining applications, and software of others in the fields of data importing, data storage, data management, data queries, data processing, data interpretation, data analytics, and data visualization.
  1     2        Prochaine page