Zapata Computing, Inc.

États‑Unis d’Amérique

Retour au propriétaire

1-83 de 83 pour Zapata Computing, Inc. Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 77
        Marque 6
Juridiction
        États-Unis 46
        International 37
Date
2025 juillet 1
2025 (AACJ) 3
2024 3
2023 11
2022 16
Voir plus
Classe IPC
G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique 51
B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron 31
G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard 18
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels 14
G06N 20/00 - Apprentissage automatique 8
Voir plus
Classe NICE
42 - Services scientifiques, technologiques et industriels, recherche et conception 6
37 - Services de construction; extraction minière; installation et réparation 1
Statut
En Instance 19
Enregistré / En vigueur 64

1.

SOLVER AND METHOD FOR SOLVING CONTINUOUS-OPTIMIZATION PROBLEMS

      
Numéro d'application US2024018524
Numéro de publication 2025/147279
Statut Délivré - en vigueur
Date de dépôt 2024-03-05
Date de publication 2025-07-10
Propriétaire ZAPATA COMPUTING INC. (USA)
Inventeur(s)
  • Calderon, Vladimir Vargas
  • Cao, Yudong
  • Perdomo-Ortiz, Alejandro

Abrégé

A method for solving a continuous optimization problem includes: (1) Training a generative model using a training data set. (2) Generating, using the model, a configuration-pool including candidate solutions, for minimizing the optimization problem's cost function, which include evaluated candidate solutions and non-evaluated candidate solutions. (3) Generating a refined configuration-pool that includes qualified candidates, of the candidate solutions, using a refinement method and candidate solutions of a previous configuration-pool. (4) Determining, from the evaluated candidate solutions, a best candidate solution that yields the lowest cost. (5) Generating new cost values by evaluating the cost function of selected non-evaluated candidate solutions of candidate solutions. New cost values include cost values of selected evaluated candidate solutions of the candidate solutions. When a new cost value is less than the cost value of the best candidate solution, the best candidate solution is replaced with the candidate solution that yields the new cost value.

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

2.

APPLICATION ROBUSTNESS FOR FAULT-TOLERANT QUANTUM COMPUTERS

      
Numéro d'application 18476968
Statut En instance
Date de dépôt 2023-09-28
Date de la première publication 2025-04-10
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Kshirsagar, Rutuja Milind
  • Katabarwa, Amara
  • Johnson, Peter Douglas

Abrégé

Methods and systems perform conversion of time signals to frequency spectra. Such methods and systems facilitate a simple analysis of robustness under various algorithmic noise models. While a robustness analysis can be carried out for other methods of quantum phase estimation, the methods and systems provide a foundation for the robustness analysis beyond quantum phase estimation.

Classes IPC  ?

  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 10/70 - Correction, détection ou prévention d’erreur quantique, p. ex. codes de surface ou distillation d’état magique

3.

Hybrid Quantum-Classical Computer for Bayesian Inference with Engineered Likelihood Functions for Robust Amplitude Estimation

      
Numéro d'application 18444157
Statut En instance
Date de dépôt 2024-02-16
Date de la première publication 2025-01-09
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Wang, Guoming
  • Koh, Enshan Dax
  • Johnson, Peter D.
  • Cao, Yudong
  • Dallaire-Demers, Pierre-Luc

Abrégé

A hybrid quantum-classical (HQC) computer takes advantage of the available quantum coherence to maximally enhance the power of sampling on noisy quantum devices, reducing measurement number and runtime compared to VQE. The HQC computer derives inspiration from quantum metrology, phase estimation, and the more recent “alpha-VQE” proposal, arriving at a general formulation that is robust to error and does not require ancilla qubits. The HQC computer uses the “engineered likelihood function” (ELF) to carry out Bayesian inference. The ELF formalism enhances the quantum advantage in sampling as the physical hardware transitions from the regime of noisy intermediate-scale quantum computers into that of quantum error corrected ones. This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.

Classes IPC  ?

  • G06N 5/04 - Modèles d’inférence ou de raisonnement
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

4.

ENHANCING OPTIMIZATION WITH AN EVOLUTIONARY GENERATIVE ALGORITHM USING QUANTUM OR CLASSICAL GENERATIVE MODELS

      
Numéro d'application US2023036429
Numéro de publication 2024/232909
Statut Délivré - en vigueur
Date de dépôt 2023-10-31
Date de publication 2024-11-14
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Farquhar, Collin

Abrégé

A system and method for a quantum-enhanced optimizer (QEO) using quantum generative models to achieve lower minimum cost functions than classical or other known optimizers. In a first embodiment, the QEO operates as a booster to enhance the performance of known stand-alone optimizers in complex instances where known optimizers have limitations. In a second embodiment, the QEO operates as a stand-alone optimizer for finding a minimum with the least number of cost-function evaluations. The disclosed QEO methods outperform known optimizers, including Bayesian optimizers. The disclosed quantum-enhanced optimization methods may be based on tensor networks. The generative models may also be based on classical, quantum, or hybrid quantum-classical approaches, including Quantum Circuit Associative Adversarial Networks (QC-AAN) and Quantum Circuit Born Machines (QCBM). In another embodiment, an evolutionary generative algorithm (EGA) uses a generative model and a traditional optimizer within an evolutionary algorithmic framework to generate improved solutions.

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06N 3/094 - Apprentissage antagoniste
  • G06N 3/0475 - Réseaux génératifs
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

5.

HIGH-ACCURACY ESTIMATION OF GROUND STATE ENERGY USING EARLY FAULT-TOLERANT QUANTUM COMPUTERS

      
Numéro d'application 18463813
Statut En instance
Date de dépôt 2023-09-08
Date de la première publication 2024-04-04
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Wang, Guoming
  • Johnson, Peter Douglas
  • Zhang, Ruizhe
  • França, Daniel Stilck
  • Zhu, Shuchen

Abrégé

A method and system for estimating the ground state energy of a quantum Hamiltonian. The disclosed algorithm may run on any hardware and is suited for early fault tolerant quantum computers. The algorithm employs low-depth quantum circuits with one ancilla qubit with classical post-processing. The algorithm first draws samples from Hadamard tests in which the unitary is a controlled time evolution of the Hamiltonian. The samples are used for evaluating the convolution of the spectral measure and a filter function, and then inferring the ground state energy from this convolution. Quantum circuit depth is linear in the inverse spectral gap and poly-logarithmic in the inverse target accuracy and inverse initial overlap. Runtime is polynomial in the inverse spectral gap, inverse target accuracy, and inverse initial overlap. The algorithm produces a highly-accurate estimate of the ground state energy with reasonable runtime using low-depth quantum circuits. Other properties of a Hamiltonian may also be computed with this method.

Classes IPC  ?

  • G06N 10/80 - Programmation quantique, p. ex. interfaces, langages ou boîtes à outils de développement logiciel pour la création ou la manipulation de programmes capables de fonctionner sur des ordinateurs quantiquesPlate-formes pour la simulation ou l’accès aux ordinateurs quantiques, p. ex. informatique quantique en nuage
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels

6.

ENHANCING OPTIMIZATION WITH AN EVOLUTIONARY GENERATIVE ALGORITHM USING QUANTUM OR CLASSICAL GENERATIVE MODELS

      
Numéro d'application 18498635
Statut En instance
Date de dépôt 2023-10-31
Date de la première publication 2024-02-22
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Farquhar, Collin

Abrégé

A system and method for a quantum-enhanced optimizer (QEO) using quantum generative models to achieve lower minimum cost functions than classical or other known optimizers. In a first embodiment, the QEO operates as a booster to enhance the performance of known stand-alone optimizers in complex instances where known optimizers have limitations. In a second embodiment, the QEO operates as a stand-alone optimizer for finding a minimum with the least number of cost-function evaluations. The disclosed QEO methods outperform known optimizers, including Bayesian optimizers. The disclosed quantum-enhanced optimization methods may be based on tensor networks. The generative models may also be based on classical, quantum, or hybrid quantum-classical approaches, including Quantum Circuit Associative Adversarial Networks (QC-AAN) and Quantum Circuit Born Machines (QCBM). In another embodiment, an evolutionary generative algorithm (EGA) uses a generative model and a traditional optimizer within an evolutionary algorithmic framework to generate improved solutions.

Classes IPC  ?

  • G06N 10/80 - Programmation quantique, p. ex. interfaces, langages ou boîtes à outils de développement logiciel pour la création ou la manipulation de programmes capables de fonctionner sur des ordinateurs quantiquesPlate-formes pour la simulation ou l’accès aux ordinateurs quantiques, p. ex. informatique quantique en nuage

7.

QUANTUM ENHANCED LEARNING AGENT

      
Numéro d'application 18324832
Statut En instance
Date de dépôt 2023-05-26
Date de la première publication 2023-12-07
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A method and apparatus for generating quantum-enhanced learning agents that can be used for optimizing tasks such as time series analysis, natural language processing, reinforcement learning, and combinatorial optimization. The method may be implemented on a hybrid quantum-classical computer. A learning agent is defined having an initial state S1, a set of parameters T1, and an input X1. The set of parameters are updated iteratively based on the input X1. The updated parameter set is generated, the agent state is updated, and an output is generated. Further enhancements include unrolling the agent in time and maintaining multiple copies of the agent across multiple iterations and entangling the copies of the agents. The disclosed technology may be used for computer chip design optimization for arranging chip components on a substrate, where circuit board parameters are efficiently assembled piece by piece, instead of a single optimization solution.

Classes IPC  ?

  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 20/00 - Apprentissage automatique

8.

GENERATING NON-CLASSICAL MEASUREMENTS ON DEVICES WITH PARAMETERIZED TIME EVOLUTION

      
Numéro d'application US2022038142
Numéro de publication 2023/172284
Statut Délivré - en vigueur
Date de dépôt 2022-07-25
Date de publication 2023-09-14
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Cao, Yudong
  • Savoie, Christopher J.

Abrégé

A quantum contextual measurement is generated from a quantum device capable of performing continuous time evolution, by generating a first measurement result and a second measurement result and combining the first measurement result and the second measurement result to generate the quantum contextual measurement. The first measurement result may be generated by initializing the quantum device to a first initial quantum state, applying a first continuous time evolution to the first initial state to generate a first evolved state, and measuring the first evolved state to generate the first measurement result. A similar process may be applied to generate a second evolved state which is at least approximately equal to the first evolved state, and then applying another continuous time evolution to the second evolved state to generate a third evolved state, and measuring the third evolved state to generate the second measurement result.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06N 3/08 - Méthodes d'apprentissage

9.

Quantum Computer with Improved Quantum Optimization by Exploiting Marginal Data

      
Numéro d'application 18131077
Statut En instance
Date de dépôt 2023-04-05
Date de la première publication 2023-09-14
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Johnson, Peter Douglas
  • Radin, Maxwell D.
  • Romero, Jhonathan
  • Cao, Yudong
  • Katabarwa, Amara

Abrégé

A quantum optimization system and method estimate, on a classical computer and for a quantum state, an expectation value of a Hamiltonian, expressible as a linear combination of observables, based on expectation values of the observables; and transform, on the classical computer, one or both of the Hamiltonian and the quantum state to reduce the expectation value of the Hamiltonian.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06F 17/14 - Transformations de Fourier, de Walsh ou transformations d'espace analogues
  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G02F 1/017 - Structures avec une variation de potentiel périodique ou quasi périodique, p. ex. superréseaux, puits quantiques
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • G06N 10/70 - Correction, détection ou prévention d’erreur quantique, p. ex. codes de surface ou distillation d’état magique

10.

Classically-boosted quantum optimization

      
Numéro d'application 17702244
Numéro de brevet 11681774
Statut Délivré - en vigueur
Date de dépôt 2022-03-23
Date de la première publication 2023-05-18
Date d'octroi 2023-06-20
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s) Wang, Guoming

Abrégé

A method and system are provided for solving combinatorial optimization problems. A classical algorithm provides an approximate or “seed” solution which is then used by a quantum circuit to search its “neighborhood” for higher-quality feasible solutions. A continuous-time quantum walk (CTQW) is implemented on a weighted, undirected graph that connects the feasible solutions. An iterative optimizer tunes the quantum circuit parameters to maximize the probability of obtaining high-quality solutions from the final state. The ansatz circuit design ensures that only feasible solutions are obtained from the measurement. The disclosed method solves constrained problems without modifying their cost functions, confines the evolution of the quantum state to the feasible subspace, and does not rely on efficient indexing of the feasible solutions as some previous methods require.

Classes IPC  ?

  • G06F 17/11 - Opérations mathématiques complexes pour la résolution d'équations
  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques

11.

Quantum enhanced word embedding for natural language processing

      
Numéro d'application 17574684
Numéro de brevet 11966707
Statut Délivré - en vigueur
Date de dépôt 2022-01-13
Date de la première publication 2023-05-11
Date d'octroi 2024-04-23
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A quantum-enhanced system and method for natural language processing (NLP) for generating a word embedding on a hybrid quantum-classical computer. A training set is provided on the classical computer, wherein the training set provides at least one pair of words, and at least one binary value indicating the correlation between the pair of words. The quantum computer generates quantum state representations for each word in the pair of words. The quantum component evaluates the quantum correlation between the quantum state representations of the word pair using an engineering likelihood function and a Bayesian inference. Training the word embedding on the quantum computer is provided using an error function containing the binary value and the quantum correlation.

Classes IPC  ?

  • G06F 40/40 - Traitement ou traduction du langage naturel
  • G06F 15/16 - Associations de plusieurs calculateurs numériques comportant chacun au moins une unité arithmétique, une unité programme et un registre, p. ex. pour le traitement simultané de plusieurs programmes
  • G06F 40/30 - Analyse sémantique
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06V 30/19 - Reconnaissance utilisant des moyens électroniques

12.

Computer System and Method for Solving Pooling Problem as an Unconstrained Binary Optimization

      
Numéro d'application 17918222
Statut En instance
Date de dépôt 2021-04-20
Date de la première publication 2023-05-11
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A computer optimizes transport of a set of ingredients between a plurality of sources, at least one terminal, and a plurality of pools, described by an objective function, a set of variables, and a set of constraints, by: (A) transforming the objective function, variables, and constraints into a binary cost function, including: discretizing the set of variables into a set of a binary variables; transforming the objective function into a binary cost function of the set of binary variables; and adding, for each constraint in the set of constraints, one or more terms to the binary cost function, to create a completed cost function; and (B) providing the completed cost function to a solver to obtain a solution or approximate solution representing a flow of the set of ingredients between the plurality of sources, the plurality of pools, and the at least one terminal.

Classes IPC  ?

  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard

13.

QUANTUM COMPUTING SYSTEM AND METHOD FOR TIME EVOLUTION OF BIPARTITE HAMILTONIANS ON A LATTICE

      
Numéro d'application 17908210
Statut En instance
Date de dépôt 2021-03-26
Date de la première publication 2023-04-27
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Cao, Yudong
  • Olson, Jonathan P.

Abrégé

A method evolves a lattice of qubits in a quantum computer. The lattice of qubits includes a first plurality of qubits and a second plurality of qubits in the quantum computer. Each qubit in the first plurality of qubits is adjacent to at least one qubit in the second plurality of qubits. The method includes: (A) applying, in parallel, a first set of quantum gates between the first plurality of qubits and the second plurality of qubits to create a first set of entangled pairs of qubits; (B) after (A), swapping, in parallel, pairs of qubits, the swapping comprising: (B) (1) swapping pairs of adjacent qubits in the first plurality of qubits according to a first swap criterion; and (B) (2) swapping pairs of adjacent qubits in the second plurality of qubits according to a second swap criterion, wherein the second swap criterion differs from the first swap criterion.

Classes IPC  ?

  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 10/80 - Programmation quantique, p. ex. interfaces, langages ou boîtes à outils de développement logiciel pour la création ou la manipulation de programmes capables de fonctionner sur des ordinateurs quantiquesPlate-formes pour la simulation ou l’accès aux ordinateurs quantiques, p. ex. informatique quantique en nuage

14.

QUANTUM-COMPUTING BASED METHOD AND APPARATUS FOR ESTIMATING GROUND-STATE PROPERTIES

      
Numéro d'application US2022043793
Numéro de publication 2023/043996
Statut Délivré - en vigueur
Date de dépôt 2022-09-16
Date de publication 2023-03-23
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Zhang, Ruizhe
  • Wang, Guoming
  • Johnson, Peter D.

Abrégé

poo poo Ooo o is estimated, and the ground state property Formula (I) is calculated. Applications include Green's functions used to compute electron transport in materials, and the one-particle reduced density matrices used to compute electric dipoles of molecules. In another aspect, the disclosed technology is applicable to early fault-tolerant quantum computers for carrying out molecular-level and materials-level calculations.

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

15.

QUANTUM-COMPUTING BASED METHOD AND APPARATUS FOR ESTIMATING GROUND-STATE PROPERTIES

      
Numéro d'application 17946554
Statut En instance
Date de dépôt 2022-09-16
Date de la première publication 2023-03-16
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Zhang, Ruizhe
  • Wang, Guoming
  • Johnson, Peter D.

Abrégé

A method and apparatus are disclosed for estimating ground state properties of molecules and materials with high accuracy on a hybrid quantum-classical computer using low-depth quantum circuits. The ground stat energy is estimated for a Hamiltonian (H) matrix characterizes a physical system. For an observable (O), samples are run on a parameterized Hadamard test circuit, the outcomes are evaluated, and the expectation value (p0) of the observable (O) is estimated with respect to the ground state energy. A weighted expectation value p0O0 is estimated, and the ground state property ψ0|O|ψ0 is calculated. Applications include Green's functions used to compute electron transport in materials, and the one-particle reduced density matrices used to compute electric dipoles of molecules. In another aspect, the disclosed technology is applicable to early fault-tolerant quantum computers for carrying out molecular-level and materials-level calculations.

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard

16.

Generating non-classical measurements on devices with parameterized time evolution

      
Numéro d'application 17394200
Numéro de brevet 11941484
Statut Délivré - en vigueur
Date de dépôt 2021-08-04
Date de la première publication 2023-02-09
Date d'octroi 2024-03-26
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Cao, Yudong
  • Savoie, Christopher J

Abrégé

A quantum contextual measurement is generated from a quantum device capable of performing continuous time evolution, by generating a first measurement result and a second measurement result and combining the first measurement result and the second measurement result to generate the quantum contextual measurement. The first measurement result may be generated by initializing the quantum device to a first initial quantum state, applying a first continuous time evolution to the first initial state to generate a first evolved state, and measuring the first evolved state to generate the first measurement result. A similar process may be applied to generate a second evolved state which is at least approximately equal to the first evolved state, and then applying another continuous time evolution to the second evolved state to generate a third evolved state, and measuring the third evolved state to generate the second measurement result.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06N 3/086 - Méthodes d'apprentissage en utilisant les algorithmes évolutionnaires, p. ex. les algorithmes génétiques ou la programmation génétique

17.

APPLICATION BENCHMARK USING EMPIRICAL HARDNESS MODELS

      
Numéro d'application 17848301
Statut En instance
Date de dépôt 2022-06-23
Date de la première publication 2023-01-26
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A method and system are provided for modeling the relative performance of algorithms, including quantum algorithms, over a set of problem instances. The model, referred to as a performance estimator, is generated from a selected algorithm and a set a set of problem instances as input, resulting in a generated model. Unlike prior methods, which model the performance of a fixed algorithm on a set of instances, embodiments of the present technology produce a performance estimate without needing to explicitly model the underlying algorithm. The model, once generated by the disclosed technology, may then be utilized to estimate the performance of new algorithms that the model has not been trained on.

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06N 20/00 - Apprentissage automatique
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques

18.

APPLICATION BENCHMARK USING EMPIRICAL HARDNESS MODELS

      
Numéro d'application US2022034799
Numéro de publication 2022/271998
Statut Délivré - en vigueur
Date de dépôt 2022-06-23
Date de publication 2022-12-29
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A method and system are provided for modeling the relative performance of algorithms, including quantum algorithms, over a set of problem instances. The model, referred to as a performance estimator, is generated from a selected algorithm and a set a set of problem instances as input, resulting in a generated model. Unlike prior methods, which model the performance of a fixed algorithm on a set of instances, embodiments of the present technology produce a performance estimate without needing to explicitly model the underlying algorithm. The model, once generated by the disclosed technology, may then be utilized to estimate the performance of new algorithms that the model has not been trained on.

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

19.

ENHANCING COMBINATORIAL OPTIMIZATION WITH QUANTUM GENERATIVE MODELS

      
Numéro d'application 17544415
Statut En instance
Date de dépôt 2021-12-07
Date de la première publication 2022-12-01
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Alcazar, Francisco Javier Fernandez
  • Perdomo Ortiz, Alejandro

Abrégé

A system and method for a quantum-enhanced optimizer (QEO) using quantum generative models to achieve lower minimum cost functions than classical or other known optimizers. In a first embodiment, the QEO operates as a booster to enhance the performance of known stand-alone optimizers in complex instances where known optimizers have limitations. In a second embodiment, the QEO operates as a stand-alone optimizer for finding a minimum with the least number of cost-function evaluations. The disclosed QEO methods outperform known optimizers, including Bayesian optimizers. The disclosed quantum-enhanced optimization methods may be based on tensor networks. The generative models may also be based on classical, quantum, or hybrid quantum-classical approaches, including Quantum Circuit Associative Adversarial Networks (QC-AAN) and Quantum Circuit Born Machines (QCBM).

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion

20.

QUANTUM COMPUTER SYSTEM AND METHOD FOR PERFORMING QUANTUM COMPUTATION WITH REDUCED CIRCUIT DEPTH

      
Numéro d'application 17640633
Statut En instance
Date de dépôt 2020-09-16
Date de la première publication 2022-11-10
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Anschuetz, Eric R.
  • Cao, Yudong

Abrégé

A hybrid quantum-classical computer performs a method which includes converting the output of an initial quantum circuit to a target state of a physical system. A new parametrized quantum circuit, or ansatz, is then generated with the ability to produce a state approximating the target state of the physical system. The parameters of the quantum circuit are adjusted to produce the target state, or to an approximation thereof.

Classes IPC  ?

  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 10/80 - Programmation quantique, p. ex. interfaces, langages ou boîtes à outils de développement logiciel pour la création ou la manipulation de programmes capables de fonctionner sur des ordinateurs quantiquesPlate-formes pour la simulation ou l’accès aux ordinateurs quantiques, p. ex. informatique quantique en nuage

21.

QUANTUM ALGORITHM AND DESIGN FOR A QUANTUM CIRCUIT ARCHITECTURE TO SIMULATE INTERACTING FERMIONS

      
Numéro d'application 17719932
Statut En instance
Date de dépôt 2022-04-13
Date de la première publication 2022-10-20
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Dallaire-Demers, Pierre-Luc
  • Cao, Yudong
  • Johnson, Peter D.

Abrégé

Computer-implemented methods and systems define hardware constraints for quantum processors such that the time required to estimate the energy expectation value of a given fermionic Hamiltonian using the method of Bayesian Optimized Operator Expectation Algorithm (BOOEA) is minimized.

Classes IPC  ?

  • G06N 10/70 - Correction, détection ou prévention d’erreur quantique, p. ex. codes de surface ou distillation d’état magique
  • G06N 10/80 - Programmation quantique, p. ex. interfaces, langages ou boîtes à outils de développement logiciel pour la création ou la manipulation de programmes capables de fonctionner sur des ordinateurs quantiquesPlate-formes pour la simulation ou l’accès aux ordinateurs quantiques, p. ex. informatique quantique en nuage
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels

22.

CLASSICALLY-BOOSTED QUANTUM OPTIMIZATION

      
Numéro d'application US2022021521
Numéro de publication 2022/204266
Statut Délivré - en vigueur
Date de dépôt 2022-03-23
Date de publication 2022-09-29
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Wang, Guoming

Abrégé

A method and system are provided for solving combinatorial optimization problems. A classical algorithm provides an approximate or "seed" solution which is then used by a quantum circuit to search its "neighborhood" for higher-quality feasible solutions. A continuous-time quantum walk (CTQW) is implemented on a weighted, undirected graph that connects the feasible solutions. An iterative optimizer tunes the quantum circuit parameters to maximize the probability of obtaining high-quality solutions from the final state. The ansatz circuit design ensures that only feasible solutions are obtained from the measurement. The disclosed method solves constrained problems without modifying their cost functions, confines the evolution of the quantum state to the feasible subspace, and does not rely on efficient indexing of the feasible solutions as some previous methods require.

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

23.

FLEXIBLE INITIALIZER FOR ARBITRARILY-SIZED PARAMETRIZED QUANTUM CIRCUITS

      
Numéro d'application 17691493
Statut En instance
Date de dépôt 2022-03-10
Date de la première publication 2022-09-15
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Sauvage, Frederic

Abrégé

A method and system are provided for optimizing parameters of a parametrized quantum circuit (PQC), using machine learning to train a flexible initializer for arbitrarily-sized parametrized quantum circuits. The disclosed technology may be applied to families of PQCs. Instead of using a generic or random set of initial parameters, the disclosed technology learns the structure of successful parameters from a family of related problem instances, which are then used as the machine learning training set. The method may predict optimal initializing parameters for quantum circuits having a larger number of parameters than those used in the training set.

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/08 - Méthodes d'apprentissage

24.

FLEXIBLE INITIALIZER FOR ARBITRARILY-SIZED PARAMETRIZED QUANTUM CIRCUITS

      
Numéro d'application US2022019724
Numéro de publication 2022/192525
Statut Délivré - en vigueur
Date de dépôt 2022-03-10
Date de publication 2022-09-15
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Sauvage, Frederic

Abrégé

A method and system are provided for optimizing parameters of a parametrized quantum circuit (PQC), using machine learning to train a flexible initializer for arbitrarily-sized parametrized quantum circuits. The disclosed technology may be applied to families of PQCs. Instead of using a generic or random set of initial parameters, the disclosed technology learns the structure of successful parameters from a family of related problem instances, which are then used as the machine learning training set. The method may predict optimal initializing parameters for quantum circuits having a larger number of parameters than those used in the training set.

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • G06N 10/70 - Correction, détection ou prévention d’erreur quantique, p. ex. codes de surface ou distillation d’état magique

25.

DEPENDENCY-BASED DATA ROUTING FOR DISTRIBUTED COMPUTING

      
Numéro d'application US2022018539
Numéro de publication 2022/187375
Statut Délivré - en vigueur
Date de dépôt 2022-03-02
Date de publication 2022-09-09
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Cao, Yudong
  • Reuthe, Eric
  • Olson, Jonathan

Abrégé

A data router receives data from a data source and stores the data in a buffer of the data router. The data router analyzes the data in the buffer to identify the data source. The data router uses a routing map to identify a destination for the data based on the data source and streams the data from the buffer to the destination.

Classes IPC  ?

  • H04L 12/00 - Réseaux de données à commutation

26.

CLASSICALLY-BOOSTED VARIATIONAL QUANTUM EIGENSOLVER

      
Numéro d'application US2022018727
Numéro de publication 2022/187503
Statut Délivré - en vigueur
Date de dépôt 2022-03-03
Date de publication 2022-09-09
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Radin, Maxwell D.
  • Johnson, Peter D.

Abrégé

A method and system are provided for estimating ground state and excited state energies of fermionic Hamiltonians using a classically-boosted Variational Quantum Eigensolver (VQE). The disclosed technology overcomes the drawbacks of prior (VQE) methods, which require large numbers of circuit repetitions and excessive runtimes to achieve precision, especially when implemented using Noisy Intermediate-Scale Quantum (NISQ) devices. The disclosed classically-boosted (VQE) provides an estimation of expectation values using classical methods. The quantum computer is not used to prepare the trial state, but instead uses the difference between the trial state and a classical tractable approximation to the target state. Ground-state energy estimations are provided at an accelerated rate. Also, the measurement reduction of single basis state boosting of conventional (VQE), may be estimated using only the overlap between the ground state and the computational basis state used for boosting.

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels

27.

DEPENDENCY-BASED DATA ROUTING FOR DISTRIBUTED COMPUTING

      
Numéro d'application 17684343
Statut En instance
Date de dépôt 2022-03-01
Date de la première publication 2022-09-08
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Cao, Yudong
  • Reuthe, Eric
  • Olson, Jonathan P.

Abrégé

A data router receives data from a data source and stores the data in a buffer of the data router. The data router analyzes the data in the buffer to identify the data source. The data router uses a routing map to identify a destination for the data based on the data source and streams the data from the buffer to the destination.

Classes IPC  ?

  • G06F 9/52 - Synchronisation de programmesExclusion mutuelle, p. ex. au moyen de sémaphores
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
  • H04L 45/02 - Mise à jour ou découverte de topologie

28.

CLASSICALLY-BOOSTED VARIATIONAL QUANTUM EIGENSOLVER

      
Numéro d'application 17686068
Statut En instance
Date de dépôt 2022-03-03
Date de la première publication 2022-09-08
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Radin, Maxwell D.
  • Johnson, Peter D.

Abrégé

A method and system are provided for estimating ground state and excited state energies of fermionic Hamiltonians using a classically-boosted Variational Quantum Eigensolver (VQE). The disclosed technology overcomes the drawbacks of prior VQE methods, which require large numbers of circuit repetitions and excessive runtimes to achieve precision, especially when implemented using Noisy Intermediate-Scale Quantum NISQ) devices. The disclosed classically-boosted VQE provides an estimation of expectation values using classical methods. The quantum computer is not used to prepare the trial state, but instead uses the difference between the trial state and a classical tractable approximation to the target state. Ground-state energy estimations are provided at an accelerated rate. Also, the measurement reduction of single basis state boosting of conventional VQE, may be estimated using only the overlap between the ground state and the computational basis state used for boosting.

Classes IPC  ?

  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06N 10/80 - Programmation quantique, p. ex. interfaces, langages ou boîtes à outils de développement logiciel pour la création ou la manipulation de programmes capables de fonctionner sur des ordinateurs quantiquesPlate-formes pour la simulation ou l’accès aux ordinateurs quantiques, p. ex. informatique quantique en nuage

29.

ENHANCING COMBINATORIAL OPTIMIZATION WITH QUANTUM GENERATIVE MODELS

      
Numéro d'application US2021062191
Numéro de publication 2022/173497
Statut Délivré - en vigueur
Date de dépôt 2021-12-07
Date de publication 2022-08-18
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Alcazar, Francisco Javier Fernandez
  • Perdomo Ortiz, Alejandro

Abrégé

A system and method for a quantum-enhanced optimizer (QEO) using quantum generative models to achieve lower minimum cost functions than classical or other known optimizers. In a first embodiment, the QEO operates as a booster to enhance the performance of known stand-alone optimizers in complex instances where known optimizers have limitations. In a second embodiment, the QEO operates as a stand-alone optimizer for finding a minimum with the least number of cost-function evaluations. The disclosed QEO methods outperform known optimizers, including Bayesian optimizers. The disclosed quantum-enhanced optimization methods may be based on tensor networks. The generative models may also be based on classical, quantum, or hybrid quantum-classical approaches, including Quantum Circuit Associative Adversarial Networks (QC-AAN) and Quantum Circuit Born Machines (QCBM).

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06N 10/80 - Programmation quantique, p. ex. interfaces, langages ou boîtes à outils de développement logiciel pour la création ou la manipulation de programmes capables de fonctionner sur des ordinateurs quantiquesPlate-formes pour la simulation ou l’accès aux ordinateurs quantiques, p. ex. informatique quantique en nuage
  • G06N 3/08 - Méthodes d'apprentissage
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

30.

QUANTUM ENHANCED WORD EMBEDDING FOR NATURAL LANGUAGE PROCESSING

      
Numéro d'application US2022012227
Numéro de publication 2022/155277
Statut Délivré - en vigueur
Date de dépôt 2022-01-13
Date de publication 2022-07-21
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A quantum-enhanced system and method for natural language processing (NLP) for generating a word embedding on a hybrid quantum-classical computer. A training set is provided on the classical computer, wherein the training set provides at least one pair of words, and at least one binary value indicating the correlation between the pair of words. The quantum computer generates quantum state representations for each word in the pair of words. The quantum component evaluates the quantum correlation between the quantum state representations of the word pair using an engineering likelihood function and a Bayesian inference. Training the word embedding on the quantum computer is provided using an error function containing the binary value and the quantum correlation.

Classes IPC  ?

  • G06F 40/279 - Reconnaissance d’entités textuelles
  • G06F 15/16 - Associations de plusieurs calculateurs numériques comportant chacun au moins une unité arithmétique, une unité programme et un registre, p. ex. pour le traitement simultané de plusieurs programmes
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06N 20/00 - Apprentissage automatique

31.

GENERATION OF HIGHER-RESOLUTION DATASETS WITH A QUANTUM COMPUTER

      
Numéro d'application 17525078
Statut En instance
Date de dépôt 2021-11-12
Date de la première publication 2022-05-12
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Perdomo Ortiz, Alejandro
  • Rudolph, Manuel S.

Abrégé

A system and method for generating higher-resolution datasets including handwritten numerical digits, color images, and video using generative adversarial networks (GANs) and quantum computing methods and components. A GAN includes a generator and discriminator and a quantum component, which provides input to the generator and accepts a sequence of instructions to evolve a quantum state based on a series of quantum gates to generate a higher resolution dataset. The quantum component may be in the form of quantum computer born machine (QCBM), implemented using a quantum computing associating adversarial network (QC-AAN) model using a multi-basis technique. The quantum computer elements may be implemented as a trapped-ion quantum device and use at least 8-qubits.

Classes IPC  ?

  • G06F 9/38 - Exécution simultanée d'instructions, p. ex. pipeline ou lecture en mémoire
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06N 20/00 - Apprentissage automatique

32.

PARAMETER INITIALIZATION ON QUANTUM COMPUTERS THROUGH DOMAIN DECOMPOSITION

      
Numéro d'application US2021055867
Numéro de publication 2022/087143
Statut Délivré - en vigueur
Date de dépôt 2021-10-20
Date de publication 2022-04-28
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Gonthier, Jerome Florian
  • Radin, Maxwell D.

Abrégé

A system and method for initializing and optimizing a variational quantum circuit on a hybrid quantum-classical computer, comprising a set of gates and a set of initial parameters representing a model of a physical system. A quantum circuit is generated comprising a set of smaller contiguous subcomponents which can be independently optimized to minimize a property of the physical system, such as ground state energy or the absorption spectrum of a molecule. At least one entangling gate is introduced between at least two circuit subcomponents. The initial parameters of the circuit components may be set according to values obtained from a parameter library. Once the initial parameters are set, the circuit components of the quantum computer proceed to optimization, which is independent for each subcomponent of the system. The optimization method may also include the use of a variational quantum eigensolver (VQE).

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

33.

Parameter initialization on quantum computers through domain decomposition

      
Numéro d'application 17506456
Numéro de brevet 12067458
Statut Délivré - en vigueur
Date de dépôt 2021-10-20
Date de la première publication 2022-04-21
Date d'octroi 2024-08-20
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Gonthier, Jerome Florian
  • Radin, Maxwell D.

Abrégé

A system and method for initializing and optimizing a variational quantum circuit on a hybrid quantum-classical computer, comprising a set of gates and a set of initial parameters representing a model of a physical system. A quantum circuit is generated comprising a set of smaller contiguous subcomponents which can be independently optimized to minimize a property of the physical system, such as ground state energy or the absorption spectrum of a molecule. At least one entangling gate is introduced between at least two circuit subcomponents. The initial parameters of the circuit components may be set according to values obtained from a parameter library. Once the initial parameters are set, the circuit components of the quantum computer proceed to optimization, which is independent for each subcomponent of the system. The optimization method may also include the use of a variational quantum eigensolver (VQE).

Classes IPC  ?

  • G06F 15/16 - Associations de plusieurs calculateurs numériques comportant chacun au moins une unité arithmétique, une unité programme et un registre, p. ex. pour le traitement simultané de plusieurs programmes
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

34.

QUANTUM COMPUTING SYSTEM AND METHOD FOR TIME EVOLUTION OF BIPARTITE HAMILTONIANS ON A LATTICE

      
Numéro d'application US2021024308
Numéro de publication 2021/247125
Statut Délivré - en vigueur
Date de dépôt 2021-03-26
Date de publication 2021-12-09
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Cao, Yudong
  • Olson, Jonathan P.

Abrégé

A method evolves a lattice of qubits in a quantum computer. The lattice of qubits includes a first plurality of qubits and a second plurality of qubits in the quantum computer. Each qubit in the first plurality of qubits is adjacent to at least one qubit in the second plurality of qubits. The method includes: (A) applying, in parallel, a first set of quantum gates between the first plurality of qubits and the second plurality of qubits to create a first set of entangled pairs of qubits; (B) after (A), swapping, in parallel, pairs of qubits, the swapping comprising: (B) (1) swapping pairs of adjacent qubits in the first plurality of qubits according to a first swap criterion; and (B) (2) swapping pairs of adjacent qubits in the second plurality of qubits according to a second swap criterion, wherein the second swap criterion differs from the first swap criterion.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

35.

REALIZING CONTROLLED ROTATIONS BY A FUNCTION OF INPUT BASIS STATE OF A QUANTUM COMPUTER

      
Numéro d'application US2021035381
Numéro de publication 2021/247656
Statut Délivré - en vigueur
Date de dépôt 2021-06-02
Date de publication 2021-12-09
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Cao, Yudong

Abrégé

gNMMtMqII tSUtSUMGii Gii i ; and (B)(2) tuning the at least one rotation parameter until a halting criterion based on the amplitude of the reference state is satisfied.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

36.

Quantum computer with exact compression of quantum states

      
Numéro d'application 16543470
Numéro de brevet 11663513
Statut Délivré - en vigueur
Date de dépôt 2019-08-16
Date de la première publication 2021-12-02
Date d'octroi 2023-05-30
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Cao, Yudong
  • Johnson, Peter D.

Abrégé

A quantum computer includes an efficient and exact quantum circuit for performing quantum state compression.

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

37.

Realizing controlled rotations by a function of input basis state of a quantum computer

      
Numéro d'application 17336618
Numéro de brevet 11861457
Statut Délivré - en vigueur
Date de dépôt 2021-06-02
Date de la première publication 2021-12-02
Date d'octroi 2024-01-02
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s) Cao, Yudong

Abrégé

i; and (B)(2) tuning the at least one rotation parameter until a halting criterion based on the amplitude of the reference state is satisfied.

Classes IPC  ?

  • G06F 15/16 - Associations de plusieurs calculateurs numériques comportant chacun au moins une unité arithmétique, une unité programme et un registre, p. ex. pour le traitement simultané de plusieurs programmes
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

38.

NOISE MITIGATION THROUGH QUANTUM STATE PURIFICATION BY CLASSICAL ANSATZ TRAINING

      
Numéro d'application 17324384
Statut En instance
Date de dépôt 2021-05-19
Date de la première publication 2021-11-25
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Gonthier, Jérôme Florian
  • Romero, Jhonathan

Abrégé

A computer-implemented method produces a representation of a pure quantum state from a classical model. The classical model has a plurality of parameters. The method includes: (A) selecting a set of outcomes from a library of outcomes of a quantum circuit, wherein the library of outcomes comprises a plurality of measurement pairs sampled from the quantum circuit, each measurement pair comprising a quantum measurement and a corresponding measurement basis; and (B) updating values of the plurality of parameters of the classical model to minimize a value of a distance measure between the classical model and the set of outcomes, thereby producing the updated classical model, wherein the updated classical model has the updated values of the plurality of parameters.

Classes IPC  ?

  • G06F 30/367 - Vérification de la conception, p. ex. par simulation, programme de simulation avec emphase de circuit intégré [SPICE], méthodes directes ou de relaxation
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

39.

NOISE MITIGATION THROUGH QUANTUM STATE PURIFICATION BY CLASSICAL ANSATZ TRAINING

      
Numéro d'application US2021033089
Numéro de publication 2021/236725
Statut Délivré - en vigueur
Date de dépôt 2021-05-19
Date de publication 2021-11-25
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Gonthier, Jérôme Florian
  • Romero, Jhonathan

Abrégé

A computer-implemented method produces a representation of a pure quantum state from a classical model. The classical model has a plurality of parameters. The method includes: (A) selecting a set of outcomes from a library of outcomes of a quantum circuit, wherein the library of outcomes comprises a plurality of measurement pairs sampled from the quantum circuit, each measurement pair comprising a quantum measurement and a corresponding measurement basis; and (B) updating values of the plurality of parameters of the classical model to minimize a value of a distance measure between the classical model and the set of outcomes, thereby producing the updated classical model, wherein the updated classical model has the updated values of the plurality of parameters.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06N 20/00 - Apprentissage automatique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

40.

COMPUTER SYSTEM AND METHOD FOR SOLVING POOLING PROBLEM AS AN UNCONSTRAINED BINARY OPTIMIZATION

      
Numéro d'application US2021028077
Numéro de publication 2021/216497
Statut Délivré - en vigueur
Date de dépôt 2021-04-20
Date de publication 2021-10-28
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A computer optimizes transport of a set of ingredients between a plurality of sources, at least one terminal, and a plurality of pools, described by an objective function, a set of variables, and a set of constraints, by: (A) transforming the objective function, variables, and constraints into a binary cost function, including: discretizing the set of variables into a set of a binary variables; transforming the objective function into a binary cost function of the set of binary variables; and adding, for each constraint in the set of constraints, one or more terms to the binary cost function, to create a completed cost function; and (B) providing the completed cost function to a solver to obtain a solution or approximate solution representing a flow of the set of ingredients between the plurality of sources, the plurality of pools, and the at least one terminal.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

41.

Computer systems and methods for computing the ground state of a Fermi-Hubbard Hamiltonian

      
Numéro d'application 17033727
Numéro de brevet 11106993
Statut Délivré - en vigueur
Date de dépôt 2020-09-26
Date de la première publication 2021-08-31
Date d'octroi 2021-08-31
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Dallaire-Demers, Pierre-Luc
  • Cao, Yudong
  • Katabarwa, Amara
  • Gonthier, Jerome Florian
  • Johnson, Peter D.

Abrégé

A quantum computer or a hybrid quantum-classical (HQC) computer leverages the power of noisy intermediate-scale quantum (NISQ) superconducting quantum processors at and/or beyond the supremacy regime to evaluate the ground state energy of an electronic structure Hamiltonian.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • H03K 19/195 - Circuits logiques, c.-à-d. ayant au moins deux entrées agissant sur une sortieCircuits d'inversion utilisant des éléments spécifiés utilisant des dispositifs supraconducteurs

42.

Hybrid quantum-classical adversarial generator

      
Numéro d'application 17174900
Numéro de brevet 11468289
Statut Délivré - en vigueur
Date de dépôt 2021-02-12
Date de la première publication 2021-08-19
Date d'octroi 2022-10-11
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Cao, Yudong
  • Olson, Jonathan P.

Abrégé

A method for training an adversarial generator from a data set and a classifier includes: (A) training a classical noise generator whose input includes an output of a quantum generator, the classical noise generator having a first set of parameters, the training comprising: sampling from the data set to produce a first sample and a first corresponding label for the first sample; producing an output of the classical noise generator based on the output of the quantum generator and the first sample; producing a noisy example based on the output of the classical noise generator and the first sample; providing the noisy example to the classifier to produce a second corresponding label for the first sample; updating the first set of parameters such that the first corresponding label of the first sample differs from the second corresponding label of the first sample.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

43.

Hybrid quantum-classical computer for variational coupled cluster method

      
Numéro d'application 17272189
Numéro de brevet 11169801
Statut Délivré - en vigueur
Date de dépôt 2019-10-04
Date de la première publication 2021-08-19
Date d'octroi 2021-11-09
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A hybrid quantum classical (HQC) computer, which includes both a classical computer component and a quantum computer component, solves linear systems. The HQC decomposes the linear system to be solved into subsystems that are small enough to be solved by the quantum computer component, under control of the classical computer component. The classical computer component synthesizes the outputs of the quantum computer component to generate the complete solution to the linear system.

Classes IPC  ?

  • G06F 15/16 - Associations de plusieurs calculateurs numériques comportant chacun au moins une unité arithmétique, une unité programme et un registre, p. ex. pour le traitement simultané de plusieurs programmes
  • G06F 9/30 - Dispositions pour exécuter des instructions machines, p. ex. décodage d'instructions
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

44.

HYBRID QUANTUM-CLASSICAL ADVERSARIAL GENERATOR

      
Numéro d'application US2021017863
Numéro de publication 2021/163487
Statut Délivré - en vigueur
Date de dépôt 2021-02-12
Date de publication 2021-08-19
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Cao, Yudong
  • Olson, Jonathan P.

Abrégé

A method for training an adversarial generator from a data set and a classifier includes: (A) training a classical noise generator whose input includes an output of a quantum generator, the classical noise generator having a first set of parameters, the training comprising: sampling from the data set to produce a first sample and a first corresponding label for the first sample; producing an output of the classical noise generator based on the output of the quantum generator and the first sample; producing a noisy example based on the output of the classical noise generator and the first sample; providing the noisy example to the classifier to produce a second corresponding label for the first sample; updating the first set of parameters such that the first corresponding label of the first sample differs from the second corresponding label of the first sample.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

45.

QUANTUM ALGORITHM AND DESIGN FOR A QUANTUM CIRCUIT ARCHITECTURE TO SIMULATE INTERACTING FERMIONS

      
Numéro d'application US2020061631
Numéro de publication 2021/102344
Statut Délivré - en vigueur
Date de dépôt 2020-11-20
Date de publication 2021-05-27
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Dallaire-Demers, Pierre-Luc
  • Cao, Yudong
  • Johnson, Peter D.

Abrégé

Computer-implemented methods and systems define hardware constraints for quantum processors such that the time required to estimate the energy expectation value of a given fermionic Hamiltonian using the method of Bayesian Optimized Operator Expectation Algorithm (BOOEA) is minimized.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

46.

QUANTUM COMPUTER SYSTEM AND METHOD FOR PARTIAL DIFFERENTIAL EQUATION-CONSTRAINED OPTIMIZATION

      
Numéro d'application US2020059371
Numéro de publication 2021/092351
Statut Délivré - en vigueur
Date de dépôt 2020-11-06
Date de publication 2021-05-14
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A computer (such as a classical computer, a quantum computer, or a hybrid quantum-classical computer) which performs PDE-constrained optimization of problems in cases in which, for a fixed set of design variables, there is an explicit expression for a set of state variables that is either optimal or an approximation to the optimal solution. This enables embodiments of the present invention to eliminate the state variables from the optimization problem and to formulate the optimization as a polynomial unconstrained binary optimization (PUBO) problem.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

47.

Hybrid quantum-classical computer system for parameter-efficient circuit training

      
Numéro d'application 17084990
Numéro de brevet 11157827
Statut Délivré - en vigueur
Date de dépôt 2020-10-30
Date de la première publication 2021-05-06
Date d'octroi 2021-10-26
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s) Sim, Sukin

Abrégé

A method includes improved techniques for preparing the initial state of a quantum computer by reducing the number of redundant or unnecessary gates in a quantum circuit. Starting from an initial state preparation circuit ansatz, the method recursively removes gates and re-optimizes the circuit parameters to generate a reduced-depth state preparation.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06N 20/00 - Apprentissage automatique

48.

HYBRID QUANTUM-CLASSICAL COMPUTER SYSTEM FOR PARAMETER-EFFICIENT CIRCUIT TRAINING

      
Numéro d'application US2020058119
Numéro de publication 2021/087206
Statut Délivré - en vigueur
Date de dépôt 2020-10-30
Date de publication 2021-05-06
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Sim, Sukin

Abrégé

A method includes improved techniques for preparing the initial state of a quantum computer by reducing the number of redundant or unnecessary gates in a quantum circuit. Starting from an initial state preparation circuit ansatz, the method recursively removes gates and re-optimizes the circuit parameters to generate a reduced-depth state preparation.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

49.

Quantum Computer System and Method for Partial Differential Equation-Constrained Optimization

      
Numéro d'application 17091325
Statut En instance
Date de dépôt 2020-11-06
Date de la première publication 2021-05-06
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A computer (such as a classical computer, a quantum computer, or a hybrid quantum-classical computer) which performs PDE-constrained optimization of problems in cases in which, for a fixed {right arrow over (w)}, there is an explicit expression for {right arrow over (s)} that is either optimal or an approximation to the optimal solution. This enables embodiments of the present invention to eliminate {right arrow over (s)} from the optimization problem and to formulate the optimization as a polynomial unconstrained binary optimization (PUBO) problem.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06J 1/02 - Analyseurs différentiels
  • G06F 17/11 - Opérations mathématiques complexes pour la résolution d'équations

50.

Computer Systems and Methods for Computing the Ground State of a Fermi-Hubbard Hamiltonian

      
Numéro d'application US2020052958
Numéro de publication 2021/062331
Statut Délivré - en vigueur
Date de dépôt 2020-09-26
Date de publication 2021-04-01
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Dallaire-Demers, Pierre-Luc
  • Cao, Yudong
  • Katabarwa, Amara
  • Gonthier, Jerome Florian
  • Johnson, Peter D.

Abrégé

A quantum computer or a hybrid quantum-classical (HQC) computer leverages the power of noisy intermediate-scale quantum (NISQ) superconducting quantum processors at and/or beyond the supremacy regime to evaluate the ground state energy of an electronic structure Hamiltonian.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

51.

QUANTUM COMPUTER SYSTEM AND METHOD FOR PERFORMING QUANTUM COMPUTATION WITH REDUCED CIRCUIT DEPTH

      
Numéro d'application US2020051115
Numéro de publication 2021/055507
Statut Délivré - en vigueur
Date de dépôt 2020-09-16
Date de publication 2021-03-25
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Anschuetz, Eric R.
  • Cao, Yudong

Abrégé

A hybrid quantum-classical computer performs a method which includes converting the output of an initial quantum circuit to a target state of a physical system. A new parametrized quantum circuit, or ansatz, is then generated with the ability to produce a state approximating the target state of the physical system. The parameters of the quantum circuit are adjusted to produce the target state, or to an approximation thereof.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

52.

COMPUTER ARCHITECTURE FOR EXECUTING QUANTUM PROGRAMS

      
Numéro d'application US2020049148
Numéro de publication 2021/046184
Statut Délivré - en vigueur
Date de dépôt 2020-09-03
Date de publication 2021-03-11
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A computer system, designed according to a particular architecture, compiles and execute a general quantum program. Computer systems designed in accordance with the architecture are suitable for use with a variety of programming languages and a variety of hardware backends. The architecture includes a classical computer and a quantum device (which may be remote from the local computer) which includes both classical execution units and a quantum processing unit (QPU).

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

53.

COMPUTER SYSTEM AND METHOD FOR IMPLEMENTING A CONDITIONAL REFLECTION OPERATOR ON A QUANTUM COMPUTER

      
Numéro d'application US2020049605
Numéro de publication 2021/046495
Statut Délivré - en vigueur
Date de dépôt 2020-09-06
Date de publication 2021-03-11
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Dallaire-Demers, Pierre-Luc

Abrégé

A computer system and method implement a conditional reflection operator on a quantum computer (such as an ion trap quantum computer) with a trap topology containing at least two t-junctions and at least one central interaction zone that can execute Molmer-Sorensen gates on at least two ions.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

54.

QUANTUM-READY APPLICATIONS

      
Numéro de série 90567998
Statut Enregistrée
Date de dépôt 2021-03-09
Date d'enregistrement 2022-01-18
Propriétaire Zapata Computing, Inc. ()
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

PROVIDING TEMPORARY USE OF NON-DOWNLOADABLE QUANTUM COMPUTER OPERATING PROGRAMS AND QUANTUM COMPUTER OPERATING SYSTEMS

55.

QUANTUMOPS

      
Numéro de série 90568020
Statut Enregistrée
Date de dépôt 2021-03-09
Date d'enregistrement 2022-01-25
Propriétaire Zapata Computing, Inc. ()
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

PROVIDING TEMPORARY USE OF NON-DOWNLOADABLE QUANTUM COMPUTER OPERATING PROGRAMS AND QUANTUM COMPUTER OPERATING SYSTEMS

56.

Computer architecture for executing quantum programs

      
Numéro d'application 17011324
Numéro de brevet 11599344
Statut Délivré - en vigueur
Date de dépôt 2020-09-03
Date de la première publication 2021-03-04
Date d'octroi 2023-03-07
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A computer system, designed according to a particular architecture, compiles and execute a general quantum program. Computer systems designed in accordance with the architecture are suitable for use with a variety of programming languages and a variety of hardware backends. The architecture includes a classical computer and a quantum device (which may be remote from the local computer) which includes both classical execution units and a quantum processing unit (QPU).

Classes IPC  ?

  • G06F 8/41 - Compilation
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

57.

QUANTUM SYSTEM AND METHOD FOR SOLVING BAYESIAN PHASE ESTIMATION PROBLEMS

      
Numéro d'application US2020044615
Numéro de publication 2021/022217
Statut Délivré - en vigueur
Date de dépôt 2020-07-31
Date de publication 2021-02-04
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Cao, Yudong
  • Peropadre, Borja
  • Olson, Jonathan P

Abrégé

Embodiments of the present invention are directed to a hybrid quantum-classical (HQC) computer which includes a classical computer and a quantum computer. The HQC computer may perform a method in which: (A) the classical computer starts from a description of a initial problem and transforms the initial problem into a transformed problem of estimating an expectation value of a function of random variables; (B) the classical computer produces computer program instructions representing a Bayesian phase estimation scheme that solves the transformed problem; and (C) the hybrid quantum-classical computer executes the computer program instructions to execute the Bayesian phase estimation scheme, thereby producing an estimate of the expectation value of the function of random variables.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

58.

HYBRID QUANTUM-CLASSICAL COMPUTER FOR BAYESIAN INFERENCE WITH ENGINEERED LIKELIHOOD FUNCTIONS FOR ROBUST AMPLITUDE ESTIMATION

      
Numéro d'application US2020037655
Numéro de publication 2020/252425
Statut Délivré - en vigueur
Date de dépôt 2020-06-14
Date de publication 2020-12-17
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Wang, Guoming
  • Koh, Enshan Dax
  • Johnson, Peter D.
  • Cao, Yudong
  • Dallaire-Demers, Pierre-Luc

Abrégé

A hybrid quantum-classical (HQC) computer takes advantage of the available quantum coherence to maximally enhance the power of sampling on noisy quantum devices, reducing measurement number and runtime compared to VQE. The HQC computer derives inspiration from quantum metrology, phase estimation, and the more recent "alpha-VQE" proposal, arriving at a general formulation that is robust to error and does not require ancilla qubits. The HQC computer uses the "engineered likelihood function" (ELF)to carry out Bayesian inference. The ELF formalism enhances the quantum advantage in sampling as the physical hardware transitions from the regime of noisy intermediate-scale quantum computers into that of quantum error corrected ones. This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06N 5/04 - Modèles d’inférence ou de raisonnement
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

59.

Hybrid quantum-classical computer system and method for performing function inversion

      
Numéro d'application 16543478
Numéro de brevet 11507872
Statut Délivré - en vigueur
Date de dépôt 2019-08-16
Date de la première publication 2020-12-17
Date d'octroi 2022-11-22
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Cao, Yudong
  • Olson, Jonathan P.
  • Anschuetz, Eric R.

Abrégé

A hybrid quantum-classical (HQC) computing system, including a quantum computing component and a classical computing component, computes the inverse of a Boolean function for a given output. The HQC computing system translates a set of constraints into interactions between quantum spins; forms, from the interactions, an Ising Hamiltonian whose ground state encodes a set of states of a specific input value that are consistent with the set of constraints; performs, on the quantum computing component, a quantum optimization algorithm to generate an approximation to the ground state of the Ising Hamiltonian; and measures the approximation to the ground state of the Ising Hamiltonian, on the quantum computing component, to obtain a plurality of input bits which are a satisfying assignment of the set of constraints.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06N 7/08 - Agencements informatiques fondés sur des modèles mathématiques spécifiques utilisant des modèles de chaos ou des modèles de systèmes non linéaires
  • H03K 19/21 - Circuits OU EXCLUSIF, c.-à-d. donnant un signal de sortie si un signal n'existe qu'à une seule entréeCircuits à COÏNCIDENCES, c.-à-d. ne donnant un signal de sortie que si tous les signaux d'entrée sont identiques

60.

Hybrid quantum-classical computer for Bayesian inference with engineered likelihood functions for robust amplitude estimation

      
Numéro d'application 16900947
Numéro de brevet 11615329
Statut Délivré - en vigueur
Date de dépôt 2020-06-14
Date de la première publication 2020-12-17
Date d'octroi 2023-03-28
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Wang, Guoming
  • Koh, Enshan Dax
  • Johnson, Peter D.
  • Cao, Yudong
  • Dallaire-Demers, Pierre-Luc

Abrégé

A hybrid quantum-classical (HQC) computer takes advantage of the available quantum coherence to maximally enhance the power of sampling on noisy quantum devices, reducing measurement number and runtime compared to VQE. The HQC computer derives inspiration from quantum metrology, phase estimation, and the more recent “alpha-VQE” proposal, arriving at a general formulation that is robust to error and does not require ancilla qubits. The HQC computer uses the “engineered likelihood function” (ELF) to carry out Bayesian inference. The ELF formalism enhances the quantum advantage in sampling as the physical hardware transitions from the regime of noisy intermediate-scale quantum computers into that of quantum error corrected ones. This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.

Classes IPC  ?

  • G06N 5/04 - Modèles d’inférence ou de raisonnement
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

61.

Quantum-classical system and method for matrix computations

      
Numéro d'application 16864998
Numéro de brevet 11537928
Statut Délivré - en vigueur
Date de dépôt 2020-05-01
Date de la première publication 2020-11-05
Date d'octroi 2022-12-27
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Cao, Yudong
  • Kniazev, Andrei

Abrégé

A hybrid quantum-classical computer solves systems of equations and eigenvalue problems utilizing non-unitary transformations on the quantum computer. The method may be applied, for example, to principal component analysis, least squares fitting, regression, spectral embedding and clustering, vibrations in mechanics, fluids and quantum chemistry, material sciences, electromagnetism, signal processing, image segmentation and data mining.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06F 17/11 - Opérations mathématiques complexes pour la résolution d'équations
  • G06F 17/16 - Calcul de matrice ou de vecteur

62.

Simulating errors of a quantum device using variational quantum channels

      
Numéro d'application 16851833
Numéro de brevet 11288121
Statut Délivré - en vigueur
Date de dépôt 2020-04-17
Date de la première publication 2020-10-22
Date d'octroi 2022-03-29
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s) Katabarwa, Amara

Abrégé

A hybrid quantum classical (HQC) computer system, which includes both a classical computer component and a quantum computer component, implements indirect benchmarking of a near term quantum device by directly benchmarking a virtual quantum machine that models the quantum computer device and that has a level of errors that corresponds to the level of errors associated with the quantum computer device. The direct benchmarking, conducted using quantum error correction tools, produces a probability distribution of error syndromes that may be used as a probability distribution of error syndromes for the quantum computer device.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p. ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p. ex. contrôle de parité, exclusion des 9 ou des 11

63.

SIMULATING ERRORS OF A QUANTUM DEVICE USING VARIATIONAL QUANTUM CHANNELS

      
Numéro d'application US2020028670
Numéro de publication 2020/214910
Statut Délivré - en vigueur
Date de dépôt 2020-04-17
Date de publication 2020-10-22
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Amara, Katabarwa

Abrégé

A hybrid quantum classical (HQC) computer system, which includes both a classical computer component and a quantum computer component, implements indirect benchmarking of a near term quantum device by directly benchmarking a virtual quantum machine that models the quantum computer device and that has a level of errors that corresponds to the level of errors associated with the quantum computer device. The direct benchmarking, conducted using quantum error correction tools, produces a probability distribution of error syndromes that may be used as a probability distribution of error syndromes for the quantum computer device.

Classes IPC  ?

  • G06F 11/263 - Génération de signaux d'entrée de test, p. ex. vecteurs, formes ou séquences de test
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06J 1/00 - Dispositions de calcul hybride

64.

Hybrid quantum-classical computer system and method for optimization

      
Numéro d'application 16844051
Numéro de brevet 11488049
Statut Délivré - en vigueur
Date de dépôt 2020-04-09
Date de la première publication 2020-10-15
Date d'octroi 2022-11-01
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Cao, Yudong
  • Kniazev, Andrei

Abrégé

A hybrid quantum-classical computing method for solving optimization problems though applications of non-unitary transformations. An initial state is prepared, a transformation is applied, and the state is updated to provide an improved answer. This update procedure is iterated until convergence to an approximately optimal solution.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

65.

MEASUREMENT REDUCTION VIA ORBITAL FRAMES DECOMPOSITIONS ON QUANTUM COMPUTERS

      
Numéro d'application US2020013181
Numéro de publication 2020/146794
Statut Délivré - en vigueur
Date de dépôt 2020-01-10
Date de publication 2020-07-16
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Radin, Maxwell D.
  • Johnson, Peter D.

Abrégé

A hybrid quantum classical (HQC) computer, which includes both a classical computer component and a quantum computer component, implements improvements to expectation value estimation in quantum circuits, in which the number of shots to be performed in order to compute the estimation is reduced by applying a quantum circuit that imposes an orbital rotation to the quantum state during each shot instead of applying single-qubit context-selection gates. The orbital rotations are determined through the decomposition of a Hamiltonian or another objective function into a set of orbital frames. The variationally minimized expectation value of the Hamiltonian or the other objective function may then be used to determine the extent of an attribute of the system, such as the value of a property of the electronic structure of a molecule, chemical compound, or other extended system.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

66.

HYBRID QUANTUM-CLASSICAL COMPUTER FOR VARIATIONAL COUPLED CLUSTER METHOD

      
Numéro d'application US2019054795
Numéro de publication 2020/142122
Statut Délivré - en vigueur
Date de dépôt 2019-10-04
Date de publication 2020-07-09
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A hybrid quantum classical (HQC) computer, which includes both a classical computer component and a quantum computer component, solves linear systems. The HQC decomposes the linear system to be solved into subsystems that are small enough to be solved by the quantum computer component, under control of the classical computer component. The classical computer component synthesizes the outputs of the quantum computer component to generate the complete solution to the linear system.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

67.

HYBRID QUANTUM-CLASSICAL COMPUTER FOR PACKING BITS INTO QUBITS FOR QUANTUM OPTIMIZATION ALGORITHMS

      
Numéro d'application US2019062612
Numéro de publication 2020/106955
Statut Délivré - en vigueur
Date de dépôt 2019-11-21
Date de publication 2020-05-28
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Johnson, Peter D.
  • Kieferova, Maria
  • Radin, Max

Abrégé

A hybrid quantum classical (HQC) computer, which includes both a classical computer component and a quantum computer component, implements improvements to the quantum approximate optimization algorithm (QAOA) which enable QAOA to be applied to valuable problem instances (e.g., those including several thousand or more qubits) using near-term quantum computers.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

68.

Hybrid quantum-classical computer for packing bits into qubits for quantum optimization algorithms

      
Numéro d'application 16691015
Numéro de brevet 11468357
Statut Délivré - en vigueur
Date de dépôt 2019-11-21
Date de la première publication 2020-05-21
Date d'octroi 2022-10-11
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Johnson, Peter D.
  • Kieferova, Maria
  • Radin, Max

Abrégé

A hybrid quantum classical (HQC) computer, which includes both a classical computer component and a quantum computer component, implements improvements to the quantum approximate optimization algorithm (QAOA) which enable QAOA to be applied to valuable problem instances (e.g., those including several thousand or more qubits) using near-term quantum computers.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06F 17/14 - Transformations de Fourier, de Walsh ou transformations d'espace analogues

69.

HYBRID QUANTUM-CLASSICAL COMPUTER SYSTEM FOR IMPLEMENTING AND OPTIMIZING QUANTUM BOLTZMANN MACHINES

      
Numéro d'application US2019057893
Numéro de publication 2020/086867
Statut Délivré - en vigueur
Date de dépôt 2019-10-24
Date de publication 2020-04-30
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Anschuetz, Eric R.
  • Cao, Yudong

Abrégé

A hybrid quantum-classical (HQC) computer prepares a quantum Boltzmann machine (QBM) in a pure state. The state is evolved in time according to a chaotic, tunable quantum Hamiltonian. The pure state locally approximates a (potentially highly correlated) quantum thermal state at a known temperature. With the chaotic quantum Hamiltonian, a quantum quench can be performed to locally sample observables in quantum thermal states. With the samples, an inverse temperature of the QBM can be approximated, as needed for determining the correct sign and magnitude of the gradient of a loss function of the QBM.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

70.

Hybrid quantum-classical computer system for implementing and optimizing quantum Boltzmann machines

      
Numéro d'application 16662895
Numéro de brevet 11605015
Statut Délivré - en vigueur
Date de dépôt 2019-10-24
Date de la première publication 2020-04-30
Date d'octroi 2023-03-14
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Anschuetz, Eric R.
  • Cao, Yudong

Abrégé

A hybrid quantum-classical (HQC) computer prepares a quantum Boltzmann machine (QBM) in a pure state. The state is evolved in time according to a chaotic, tunable quantum Hamiltonian. The pure state locally approximates a (potentially highly correlated) quantum thermal state at a known temperature. With the chaotic quantum Hamiltonian, a quantum quench can be performed to locally sample observables in quantum thermal states. With the samples, an inverse temperature of the QBM can be approximated, as needed for determining the correct sign and magnitude of the gradient of a loss function of the QBM.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques
  • G06N 7/08 - Agencements informatiques fondés sur des modèles mathématiques spécifiques utilisant des modèles de chaos ou des modèles de systèmes non linéaires
  • G06F 30/367 - Vérification de la conception, p. ex. par simulation, programme de simulation avec emphase de circuit intégré [SPICE], méthodes directes ou de relaxation

71.

Quantum computer with improved continuous quantum generator

      
Numéro d'application 16600312
Numéro de brevet 11636370
Statut Délivré - en vigueur
Date de dépôt 2019-10-11
Date de la première publication 2020-04-16
Date d'octroi 2023-04-25
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Romero, Jhonathan
  • Aspuru-Guzik, Alan

Abrégé

A hybrid quantum-classical (HQC) computer which includes both a classical computer component and a quantum computer component performs generative learning on continuous data distributions. The HQC computer is capable of being implemented using existing and near-term quantum computer components having relatively low circuit depth.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06N 20/10 - Apprentissage automatique utilisant des méthodes à noyaux, p. ex. séparateurs à vaste marge [SVM]
  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique
  • G06N 3/08 - Méthodes d'apprentissage

72.

QUANTUM COMPUTER WITH IMPROVED CONTINUOUS QUANTUM GENERATOR

      
Numéro d'application US2019055970
Numéro de publication 2020/077288
Statut Délivré - en vigueur
Date de dépôt 2019-10-11
Date de publication 2020-04-16
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Romero, Jhonathan
  • Aspuru-Guzik, Alan

Abrégé

A hybrid quantum classical (HQC) computer which includes both a classical computer component and a quantum computer component performs generative learning on continuous data distributions. The HQC computer is capable of being implemented using existing and near-term quantum computer components having relatively low circuit depth.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

73.

HYBRID QUANTUM-CLASSICAL COMPUTER FOR SOLVING LINEAR SYSTEMS

      
Numéro d'application US2019054316
Numéro de publication 2020/072661
Statut Délivré - en vigueur
Date de dépôt 2019-10-02
Date de publication 2020-04-09
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A hybrid quantum-classical (HQC) computer system, which includes a classical computer and a quantum computer, solves linear systems. The HQC computer system splits the linear system to be solved into subsystems that are small enough to be solved by the quantum computer, under control of the classical computer. The classical computer synthesizes the outputs of the quantum computer to generate the complete solution to the linear system.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

74.

Hybrid quantum-classical computer for solving linear systems

      
Numéro d'application 16591239
Numéro de brevet 12340277
Statut Délivré - en vigueur
Date de dépôt 2019-10-02
Date de la première publication 2020-04-02
Date d'octroi 2025-06-24
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s) Cao, Yudong

Abrégé

A hybrid quantum-classical (HQC) computer system, which includes a classical computer and a quantum computer, solves linear systems. The HQC computer system splits the linear system to be solved into subsystems that are small enough to be solved by the quantum computer, under control of the classical computer. The classical computer synthesizes the outputs of the quantum computer to generate the complete solution to the linear system.

Classes IPC  ?

  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06F 15/16 - Associations de plusieurs calculateurs numériques comportant chacun au moins une unité arithmétique, une unité programme et un registre, p. ex. pour le traitement simultané de plusieurs programmes
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels

75.

QUANTUM-ENABLED WORKFLOWS

      
Numéro de série 88840379
Statut Enregistrée
Date de dépôt 2020-03-19
Date d'enregistrement 2020-12-15
Propriétaire Zapata Computing, Inc. ()
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

PROVIDING TEMPORARY USE OF NON-DOWNLOADABLE QUANTUM COMPUTER OPERATING PROGRAMS AND QUANTUM COMPUTER OPERATING SYSTEMS

76.

QUANTUM COMPUTER WITH IMPROVED QUANTUM OPTIMIZATION BY EXPLOITING MARGINAL DATA

      
Numéro d'application US2019046895
Numéro de publication 2020/037253
Statut Délivré - en vigueur
Date de dépôt 2019-08-16
Date de publication 2020-02-20
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Johnson, Peter D.
  • Radin, Maxwell D.
  • Romero, Jhonathan
  • Cao, Yudong
  • Katabarwa, Amara

Abrégé

A quantum optimization system and method estimate, on a classical computer and for a quantum state, an expectation value of a Hamiltonian, expressible as a linear combination of observables, based on expectation values of the observables; and transform, on the classical computer, one or both of the Hamiltonian and the quantum state to reduce the expectation value of the Hamiltonian.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

77.

QUANTUM COMPUTER WITH EXACT COMPRESSION OF QUANTUM STATES

      
Numéro d'application US2019046964
Numéro de publication 2020/037300
Statut Délivré - en vigueur
Date de dépôt 2019-08-16
Date de publication 2020-02-20
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Cao, Yudong
  • Johnson, Peter D.

Abrégé

A hybrid quantum/classical computer comprises a quantum computer component and a classical compute component having a processor, wherein the processor causes the classical computer component and the quantum computer component to perform a quantum circuit training procedure on data representing the variational quantum circuit to generate data representing an optimized circuit for use in compressing the plurality of the quantum states S into states of fewer qubits.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

78.

HYBRID QUANTUM-CLASSICAL COMPUTER SYSTEM AND METHOD FOR PERFORMING FUNCTION INVERSION

      
Numéro d'application US2019046966
Numéro de publication 2020/037301
Statut Délivré - en vigueur
Date de dépôt 2019-08-16
Date de publication 2020-02-20
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Cao, Yudong
  • Olson, Jonathan P.
  • Anschuetz, Eric R.

Abrégé

A hybrid quantum classical (HQC) computing system, including a quantum computing component and a classical computing component, computes the inverse of a Boolean function for a given output. The HQC computing system translates a set of constraints into interactions between quantum spins; forms, from the interactions, an Ising Hamiltonian whose ground state encodes a set of states of a specific input value that are consistent with the set of constraints; performs, on the quantum computing component, a quantum optimization algorithm to generate an approximation to the ground state of the Ising Hamiltonian; and measures the approximation to the ground state of the Ising Hamiltonian, on the quantum computing component, to obtain a plurality of input bits which are a satisfying assignment of the set of constraints.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

79.

COMPRESSED UNSUPERVISED QUANTUM STATE PREPARATION WITH QUANTUM AUTOENCODERS

      
Numéro d'application US2019040406
Numéro de publication 2020/010147
Statut Délivré - en vigueur
Date de dépôt 2019-07-02
Date de publication 2020-01-09
Propriétaire ZAPATA COMPUTING, INC. (USA)
Inventeur(s)
  • Romero, Jhonathan
  • Olson, Jonathan P.
  • Aspuru-Guzik, Alan

Abrégé

A system and method include techniques for: generating, by a quantum autoencoder, based on a set of quantum states encoded in a set of qubits, a decoder circuit that acts on a subset of the set of qubits, a size of the subset being less than a size of the set; and generating a reduced-cost circuit, the reduced-cost circuit comprising: (1) a new parameterized quantum circuit acting only on the subset of the set of qubits, and (2) the decoder circuit.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

80.

Compressed unsupervised quantum state preparation with quantum autoencoders

      
Numéro d'application 16460827
Numéro de brevet 11593707
Statut Délivré - en vigueur
Date de dépôt 2019-07-02
Date de la première publication 2020-01-02
Date d'octroi 2023-02-28
Propriétaire Zapata Computing, Inc. (USA)
Inventeur(s)
  • Romero, Jhonathan
  • Olson, Jonathan
  • Aspuru-Guzik, Alan

Abrégé

A system and method include techniques for: generating, by a quantum autoencoder, based on a set of quantum states encoded in a set of qubits, a decoder circuit that acts on a subset of the set of qubits, a size of the subset being less than a size of the set; and generating a reduced-cost circuit, the reduced-cost circuit comprising: (1) a new parameterized quantum circuit acting only on the subset of the set of qubits, and (2) the decoder circuit.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

81.

ZAPATA OS

      
Numéro de série 88696607
Statut Enregistrée
Date de dépôt 2019-11-18
Date d'enregistrement 2020-04-14
Propriétaire Zapata Computing, Inc. ()
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Providing temporary use of non-downloadable quantum computer operating programs and quantum computer operating systems

82.

ORQUESTRA

      
Numéro de série 88696540
Statut Enregistrée
Date de dépôt 2019-11-18
Date d'enregistrement 2020-06-23
Propriétaire Zapata Computing, Inc. ()
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Providing temporary use of non-downloadable quantum computer operating programs and quantum computer operating systems

83.

ZAPATA

      
Numéro de série 88237704
Statut Enregistrée
Date de dépôt 2018-12-20
Date d'enregistrement 2019-10-15
Propriétaire Zapata Computing, Inc. ()
Classes de Nice  ?
  • 37 - Services de construction; extraction minière; installation et réparation
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

INSTALLATION OF QUANTUM COMPUTER HARDWARE; COMPUTER CONSULTING SERVICES IN THE FIELD OF QUANTUM COMPUTING, NAMELY, CONSULTING IN THE FIELD OF QUANTUM COMPUTING HARDWARE INSTALLATION QUANTUM COMPUTER SOFTWARE DESIGN FOR OTHERS; DESIGN OF COMPUTERS FOR OTHERS, NAMELY, QUANTUM COMPUTER DESIGN FOR OTHERS; COMPUTER CONSULTING SERVICES IN THE FIELD OF QUANTUM COMPUTING, NAMELY, CONSULTING IN THE FIELD OF QUANTUM COMPUTING SOFTWARE INSTALLATION