A steam dispersion system includes a header defining a first end and a second end, a plurality of steam dispersion tubes extending upwardly from the header, a condensate drain outlet located at the first end, a hollow pipe positioned within the header, the pipe defining a length extending in a direction generally from the first end to the second end, the pipe defining a main humidification steam inlet located at the first end and a main steam outlet that is within the header. The hollow pipe is configured to receive steam flowing in from the main steam inlet toward the main steam outlet. The pipe may define a plurality of orifices along the length thereof for allowing steam flowing through the pipe to enter the header for distribution through the dispersion tubes. A steam re-direction structure directs steam flow leaving through the main steam outlet back toward the first end of the header.
A steam dispersion system for building humidification is disclosed. At least a portion of the steam dispersion system is comprised of a flexible material that is collapsible for changing the outer dimension of the portion comprised of the flexible material from a greater, higher-pressure, size, to a smaller, lower-pressure, size.
A gas-fired atmospheric pressure steam humidifier having high efficiency and ultra-low NOx(3) emissions is disclosed. In some examples, the gas-fired humidifier can have an efficiency of greater than 90 percent and a NOx(3) output of less than 20 parts per million (ppm). In one aspect, the humidifier includes a secondary heat exchanger having a first heat exchange section for pre-heating combustion air and a separate second heat exchange section for pre-heating make-up water, wherein the first and second heat exchange sections are in heat transfer communication with exhaust gases generated by the gas-fired burner and combustion blower assembly. In some examples, the first heat exchange section includes orifices for enabling flue gas recirculation.
F24F 6/18 - Humidification de l'air par injection de vapeur dans l'air
F22B 9/00 - Chaudières à vapeur du type à tubes de fumées, c.-à-d. où les fumées provenant d'une chambre de combustion à l'extérieur du corps de la chaudière s'écoulent dans des tubes faisant partie du corps de la chaudière
F22B 31/08 - Installation dans la chaudière d'appareils échangeurs de chaleur ou de moyens de réchauffage de l'air de combustion
F22B 37/06 - Carneaux ou tubes de fuméesAccessoires à cet effet, p. ex. garnitures de fixation des tubes de fumées
F22D 1/00 - Appareils de chauffage d'eau d'alimentation, p. ex. préchauffeurs
F23D 14/22 - Brûleurs à gaz sans prémélangeur, c.-à-d. dans lesquels le combustible gazeux est mélangé à l'air de combustion à l'arrivée dans la zone de combustion avec des conduits d'alimentation en air et en gaz séparés, p. ex. avec des conduits disposés parallèlement ou se croisant
A steam dispersion system includes a header defining a first end and a second end, a plurality of steam dispersion tubes extending upwardly from the header, a condensate drain outlet located at the first end, a hollow pipe positioned within the header, the pipe defining a length extending in a direction generally from the first end to the second end, the pipe defining a main humidification steam inlet located at the first end and a main steam outlet that is within the header. The hollow pipe is configured to receive steam flowing in from the main steam inlet toward the main steam outlet. The pipe may define a plurality of orifices along the length thereof for allowing steam flowing through the pipe to enter the header for distribution through the dispersion tubes. A steam re-direction structure directs steam flow leaving through the main steam outlet back toward the first end of the header.
A steam dispersion system including insulation is disclosed. The steam dispersion system may include a steam dispersion tube with at least one opening defined on an outer surface of the steam dispersion tube and a hollow interior. The insulation covers at least a portion of the steam dispersion tube, the insulation defining an opening aligned with the opening of the steam dispersion tube, wherein the insulation meets 25/50 flame/smoke indexes for UL723/ASTM E-84 and has a thermal conductivity less than about 0.35 Watts/m-K (2.4 in-hr/ft{circumflex over ( )}2 deg F.). A nozzle defining a throughhole may be placed within the opening of the steam dispersion tube, the throughhole being in fluid communication with the hollow interior of the steam dispersion tube to provide a steam exit.
A steam dispersion system for building humidification is disclosed. At least a portion of the steam dispersion system is comprised of a flexible material that is collapsible for changing the outer dimension of the portion comprised of the flexible material from a greater, higher-pressure, size, to a smaller, lower-pressure, size.
A heat transfer system includes a steam chamber that communicates in an open-loop arrangement with a first steam source for supplying steam to the steam chamber, the steam chamber including a steam exit for supplying steam to air at atmospheric pressure. A heat transfer tube communicates in a closed-loop arrangement with a second steam source for supplying steam to an interior surface of the heat transfer tube, the heat transfer tube vaporizing condensate forming within the heat transfer system back to steam that is supplied to the air via the steam exit. The outer surface of the heat transfer tube is configured to contact the condensate and vaporize the condensate back into steam, wherein the heat transfer tube includes a plurality of pockets formed on the outer surface of the tube, each pocket including a pocket exit/entry portion having a smaller cross-sectional area than the cross-sectional area of the pocket at a root portion thereof adjacent the outer surface of the tube.
F28F 1/42 - Éléments tubulaires ou leurs ensembles avec moyens pour augmenter la surface de transfert de chaleur, p. ex. avec des ailettes, avec des saillies, avec des évidements les moyens étant à la fois à l'extérieur et à l'intérieur de l'élément tubulaire
F24F 6/18 - Humidification de l'air par injection de vapeur dans l'air
F28F 13/18 - Dispositions pour modifier le transfert de chaleur, p. ex. accroissement, diminution par application de revêtements, p. ex. absorbant les radiations ou les réfléchissantDispositions pour modifier le transfert de chaleur, p. ex. accroissement, diminution par application d'un traitement de surface, p. ex. un polissage
8.
HEAT EXCHANGER FOR REMOVAL OF CONDENSATE FROM A STEAM DISPERSION SYSTEM
A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.
With respect to atmospheric steam generating humidifiers, the present disclosure resolves the problem of end-users not adjusting the drain interval of the humidifier by using an electronic controller to automatically choose an appropriate drain interval without requiring any user input. The electronic controller accomplishes this by receiving input data from a sensor that measures a water quality parameter, automatically determining a drain interval based on the received data, and sending an output control signal to a drain water control valve to execute a drain event in accordance with the drain interval. In some examples, the electronic controller utilizes a look-up table correlating the water quality parameter to a total dissolved solids or cycles of concentration value.
A gas-fired atmospheric pressure steam humidifier having high efficiency and ultra-low NOx(3) emissions is disclosed. In some examples, the gas-fired humidifier can have an efficiency of greater than 90 percent and a NOx(3) output of less than 20 parts per million (ppm). In one aspect, the humidifier includes a secondary heat exchanger having a first heat exchange section for pre-heating combustion air and a separate second heat exchange section for pre-heating make-up water, wherein the first and second heat exchange sections are in heat transfer communication with exhaust gases generated by the gas-fired burner and combustion blower assembly. In some examples, the first heat exchange section includes orifices for enabling flue gas recirculation.
F24F 6/18 - Humidification de l'air par injection de vapeur dans l'air
F22B 9/00 - Chaudières à vapeur du type à tubes de fumées, c.-à-d. où les fumées provenant d'une chambre de combustion à l'extérieur du corps de la chaudière s'écoulent dans des tubes faisant partie du corps de la chaudière
F22B 31/08 - Installation dans la chaudière d'appareils échangeurs de chaleur ou de moyens de réchauffage de l'air de combustion
F22B 37/06 - Carneaux ou tubes de fuméesAccessoires à cet effet, p. ex. garnitures de fixation des tubes de fumées
F22D 1/00 - Appareils de chauffage d'eau d'alimentation, p. ex. préchauffeurs
F23D 14/22 - Brûleurs à gaz sans prémélangeur, c.-à-d. dans lesquels le combustible gazeux est mélangé à l'air de combustion à l'arrivée dans la zone de combustion avec des conduits d'alimentation en air et en gaz séparés, p. ex. avec des conduits disposés parallèlement ou se croisant
With respect to atmospheric steam generating humidifiers, the present disclosure resolves the problem of end-users not adjusting the drain interval of the humidifier by using an electronic controller to automatically choose an appropriate drain interval without requiring any user input. The electronic controller accomplishes this by receiving input data from a sensor that measures a water quality parameter, automatically determining a drain interval based on the received data, and sending an output control signal to a drain water control valve to execute a drain event in accordance with the drain interval. In some examples, the electronic controller utilizes a look-up table correlating the water quality parameter to a total dissolved solids or cycles of concentration value.
A gas-fired atmospheric pressure steam humidifier having high efficiency and ultra-low NOx(3) emissions is disclosed. In some examples, the gas-fired humidifier can have an efficiency of greater than 90 percent and a NOx(3) output of less than 20 parts per million (ppm). In one aspect, the humidifier includes a secondary heat exchanger having a first heat exchange section for pre-heating combustion air and a separate second heat exchange section for pre-heating make-up water, wherein the first and second heat exchange sections are in heat transfer communication with exhaust gases generated by the gas-fired burner and combustion blower assembly. In some examples, the first heat exchange section includes orifices for enabling flue gas recirculation.
F24F 6/18 - Humidification de l'air par injection de vapeur dans l'air
F22B 31/08 - Installation dans la chaudière d'appareils échangeurs de chaleur ou de moyens de réchauffage de l'air de combustion
F22B 37/06 - Carneaux ou tubes de fuméesAccessoires à cet effet, p. ex. garnitures de fixation des tubes de fumées
F22B 9/00 - Chaudières à vapeur du type à tubes de fumées, c.-à-d. où les fumées provenant d'une chambre de combustion à l'extérieur du corps de la chaudière s'écoulent dans des tubes faisant partie du corps de la chaudière
F23D 14/22 - Brûleurs à gaz sans prémélangeur, c.-à-d. dans lesquels le combustible gazeux est mélangé à l'air de combustion à l'arrivée dans la zone de combustion avec des conduits d'alimentation en air et en gaz séparés, p. ex. avec des conduits disposés parallèlement ou se croisant
A gas-fired atmospheric pressure steam humidifier having high efficiency and ultra-low NOx(3) emissions is disclosed. In some examples, the gas-fired humidifier can have an efficiency of greater than 90 percent and a NOx(3) output of less than 20 parts per million (ppm). In one aspect, the humidifier includes a secondary heat exchanger having a first heat exchange section for pre-heating combustion air and a separate second heat exchange section for pre-heating make-up water, wherein the first and second heat exchange sections are in heat transfer communication with exhaust gases generated by the gas-fired burner and combustion blower assembly. In some examples, the first heat exchange section includes orifices for enabling flue gas recirculation.
F22B 13/00 - Chaudières à vapeur du type à foyer intérieur, c.-à-d. chaudières dans lesquelles les chambres de combustion ainsi que les carneaux ou les tubes de fumées qui les suivent sont disposés à l'intérieur du corps de la chaudière
F22D 1/04 - Appareils de chauffage d'eau d'alimentation, p. ex. préchauffeurs avec tubes d'eau disposés dans le foyer de la chaudière, les tubes de fumées ou sur le trajet des fumées les tubes ayant des surfaces extérieures lisses, p. ex. selon une disposition verticale
With respect to atmospheric steam generating humidifiers, the present disclosure resolves the problem of end-users not adjusting the drain interval of the humidifier by using an electronic controller to automatically choose an appropriate drain interval without requiring any user input. The electronic controller accomplishes this by receiving input data from a sensor that measures a water quality parameter, automatically determining a drain interval based on the received data, and sending an output control signal to a drain water control valve to execute a drain event in accordance with the drain interval. In some examples, the electronic controller utilizes a look-up table correlating the water quality parameter to a total dissolved solids or cycles of concentration value.
A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.
An induction humidification system is disclosed. The induction humidification system includes a base having a circumferential induction coil and a removable and replaceable cartridge received within the interior space defined by the induction coil. The canister has a nonmetallic housing, such as a plastic housing, within which a ferromagnetic member having a circumferential sidewall is disposed. When the canister is received within the base, the ferromagnetic member sidewall and the induction coil are radially overlapping such that a current applied to the induction coil causes the ferromagnetic member to be heated which in turn causes water held within the canister to be converted to steam. Once the ferromagnetic member has reached the end of its useful life, the canister can be simply replaced with a new canister that can be received by the original base.
A steam dispersion system includes a header defining a first end and a second end, a plurality of steam dispersion tubes extending upwardly from the header, a condensate drain outlet located at the first end, a hollow pipe positioned within the header, the pipe defining a length extending in a direction generally from the first end to the second end, the pipe defining a main humidification steam inlet located at the first end and a main steam outlet that is within the header. The hollow pipe is configured to receive steam flowing in from the main steam inlet toward the main steam outlet. The pipe may define a plurality of orifices along the length thereof for allowing steam flowing through the pipe to enter the header for distribution through the dispersion tubes. A steam re-direction structure directs steam flow leaving through the main steam outlet back toward the first end of the header.
F16K 43/00 - Moyens de fermeture auxiliaire des soupapes, pouvant prendre à leur compte, en cas de réparation de la soupape, p. ex. un regarnissage des rondelles, la fonction des moyens normaux de fermetureDispositifs pour le remplacement temporaire des parties de soupapes dans le même but
F24F 6/18 - Humidification de l'air par injection de vapeur dans l'air
18.
Heat exchanger for removal of condensate from a steam dispersion system
A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.
A cycles of concentration (COC) control process and system for an evaporative media cooling system having a water storage tank in fluid communication with a drain valve and a refill valve is disclosed. In one step, the COC control process includes the step of executing a plurality of discrete refill events to maintain a level or volume of water within the storage tank. In another step, the COC control process includes the step of executing a discrete drain event, equaling the volume of a refill event, after a discrete refill event has been executed when necessary to maintain a target cycles of concentration value of the water within the storage tank. In one embodiment, a discrete drain event is executed when the number of refill events is greater than or equals a target cycles of concentration of the water in the storage tank.
G05D 9/12 - Commande du niveau, p. ex. en commandant la quantité du matériau emmagasiné dans un réservoir caractérisée par l'utilisation de moyens électriques
A61L 2/10 - Procédés ou appareils de désinfection ou de stérilisation de matériaux ou d'objets autres que les denrées alimentaires ou les lentilles de contactAccessoires à cet effet utilisant des phénomènes physiques des radiations des ultraviolets
F24F 5/00 - Systèmes ou appareils de conditionnement d'air non couverts par ou
B01F 3/04 - Mélange, p.ex. dispersion, émulsion, selon les phases à mélanger de gaz ou de vapeurs avec des liquides
F28C 3/08 - Autres appareils échangeurs de chaleur à contact direct les sources de potentiel calorifique étant un liquide et un gaz ou une vapeur avec changement d'état, p. ex. absorption, évaporation, condensation
F25D 7/00 - Dispositifs utilisant l'effet d'évaporation sans récupération de la vapeur
F24F 6/04 - Humidification de l'air par évaporation d'eau dans l'air en utilisant des éléments humides fixes non chauffés
F24F 1/00 - Climatiseurs individuels pour le conditionnement de l'air, p. ex. éléments séparés ou monoblocs ou éléments recevant l'air primaire d'une station centrale
A staging control process for an evaporative media cooling system having a plurality of media stages is disclosed. In one step, a leaving air dry bulb temperature setpoint for air exiting the evaporative media cooling system is received or defined. In one aspect, an expected media exit dry bulb temperature is calculated for each media stage based on a dry bulb temperature and a wet bulb temperature of air entering the media cooling system and based on a measured or assigned condition of the media. In another aspect, an estimated combined leaving dry bulb temperature is calculated for different combinations of activated and deactivated media stages. Once the estimated leaving temperature is known, the method can then activate the media stage(s) associated with the combination that has an estimated combined leaving dry bulb temperature that is nearest to but less than the leaving air dry bulb temperature setpoint.
F24F 5/00 - Systèmes ou appareils de conditionnement d'air non couverts par ou
F28C 3/08 - Autres appareils échangeurs de chaleur à contact direct les sources de potentiel calorifique étant un liquide et un gaz ou une vapeur avec changement d'état, p. ex. absorption, évaporation, condensation
A61L 2/10 - Procédés ou appareils de désinfection ou de stérilisation de matériaux ou d'objets autres que les denrées alimentaires ou les lentilles de contactAccessoires à cet effet utilisant des phénomènes physiques des radiations des ultraviolets
B01F 3/04 - Mélange, p.ex. dispersion, émulsion, selon les phases à mélanger de gaz ou de vapeurs avec des liquides
F25D 7/00 - Dispositifs utilisant l'effet d'évaporation sans récupération de la vapeur
G05D 9/12 - Commande du niveau, p. ex. en commandant la quantité du matériau emmagasiné dans un réservoir caractérisée par l'utilisation de moyens électriques
F24F 6/04 - Humidification de l'air par évaporation d'eau dans l'air en utilisant des éléments humides fixes non chauffés
F24F 1/00 - Climatiseurs individuels pour le conditionnement de l'air, p. ex. éléments séparés ou monoblocs ou éléments recevant l'air primaire d'une station centrale
An evaporative media system having multiple media stages each served by a separate pump is disclosed. In one aspect, the evaporative media system has a first media stage and a second media stage. A first pump is provided that is configured to deliver water from the first compartment of the water storage tank to the first media stage. Additionally, a second pump is provided that is configured to deliver water from the first compartment of the water storage tank to the second media stage. Additional media stages and pumps may be provided as well. The disclosed configuration eliminates the need for individual staging valves, provides a higher level of operational redundancy, reduces electrical consumption, and can be provided at a lower cost, as compared to many existing systems.
B01F 3/04 - Mélange, p.ex. dispersion, émulsion, selon les phases à mélanger de gaz ou de vapeurs avec des liquides
A61L 2/10 - Procédés ou appareils de désinfection ou de stérilisation de matériaux ou d'objets autres que les denrées alimentaires ou les lentilles de contactAccessoires à cet effet utilisant des phénomènes physiques des radiations des ultraviolets
F24F 5/00 - Systèmes ou appareils de conditionnement d'air non couverts par ou
F28C 3/08 - Autres appareils échangeurs de chaleur à contact direct les sources de potentiel calorifique étant un liquide et un gaz ou une vapeur avec changement d'état, p. ex. absorption, évaporation, condensation
F25D 7/00 - Dispositifs utilisant l'effet d'évaporation sans récupération de la vapeur
G05D 9/12 - Commande du niveau, p. ex. en commandant la quantité du matériau emmagasiné dans un réservoir caractérisée par l'utilisation de moyens électriques
F24F 6/04 - Humidification de l'air par évaporation d'eau dans l'air en utilisant des éléments humides fixes non chauffés
F24F 1/00 - Climatiseurs individuels pour le conditionnement de l'air, p. ex. éléments séparés ou monoblocs ou éléments recevant l'air primaire d'une station centrale
22.
Staged dry out control for evaporative media systems
A staged dry out process and control system for an evaporative media cooling system having a plurality of media stages that are selectively activated and deactivated by a control system is disclosed. The staged dry out process ensures that wet media stages are appropriately dried with minimal disruption to the staging strategy implemented by the control system. In one aspect, the staged dry out process monitors deactivated media stages to determine if the media stages reach a dry state before being activated. In another aspect, the staged dry out process locks out a media stage that has been in a wet state beyond a predetermined maximum time limit until the media stage attains a dry state. With this strategy the cooling system can operate without being required to completely shut down for a drying process.
F28C 3/08 - Autres appareils échangeurs de chaleur à contact direct les sources de potentiel calorifique étant un liquide et un gaz ou une vapeur avec changement d'état, p. ex. absorption, évaporation, condensation
A61L 2/10 - Procédés ou appareils de désinfection ou de stérilisation de matériaux ou d'objets autres que les denrées alimentaires ou les lentilles de contactAccessoires à cet effet utilisant des phénomènes physiques des radiations des ultraviolets
F24F 5/00 - Systèmes ou appareils de conditionnement d'air non couverts par ou
B01F 3/04 - Mélange, p.ex. dispersion, émulsion, selon les phases à mélanger de gaz ou de vapeurs avec des liquides
F25D 7/00 - Dispositifs utilisant l'effet d'évaporation sans récupération de la vapeur
G05D 9/12 - Commande du niveau, p. ex. en commandant la quantité du matériau emmagasiné dans un réservoir caractérisée par l'utilisation de moyens électriques
F24F 6/04 - Humidification de l'air par évaporation d'eau dans l'air en utilisant des éléments humides fixes non chauffés
F24F 1/00 - Climatiseurs individuels pour le conditionnement de l'air, p. ex. éléments séparés ou monoblocs ou éléments recevant l'air primaire d'une station centrale
A steam dispersion system for building humidification is disclosed. At least a portion of the steam dispersion system is comprised of a flexible material that is collapsible for changing the outer dimension of the portion comprised of the flexible material from a greater, higher-pressure, size, to a smaller, lower-pressure, size.
A steam dispersion system for building humidification is disclosed. At least a portion of the steam dispersion system is comprised of a flexible material that is collapsible for changing the outer dimension of the portion comprised of the flexible material from a greater, higher-pressure, size, to a smaller, lower-pressure, size.
A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.
A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.
A steam dispersion system is disclosed. The steam dispersion system includes a header and a mounting plate spaced from the header. A steam dispersion tube including a first end and a second end and an interior cavity defined between the first end and the second end is mounted between the mounting plate and the header. The steam dispersion tube defines a longitudinal axis. A biasing structure is mounted between the mounting plate and the header, wherein the biasing structure applies a biasing force on the steam dispersion tube along a direction parallel to the longitudinal axis of the steam dispersion tube when mounted between the header and the mounting plate.
A heat transfer system includes a steam chamber that communicates in an open-loop arrangement with a first steam source for supplying steam to the steam chamber, the steam chamber including a steam exit for supplying steam to air at atmospheric pressure. A heat transfer tube communicates in a closed-loop arrangement with a second steam source for supplying steam to an interior surface of the heat transfer tube, the heat transfer tube vaporizing condensate forming within the heat transfer system back to steam that is supplied to the air via the steam exit. The outer surface of the heat transfer tube is configured to contact the condensate and vaporize the condensate back into steam, wherein the heat transfer tube includes a plurality of pockets formed on the outer surface of the tube, each pocket including a pocket exit/entry portion having a smaller cross-sectional area than the cross-sectional area of the pocket at a root portion thereof adjacent the outer surface of the tube.
F28F 13/18 - Dispositions pour modifier le transfert de chaleur, p. ex. accroissement, diminution par application de revêtements, p. ex. absorbant les radiations ou les réfléchissantDispositions pour modifier le transfert de chaleur, p. ex. accroissement, diminution par application d'un traitement de surface, p. ex. un polissage
F28F 1/42 - Éléments tubulaires ou leurs ensembles avec moyens pour augmenter la surface de transfert de chaleur, p. ex. avec des ailettes, avec des saillies, avec des évidements les moyens étant à la fois à l'extérieur et à l'intérieur de l'élément tubulaire
F24F 6/18 - Humidification de l'air par injection de vapeur dans l'air
F24F 3/14 - Systèmes de conditionnement d'air dans lesquels l'air conditionné primaire est fourni par une ou plusieurs stations centrales aux blocs de distribution situés dans les pièces ou enceintes, blocs dans lesquels il peut subir un traitement secondaireAppareillage spécialement conçu pour de tels systèmes caractérisés par le traitement de l'air autrement que par chauffage et refroidissement par humidificationSystèmes de conditionnement d'air dans lesquels l'air conditionné primaire est fourni par une ou plusieurs stations centrales aux blocs de distribution situés dans les pièces ou enceintes, blocs dans lesquels il peut subir un traitement secondaireAppareillage spécialement conçu pour de tels systèmes caractérisés par le traitement de l'air autrement que par chauffage et refroidissement par déshumidification
29.
Insulation for a steam carrying apparatus and method of attachment thereof
A steam dispersion system including insulation is disclosed. The steam dispersion system may include a steam dispersion tube with at least one opening defined on an outer surface of the steam dispersion tube and a hollow interior. The insulation covers at least a portion of the steam dispersion tube, the insulation defining an opening aligned with the opening of the steam dispersion tube, wherein the insulation meets 25/50 flame/smoke indexes for UL723/ASTM E-84 and has a thermal conductivity less than about 0.35 Watts/m-K (2.4 in-hr/ft^2 deg F.). A nozzle defining a throughhole may be placed within the opening of the steam dispersion tube, the throughhole being in fluid communication with the hollow interior of the steam dispersion tube to provide a steam exit.
A steam dispersion system including insulation is disclosed. The steam dispersion system may include a steam dispersion tube with at least one opening defined on an outer surface of the steam dispersion tube and a hollow interior. The insulation covers at least a portion of the steam dispersion tube, the insulation defining an opening aligned with the opening of the steam dispersion tube, wherein the insulation meets 25/50 flame/smoke indexes for UL723/ASTM E-84 and has a thermal conductivity less than about 0.35 Watts/m-K (2.4 in-hr/ft^2 deg F.). A nozzle defining a throughhole may be placed within the opening of the steam dispersion tube, the throughhole being in fluid communication with the hollow interior of the steam dispersion tube to provide a steam exit.
A steam dispersion system is disclosed. The steam dispersion system includes a header and a mounting plate spaced from the header. A steam dispersion tube including a first end and a second end and an interior cavity defined between the first end and the second end is mounted between the mounting plate and the header. The steam dispersion tube defines a longitudinal axis. A biasing structure is mounted between the mounting plate and the header, wherein the biasing structure applies a biasing force on the steam dispersion tube along a direction parallel to the longitudinal axis of the steam dispersion tube when mounted between the header and the mounting plate.
A heat transfer system includes a steam chamber that communicates in an open-loop arrangement with a first steam source for supplying steam to the steam chamber, the steam chamber including a steam exit for supplying steam to air at atmospheric pressure. A heat transfer tube communicates in a closed-loop arrangement with a second steam source for supplying steam to an interior surface of the heat transfer tube, the heat transfer tube vaporizing condensate forming within the heat transfer system back to steam that is supplied to the air via the steam exit. The outer surface of the heat transfer tube is configured to contact the condensate and vaporize the condensate back into steam, wherein the heat transfer tube includes a plurality of pockets formed on the outer surface of the tube, each pocket including a pocket exit/entry portion having a smaller cross-sectional area than the cross-sectional area of the pocket at a root portion thereof adjacent the outer surface of the tube.
A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.
A steam dispersion system is disclosed. The steam dispersion system includes a header, a divider dividing the header into at least two interior chambers that are generally not in fluid communication with each other, and at least two steam dispersion tubes, each steam dispersion tube communicating with only one interior chamber. Each interior chamber includes a separate steam flow valve for independently controlling the amount of steam flow to each chamber based on the difference between a measured humidity value and a predetermined desired humidity value.
A steam dispersion system is disclosed. The steam dispersion system includes a header, a divider dividing the header into at least two interior chambers that are generally not in fluid communication with each other, and at least two steam dispersion tubes, each steam dispersion tube communicating with only one interior chamber. Each interior chamber includes a separate steam flow valve for independently controlling the amount of steam flow to each chamber based on the difference between a measured humidity value and a predetermined desired humidity value.
A steam dispersion system including insulation is disclosed. The steam dispersion system may include a steam dispersion tube with at least one opening defined on an outer surface of the steam dispersion tube and a hollow interior. The insulation covers at least a portion of the steam dispersion tube, the insulation defining an opening aligned with the opening of the steam dispersion tube, wherein the insulation meets 25/50 flame/smoke indexes for UL723/ASTM E-84 and has a thermal conductivity less than about 0.35 Watts/m-K (2.4 in-hr/ftΛ2 deg F). A nozzle defining a throughhole may be placed within the opening of the steam dispersion tube, the throughhole being in fluid communication with the hollow interior of the steam dispersion tube to provide a steam exit.
A steam dispersion system including insulation is disclosed. The steam dispersion system may include a steam dispersion tube with at least one opening defined on an outer surface of the steam dispersion tube and a hollow interior. The insulation covers at least a portion of the steam dispersion tube, the insulation defining an opening aligned with the opening of the steam dispersion tube, wherein the insulation meets 25/50 flame/smoke indexes for UL723/ASTM E-84 and has a thermal conductivity less than about 0.35 Watts/m-K (2.4 in-hr/ft^2 deg F.). A nozzle defining a throughhole may be placed within the opening of the steam dispersion tube, the throughhole being in fluid communication with the hollow interior of the steam dispersion tube to provide a steam exit.