Siemens Gamesa Renewable Energy Innovation & Technology, S.L. (Espagne)
Inventeur(s)
Alisar, Ibrahim
Rebollo López, Emilio David
Rodriguez Izal, José Luis
Abrégé
A power conversion system is provided, which system includes a first power converter including power electronic switches of a first type that are switchable to provide electric power conversion; and a second power converter connected in parallel to the first power converter. The second power converter includes power electronic switches of a second type that are switchable to provide electric power conversion. The second type is different from the first type. The second type of power electronic switches includes wide bandgap semiconductor switches. The system further includes a controller configured to operate the power conversion system in a first operating mode in which the second power converter is operated at a first switching frequency, and in a second operating mode in which the second power converter is operated at a second switching frequency of the power electronic switches and the first power converter is operated to provide power conversion.
H02M 5/458 - Transformation d'une puissance d'entrée en courant alternatif en une puissance de sortie en courant alternatif, p. ex. pour changement de la tension, pour changement de la fréquence, pour changement du nombre de phases avec transformation intermédiaire en courant continu par convertisseurs statiques utilisant des tubes à décharge ou des dispositifs à semi-conducteurs pour transformer le courant continu intermédiaire en courant alternatif utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
H02M 1/00 - Détails d'appareils pour transformation
H02M 1/12 - Dispositions de réduction des harmoniques d'une entrée ou d'une sortie en courant alternatif
2.
METHOD OF OPERATING A WIND TURBINE AND CONTROL SYSTEM
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY, S.L. (Espagne)
Inventeur(s)
Domínguez Gonçalves, David José
Pedersen, Rasmus Venborg Taul
Vives Jaume, Xavier
Abrégé
A method of operating a wind turbine is provided. The wind turbine (100) comprises a power generation system (120) configured to generate electrical power from rotational mechanical energy and one or more electrical cables (20) configured to transport the electrical power generated by the power generation system (120). The one or more electrical cables (20) are associated with a cable temperature threshold for a cable temperature of the one or more electrical cables (20). A measured component operating parameter of a component (122) of the power generation system (120) is obtained. The measured component operating parameter is compared to a component operating parameter threshold and/or an estimated cable temperature that is estimated from the measured component operating parameter is compared to the cable temperature threshold. A mitigation action is taken to keep stable or reduce the cable temperature if the comparison indicates that the respective threshold is met or exceeded.
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
F03D 17/00 - Surveillance ou test de mécanismes moteurs à vent, p. ex. diagnostics
3.
ELECTRIC GENERATOR FOR A WIND TURBINE, INNER ROTOR FOR AN ELECTRIC GENERATOR FOR A WIND TURBINE AND WIND TURBINE WITH AN ELECTRIC GENERATOR
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Cueto Diaz, Lucas
Sacristan San Martin, Juan Manuel
Sedano Perez, Ibon
Abrégé
Electric generator for a wind turbine, inner rotor for an electric generator for a wind turbine and wind turbine with an electric generator Electric generator for a wind turbine (1), comprising an outer stator (11) and an inner rotor (10) with a plurality of permanent magnets (18), wherein the rotor (10) is rotatably mounted about a rotation axis (6), wherein the rotor (10) is realized by a modular assembly of several modules (17) each comprising at least one of the permanent magnets (18), wherein at least one of the modules (17) delimits at least one air cooling channel (24) of the rotor (10).
H02K 1/278 - Aimants montés en surfaceAimants sertis
H02K 1/32 - Parties tournantes du circuit magnétique avec des canaux ou des conduits pour l'écoulement d'un agent de refroidissement
H02K 9/04 - Dispositions de refroidissement ou de ventilation par l'air ambiant s'écoulant à travers la machine comportant des moyens pour établir la circulation d'un agent de refroidissement
H02K 9/08 - Dispositions de refroidissement ou de ventilation par un agent de refroidissement gazeux circulant entièrement à l'intérieur de l'enveloppe de la machine
H02K 7/18 - Association structurelle de génératrices électriques à des moteurs mécaniques d'entraînement, p. ex. à des turbines
H02K 1/20 - Parties fixes du circuit magnétique avec des canaux ou des conduits pour l'écoulement d'un agent de refroidissement
4.
METHOD FOR MANUFACTURING AN ELECTRIC GENERATOR FOR A WIND TURBINE, MODULAR ASSEMBLY, ELECTRIC GENERATOR FOR A WIND TURBINE, AND WIND TURBINE
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY, S.L. (Espagne)
Inventeur(s)
Cueto Diaz, Lucas
Sacristan San Martin, Juan Manuel
Sedano Perez, Ibon
Abrégé
Method for manufacturing an electric generator for a wind turbine, modular assembly, electric generator for a wind turbine, and wind, turbine Method for manufacturing an electric generator (7) for a wind turbine (1), comprising the following steps: - providing a modular assembly (15) comprising a plurality of rotor modules (16, 17, 18), a plurality of rotor shafts (25), a plurality of stator modules (29, 30, 31), and a plurality of carrier components (36), - manufacturing a rotor (10) of the electric generator (7) by mounting at least one of the rotor modules (16, 17, 18) to one of the rotor shafts (25), - mounting the rotor (10) to at least one of the carrier components (36) such that the rotor can rotate around a rotation axis (6), - mounting at least one of the stator modules ((2299, 30, 31) to this carrier component (36) such that this stator module (29, 30, 31) or these stator modules (29, 30 31) realize a stator (11) of the electric generator (7).
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY, S.L. (Espagne)
Inventeur(s)
Yuste Soler, Javier
Abrégé
Spar cap, wind turbine blade as well as method of manufacturing a spar cap The invention relates to a spar cap (1), a wind turbine blade (200) and a method of manufacturing a spar cap (1) for a wind turbine blade (200). The spar cap (1) comprises a plurality of plate-shaped pultruded main bodies (21, 22, 23, 24) which are arranged one above the other in a stacking direction (SD) to form a main body stack (10). Furthermore, the spar cap (1) comprises at a first end face (11) of the main body stack (10) a first main body end (21a) of a first main body (21) of the plurality of main bodies (21, 22, 23, 24) which is arranged offset in the longitudinal direction (LD) of the spar cap (1) relative to a first main body end (22a) of a second main body (22) of the plurality of main bodies (21, 22, 23, 24) on an upper side of the second main body (22) in such a manner that a transition portion is formed by the second main body (22) between the first main body end (21a) of the first main body (21) and the first main body end (22a) of the second main body (22), wherein the second main body (22) is arranged adjacent to the first main body (21). In addition, the spar cap comprises at least a first stiffening body (31, 32), wherein the at least one first stiffening body (31, 32) is arranged at least at the first main body end (21a) of the first main body (21) and at least partially at an upper side (22c) of the second main body (22) in the transition portion formed by the second main body (22) for at least partially carrying longitudinal loads running at least in the longitudinal direction (LD) of the spar cap (1) and transmitting the longitudinal loads to the main body stack (10).
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY, S.L. (Espagne)
Inventeur(s)
Gonzalez Vazquez, Francisco Javier
Jones, Harry Llywelyn
Orduna Remón, Javier
Verburg Riezu, Yonatan
Abrégé
Method for retrofitting securing means for securing mounting inserts (14) embedded in a root (5) of a wind turbine blade (4), which mounting inserts (14) each comprise at least one stud (16) extending axially from the root (5), wherein the blade (4) being installed at a hub (2) of a wind turbine (1), characterized by the steps: - drilling at least one hole (19, 20, 21, 24, 25, 26) perpendicular to the mounting insert (14) from at least one root surface (7, 23), until the hole (19, 20, 21, 24, 25, 26) extends into or through the mounting insert (14) - threading the hole (19, 20, 21, 24, 25, 26) at least in the region where the hole extends into or through the mounting insert to adapt it for receiving a threaded bolt (38) - arranging a reinforcement plate (27) at the root surface (7, 23), which reinforcement plate comprises at least one opening (28, 29, 30) which corresponds with the hole (19, 20, 21, 24, 25, 26) - arranging the threaded bolt (38) through the opening (28, 29, 30) and screwing the bolt (38) into the threaded hole (19, 20, 21, 24, 25, 26) for fixating insert (14) to the plate (27).
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY, S.L. (Espagne)
Inventeur(s)
Moreno-Torres Concha, Pablo
Ruiz Erni, Ivan
Abrégé
A power conversion system is provided. The power conversion system may comprise a first power conversion module (120) configured to convert electrical power between a first side and a second side of the first power conversion module (120), and a second, different, power conversion module (140) configured to convert electrical power between a first side and a second side of the second power conversion module (140). Each power conversion module (120, 140) may comprise at least a first terminal and a second terminal on the first side that are configured to be coupled to a different power source (110, 130). The second side of each power conversion module (120, 140) may be coupled to a common electrical bus (160). The power conversion system may further comprise a common mode filter configured to filter common mode currents circulating between the first power conversion module (120) and the second power conversion module (140) via the common electrical bus (160), wherein the common mode filter comprises at least one impedance (125) coupled between the first terminal of the first power conversion module (120) and the first terminal of the second power conversion module (140), and/or at least one impedance (126) coupled between the second terminal of the first power conversion module (120) and the second terminal of the second power conversion module (140).
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
H02M 1/12 - Dispositions de réduction des harmoniques d'une entrée ou d'une sortie en courant alternatif
H02M 7/493 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant alternatif sans possibilité de réversibilité par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande les convertisseurs statiques étant agencés pour le fonctionnement en parallèle
H02M 7/5387 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant alternatif sans possibilité de réversibilité par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs, p. ex. onduleurs à impulsions à un seul commutateur dans une configuration en pont
8.
On-load Tap Changer Module, Assembly Composed of an On-load Tap Changer Module and a Power Transformer, and Method for Operating an On-load Tap Changer Module
Infineon Technologeis Bipolar GmbH & Co. KG (Allemagne)
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Schiele, Jürgen
Barrenetxea Inarra, Manex
Canales Segade, Jose Maria
Przybilla, Nils
Rodriguez Vazquez, Miguel
Santodomingo, Fernando
Abrégé
The invention relates to an on-load tap changer module (1, 15), in particular a power electronic on-load tap changer module, for adjusting a transformation ratio of a power transformer (2) having at least one transformer winding providing at least one tap (3), having: a control device (6), at least one tap changer (7) which can selectively be connected and disconnected by means of the control device (6) in order to adjust the transformation ratio of the power transformer (2), and at least one crowbar (11) for voltage limitation, which is adapted, when a predetermined threshold voltage value is exceeded, to provide a predetermined current path for determining a predetermined transformation ratio of the power transformer.
The invention relates to an on-load tap changer module (1, 15), in particular a power electronic on-load tap changer module, for adjusting a transformation ratio of a power transformer (2) having at least one transformer winding providing at least one tap (3), having: a control device (6), at least one tap changer (7) which can selectively be connected and disconnected by means of the control device (6) in order to adjust the transformation ratio of the power transformer (2), and at least one crowbar (11) for voltage limitation, which is adapted, when a predetermined threshold voltage value is exceeded, to provide a predetermined current path for determining a predetermined transformation ratio of the power transformer.
The invention relates further to an assembly consisting of a power transformer (2) and an on-load tap changer module (1, 15) and to a method for operating an on-load tap changer module.
H01F 29/02 - Transformateurs ou inductances variables non couverts par le groupe avec prises sur les bobines ou les enroulementsTransformateurs ou inductances variables non couverts par le groupe avec possibilités de regroupement ou d'interconnexion des enroulements
9.
STABILITY COMPONENT, USE OF A STABILITY COMPONENT, WIND TURBINE BLADE AND METHODS OF MANUFACTURING A WIND TURBINE BLADE
Siemens Gamesa Renewable Energy Innovation & Technology, S. L. (Danemark)
Inventeur(s)
Yuste Soler, Javier
Abrégé
A stability component configured to be arranged in an inner space of a wind turbine blade is provided, a use of a stability component for stabilizing a blade shell of a wind turbine blade of a wind turbine, a wind turbine blade and methods of manufacturing a wind turbine blade.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY, S.L. (Espagne)
Inventeur(s)
Lopardo López, Alejandro
Saez Anthonisen, Aitor
Unanua Hermoso De Mendoza, Pablo
Abrégé
A method for manufacturing a segmented tubular tower section (100) is provided. The method comprises following steps: • Providing at least two steel sheets at a manufacturing site, • drilling two pairs of parallel rows of holes (12) along each of the two vertical division lines (10) of each of the two steel sheets, whereas each pair of the two parallel rows (12) is drilled such that each corresponding vertical division line (10) is arranged between the corresponding pair of the two parallel rows (12), • cutting the at least two steel sheets along the two vertical division lines (10) to form two vertical segments (14), and • connecting the two vertical segments (14) with one another to rebuild each of the two vertical division lines (10) between the two vertical segments (14) at a building site using a plurality of connection means (20) to form the segmented tubular tower section (100).
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Calvente Cordon, Pablo
Rodriguez Izal, José Luis
Celaya Lecea, Felipe Carlos
Rebollo López, Emilio David
Abrégé
A method for computer-implemented controlling a doubly-fed electric machine, where stator windings are directly connected to an electrical grid and where rotor windings of a rotor are connected to the electrical grid via a power conversion system, includes an AC-to-DC converter and a DC-to-AC converter and being adapted to control a rotor current, the method including obtaining a rotational speed of the machine; determining, whether the obtained rotational speed is within a predetermined operational speed range around the synchronous speed; and if it is determined that the obtained rotational speed is within the predetermined operational speed range, controlling the AC-to-DC converter of the power conversion system to force injection of a stator reactive power to create a harmonic at a frequency different than a rated frequency of the machine; and controlling the DC-to-AC converter of the power conversion system to compensate the created stator reactive power and the harmonic.
H02P 9/00 - Dispositions pour la commande de génératrices électriques de façon à obtenir les caractéristiques désirées à la sortie
H02J 3/16 - Circuits pour réseaux principaux ou de distribution, à courant alternatif pour règler la tension dans des réseaux à courant alternatif par changement d'une caractéristique de la charge du réseau par réglage de puissance réactive
H02P 27/06 - Dispositions ou procédés pour la commande de moteurs à courant alternatif caractérisés par le type de tension d'alimentation utilisant une tension d’alimentation à fréquence variable, p. ex. tension d’alimentation d’onduleurs ou de convertisseurs utilisant des convertisseurs de courant continu en courant alternatif ou des onduleurs
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Danemark)
Inventeur(s)
Fernandez Diaz, Juan
Garcia Plaza, Manuel
Martinez Mendoza, Fernando Roque
Niegowski, Maciej Marek
Pappala, Venkata Swaroop
Trujillo, Sebastian
Yashchenko, Sergey
Abrégé
A method of predicting a frequency value of a utility grid to which a wind park is connected is provided, the method including: obtaining plural utility grid measurement values pertaining to a predetermined time range before and until a present point in time; obtaining plural wind park measurement values pertaining to the time range; feeding the plural utility grid measurement values and the plural wind park measurement values into a recurrent neural network trained to output the frequency value at at least one next point in time, the next point in time being in particular between 0.5 s and 2 s after the present point in time.
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
G01R 19/25 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe utilisant une méthode de mesure numérique
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Rodriguez Izal, José Luis
Tomey Lopez, Estanislao Pablo
Abrégé
A method of controlling the operation of a doubly fed induction machine is provided. The DFIM includes a stator electrically coupled to a power grid and a rotor rotating with a rotational speed. The DFIM has a synchronous rotational speed of the rotor and a rated rotational speed of the rotor. Rotation of the rotor at the synchronous rotational speed generates one or more slot harmonic distortions having a harmonic order. The method comprises operating the DFIM at the rated rotational speed of the rotor, wherein the rated rotational speed of the rotor is set to a value selected such that a shift of the harmonic order of one or more of the slot harmonic distortions at the rated rotational speed of the rotor is an integer number or is within a predefined limit of an integer number.
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Bermejo Hernandez, Victor
Miranda Osuna, Francisco Javier
Rizo Morente, Mario
Sepúlveda Gonzalez, Miguel Ángel
Vazquez-Prada Simon, Fernando
Abrégé
It is described a method of determining at least one high-level limitation of a system including a doubly fed induction machine, the method comprising: receiving at least one system operation condition parameter related to the actual operation condition; calculating the high-level limitation based on at least one low-level limitation at least one component of the system and the system operation condition parameter, wherein the method is particular performed, while the system is in operation.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Collado Damia, Javier
Cueto Diaz, Lucas
Hoyos Alcalde, Alberto
Hoyos Alcalde, Pablo
Jensen, Simon Vyff
Sedano Perez, Ibon
Gomez Fernandez, Alvaro
Abrégé
Pre-assembled busbar module for mounting to a stator of a generator of a wind turbine, comprising: - multiple busbars spanning an angle interval to be covered at the stator, - multiple busbar support devices, to which the busbars are mounted, distributed over the angle interval, - a mechanical interface for mounting the pre-assembled busbar module to a mounting surface of the stator, and - an electrical interface for electrically connecting the busbars to stator windings of the stator.
H02K 3/50 - Fixation des têtes de bobines, des connexions équipotentielles ou des connexions s'y raccordant
H02K 7/18 - Association structurelle de génératrices électriques à des moteurs mécaniques d'entraînement, p. ex. à des turbines
16.
STATOR WINDING ARRANGEMENT FOR A WIND TURBINE GENERATOR, WIND TURBINE GENERATOR, WIND TURBINE AND METHOD FOR MANUFACTURING A STATOR WINDING ARRANGEMENT
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Cueto Diaz, Lucas
Gomez Fernandez, Alvaro
Hoyos Alcalde, Alberto
Hoyos Alcalde, Pablo
Sedano Perez, Ibon
Abrégé
Stator winding arrangement (1) for a wind turbine generator (25), comprising at least one electrical conductor (3) forming turns of at least one coil and an interturn insulation (7) extending around the conductor (3), the coil running in a geometrical shape having at least one bend (6, 14), wherein the smallest bending radius of each bend (6, 14) is in the range from 25 to 35 mm and the interturn insulation (7) at least at the at least one bend (6, 14) comprises at least one layer (11, 12, 13) of a mica insulation tape (8) wrapped around the conductor (3).
H02K 3/14 - Enroulements caractérisés par la configuration, la forme ou le genre de construction du conducteur, p. ex. avec des conducteurs en barre disposés dans des encoches avec des conducteurs transposés, p. ex. des conducteurs torsadés
H02K 3/40 - Enroulements caractérisés par la configuration, la forme ou la réalisation de l'isolement pour hautes tensions, p. ex. assurant une protection contre les effluves
H02K 7/18 - Association structurelle de génératrices électriques à des moteurs mécaniques d'entraînement, p. ex. à des turbines
17.
GRID FORMING OPERATION WITH A WOUND ROTOR INDUCTION GENERATOR
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Sáiz Marín, Elena
Bueno Peña, Emilio José
García Aguilar, Javier
García Cerrada, Aurelio
Gonzalez Cajigas, Adrian
Zamora Macho, Juan Luis
Abrégé
A method of operating a power converter is provided. The power converter includes a rotor side converter configured to be electrically coupled to a rotor of a wound rotor induction generator. The method includes operating the power converter in a grid forming operating mode in which the rotor side converter is operated to control an output voltage at a stator of the wound rotor induction generator in accordance with a reference stator voltage. Operating the power converter in the grid forming operating mode includes deriving, based on the reference stator voltage for the output stator voltage, a reference rotor current for a rotor current in the rotor and controlling the rotor current in the rotor in accordance with the reference rotor current.
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Gaminde Larreta, Beinat
Abrégé
A system for repositioning two components of a wind turbine with respect to each other, the two components being connected to each other by means of a bolted joint and the system includes at least one alignment tool kit. Further provided is a bolted joint of two components of a wind turbine.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Hermoso, Francisco Javier
Abrégé
A wind turbine blade (100) comprising a lightning transmission system for the transmission of lightning current through the wind turbine blade (100). The lightning transmission system comprises one or more lightning receptors (20), a down conductor (1) electrically connected to each of the one or more lightning receptors (20) and extending along an interior of the wind turbine blade (100), and a first conductor element (4) proximate a base portion (6) of the wind turbine blade (100). The first conductor element (4) is electrically connected to the down conductor (1) and extends through a surface of the blade (100) between an interior and exterior of the blade wall (10). The first conductor element (4) comprises an electrically insulating element (45) that configures the first conductor element (4) to be electrically insulated from the blade wall (10). The dielectric strength of the electrically insulating element (45) is greater than the dielectric strength of the blade wall (10) at the location through which the first conductor element (4) extends.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Previtali, Francesco
Mathis, Lukas
Rojo Saiz, Nicolas
Abrégé
A method for transporting a wind turbine blade (3), comprising: a) providing (S1) a blade (103) with a compliant portion (21) forming a flexure hinge (22) for being bent around a bending axis (B1, B2) arranged perpendicular to a length direction (R) of the blade (103), b) transporting (S4) the blade (103) along a curved transportation path (8), and c) reinforcing (S5) the compliant portion (21). Thus, the blade is provided with a flexibility that eases transportation on a curved transportation path such as a road or railway. Hence, even very long blades can be transported in one piece overland by road vehicles or trains.
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Bosboom, Matthijs
De La Fuente Larrañaga, Marina
Hierro-Olabarria Salgado, Francisco Javier
Abrégé
A method for assembling a rotor blade of a wind turbine: a) providing at least two different rotor blade modules that segment the rotor blade along a longitudinal direction thereof, wherein each rotor blade module has a sloped interface section that include a weldable thermoplastic resin and/or a weldable thermoset resin (M, b) providing a resistive element, c) arranging the rotor blade modules and the resistive element in such a way that sloped interface sections face each other and the resistive element is sandwiched between the sloped interface sections, d) energizing the resistive element to apply heat to a weldable thermoplastic resin and/or the weldable thermoset resin to melt or to soften it, and e) joining the sloped interface sections together at a joint by means of the molten or softened weldable thermoplastic resin and/or the weldable thermoset resin to form the rotor blade.
B29C 65/34 - Assemblage d'éléments préformésAppareils à cet effet par chauffage, avec ou sans pressage avec des éléments chauffés qui restent dans le joint, p. ex. un "élément de soudage perdu"
B29C 65/00 - Assemblage d'éléments préformésAppareils à cet effet
B29K 21/00 - Utilisation de caoutchouc non spécifié ou élastomères non spécifiés comme matière de moulage
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Fernandez Romero, Ignacio
Meinicke, Alexander
Santos, Pablo Desco
Abrégé
A method of estimating a second power curve of a wind turbine regarding a second operational configuration includes: receiving power output data pertaining to a first operational configuration, in particular reference operational configuration; receiving power data relating to power output pertaining to the second operational configuration; deriving the second power curve using the power output data pertaining to the first operational configuration, the power output data pertaining to the second operational configuration and a first power curve of the first operational configuration.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Jimenez De Lago, Mario
Escudero Guijarro, Jairo
Quistgaard, Morten Rams
Abrégé
Flow modifying element for wind turbine blade A flow modifying element for a wind turbine blade is provided. The wind turbine blade (10) comprises a blade body (20) having a leading edge (16), a suction surface (18), a pressure surface (19), and a trailing edge (17). The blade body (20) has a chord length c, wherein the leading edge (16) corresponds to a position in chord direction of 0%c and the trailing edge (17) corresponds to a position in chord direction of 100%c. The flow modifying element (30) is configured to be arranged on the pressure surface (19) of the blade body (20) in a range in chord direction between 40%c and 100%c. The flow modifying element (30) is further configured to form a bulge (33) that bulges outwardly from the pressure surface (19) of the blade body (20).
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
March Nomen, Victor
Hermosilla Azanza, Iñakì
Hierro-Olabarria Salgado, Francisco Javier
Abrégé
Method for manufacturing a Turbine Blade for a Wind Turbine and Turbine Blade The present invention relates to a method for manufacturing a turbine blade (1) for a wind turbine. The method comprises: - Manufacturing a first turbine blade part (2), - Manufacturing a second turbine blade part (4), - Aligning the first turbine blade part (2) with the second turbine blade part (4), and - bonding the first turbine blade part (2) to the second tur- bine blade part (4) along the bonding line (6) in a thermo- plastic welding process with a thermoplastic resin. The invention also relates to a Turbine blade (1) for a wind turbine.
B29C 65/18 - Assemblage d'éléments préformésAppareils à cet effet par chauffage, avec ou sans pressage avec un outil chauffé
B29C 65/34 - Assemblage d'éléments préformésAppareils à cet effet par chauffage, avec ou sans pressage avec des éléments chauffés qui restent dans le joint, p. ex. un "élément de soudage perdu"
B29C 65/36 - Assemblage d'éléments préformésAppareils à cet effet par chauffage, avec ou sans pressage avec des éléments chauffés qui restent dans le joint, p. ex. un "élément de soudage perdu" chauffés par induction
B29C 65/48 - Assemblage d'éléments préformésAppareils à cet effet en utilisant des adhésifs
B29C 65/50 - Assemblage d'éléments préformésAppareils à cet effet en utilisant des adhésifs utilisant des rubans adhésifs
B29C 65/78 - Moyens pour la manipulation des éléments à assembler, p. ex. pour la fabrication de récipients ou d'objets creux
B29C 70/88 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts caractérisées principalement par des propriétés spécifiques, p. ex. électriquement conductrices ou renforcées localement
B29D 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Escudero Guijarro, Jairo
Jimenez De Lago, Mario
Quistgaard, Morten Rams
Abrégé
A flow modifying element for a wind turbine blade is provided. The wind turbine blade (10) comprises a blade body (20) having a leading edge (16), a suction surface (18), and a pressure surface (19). The flow modifying element (30) is configured to provide a trailing edge (17) for at least a longitudinal section (15) of the wind turbine blade (10). The flow modifying element (30) and the blade body (20) form an aerodynamic profile. The flow modifying element (30) comprises a suction side (32), a pressure side (33), a trailing end (37) that provides the trailing edge (17) of the aerodynamic profile, and a pressure surface extending section (39) on the pressure side (33) which is configured to extend the pressure surface (19) of the blade body (20) towards the trailing end (37). A pressure side profile section (40) of the flow modifying element has a shape of a concave curve and forms a recessed portion (44).
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Escudero Guijarro, Jairo
Jimenez De Lago, Mario
Quistgaard, Morten Rams
Abrégé
A flow modifying element for a wind turbine blade (10) is provided. The wind turbine blade (10) comprises a blade body (20) having a leading edge (16), a suction surface (18), and a pressure surface (19). The flow modifying element (30) is configured to provide a trailing edge (17) for at least a longitudinal section (15) of the wind turbine blade (10), wherein the flow modifying element (30) and the blade body (20) form an aerodynamic profile. The flow modifying element comprises a trailing end (37) that provides the trailing edge (17) of the aerodynamic profile, a suction surface extending section (38) that extends the suction surface (18) of the blade body (20) towards the trailing end (37); and a pressure surface extending section (39) that extends the pressure surface (19) of the blade body (20) towards the trailing end (37).
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Bueno Peña, Emilio José
Rebollo López, Emilio David
Sáiz Marín, Elena
Granado Rosa, Francisco
Abrégé
A wind turbine is provided. The wind turbine includes an electric generator, a converter and a control system. The electric generator includes a rotor configured to rotate at different rotation speeds thereby operating at different operation points, and a converter having a rotor side converter and a power consumption system, i.e., grid-side, side converter. The control system includes a current control loop and an inter-harmonic damping control unit arranged in parallel to the current control loop. The inter-harmonic damping control unit damping control unit comprises at least a resonant controller which is dependent on the operation point for tracking and damping the one or more inter harmonic(s) of the wind turbine. A method for damping inter-harmonics is also provided.
H02P 9/10 - Commande s'exerçant sur le circuit d'excitation de la génératrice afin de réduire les effets nuisibles de surcharges ou de phénomènes transitoires, p. ex. application, suppression ou changement brutal de la charge
H02P 9/04 - Commande s'exerçant sur un moteur primaire non électrique et dépendant de la valeur d'une caractéristique électrique à la sortie de la génératrice
H02P 101/15 - Adaptation particulière des dispositions pour la commande de génératrices pour éoliennes
28.
COMPUTER-IMPLEMENTED METHOD FOR CALIBRATING WIND TURBINES IN A WIND FARM
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Bas Quesada, Jesus
Moral Gonzalez, Carlos
Palou Larranaga, Felipe
Pena Martinez, Juan Jose
Pizarro De La Fuente, Carlos
Suarez Aizpun, Jaime
Abrégé
A computer-implemented method for calibrating a nacelle position of at least one wind turbine in a wind farm is provided having a plurality of spatially distributed wind turbines, in which a first calibration step of recalibrating a precalibrated nacelle position of at least one wind turbine is followed by a second calibration step, in which a wind direction sector specific further recalibrating of the nacelle position of the at least one wind turbine to be calibrated is performed by applying a wind direction sector specific correction value for an identified wind direction sector to the previously obtained calibrated nacelle position.
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Camunas Garciamiguel, Pedro Luis
Garcia Plaza, Manuel
Lopez Merino, Jesus
Peña Asensio, Andrés
Abrégé
A control system providing a control signal to an energy storage system to reduce power variability of an energy generation system. The energy storage system is coupled to the power output of the energy generation system and configured to at least one of receive and provide electrical power in response to the control signal. The control system includes a monitoring unit to monitor the power output and to provide a respective monitoring signal. The control system further includes a control signal generation unit to generate the control signal from the monitoring signal, and implement a filtering unit that has a band pass response. The filtering unit passes a predetermined frequency band of the monitoring signal and the control signal generation unit is configured to generate the control signal in the frequency band to compensate power variations of the power output of the energy generation system in the frequency band.
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Belmonte De Udaondo, Esteban
Elso Torralba, Jorge
Miquelez Madariaga, Irene
Saenz Aguirre, Aitor
Vital Amuchastegui, Pablo
Abrégé
A method and a device for determining an iced condition of a blade of a wind turbine is provided. A target nacelle displacement along a rotational axis is acquired as a function of at least one predetermined parameter in an ice-free condition of the blade; an actual nacelle displacement along the rotational axis is measured by a displacement sensor; and the iced condition of the blade is determined if a difference between the target nacelle displacement and the actual nacelle displacement exceeds a predetermined threshold value.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Tapia Pascal, Mikel
Tomey Lopez, Estanislao Pablo
Abrégé
A method of operating a wind turbine is provided. The wind turbine (100) comprises a wind turbine rotor (101) and an electrical power system (103) including a doubly-fed induction generator (104) mechanically coupled to the wind turbine rotor, wherein the electrical power system is configured to exchange electrical power with a power grid (112). The method comprises obtaining a grid requirement for the wind turbine (100) to exchange reactive power with the power grid (112), wherein providing the reactive power in accordance with the grid requirement by the electrical power system (103) requires the electrical power system to consume an active power amount. The method further comprises providing, by the electrical power system (103), the reactive power in accordance with the grid requirement to the power grid (112) while consuming the active power amount. The providing of the reactive power includes supplying the electrical power system (103) with the required active power amount, wherein the wind turbine (100) is operated such that the electrical power system does not deliver active power to the power grid (112), and operating the generator (104) as a variable-speed rotating condenser to provide at least a part of the reactive power to the power grid (112).
H02J 3/50 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs contrôlant la répartition de puissance entre les générateurs, convertisseurs ou transformateurs contrôlant la répartition de la composante déphasée
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Labiano Andueza, Daniel
Larrea León, Pablo
López Taberna, Jesús
Rodriguez Izal, José Luis
Sanchis Gúrpide, Pablo
Ursúa Rubio, Alfredo
Sacristán Sillero, Javier
Abrégé
A DFIG wind power facility configured to be operated during grid faults is provided. The wind power facility includes a Doubly-Fed Induction Generator, a control system, an electric converter, a short-circuit controlled switch to selectively short-circuit the stator and a Stator Neutral Brake Chopper coupled to the stator. The DFIG includes a rotor and a stator, the stator including at least one three-phase winding. The electric converter includes a Machine Side Converter, a Grid Side Converter and a DC link connected therebetween. The SNBC includes a three-phase rectifier including three inputs, an impedance and an active high-frequency switch configured to vary the average value of the impedance by adjusting its duty cycle; wherein each of the three inputs of the rectifier is connected to a phase of the at least one three-phase winding of the stator. Methods for operating a DFIG wind power facility during grid faults are also provided.
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Pacho Iglesias, Gemma
Rebollo López, Emilio David
Sáiz Marín, Elena
Bueno Peña, Emilio José
Saenz Aguirre, Aitor
Tejada Armada, Alejandro
Abrégé
A wind turbine control system and method, for the type of wind turbines includes a rotor, an asynchronous generator driven by the rotor and configured for providing an active power to a grid, and a power converter connected to the generator and configured to interact with the generator for generating the required active power for the grid. The control system includes a converter control unit for controlling the power converter and for estimating a frequency derivative of the frequency of the grid, and a wind turbine controller configured for receiving the estimated frequency derivative and for considering the received frequency derivative for determining a synthetic inertia. The converter control unit controls the power converter to cause the generator to also provide the synthetic inertia, in the form of active power.
H02J 3/48 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs contrôlant la répartition de puissance entre les générateurs, convertisseurs ou transformateurs contrôlant la répartition de la composante en phase
F03D 9/25 - Mécanismes moteurs à vent caractérisés par l’appareil entrainé l’appareil étant un générateur électrique
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
34.
METHOD FOR COMMANDING AN UPSTREAM WIND TURBINE IN A WIND FARM
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Bas Quesada, Jesus
Moral Gonzalez, Carlos
Palou Larranaga, Felipe
Pena Martinez, Juan Jose
Pizarro De La Fuente, Carlos
Suarez Aizpun, Jaime
Abrégé
A method for commanding an upstream wind turbine in a wind farm has a plurality of spatially distributed wind turbines and a method for controlling the upstream wind turbine in the wind farm.
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
35.
CONTROLLING A WIND TURBINE REGARDING NOISE EMISSION
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Gonzalez, Pablo Aller
Hansen, Tomas Rosenberg
Thor Straten, Marcel
Abrégé
A method of controlling a wind turbine having a rotor, in particular in all rotational speed regimes is provided, the method including: determining a rotor noise contribution, in particular based on an actual rotor operational state; determining auxiliary noise contributions from plural auxiliary components based on respective actual operational states; determining a total noise based on the auxiliary noise contributions and the rotor noise contribution; comparing the total noise with a noise threshold; adapting a limit value of at least one operational parameter and/or a respective operational state of at least one of the auxiliary components depending on the comparison result.
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Alvaredo Atienza, Angel
Hierro-Olabarria Salgado, Francisco Javier
Jensen, Jonas Pagh
Maennchen, Jakob
Stecher, Harald
Abrégé
It is described a method of producing a wind turbine blade or a part thereof, the method comprising: i) providing a wind turbine blade preform that comprises a resin, in particular an epoxy amine resin, with a cleavable functional group, in particular at least one of an acetal and a ketal functional group, at the resin surface; and ii) processing the resin surface by inducing a hydrolysis reaction with respect to the cleavable functional group. Further, a wind turbine blade and a use of a hydrolysis reaction are described.
B29C 70/44 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant une pression isostatique, p. ex. moulage par différence de pression, avec un sac à vide, dans un autoclave ou avec un caoutchouc expansible
C08J 5/12 - Fixation d'un matériau macromoléculaire préformé au même matériau ou à un autre matériau compact, tel que du métal, du verre, du cuir, p. ex. en utilisant des adhésifs
C08J 11/26 - Récupération ou traitement des résidus des polymères par coupure des chaînes moléculaires des polymères ou rupture des liaisons de réticulation par voie chimique, p. ex. dévulcanisation par traitement avec une substance organique par traitement avec des composés organiques contenant de l'oxygène contenant des groupes acide carboxylique, leurs anhydrides ou esters
B29C 65/48 - Assemblage d'éléments préformésAppareils à cet effet en utilisant des adhésifs
B29C 70/00 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts
B29D 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
C08J 11/14 - Récupération ou traitement des résidus des polymères par coupure des chaînes moléculaires des polymères ou rupture des liaisons de réticulation par voie chimique, p. ex. dévulcanisation par traitement avec de la vapeur ou de l'eau
C09J 5/02 - Procédés de collage en généralProcédés de collage non prévus ailleurs, p. ex. relatifs aux amorces comprenant un traitement préalable des surfaces à joindre
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Alisar, Ibrahim
Demirok, Erhan
Rodriguez Izal, José Luis
Abrégé
A control method of a hybrid power switch having at least a first switching device connected in parallel with a second switching device is provided. A first gate signal is provided to the first switching device for turning on and turning off the first switching device. A second gate signal is provided to the second switching device for turning on and turning off the second switching device. A first delay time is stablished between the turning on of the first switching device and the turning on of the second switching device, and a second delay time is established between the turning off of the first switching device and the turning off of the second switching device. The temperature of the first switching device is determined, and at least one of the first and second delay times is modified depending on such temperature.
H03K 3/011 - Modifications du générateur pour compenser les variations de valeurs physiques, p. ex. tension, température
H02M 1/088 - Circuits spécialement adaptés à la production d'une tension de commande pour les dispositifs à semi-conducteurs incorporés dans des convertisseurs statiques pour la commande simultanée de dispositifs à semi-conducteurs connectés en série ou en parallèle
H03K 5/00 - Transformation d'impulsions non couvertes par l'un des autres groupes principaux de la présente sous-classe
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
March Nomen, Victor
Abrégé
A blade (200) for a wind turbine (10) comprising a lightning protection system and a non-conductive exterior surface (201). The lightning protection system comprises an internal down conductor (31) for conducting lightning current towards a base portion (21) of the blade (200). The lightning protection system further comprises one or more exposed lightning receptors (400) located on a suction side (26) or a pressure side (25) of the blade (200) at a spanwise position of the blade (200), extending through the exterior surface (201) of the blade (200) and electrically connected to the internal down conductor (31). For one or more of the lightning receptors (400), for one or more points (X) on the other of the suction side (26) or pressure side (25) of the blade (200) at the spanwise position corresponding to the lightning receptor (400), the total breakdown voltage along any path of lightning from any of the one or more points (X) to the lightning receptor (400) via the interior of the blade (200) is greater than the total breakdown voltage along an indirect path from the point (X) to the lightning receptor (400) around the exterior surface (201) of the blade (400).
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Saenz De Ugarte Sevilla, Patrik
Abrégé
The invention describes a connector assembly (1) for a drivetrain (2, 3, 4) comprising at least a low-speed shaft (20) and a planetary gearset (3) comprising an annular arrangement of peripheral gears (31P), the connector assembly comprising a portion (11) of each first-stage peripheral gear shaft (310) arranged to protrude from the drive end of the planetary gearset (3); an annular arrangement of axial bores (10) formed about the low-speed shaft (20), wherein each axial bore (10) is arranged to receive the protruding portion (11) of a peripheral gear shaft (310); and wherein each axial bore (10) and the corresponding protruding portion (11) of a peripheral gear shaft (31P) are dimensioned to establish an interference fit. The invention further describes a wind turbine drivetrain (2, 3, 4), and a method of connecting a low-speed shaft (20) of a drivetrain (2, 3, 4) to a planetary gearset (3).
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Moreno-Torres Concha, Pablo
Ruiz Erni, Ivan
Abrégé
The invention refers to a multi-port high-power converter system for battery balancing at module level. The system comprises a transformer having a plurality of windings and a single core for all the windings, and a set of DC-AC converters individually connected with the windings of the transformer, and a control unit for controlling the operation of the converters, for converting a DC voltage into an AC signal and vice versa. The control unit is adapted for controlling the converters of the set of converters, such that power of the battery module s can be transferred through any selection or two or more converters, and through the transformer core when the converters are connected individually with battery modules. The invention also refers to a method for balancing a system of battery modules connected in series using a multi winding transformer.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Moreno-Torres Concha, Pablo
Ruiz Erni, Ivan
Abrégé
fswφφ) of the converter, to operate the converter under Zero Voltage Switching condition. The invention also refers to a DC-DC multi-port converter, having three or more converters coupled to a common multi-windings transformer.
H02M 1/00 - Détails d'appareils pour transformation
H02M 3/335 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu avec transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrodes de commande pour produire le courant alternatif intermédiaire utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Chaqués Herraiz, Gustavo
Barenys Espadaler, Mireia
Moriano Martín, Javier
Sáiz Marín, Elena
Abrégé
11*) generated by a virtual synchronous machine control scheme (201) and the power converter may be further operable in a second operating mode in which the converter is operated based on a second reference (i211*) and operating the converter based on the generated first reference.
H02J 3/00 - Circuits pour réseaux principaux ou de distribution, à courant alternatif
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
H02J 13/00 - Circuits pour pourvoir à l'indication à distance des conditions d'un réseau, p. ex. un enregistrement instantané des conditions d'ouverture ou de fermeture de chaque sectionneur du réseauCircuits pour pourvoir à la commande à distance des moyens de commutation dans un réseau de distribution d'énergie, p. ex. mise en ou hors circuit de consommateurs de courant par l'utilisation de signaux d'impulsion codés transmis par le réseau
H02J 3/24 - Dispositions pour empêcher ou réduire les oscillations de puissance dans les réseaux
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
43.
METHOD FOR COMPUTER-IMPLEMENTED FORECASTING OF WIND PHENOMENA WITH IMPACT ON A WIND TURBINE
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Gollnick, Bert
Prosper Fernandez, Miguel Angel
Abrégé
A method for forecasting of wind phenomena is provided. At each time step of one or more time steps during the operation of the wind farm the following steps are performed: In a first step, a digital image is obtained from an operational forecasting system based on high-resolution simulations performed with a numerical weather prediction model, the digital image being provided from the region of the wind turbine. In a second step, a prediction of a class is determined having a highest probability out of a number of pre-defined classes by processing the digital image by a trained data driven model, where the digital image is fed as a digital input to the trained data driven model and the trained data driven model provides the class with the highest probability as a digital output, wherein the number of classes corresponds to different meteorological conditions.
G01W 1/10 - Dispositifs pour la prévision des conditions météorologiques
G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
H02J 3/00 - Circuits pour réseaux principaux ou de distribution, à courant alternatif
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
44.
METHOD AND SYSTEM FOR OPTIMIZING POWER OUTPUT OF A WIND TURBINE WITH YAW MISALIGNMENT
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Moral Gonzalez, Carlos
Palou Larranaga, Felipe
Pena Martinez, Juan Jose
Pizarro De La Fuente, Carlos
Suarez Aizpun, Jaime
Bas Quesada, Jesus
Abrégé
A system includes a wind turbine a wind and a first control device for controlling the wind turbine. The first control device is configured to acquire a yaw misalignment of the wind turbine, which yaw misalignment is a difference between the actual yaw angle and a wind direction at the wind turbine; and to determine at least one of a target pitch angle of the blade and a target torque of the generator based on the yaw misalignment to optimize a power output from the wind turbine. Further, a wind farm includes the system and a method of controlling a wind turbine.
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Alonso Gainza, Javier
Cal Hernandez, Alexandre
Unanua Hermoso De Mendoza, Pablo
Abrégé
A tower (6) for a wind turbine (1), comprising at least one tubular tower section (8), the tower section (8) including two or more ring segments (14, 15, 16, 17) forming together a ring element (13) and a connection arrangement (18, 43) connecting two adjacent ones (14, 15) of the ring segments (14, 15, 16, 17) with each other, wherein the connection arrangement (18, 43) comprises gap generation means (19, 44 ) for generating and maintaining a predefined gap (20) between the two adjacent ring segments (14, 15). By allowing the gap between the connected ring segments, arranging and connecting the ring segments is facilitated, In particular, aa lower precision in positioning the ring segments next to each other is required. Further, the gap generation means allow re-adjustment of the relative position of the connected ring sections at any time during manufacture and/or operation.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
March Nomen, Victor
Abrégé
A wind turbine blade (3), comprising: a first and a second blade component (C1, C2) connected with each other in an overlap region (24) by thermal welding, the first blade component (C1) comprising a blade shell (10), a resistive element (25) arranged between the first and second blade components (C1, C2) in the overlap region (24) as a remnant of the thermal welding, and an electrically conductive element (27) extending through the blade shell (10) and being electrically connected to the resistive element (25) for supplying power (I) to the resistive element (25) during the thermal welding. Thus, the first and second blade components can be joined by thermal welding. Further, the resistive element used as heating element for thermal welding can be heated by electrical current even when the resistive element is difficult to assess from the interior cavity of the blade.
B29C 65/34 - Assemblage d'éléments préformésAppareils à cet effet par chauffage, avec ou sans pressage avec des éléments chauffés qui restent dans le joint, p. ex. un "élément de soudage perdu"
B29C 65/48 - Assemblage d'éléments préformésAppareils à cet effet en utilisant des adhésifs
B29C 65/50 - Assemblage d'éléments préformésAppareils à cet effet en utilisant des adhésifs utilisant des rubans adhésifs
B29D 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Moriano Martín, Javier
Rizo Morente, Mario
Barenys Espadaler, Mireia
Abrégé
A control system for controlling the operation of a doubly fed induction generator of an electrical power system, such as a wind turbine, is provided. A rotor side converter coupled to a rotor of the DFIG is controlled by the control system. The control system includes an outer controller to generate a reference value for a control variable in accordance with which the operation of the DFIG is to be controlled and an inner controller that receives the reference value and provides feedback control of the rotor side converter. The inner controller is a state feedback controller obtains at least one state of the power system or the power grid that is different from the control variable. The control structure of the state feedback controller causes the electrical power system to act as a passive system at least in a predefined frequency range.
H02J 3/24 - Dispositions pour empêcher ou réduire les oscillations de puissance dans les réseaux
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Sacristan San Martin, Juan Manuel
Sedano Perez, Ibon
Cueto Diaz, Lucas
Fojtikova, Ivana
Mericka, Frantisek
Abrégé
An electrical connector is provided for electrically connecting a rotor of an electric generator to a slip ring and includes: —a first support cartridge, the first support cartridge being electrically isolated, —at least a second support cartridge distanced from the first support cartridge along a longitudinal axis of the electrical connector, the second support cartridge being electrically isolated, —at least one conductive bar extending along the longitudinal axis, the conductive bar being fixed to the first support cartridge and the second support cartridge, and —a winding connector for electrically connecting the at least one conductive bar to a rotor winding of the rotor.
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Rodriguez Izal, José Luis
Martín González, Raúl
Nietmann, Lars
Abrégé
A slip ring unit for an electric generator is provided. The slip ring unit includes a slip ring attachable to a rotor shaft of the electric generator, a plurality of sliding contacts arranged along a circumference of the slip ring, to provide an electrical connection with the slip ring, at least one temperature sensor for measuring a temperature inside the slip ring unit, a fan for providing a cooling flow in the slip ring unit, and a controller connected to the fan for controlling the cooling flow rate generated by the fan, the controller being connected to the at least one temperature sensor. The at least one temperature sensor is attached to at least a holder for supporting the sliding contacts. The controller is configured in such a way that the cooling flow rate is generated depending on the temperature measured by the at least one temperature sensor.
H02K 9/28 - Refroidissement des collecteurs, des bagues collectrices ou des balais, p. ex. par ventilation
H02K 7/18 - Association structurelle de génératrices électriques à des moteurs mécaniques d'entraînement, p. ex. à des turbines
H02K 11/25 - Dispositifs pour détecter la température ou actionnés par des valeurs de cette variable
H02K 13/00 - Association structurelle de collecteurs de courant et de moteurs ou de génératrices, p. ex. plaques de montage des balais ou connexions avec les enroulementsAgencement des collecteurs de courant dans les moteurs ou les génératricesDispositions pour améliorer la commutation
F03D 9/25 - Mécanismes moteurs à vent caractérisés par l’appareil entrainé l’appareil étant un générateur électrique
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Diaz De Corcuera Martinez, Asier
Ortubia, Iñigo
Abrégé
It is described a method of controlling a wind turbine (20), the method comprising: obtaining wind characteristic information (3); obtaining wind turbine operational parameters (4); estimating noise (6) based on at least the wind characteristic information (3) and the wind turbine operational parameters (4); controlling (12) the wind turbine (20) based on a comparison between the estimated noise (6) and a noise reference (8).
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Calvente Cordon, Pablo
Gomez Herrera, Damián José
Rebollo López, Emilio David
Abrégé
It is described a method of controlling an asynchronous generator system (3), in particular of a wind turbine (1), connected to a utility grid (47), the method comprising setting a rotational speed reference (n) of the asynchronous generator system (3) in dependence of a utility grid voltage (Ug).
H02J 3/00 - Circuits pour réseaux principaux ou de distribution, à courant alternatif
H02P 9/10 - Commande s'exerçant sur le circuit d'excitation de la génératrice afin de réduire les effets nuisibles de surcharges ou de phénomènes transitoires, p. ex. application, suppression ou changement brutal de la charge
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Alisar, Ibrahim
Demirok, Erhan
Rodriguez Izal, José Luis
Tomey Lopez, Estanislao Pablo
Aizpuru Larranaga, Iosu
Arrizabalaga Etxezarreta, Antxon
Idarreta Garate, Aitor
Iraola Iriondo, Unai
Mazuela Larranaga, Mikel
Abrégé
A method for controlling the reactive power exchange of a DFIG wind facility with the grid is provided. The method includes determining a grid side converter reactive power thermal limit value and determining the value of the required DFIG magnetizing reactive power to be consumed by the stator. Then setting dynamically the sharing of the reactive power between the stator and the GSC such that the GSC reactive power value is the difference between the reactive power demand of the DFIG wind facility and the magnetizing reactive power consumed by the stator. Afterwards operating the DFIG wind turbine facility such that the absolute value of GSC reactive power is adjusted to be below the grid side converter reactive power thermal limit value value. An arrangement and a wind turbine are also provided.
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
F03D 9/25 - Mécanismes moteurs à vent caractérisés par l’appareil entrainé l’appareil étant un générateur électrique
H02J 3/18 - Dispositions pour réglage, élimination ou compensation de puissance réactive dans les réseaux
H02J 3/46 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs contrôlant la répartition de puissance entre les générateurs, convertisseurs ou transformateurs
53.
A METHOD FOR PRODUCING A ROTOR BLADE OF A WIND TURBINE
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Gaztelumendi Lecuona, Jose Javier
Arslaner, Kerem
Bosboom, Matthijs
Hierro-Olabarria Salgado, Francisco Javier
Minnema, Henk
Abrégé
A method for producing a rotor blade of a wind turbine includes the following steps: a) providing at least two different components of the rotor blade, b) placing a resistive element between the components, c) placing a thermoplastic or weldable thermoset resin between the components, d) energizing the resistive element so that the resistive element applies heat to the thermoplastic or weldable thermoset resin to melt or to soften it, and e) joining the components together by means of the molten or softened thermoplastic or weldable thermoset resin.
B29C 65/34 - Assemblage d'éléments préformésAppareils à cet effet par chauffage, avec ou sans pressage avec des éléments chauffés qui restent dans le joint, p. ex. un "élément de soudage perdu"
B29C 65/48 - Assemblage d'éléments préformésAppareils à cet effet en utilisant des adhésifs
B29C 65/70 - Assemblage d'éléments préformésAppareils à cet effet par moulage
54.
FASTENING SYSTEM FOR ARRANGING BOLTS IN A TOWER ASSEMBLY
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Señas Perez, Vicente
Abrégé
A fastening system is provided. The fastening system comprises a belt comprising securing means and at least one fastening device. The fastening device comprises a support unit configured to be attached to the belt, at least one clamping element configured to retain a bolt, a fixing plate and at least one retaining mean. The fixing plate is configured to move from a closed position to an open position. The retaining mean is movable from a first position to a second position. Methods for the installations of bolts are also provided.
F03D 13/10 - Assemblage de mécanismes moteurs à ventDispositions pour l’érection de mécanismes moteurs à vent
F03D 80/80 - Disposition des composants dans les nacelles ou les tours
F16B 41/00 - Dispositions contre la perte des boulons, écrous, broches ou goupillesDispositions empêchant toute action non autorisée sur les boulons, écrous, broches ou goupilles
F16B 27/00 - Boulons, vis ou écrous fabriqués en séries constituées mais facilement séparables, particulièrement pour utilisation dans les machines automatiques
F03D 13/20 - Dispositions pour monter ou supporter des mécanismes moteurs à ventPylônes ou tours pour des mécanismes moteurs à vent
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Alvarez Redondo, Jorge
Hermosilla Azanza, Iñakì
Rojo Saiz, Nicolas
Abrégé
A rotor blade of a wind turbine include sa first rotor blade segment having a first shell portion, a second rotor blade segment having a second shell portion and a joint connecting the first rotor blade segment with the second rotor blade segment between the first shell portion and the second shell portion, whereby the rotor blade further includes a fairing, the fairing covering the joint and being attached to the first shell portion and the second shell portion by means of an adhesive. Further provided is a wind turbine having this rotor blade.
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Canales Segade, Jose María
Carneiro, Santiago
Kirkeby, Soeren
Miguel Garcia De Cortazar, Eduardo
Rodriguez Vazquez, Miguel
Santodomingo Llamas, Fernando
Abrégé
A wind turbine auxiliary power system configured to receive electrical power from an electrical power generating system of the wind turbine or from a power grid. The auxiliary power system includes an auxiliary transformer having a primary side configured to be coupled to the electrical power generating system of the wind turbine and a secondary side configured to be coupled to auxiliary power consumers of the wind turbine and to provide transformed electrical power to the consumers. It further includes an electronic on-load tap changer provided on the auxiliary transformer, wherein the electronic on-load tap changer includes taps on at least one transformer winding of the auxiliary transformer and semiconductor switches that are coupled to the taps and that are configured such that by controlling the semiconductor switches, the transformation ratio of the auxiliary transformer is adjustable to compensate for voltage variations on the primary side of the auxiliary transformer.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
March Nomen, Victor
Abrégé
A wind turbine blade (3), comprising: a first and a second blade component (10, 12) connected with each other in an overlap region (24) by thermal welding, a resistive element (25) arranged between the first and second blade components (10, 12) in the overlap region (24) as a remnant of the thermal welding, the resistive element (25) having a first and a second terminal (31, 32), a lightning conductor (28) electrically connected with each of the first and second terminals (31, 32), and a surge protection device (34), wherein one of the first and second terminals (31, 32) is electrically connected with the lightning conductor (28) via the surge protection device (34). The resistive element which was used for the welding process and is left in the blade as a remnant of the welding process can be integrated into the lightning protection system of the blade.
B29C 65/34 - Assemblage d'éléments préformésAppareils à cet effet par chauffage, avec ou sans pressage avec des éléments chauffés qui restent dans le joint, p. ex. un "élément de soudage perdu"
58.
CONTROLLING THE TIMING OF A TRANSFORMER TAP CHANGE
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Gude Rodriguez, Isaac
Garro Arrazola, Unai
Barrenetxea Iñarra, Manex
Canales Segade, Jose María
Olarieta Etxebarria, Igor
Santodomingo Llamas, Fernando
Abrégé
A method of generating a timing control signal (80) for controlling the timing of a change of a transformer tap of a transformer (20) is provided. The transformer (20) comprises an on-load tap changer (30) comprising plural respective transformer taps (25-27). The method comprises monitoring a voltage on a primary side and/or on a secondary side of the transformer (20) to obtain a monitoring signal (91) and deriving, from the monitoring signal (91), an intermediate signal (95) that is indicative of at least one zero crossing of a tap voltage at the transformer tap (25-27). Deriving the intermediate signal (95) comprises estimating, based on the monitoring signal (91), a phase of the monitored voltage to obtain a phase signal (94) and applying to the phase signal a phase correction for a phase shift between the monitoring signal (91) or a signal derived therefrom and the tap voltage at the transformer tap (25-27). The timing control signal (80) is derived from the intermediate signal (95).
H02P 13/06 - Dispositions de commande de transformateurs, réactances ou bobines d'arrêt de façon à obtenir les caractéristiques désirées à la sortie par changement de prisesDispositions de commande de transformateurs, réactances ou bobines d'arrêt de façon à obtenir les caractéristiques désirées à la sortie par modification des connexions des enroulements
H01F 29/04 - Transformateurs ou inductances variables non couverts par le groupe avec prises sur les bobines ou les enroulementsTransformateurs ou inductances variables non couverts par le groupe avec possibilités de regroupement ou d'interconnexion des enroulements avec possibilité de changer de prise sans interrompre le courant de charge
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Saenz De Ugarte Sevilla, Patrik
Abrégé
The invention relates to a transmission assembly (3) for coupling a forerunning gearbox stage (19) to a generator (16) of a wind turbine (14), the transmission assembly (3) comprising an intermediate speed shaft (5) supported by an intermediate speed shaft bearing arrangement (23) and comprising an intermediate speed shaft gear (25), a high-speed shaft (4) supported by a high-speed shaft bearing arrangement (22) and comprising a high-speed shaft gear (24), and a gear mesh (6) formed by an engagement of the intermediate speed shaft gear (25) and the high-speed shaft gear (24), wherein the gear mesh (6) is configured to transfer a torque between the intermediate speed shaft (5) and the high-speed shaft (4).
F16H 1/08 - Transmissions à engrenages pour transmettre un mouvement rotatif sans engrenages à mouvement orbital comportant uniquement deux organes engrenés dont les axes sont parallèles les organes ayant des dents en hélice, en chevrons ou similaires
F03D 15/10 - Transmission de l’énergie mécanique utilisant un engrenage non limité à un mouvement rotatif, p. ex. comportant des organes oscillants ou à mouvement alternatif
F03D 80/70 - Dispositions de roulement ou de graissage
F16H 57/021 - Structures de support d'arbres, p. ex. parois de séparation, orifices de logement de paliers, parois de carter ou couvercles avec paliers
F16C 19/38 - Paliers à contact de roulement pour mouvement de rotation exclusivement avec roulements à rouleaux essentiellement du même gabarit, disposés dans une ou plusieurs rangées circulaires, p. ex. roulements à aiguilles pour charges à la fois axiales et radiales avec plusieurs rangées de rouleaux
F16H 37/04 - Combinaisons uniquement de transmissions à engrenages
60.
FOUNDATION FOR A WIND TURBINE WITH FIBER REINFORCED CONCRETE
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Alonso Gainza, Javier
Abrégé
A foundation for a wind turbine tower includes a base slab, a pedestal provided on the base slab, the pedestal including attachment means for attaching the wind turbine tower; and a plurality of radial walls extending from the pedestal towards an outer edge of the base slab, wherein at least one of the base slab, the pedestal and at least one of the plurality of radial walls is made of or includes fiber reinforced concrete.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Arellano Aguado, Jesus
Diaz De Corcuera Martinez, Asier
Munch, Stephane
Ozcetin, Gulfer
Vital Amuchastegui, Pablo
Abrégé
Method for controlling the operation of a wind turbine (1), the wind turbine (1) comprising a generator (8), a converter (9), a converter control unit (15), a wind turbine controller (16) and a connection device (10) to an external electrical power grid (11), wherein electrical power generated by the generator (8) is input into the power grid (11) via the converter (9), wherein the wind turbine controller (16) is configured to determine a fault condition according to a fault condition signal (31) and to active a safe operating mode in response to the fault condition signal (31) indicating a fault condition, wherein the fault condition signal (31) is determined by evaluating changes in an available output power signal (26) generated by the converter control unit (15), the available output power signal (26) describing the active output power available from the converter (9).
F03D 17/00 - Surveillance ou test de mécanismes moteurs à vent, p. ex. diagnostics
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
62.
METHOD FOR OPERATING A WIND TURBINE AND SYSTEM FOR WIND POWER GENERATION
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Fernandez Romero, Ignacio
Meinicke, Alexander
Campion Mezquiriz, Alvaro
Abrégé
Method for operating a wind turbine (1) comprising a rotor with multiple rotor blades (3), at least one actuator (4) for adjusting the pitch angle (5, 22) of the rotor blades (3) and a generator (6) driven by the rotor (2), wherein in at least one mode of operation of the wind turbine (1) the actuator (4) is used to vary the pitch angle (5, 22) to improve the load condition of at least one component of the wind turbine (1), in particular of a bearing, by adding a time variable pitch offset to a given pitch angle (33), wherein the pitch offset is varied within a given offset interval of up to 2° by performing repetitions of an offset variation comprising the steps of increasing the pitch offset to a first pitch offset limit (7) within the offset interval and subsequently decreasing the pitch offset to a second pitch angle limit (8) within the offset interval, wherein the given pitch angle (33) depends on a calibration information (10), wherein a measure (30) for the variation of the output power (34) of the generator (6) due to the variation of the pitch angle (5, 22) is determined based on a statistical analysis of measurements (19, 20) concerning the output power (37) of the generator taken during at least of the repetitions of the offset variation, and wherein the calibration information (10) is determined or updated based on this measure (30).
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Redin, Juan
Salvatierra Macua, Carlos Jesus
Abrégé
A torque transmitting coupling assembly (1) for a wind turbine (40) configured to couple a first coupling part (2) to a second coupling part (3), wherein the first coupling part (2) and the second coupling part (3) are configured to rotate about a longitudinal axis (42) of the torque transmitting coupling assembly (1), wherein the first coupling part (2) is supported by a first bearing (48) and a second bearing (49) distributed along the longitudinal axis (42), wherein the first coupling part (2) is enclosed by a bearing housing (13) and the first and second bearings (48, 49) are arranged between the first coupling part (2) and the bearing housing (13), wherein the second coupling part (3) is enclosed by a second coupling part housing, wherein the first coupling part (2) and the second coupling part (3) are rigidly coupled by a plurality of fastening means (6).
F16D 1/033 - Accouplements pour établir une liaison rigide entre deux arbres coaxiaux ou d'autres éléments mobiles d'une machine pour liaison bout à bout de deux arbres ou de deux pièces analogues par serrage de deux surfaces perpendiculaires à l'axe de rotation, p. ex. avec des brides boulonnées
F16D 1/12 - Accouplements pour établir une liaison rigide entre deux arbres coaxiaux ou d'autres éléments mobiles d'une machine permettant le réglage des pièces sur l'axe
F16D 3/00 - Accouplements extensibles, c.-à-d. avec moyens permettant le mouvement entre parties accouplées durant leur entraînement
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Garcia Pouso, Alberto
Abrégé
A root bushing for a wind turbine rotor blade is provided, including a plurality of fiber material layers and an insert, wherein the insert is embedded in the fiber material layers, and wherein at least a part of the fiber material layers forms a double scarf joint for transferring loads from the insert to the fiber material layers and vice versa. Due to the double scarf joint it is possible to transfer high loads from the fiber material layers and vice versa. A less load resilient joint like double lap shear joint or the like can be omitted.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Quispitupa Yupa, Amilcar
Gonzalez Vazquez, Francisco Javier
Verburg Riezu, Yonatan
Artal Lorente, Daniel
Abrégé
The present invention relates to a root portion (12) for a wind turbine blade (10), comprising: an inner wall (14), an outer wall (15), a filler (16), an inner volume (13), mounting inserts (17), and a transversal holding arrangement (19), wherein the transversal holding arrangement (19) comprises at least one inlay beam (23) extending from the inner wall (14) and/or the outer wall (15) into a mounting insert hole (24) of at least one mounting insert (17) for holding the mounting insert (17) in the root portion (12) during operation of the wind turbine blade (10), and wherein the mounting insert hole (24) is a through hole and the at least one inlay beam (23) extends from the inner wall (14) through the mounting insert hole (24) to the outer wall (15). The invention further relates to a wind turbine blade (10) with the root portion (12), a method of producing the root portion (12) and a method for modifying a root portion.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Barrenechea Gruber, Roberto Carlos
Endemano Ventura, Lázaro
Mendizabal Abasolo, Patxi
Rojo Ochoa, Raquel
Zudaire Latienda, Pedro Maria
Abrégé
The present invention relates to a method of power management of a hybrid power plant (100). Before a predefined time range, the method comprises the steps of: generating a power generation schedule (205) of the renewable power generation equipment (110) during the predefined time range on the basis of forecasts parameters (204), obtaining from a controller of the grid (141), the user (150) and/or the power conversion equipment (160) a power supply schedule (206) defining a power to be supplied to one of the electrical grid (140), the user (150) and/or the power conversion equipment (160) during the predefined time period and of determining a power injection schedule (207) of the power plant (100) defining a power supply of the power plant (100) during the predefined time range on the basis of the power generation schedule (205) and of the power supply schedule (206). During the predefined time range the method comprises the steps of supplying the power of the power plant (100) to electrical grid (140) and/or to the user (150) on the basis of the power supply schedule (206) and of supplying a surplus power of the plant (100) defined as a difference between the power injection schedule (207) and the power supply schedule (206) to one of the electrical grid (140), the user (150), the energy storage system (120) and the power conversion equipment (160).
H02J 3/00 - Circuits pour réseaux principaux ou de distribution, à courant alternatif
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
H02J 3/48 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs contrôlant la répartition de puissance entre les générateurs, convertisseurs ou transformateurs contrôlant la répartition de la composante en phase
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Alonso Gainza, Javier
Cal Hernandez, Alexandre
San Vicente Larrechi, Borja
Unanua Hermoso De Mendoza, Pablo
Abrégé
sidetopbottombottomtopsideside) of adjacent segments (1S) are adapted for connection at a wind turbine installation site. The invention further describes a wind turbine tower (20) and a method of constructing a wind turbine tower (20).
E04H 12/08 - Structures faites en matériaux spécifiés en métal
E04H 12/12 - Structures faites en matériaux spécifiés en béton ou autre matériau analogue à la pierre, avec ou sans armature interne ou externe, p. ex. avec revêtements métalliques, avec éléments de coffrage permanents
F03D 13/20 - Dispositions pour monter ou supporter des mécanismes moteurs à ventPylônes ou tours pour des mécanismes moteurs à vent
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Barenys Espadaler, Mireia
García Cerrada, Aurelio
Matuonto, Marco
Rouco Rodriguez, Luis
Sáiz Marín, Elena
Zamora Macho, Juan Luis
Moriano Martín, Javier
García Aguilar, Javier
Abrégé
A method of detecting an islanding operation of an electrical power generating system coupled to a power grid provided. The method includes monitoring a frequency that is indicative of an AC frequency on the power grid and monitoring reactive power on a coupling of the electrical power generating system to the power grid. The monitored frequency is processed to determine a rate of change of frequency, and the monitored reactive power is processed to determine a rate of change of reactive power. A detection parameter is determined from the determined rate of change of frequency and the determined rate of change of reactive power. An islanding operation of the electrical power generating system is detected if the detection parameter exceeds an islanding threshold value.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Barrenechea Gruber, Roberto Carlos
Endemano Ventura, Lázaro
Erice Carbonero, Victor
Rojo Ochoa, Raquel
Zudaire Latienda, Pedro Maria
Abrégé
Method of power management of a hybrid co-located power plant (100), based on optimization algorithms oriented towards determining firm and predictable power scheduled, considering the minimization of the storage usage and the minimization of the energy curtailment, the method comprising: generating a power generation schedule (205); determining an energy storage power schedule (206); determining a power injection schedule (207); determining a state of charge target schedule (208) of the energy storage system (120) during the predefined time range on the basis of the forecasts parameters (204); wherein in the predefined time range the method comprises: supplying and/or absorbing the power from the energy storage system (120) to/from the second point of connection (121) according to the energy storage power schedule (206); controlling the power supply of the power plant (100) from the renewable energy generation equipment (110) to the first point of connection (101) and/or to the energy storage system (120) on the basis of the power injection schedule (207) and the state of charge target (208).
H02J 3/00 - Circuits pour réseaux principaux ou de distribution, à courant alternatif
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
H02J 3/48 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs contrôlant la répartition de puissance entre les générateurs, convertisseurs ou transformateurs contrôlant la répartition de la composante en phase
70.
METHOD OF POWER MANAGEMENT OF A HYBRID POWER PLANT
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Barrenechea Gruber, Roberto Carlos
Endemano Ventura, Lázaro
Rojo Ochoa, Raquel
Zudaire Latienda, Pedro Maria
Abrégé
Method of power management of a hybrid power plant (100), wherein the method comprises: determining a power generation schedule (208) defining a power generation of the power plant (100) during a predefined time range on the basis of forecasts parameters (205); providing a power injection schedule and capacities for reserves and regulation services (209) defining a power injection of the power plant (100) during the predefined time range to a controller of the grid (141), wherein the power injection schedule (210) is determined on the basis of the power generation schedule (208) and of at least one further forecast parameter (205); receiving a committed power injection schedule and capacities for reserves and regulation services (210) from the controller of the grid and/or market (141); wherein in the predefined time range the method comprises: supplying the power of the power plant (100) to the point of connection (101) on the basis of the committed power injection schedule (210) and controlling the power of the power plant (100) supplied to the point of connection (101) in real time on the basis of input signals received from the controller of the grid (141) and of at least one optimization parameter.
H02J 3/00 - Circuits pour réseaux principaux ou de distribution, à courant alternatif
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
H02J 3/48 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs contrôlant la répartition de puissance entre les générateurs, convertisseurs ou transformateurs contrôlant la répartition de la composante en phase
71.
A METHOD AND AN APPARATUS FOR COMPUTER-IMPLEMENTED PREDICTION OF POWER PRODUCTION OF ONE OR MORE WIND TURBINES IN A WIND FARM
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Martinez Mendoza, Fernando Roque
Niegowski, Maciej Marek
Pappala, Venkata Swaroop
Sierra Medina, Pablo
Yashchenko, Sergey
Abrégé
A method for computer-implemented prediction of power production of a wind farm includes: obtaining first weather forecast data for a first time period, obtaining first power production data for the first time period, obtaining second weather forecast data for a second time period; determining second power production data for the second time period by processing the first weather forecast data, the first power production data and the second weather forecast data by a trained recurrent neural network, where the first weather forecast data, the first power production data and the second weather forecast data are fed as a digital input to the trained recurrent neural network and the recurrent neural network provides the second power production data as a digital output, the second power production data being a prediction of power production for the second time period.
G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
72.
METHOD AND DEVICE OF CONTROLLING A WIND TURBINE BY INDIVIDUAL PITCH CONTROL
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Delgado Tejedor, Fernando
Roura Sues, Miguel
Chacon Garcia, David
Barrios Gomez, Ignacio
Bilges, Sören
Munch, Stephane
Abrégé
It is described a method and a device of controlling a wind turbine (1). The method comprising at least one of the following determining steps : determining upper and lower envelopes (E1, E2) of a blade out-of-plane bending moment; determining upper and lower envelopes of a shaft tilt and yaw bending moment (Mi); determining upper and lower envelopes of a tower top tilt and yaw bending moment; determining a blade tip-tower distance (63). The method comprising individually controlling a pitch angle of each blade (6) so that the envelopes of the determined variables and/or the blade tip-tower distance (63) are controlled to be below or above certain predetermined threshold values.
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
F03D 17/00 - Surveillance ou test de mécanismes moteurs à vent, p. ex. diagnostics
73.
POWER MANAGEMENT METHOD FOR INTEGRATED CONFIGURATIONS
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Barrenechea Gruber, Roberto Carlos
Barriola Hernandorena, Nahia
Endemano Ventura, Lázaro
Mendizabal Abasolo, Patxi
Rojo Ochoa, Raquel
Zudaire Latienda, Pedro Maria
Abrégé
Method of power management of a hybrid power plant (100) with an integrated configuration, the method comprising: determining a power generation schedule (205) defining a power generation of the power plant (100) during a predefined time range on the basis of forecasts parameters (204); determining a state of charge target (207) of the energy storage system (120) during the predefined time range on the basis of the forecasts parameters (204); determining a power injection schedule (206) of the power plant (100) defining a power supply to the electrical grid (140) during the predefined time range on the basis of the power generation schedule (205); wherein in the predefined time range the method comprises: supplying the power of the power plant (100) to the common point of connection (101) on the basis of the power injection schedule (207), controlling the composition of the supplied power consisting of power from the renewable power generation equipment (110) and the energy storage system (120) on the basis of the power injection schedule (206) and the state of charge target (207).
H02J 3/46 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs contrôlant la répartition de puissance entre les générateurs, convertisseurs ou transformateurs
H02J 3/00 - Circuits pour réseaux principaux ou de distribution, à courant alternatif
H02J 3/32 - Dispositions pour l'équilibrage de charge dans un réseau par emmagasinage d'énergie utilisant des batteries avec moyens de conversion
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
H02J 7/00 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries
H02J 7/35 - Fonctionnement en parallèle, dans des réseaux, de batteries avec d'autres sources à courant continu, p. ex. batterie tampon avec des cellules sensibles à la lumière
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Soto, Daniel
Abrégé
A collector system for a wind power plant that includes one or more wind turbines is provided. The wind power plant collector system includes a DC collector grid, wherein the DC collector grid has a symmetrical monopole topology including a first pole and a second pole of opposite polarity. The DC collector grid is configured to collect electrical power generated by the one or more wind turbines and to transport the collected electrical power to a common converter by a DC current having a predetermined current direction in the DC collector grid. The common converter is connected to the DC collector grid, the common converter being configured to convert DC electrical power received from the DC collector grid and to provide the converted electrical power to a load.
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Matuonto, Marco
Rodriguez Izal, José Luis
Abrégé
A wind power plant for providing electrical power to a utility grid is provided, the wind power plant including: at least one wind turbine having a wind turbine generator coupled to a wind turbine rotation shaft to which plural rotor blades are mounted, the wind turbine providing electric power at an output terminal; at least one power conversion system, each including: a plant motor electrically coupled and configured to receive the electric power from the output terminal of the at least one wind turbine and convert it into rotational power of a plant motor shaft; a plant generator mechanically coupled to the plant motor shaft and electrically coupleable to the electric utility grid.
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
F03D 9/00 - Adaptations des mécanismes moteurs à vent pour une utilisation particulièreCombinaisons des mécanismes moteurs à vent avec les appareils qu’ils entrainentMécanismes moteurs à vent spécialement adaptés à l’installation dans des endroits particuliers
H02J 3/16 - Circuits pour réseaux principaux ou de distribution, à courant alternatif pour règler la tension dans des réseaux à courant alternatif par changement d'une caractéristique de la charge du réseau par réglage de puissance réactive
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
76.
Wind turbine electrical power generating system and method
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Soto, Daniel
Abrégé
A wind turbine electrical power generating system is provided and is configured to supply generated electrical power to a main load. The system includes a wound rotor induction generator including stator windings and a generator rotor with rotor windings. The generator rotor is configured to be mechanically coupled to a wind turbine rotor of the wind turbine to receive rotational mechanical energy. A first converter is electrically coupled to the stator windings such that in operation, AC electrical power generated by the stator windings and provided to the main load passes through the first converter. A second converter is electrically coupled to the rotor windings of the generator rotor, wherein an AC frequency of the generated AC electrical power is at least partially determined by setting or controlling currents in the rotor windings of the generator rotor by the second converter.
H02P 9/00 - Dispositions pour la commande de génératrices électriques de façon à obtenir les caractéristiques désirées à la sortie
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
H02M 7/04 - Transformation d'une puissance d'entrée en courant alternatif en une puissance de sortie en courant continu sans possibilité de réversibilité par convertisseurs statiques
77.
WIND TURBINE COOLING SYSTEM AND TESTING METHOD THEREOF
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Cortaire Apesteguia, Jorge
Abrégé
A wind turbine cooling system, a wind turbine with the cooling system, and a method for testing the cooling system are provided. The cooling system includes a radiator assembly and a nacelle. The nacelle includes a housing rotatably connected with the radiator assembly. The cooling system is configured to thermally couple the radiator assembly to a heat source inside the nacelle. The radiator assembly is moveable between a first position and a second position. When in the first position, the radiator assembly extends away from an upper roof of the housing of the nacelle. When in the second position, the radiator assembly is contained inside the housing of the nacelle.
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Jacobs, Michael
Yu, Nan
Abrégé
A door arrangement for a wind turbine includes a door with an outer side and an inner side and a door locking device for locking and unlocking the closed door by coupling and decoupling the closed door with a stationary component of the door arrangement of the wind turbine, wherein the door locking device includes a central component, an attachment and a connector, wherein the central component is attached to the stationary component by the attachment and connectable and disconnectable with the door by the connector for locking and unlocking the door by a person being at the outer side, wherein the attachment is manually releasable by a person being at the inner side for disconnecting the central component from the stationary component to unlock the door without tools.
E05C 17/44 - Dispositifs pour tenir les battants dans une position d'ouvertureDispositifs pour limiter l'ouverture des battants ou pour tenir les battants dans une position d'ouverture par une pièce mobile disposée entre le battant et le dormantDispositifs de freinage, butées ou tampons combinés avec ces dispositifs par des moyens mécaniques par un dispositif porté par le battant ayant un contact à friction ou similaire avec une surface plate fixe, p. ex. pied rétractable
F03D 80/00 - Détails, composants ou accessoires non prévus dans les groupes
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
March Nomen, Victor
Nauheimer, Michael
Ponnada, Sri Markandeya Rajesh
Abrégé
Wind turbine blade comprising two electrically conductive spar caps (10, 11), two lightning down conductor arrangements (12, 13), and a further electrical conductor (16), wherein the spar caps (10, 11) and the lightning down conductor arrangements (12, 13) extend along a spanwise direction of the blade (2) at least between a root-side end portion (19) and a tip-side end portion (20) of the blade (2), wherein each of the spar caps (10, 11) is electrically connected to only one of the lightning down conductor arrangements (12, 13) within a section (21) of the blade (2) between the root-side end portion (19) and the tip-side end portion (20), wherein the further electrical conductor (16) is electrically connected within the section (21) to only one of the spar caps (10, 11) and/or to only one of the lightning down conductor arrangements (12, 13) at one or more connection positions (22).
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Roura Sues, Miguel
Chacon Garcia, David
Munch, Stephane
Barrios Gomez, Ignacio
Bilges, Sören
Delgado Tejedor, Fernando
Abrégé
It is described a method of estimating and controlling the loads of a wind turbine (1). The wind turbine (1) comprising a tower (2), a nacelle (3) being mounted rotatable about a yaw axis (9) to the tower (2), a hub (4) being mounted rotatable about a rotation axis (8) to the nacelle (3), and at least one blade (6) being mounted to the hub (4). The method comprising the steps of: measuring an acceleration in a part of a wind turbine (1) by at least one accelerometer; calculating a first deflection estimate based on the measured acceleration; measuring an angular velocity in a part of the wind turbine (1) by at least one gyroscope; calculating a second deflection estimate based on the angular velocity; using the first and second deflection estimates to obtain a final deflection; comparing the final deflection with a threshold value and, if the final deflection exceeds the threshold value, derating or uprating an output of the wind turbine (1).
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
81.
METHOD OF DETERMINING A TILT AND YAW BENDING MOMENTS AT A WIND TURBINE SHAFT BY DISTANCE SENSORS
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Chacon Garcia, David
Munch, Stephane
Roura Sues, Miguel
Delgado Tejedor, Fernando
Barrios Gomez, Ignacio
Bilges, Sören
Abrégé
ii), arranged to face the flange surface (13) for measuring a distance (di) to the flange surface (13), wherein the method comprises: determining a baseline distance profile for each distance sensor (12i) as a function of the rotor azimuth (ψ) by using the distance sensor s (12i) when the wind turbine is operated at an idling condition without power production, preferably with blades (6) of the wind turbine (1) being pitched to a feather position; operating the wind turbine and determining a distance between the baseline profile and an actual distance (di) measured by the distance sensor (12i) for a given azimuth (ψ) of the flange surface (13); and determining the tilt bending moment (Mtilt) and the yaw bending moment (Myaw) as function of the determined distance between the baseline profile and the actual distance (di) at the azimuth (ψ) of the flange surface (13).
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Guilera De Gispert, Joan Pau
March Nomen, Victor
Mathis, Lukas
Zeller, Lenz Simon
Abrégé
A lightning protection system for segmented wind turbine blades avoiding the lightning current to flow through the bolts (13,23) of the metallic joint (30) connecting the sections (10,20) of the blade is provided.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Roura Sues, Miguel
Chacon Garcia, David
Delgado Tejedor, Fernando
Barrios Gomez, Ignacio
Bilges, Sören
Munch, Stephane
Abrégé
It is described a method of determining an out-of-plane bending moment envelope of at least one blade (6) of a wind turbine (1) comprising a tower (2), a nacelle (3) being mounted rotatable about the longitudinal axis of tower (2) mounted on a rigid or moving foundation, aa hub (4) being mounted rotatable about a rotation axis (8) to the nacelle (3), and the blade (6) being mounted to the hub (4). The method comprises determining or measuring a shaft tilt bending moment and a shaft yaw bending moment; determining an oscillatory bending moment component, which acts on the section of the blade (6), based on the shaft tilt bending moment and/or the shaft yaw bending moment; determining a mean out-of-plane bending moment component, which acts on a section of the blade (6), from a model of the wind turbine (1) exposed to and interacting with the wind inflow; and superposing the oscillatory bending moment component on the mean bending moment component to obtain an upper envelope and a lower envelope of the out- of-plane bending moment.
F03D 17/00 - Surveillance ou test de mécanismes moteurs à vent, p. ex. diagnostics
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Saenz Aguirre, Aitor
Garcés Quilez, Javier
Munch, Stephane
Jensen, Dennis Stachniuk
Belmonte De Udaondo, Esteban
Abrégé
It is described a method for starting up a wind turbine (100) 5 for generating electrical power, wherein ice accretion (156) is on at least one blade (114) of a rotor (110) of the wind turbine (100) and wherein the at least one blade (114) has a variable pitch angle, the method comprising - measuring the rotational speed of the electromechanical transducer (140), - calculating a pitch angle adjustment with the goal of maximizing the rotational speed, - modifying the pitch angle in a positive or negative step according to the pitch angle adjustment, - iterate the preceding steps.
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
F03D 80/40 - Détection de givreMoyens de dégivrage
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Gaminde Larreta, Beinat
Abrégé
A wind turbine lifting arrangement includes a tower, a nacelle, a lifting platform and a lifting device attached to the lifting platform for lifting components to be installed in or deinstalled from the nacelle, the nacelle including a main frame attached to a top section of the tower, an attachment portion of the lifting platform being arranged underneath the nacelle and attached to the main frame. The lifting platform includes a lifting device portion provided adjacent to the attachment portion, the lifting device is attached to the lifting platform in the lifting device portion and the lifting device portion and the lifting device are arranged next to a longitudinal side of the nacelle which is one of two opposite longitudinal sides of the nacelle extending along a longitudinal axis of the nacelle and arranged between a top side and bottom side of the nacelle.
B66C 23/20 - Installations comportant essentiellement un palonnier, une flèche ou une structure triangulaire agissant comme bras de levier, montées de façon à permettre des mouvements de translation ou d'orientation dans des plans verticaux ou horizontaux, ou bien une combinaison de ces mouvements, p. ex. grues à flèche, derricks ou grues sur tours spécialement adaptées pour être utilisées dans des emplacements particuliers ou à des usages particuliers avec couples d'appui assurés par des murs de bâtiments ou de constructions similaires
F03D 13/20 - Dispositions pour monter ou supporter des mécanismes moteurs à ventPylônes ou tours pour des mécanismes moteurs à vent
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Matuonto, Marco
Rodriguez Izal, José Luis
Demirok, Erhan
Abrégé
A wind turbine electrical power generating system includes a first generator configured to be mechanically coupled to a rotor, a second generator configured to be mechanically coupled to the rotor; and an electrical power conversion system including at least a first and a second power converter section. The first power converter section is electrically coupled between a rotor winding of the first generator and a coupling point and a stator winding of the first generator is electrically coupled to the coupling point such that only a fraction of electrical power generated by the first generator passes through the power conversion system. The second power converter section is electrically coupled between an electrical power output of the second generator and the coupling point such that the electrical power provided by the second generator to the coupling point passes through the power conversion system.
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Sepúlveda Gonzalez, Miguel Ángel
Tapia Pascal, Mikel
Abrégé
A method of operating a wind turbine wherein the wind turbine includes a doubly-fed induction generator that converts rotational mechanical power to electrical power. The method includes operating the wind turbine in a first operational mode in which a speed of a rotor of the wind turbine is controlled to maximize the power generation by the wind turbine. Upon a monitored parameter reaching or dropping below a respective threshold, the wind turbine is operated in a second operational mode. The monitored parameter may include at least one of the rotational speed of the rotor, the rotational speed of the doubly-fed induction generator, a wind speed, an active electrical power, or generator torque. Operating the wind turbine in the second operational mode may include increasing the rotational speed of the doubly-fed induction generator at the expense of the generation of active electrical power by the power generating system.
F03D 7/00 - Commande des mécanismes moteurs à vent
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
F03D 9/25 - Mécanismes moteurs à vent caractérisés par l’appareil entrainé l’appareil étant un générateur électrique
H02P 9/00 - Dispositions pour la commande de génératrices électriques de façon à obtenir les caractéristiques désirées à la sortie
H02P 9/10 - Commande s'exerçant sur le circuit d'excitation de la génératrice afin de réduire les effets nuisibles de surcharges ou de phénomènes transitoires, p. ex. application, suppression ou changement brutal de la charge
H02P 101/15 - Adaptation particulière des dispositions pour la commande de génératrices pour éoliennes
H02P 103/10 - Dispositions pour la commande caractérisées par le type de génératrice du type asynchrone
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Alisar, Ibrahim
Rebollo López, Emilio David
Rodriguez Izal, José Luis
Abrégé
A power conversion system configured to provide electrical power conversion is provided. The system comprises a first power converter (10) comprising power electronic switches of a first type that are switchable to provide electric power conversion; and a second power converter (20) connected in parallel to the first power converter (10). The second power converter (20) comprises power electronic switches of a second type that are switchable to provide electric power conversion. The second type is different from the first type. The second type of power electronic switches comprises wide bandgap semiconductor switches. The system further comprises a controller (30) configured to operate the power conversion system (100) in a first operating mode in which the second power converter (20) is operated at a first switching frequency of the power electronic switches to provide power conversion, and in a second operating mode in which the second power converter (20) is operated at a second switching frequency of the power electronic switches and the first power converter (10) is operated to provide power conversion, wherein the second switching frequency is higher than the first switching frequency.
H02M 1/00 - Détails d'appareils pour transformation
H02M 5/458 - Transformation d'une puissance d'entrée en courant alternatif en une puissance de sortie en courant alternatif, p. ex. pour changement de la tension, pour changement de la fréquence, pour changement du nombre de phases avec transformation intermédiaire en courant continu par convertisseurs statiques utilisant des tubes à décharge ou des dispositifs à semi-conducteurs pour transformer le courant continu intermédiaire en courant alternatif utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs
H02M 1/12 - Dispositions de réduction des harmoniques d'une entrée ou d'une sortie en courant alternatif
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Sacristan San Martin, Juan Manuel
Peredo Argos, Jaime
Abrégé
A wind turbine is provided including a nacelle and a plurality of electrical and/or mechanical components for the generation and/or the conversion of energy, wherein the nacelle includes a housing structure enclosing an inner volume, in which the components are arranged, wherein the nacelle includes at least one movable extension structure, which may be moved between a retracted position and an extended position, wherein the inner volume enclosed by the housing structure is increased in the extended position.
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Sepúlveda Gonzalez, Miguel Ángel
Tapia Pascal, Mikel
Abrégé
A method of controlling an induction generator is provided connected to a utility grid, the method including: receiving an actual grid frequency; and controlling rotor windings of the generator by a rotor control signal having a rotor winding reference frequency being set in dependence of the actual grid frequency.
H02P 9/10 - Commande s'exerçant sur le circuit d'excitation de la génératrice afin de réduire les effets nuisibles de surcharges ou de phénomènes transitoires, p. ex. application, suppression ou changement brutal de la charge
H02P 23/08 - Commande basée sur la fréquence de glissement, p. ex. en additionnant la fréquence de glissement et une fréquence proportionnelle à la vitesse
91.
CLIMBING CRANE FOR ERECTING A WIND TURBINE AND METHOD FOR ERECTING A WIND TURBINE WITH A CLIMBING CRANE
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Erro Martinez, Carlos
Osorio Martinez, Juan Manuel
Abrégé
A climbing crane comprising at least a vibration damping device (31) configured for damping at least a first vibration frequency of the erected tower (12) of a wind turbine (10) when the climbing crane (20) is coupled to the tower (12) is provided. Furthermore, a method for erecting a wind turbine with a climbing crane is also provided.
B66C 23/20 - Installations comportant essentiellement un palonnier, une flèche ou une structure triangulaire agissant comme bras de levier, montées de façon à permettre des mouvements de translation ou d'orientation dans des plans verticaux ou horizontaux, ou bien une combinaison de ces mouvements, p. ex. grues à flèche, derricks ou grues sur tours spécialement adaptées pour être utilisées dans des emplacements particuliers ou à des usages particuliers avec couples d'appui assurés par des murs de bâtiments ou de constructions similaires
E04H 9/02 - Bâtiments, groupes de bâtiments ou abris conçus pour résister à des situations extérieures anormales, p. ex. à des bombardements, à des séismes ou à des climats extrêmes, ou pour se protéger de ces situations résistant aux séismes ou à l'effondrement du sol
E04H 12/34 - Dispositions pour élever ou abaisser des tours, mâts, poteaux, corps de cheminée ou analogues
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
F03D 13/00 - Assemblage, montage ou mise en route de mécanismes moteurs à ventDispositions spécialement adaptées au transport de composants de mécanismes moteurs à vent
F03D 13/10 - Assemblage de mécanismes moteurs à ventDispositions pour l’érection de mécanismes moteurs à vent
F03D 13/20 - Dispositions pour monter ou supporter des mécanismes moteurs à ventPylônes ou tours pour des mécanismes moteurs à vent
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Barrenechea Gruber, Roberto Carlos
Mendizabal Abasolo, Patxi
Zudaire Latienda, Pedro Maria
Abrégé
A method of power management of a hybrid power plant includes at least one type of renewable power generation equipment and an energy storage system including: before a first dispatching time range: using first forecasts of energy production capability and energy price, and in particular hybrid plant status and plant parameters, to derive a first power generation schedule defining power generation in the first dispatching time range; at a dispatch point in time within the first dispatching time range: using second forecasts of energy production capability and energy price, and in particular plant status and plant parameters, to derive a second power generation schedule defining power generation in a second dispatching time range; and calculating an optimal power injection value for the dispatch point in time based on the first power generation schedule and the second power generation schedule taking into account at least one constraint.
G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Fernandez Diaz, Juan
Garcia Plaza, Manuel
Martinez Mendoza, Fernando Roque
Niegowski, Maciej Marek
Pappala, Venkata Swaroop
Trujillo, Sebastian
Yashchenko, Sergey
Abrégé
It is described a method of predicting a frequency value of a utility grid (3) to which a wind park (1) is connected, the method comprising: obtaining plural utility grid measurement values (7) pertaining to a predetermined time range before and until a present point in time; obtaining plural wind park measurement values (12) pertaining to the time range; feeding the plural utility grid measurement values (7) and the plural wind park measurement values (12) into a recurrent neural network trained to output the frequency value at at least one next point in time, the next point in time being in particular between 0.5 s and 2 s after the present point in time.
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Demissie, Edom
Frandsen, Rasmus Berg
Groendahl, Erik
Jensen, Jens Bomholt
Urda, Adriana Cristina
Tomey Lopez, Estanislao Pablo
Azar, Ziad
Thougaard, Hans-Jørgen
Jacobsen, Bo Nedergaard
Abrégé
A method of manufacturing a permanent magnet module for a permanent magnet machine includes the steps of: providing at least a permanent magnet, manufacturing a cover for covering the permanent magnet, the cover including a stainless steel, wherein the cover includes at least a top side and two lateral sides, the magnetic permeability of the top side being higher than the magnetic permeability of the lateral sides, the lateral sides being respectively attached to a first and a second edge of the top side, the lateral sides being angled with respect to the top side, attaching the cover to the permanent magnet.
H02K 15/03 - Procédés ou appareils spécialement adaptés à la fabrication, l'assemblage, l'entretien ou la réparation des machines dynamo-électriques des corps statoriques ou rotoriques comportant des aimants permanents
95.
METHOD AND APPARATUS FOR COMPUTER-IMPLEMENTED CONTROLLING OF A DOUBLY-FED ELECTRIC MACHINE
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Calvente Cordon, Pablo
Rodriguez Izal, José Luis
Celaya Lecea, Felipe Carlos
Rebollo López, Emilio David
Abrégé
A method for computer-implemented controlling a doubly-fed electric machine, where stator windings of a stator are directly connected to an electrical grid and where rotor windings of a rotor are connected to the electrical grid via a power conversion system, comprising an AC-to-DC converter and a DC-to-AC converter and being adapted to control a rotor current, the method comprising obtaining a rotational speed of the machine; determining, whether the obtained rotational speed is within a predetermined operational speed range around the synchronous speed; and if it is determined that the obtained rotational speed is within the predetermined operational speed range, controlling the AC-to-DC converter of the power conversion system to force injection of a stator reactive power to create a harmonic at a frequency different than a rated frequency of the machine; and controlling the DC-to-AC converter of the power conversion system to compensate the created stator reactive power and the harmonic.
H02P 9/00 - Dispositions pour la commande de génératrices électriques de façon à obtenir les caractéristiques désirées à la sortie
H02P 29/032 - Prévention d’un endommagement du moteur, p. ex. détermination de limites individuelles de courant pour différentes conditions de fonctionnement
H02J 3/16 - Circuits pour réseaux principaux ou de distribution, à courant alternatif pour règler la tension dans des réseaux à courant alternatif par changement d'une caractéristique de la charge du réseau par réglage de puissance réactive
H02J 3/18 - Dispositions pour réglage, élimination ou compensation de puissance réactive dans les réseaux
96.
Method of protecting a converter of a wind turbine and protection system
Siemens Gamesa Renewable Energy Innovation & Technology S.L. (Espagne)
Inventeur(s)
Agudo Araque, Andres
Bermejo Hernandez, Victor
Vazquez-Prada Simon, Fernando
Abrégé
A method of protecting a converter of a wind turbine and a respective protection system are provided. The converter is coupled to a generator of the wind turbine to perform conversion of electrical power produced by the generator, the converter including plural semiconductor components that are operational to provide the conversion of the electrical power. The method includes the performing of a step of estimating a junction temperature of at least one of the semiconductor components by determining a current in the converter associated with power loss in one or more of the semiconductor components; estimating power loss associated with the one or more semiconductor components based on the determined current and on a state of the one or more semiconductor components; and using a thermal model to estimate the junction temperature of the semiconductor components based on the estimated power loss. The estimating step is repeatedly performed.
H02P 29/68 - Commande ou détermination de la température du moteur ou de l'entraînement basée sur la température d’un composant d’entraînement ou d’un composant semi-conducteur
H02J 3/36 - Dispositions pour le transfert de puissance électrique entre réseaux à courant alternatif par l'intermédiaire de haute tension à courant continu
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
H02M 1/00 - Détails d'appareils pour transformation
H02M 1/32 - Moyens pour protéger les convertisseurs autrement que par mise hors circuit automatique
H02M 7/537 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant alternatif sans possibilité de réversibilité par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs, p. ex. onduleurs à impulsions à un seul commutateur
H02P 101/15 - Adaptation particulière des dispositions pour la commande de génératrices pour éoliennes
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Gutierrez Ardanaz, Roberto
March Nomen, Victor
Abrégé
Wind turbine blades with de-icing and/or anti-icing systems including at least one heating unit disposed along the blade's length and between the blade's chord, wherein each heating unit in turn comprises a plurality of heating elements connected both in series and in parallel in a matrix configuration by overlaps or cross-adjacent junctions between adjacent heating elements order to change the electric heating current flow disposing of any additional terminals cables and further enabling to generate a gradually increasing heat flux from the blade root towards the blade tip and from the trailing edge towards the leading edge through each individual heating unit adapting accurately to heat flux demand and hence reducing energy consumption for de-icing and/or anti-icing.
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Gaminde Larreta, Beinat
Abrégé
The invention relates to a system (100) for repositioning two components (4, 10) of a wind turbine (1) with respect to each other, the two components (4, 10) being connected to each other by means of a bolted joint (6, 7, 8, 9) and the system (100) comprising at least one alignment tool kit (20). The invention further relates to a bolted joint (6, 7, 8, 9) of two components (4, 10) of a wind turbine (1).
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY S.L. (Espagne)
Inventeur(s)
Bueno Pena, Emilio Jose
Garcia Aguilar, Javier
Garcia Cerrada, Aurelio
Gonzalez Cajigas, Adrian
Saiz Marin, Elena
Zamora Macho, Juan Luis
Abrégé
A method (800) of operating a power converter (125) is provided. The power converter comprises a rotor side converter (113) configured to be electrically coupled to a rotor (112) of a wound rotor induction generator (110). The method comprises operating the power converter in a grid forming operating mode in which the rotor side converter is operated to control an output voltage (vs) at a stator of the wound rotor induction generator in accordance with a reference stator voltage (v*s). Operating the power converter in the grid forming operating mode comprises deriving, based on the reference stator voltage (v*s) for the output stator voltage (vs), a reference rotor current (i*r,d, i*r,q) for a rotor current in the rotor and controlling the rotor current (ir,d, ir,q) in the rotor in accordance with the reference rotor current (i*r,d, i*r,q).