A mobile robot has a front, a rear, a left side, and a right side. The mobile robot comprises a payload section (110) configured to support a payload; a drive section (105) comprising a drive wheel (160) and disposed forward of the payload section; and a dual axis bogie suspension (107) coupling the payload section to the drive section. The dual axis bogie suspension is configured to provide a first pivotable coupling (135) between the dual axis bogie suspension and the payload section. The first pivotable coupling provides a first axis of rotation (140) that extends frontward and rearward, and a second pivotable coupling (315, 320, 325) that provides a second axis of rotation (155) that extends laterally between the left and right sides of the mobile robot. The second axis of rotation is disposed between the drive wheel (160) and the first pivotable coupling.
B66F 9/06 - Dispositifs pour lever ou descendre des marchandises volumineuses ou lourdes aux fins de chargement ou de déchargement se déplaçant, avec leurs charges, sur des roues ou sur un dispositif analogue, p. ex. chariots élévateurs à fourche
B60P 1/00 - Véhicules destinés principalement au transport des charges et modifiés pour faciliter le chargement, la fixation de la charge ou son déchargement
B60P 1/44 - Véhicules destinés principalement au transport des charges et modifiés pour faciliter le chargement, la fixation de la charge ou son déchargement ayant une plate-forme de chargement qui élève la charge au niveau de l'élément supportant ou contenant la charge
B66F 9/12 - Plates-formesFourchesAutres organes soutenant ou saisissant la charge
2.
DETECTION OF AN OCCURRING DEADLOCK CONFLICT IN A ROBOT FLEET OF AUTONOMOUS MOBILE ROBOTS
The invention relates to a method for detecting an occurring deadlock conflict in a robot fleet of autonomous mobile robots. The method comprises the steps of: designating a plurality of robot resource zones to respective physical zones in a physical environment; operating said robot fleet such that autonomous mobile robots of said robot fleet individually and dynamically block different resource zones of said plurality of robot resource zones; monitoring said robot fleet to identify deadlock-relevant robot states associated with at least two mobile robots of said robot fleet, wherein said at least two mobile robots comprises at least a first robot and a second robot; and identifying that said first robot is being operated towards a resource zone of said plurality of robot resource zones blocked by said second robot to detect said occurring deadlock conflict. The invention further relates to a deadlock detection system.
The invention relates to a method for dynamically navigating an autonomous mobile robot. The method comprises the steps of: providing an area map relating to mapped elements having initial route implications; providing a planned robot route through said area map, wherein said planned robot route is based on circumnavigating at least some of said mapped elements according to said initial route implications; maneuvering said autonomous mobile robot through said planned robot route at least partly based on sensing robot surroundings of said autonomous robot using a sensory system of said autonomous mobile robot; sensing one or more sensed obstacles in said robot surroundings using said sensory system, wherein said one or more sensed obstacles differentiate from said mapped elements; reducing said initial route implications of at least some of said mapped elements to establish reduced route implications; and establishing a sensor-based sub route based on said reduced route implications.
G05D 1/246 - Dispositions pour déterminer la position ou l’orientation utilisant des cartes d’environnement, p. ex. localisation et cartographie simultanées [SLAM]
Mobile robots that include a front, a rear, a left side, and a right side, the mobile robots comprising a chassis (115), a drive wheel (105) coupled to the chassis by a coupling that allows at least some vertical motion of the drive wheel relative to the chassis (115), a payload deck (110) disposed over the chassis (115) and coupled to the chassis by a coupling, and a mechanical link (162) that links the payload deck (110) to the coupling of the drive wheel (105) to the chassis (115). The coupling between the payload deck (110) and the chassis is rearward of the mechanical link (165).
B62D 24/00 - Assemblages entre la caisse et le châssis du véhicule
B62D 61/04 - Véhicules à moteur ou remorques, caractérisés par la disposition ou le nombre de roues et non prévus ailleurs, p. ex. quatre roues disposées en losange avec deux roues en tandem disposées sur l'axe longitudinal du véhicule avec deux autres roues qui sont coaxiales
An example method includes obtaining information about a path that an autonomous vehicle is to travel during movement of the autonomous vehicle through an environment, and generating a virtual envelope that surrounds the autonomous vehicle and that has at least two dimensions that are greater than two corresponding dimensions of the autonomous vehicle. A length of the virtual envelope along the path is based on at least one of (i) a predefined duration that the autonomous vehicle can travel along the path or (ii) a duration that the autonomous vehicle can travel along the path without stopping. A velocity of the autonomous vehicle is based on the virtual envelope.
G05D 1/242 - Moyens basés sur la réflexion des ondes générées par le véhicule
G05D 1/246 - Dispositions pour déterminer la position ou l’orientation utilisant des cartes d’environnement, p. ex. localisation et cartographie simultanées [SLAM]
An example method includes obtaining information about a path that an autonomous vehicle is to travel during movement of the autonomous vehicle through an environment, and generating a virtual envelope that surrounds the autonomous vehicle and that has at least two dimensions that are greater than two corresponding dimensions of the autonomous vehicle. A length of the virtual envelope along the path is based on at least one of (i) a predefined duration that the autonomous vehicle can travel along the path or (ii) a duration that the autonomous vehicle can travel along the path without stopping. A velocity of the autonomous vehicle is based on the virtual envelope.
Planning driving sequences of mobile robots and other devices. In one aspect, a method includes receiving an instruction for movement of a device along a supporting surface. The device includes at least one drive wheel and at least one caster that is rotatable about a generally vertical axis. During motion, the caster is configured to reorient so that an swivel joint of the caster to the device leads a wheel of the caster. The method also includes planning a drive instruction for the device to implement the instruction for movement based on an orientation or expected orientation of the at least one caster upon beginning of the movement. The drive instruction is tailored to the drive wheel and the caster of the device and configured to limit reorientation of the caster during motion in accordance with the drive instruction.
G05D 1/646 - Suivi d’une trajectoire prédéfinie, p. ex. d’une ligne marquée sur le sol ou d’une trajectoire de vol
B62D 7/14 - Timonerie de directionFusées ou leur montage pour roues pivotant individuellement, p. ex. sur pivot de fusée les axes de pivotement étant situés dans plus d'un plan perpendiculaire à l'axe longitudinal du véhicule, p. ex. toutes les roues étant directrices
An autonomous mobile robot can include a body, at least one sensor configured to detect aspects of the environment in the vicinity of the autonomous mobile robot, and a control unit configured to process data received from the sensor to identify a position of a workpiece of the autonomous mobile robot and to define a safety field that has a position referenced to the position of the workpiece. The safety field is an area or a volume in which the presence of an object triggers a safety response by the autonomous mobile robot.
A47L 11/40 - Éléments ou parties constitutives des machines non prévus dans les groupes , ou non limités à un de ces groupes, p. ex. poignées, dispositions des interrupteurs, bords, amortisseurs ou leviers
9.
CONTROL OF AN AUTOMATED GUIDED VEHICLE WITH FORKLIFT CAPABILITIES
The invention relates to a method for monitoring and controlling the navigation of an automated guided vehicle. The vehicle comprises a fork, a primary sensor, a secondary sensor, and a controller. The method comprises: monitoring movement of the vehicle in a normal mode between first position and second position and monitoring movement of the vehicle in an object handling mode between said second position and a target position. The monitoring in the object handling mode includes: establishing the change of distance between the vehicle and the object in two points in time based on distance obtained by the primary sensor, measuring a distance travelled by the vehicle during the two points in time by said secondary sensor, and comparing the change of distance and the measure distance and based on the comparing result determine if correction of the motion of the vehicle is needed.
The invention relates to a method of controlling an automated guided vehicle on a path between a start position and an object handle position. The control includes navigating the automated guided vehicle in a predefined corridor along a first part of said path, towards an alignment position. The control further includes navigating the automated guided vehicle, along a second part of said path, towards a docking start position, based on at least one predetermined navigation step. The control includes navigating said automated guided vehicle at least partly based on input from said primary sensor along a third part of said path and stopping movement of said automated guided vehicle when said automated guided vehicle is aligned with said object handle position.
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions
B66F 9/075 - Caractéristiques de construction ou détails
B66F 9/06 - Dispositifs pour lever ou descendre des marchandises volumineuses ou lourdes aux fins de chargement ou de déchargement se déplaçant, avec leurs charges, sur des roues ou sur un dispositif analogue, p. ex. chariots élévateurs à fourche
Methods, systems, and non-transitory machine-readable media encoding instructions for managing a fleet of autonomous mobile robots in a facility. In one aspect, a computer-implemented system for managing a fleet of autonomous mobile robots in a facility can include a log of characteristics of cycle times of communications between the system and the autonomous mobile robots in the fleet over time, and an analysis component configured to determine, based on the logged characteristics of the cycle times, i) a location in a facility at which or ii) a time of day during which or iii) equipment used in communications between the system and the autonomous mobile robots in the plurality that are either inadequate or deficient. Each communications cycle includes wireless transmission of test signals to a plurality of the autonomous mobile robots in the fleet and receipt of responses to the test signals transmitted wirelessly from each of the autonomous mobile robots in the plurality.
The present invention provides a transport system comprising an Autonomous Mobile Robot (AMRs) (1) and the equipment to be moved (2), which can be operated safely and efficiently within an industrial/commercial environment, while the AMRs (1), as well as the equipment to be moved (2), can be produced in a cost-efficient way. A particular object of the invention is to: providing supporting members (4) of the equipment to be moved, which have no or only a negligible impact on the safety system, providing equipment to be moved (2) which can carry heavy payloads, preferably of hundreds and thousands of kilograms; providing a safety sensor system for an AMR, which can provide protective zones (5) around the AMR and the equipment to be moved and where the supporting members (4) of the equipment to be moved (2) have no or only a negligible impact on the safety of transportation. Another object of the invention is the correct attachment of the cart/shelf (2) to the AMR (1) is ensured before and during driving.
B66F 9/06 - Dispositifs pour lever ou descendre des marchandises volumineuses ou lourdes aux fins de chargement ou de déchargement se déplaçant, avec leurs charges, sur des roues ou sur un dispositif analogue, p. ex. chariots élévateurs à fourche
B60W 30/09 - Entreprenant une action automatiquement pour éviter la collision, p. ex. en freinant ou tournant
13.
A PALLET HANDLING SYSTEM AND A METHOD FOR HANDLING PALLETS
Disclosed is a pallet handling system (1) comprising a pallet rack (2) including three support means (3, 4, 5) being parallel in a longitudinal direction of the three support means (3, 4, 5), wherein each of the three support means (3, 4, 5) comprises one or more upper support surfaces (6) being substantially horizontally level. The three support means (3, 4, 5) are connected to one or more support structures (7) arranged for suspending the three support means (3, 4, 5) above a ground level (20), wherein the three support means (3, 4, 5) comprises first support means (3), second support means (4) and third support means (5) of which the second support means (4) are arranged between the first and third support means (5). The second support means (4) are formed as a lever having a second support connection end (8) being connected to at least one of the one or more support structures (7) and a second support free end (9) and wherein said second support means (4) has a width (SSW) of between 140 and 5 mm and preferably between 120 and 20 mm. The pallet handling system (1) also includes an automated guided vehicle (10) comprising a pallet lifting device (11) having at least two upper lifting surfaces (12, 13), wherein the at least two upper lifting surfaces (12, 13) are separated by a slit (14) along a middle part of the pallet lifting device (11) so that a first upper lifting surface (12) of the at least two upper lifting surfaces (12, 13) fits between the first support means (3) and the second support means (4) and so that a second upper lifting surface (13) of the at least two upper lifting surfaces (12, 13) fits between the second support means (4) and the third support means (5), and wherein the slit (14) is arranged to accommodate the second support means (4). A method for handling pallets (21) is also disclosed.
B66F 9/06 - Dispositifs pour lever ou descendre des marchandises volumineuses ou lourdes aux fins de chargement ou de déchargement se déplaçant, avec leurs charges, sur des roues ou sur un dispositif analogue, p. ex. chariots élévateurs à fourche
B66F 9/075 - Caractéristiques de construction ou détails
A gripping system for an autonomous guided vehicle (AGV) and such AGV are disclosed herein. The gripping system for automated gripping and pulling/pushing a cart comprises a unique gripping end effector ensuring controlled steering of the cart while allowing rolling of the cart relative to the body of the AGV. The end effector comprises means for indication of state of connection between the cart and the gripping system, ensuring a reliable, safe and efficient cart gripping and pulling operation.
The invention relates to a method for detecting an occurring deadlock conflict in a robot fleet of autonomous mobile robots. The method comprises the steps of: designating a plurality of robot resource zones to respective physical zones in a physical environment; operating said robot fleet such that autonomous mobile robots of said robot fleet individually and dynamically block different resource zones of said plurality of robot resource zones; monitoring said robot fleet to identify deadlock- relevant robot states associated with at least two mobile robots of said robot fleet, wherein said at least two mobile robots comprises at least a first robot and a second robot; and identifying that said first robot is being operated towards a resource zone of said plurality of robot resource zones blocked by said second robot to detect said occurring deadlock conflict. The invention further relates to a deadlock detection system.
The invention relates to a method for dynamically navigating an autonomous mobile robot. The method comprises the steps of: providing an area map relating to mapped elements having initial route implications; providing a planned robot route through said area map, wherein said planned robot route is based on circumnavigating at least some of said mapped elements according to said initial route implications; maneuvering said autonomous mobile robot through said planned robot route at least partly based on sensing robot surroundings of said autonomous robot using a sensory system of said autonomous mobile robot; sensing one or more sensed obstacles in said robot surroundings using said sensory system, wherein said one or more sensed obstacles differentiate from said mapped elements; reducing said initial route implications of at least some of said mapped elements to establish reduced route implications; and establishing a sensor-based sub route based on said reduced route implications.
An example system includes a body having wheels to move along a surface, a laser-based scanner on the body to output a beam in a plane, a camera on the body to capture an image of an area in which the beam intersects an object, and one or more processing devices to determine whether at least part of the laser-based scanner is misaligned based on the image.
G05D 1/00 - Commande de la position, du cap, de l'altitude ou de l'attitude des véhicules terrestres, aquatiques, aériens ou spatiaux, p. ex. utilisant des pilotes automatiques
G06K 9/00 - Méthodes ou dispositions pour la lecture ou la reconnaissance de caractères imprimés ou écrits ou pour la reconnaissance de formes, p.ex. d'empreintes digitales
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions
An example system includes a body having wheels to move along a surface, a laser-based scanner on the body to output a beam in a plane, a camera on the body to capture an image of an area in which the beam intersects an object, and one or more processing devices to determine whether at least part of the laser-based scanner is misaligned based on the image.
G01C 11/08 - Restitution des photos par comparaison de plusieurs photos de la même zone les photos n'étant pas placées dans la même position relative qu'au moment où elles ont été prises
A chassis for an autonomous mobile robot comprises a moulded frame having a stable support for any payload or additional machinery loaded on top of the mobile robot, while ensuring a rigidity of the chassis which again ensures that the supporting elements for the sensors are kept in a stable position relative to each other. The chassis has several separated compartments for EEE placement. These EEE compartments are accessible from the sides and ends of the mobile robot by removing detachable cover parts. A removable top cover is mounted on top of the moulded frame providing a top covering for central inside compartment and outside side compartments. Side covers and end covers are provided for outside compartments and are removable.
B62D 21/18 - Châssis, c.-à-d. armature sur laquelle une carrosserie peut être montée caractérisés par le type de véhicule et non couverts par les groupes
Planning driving sequences of mobile robots and other devices. In one aspect, a method includes receiving an instruction for movement of a device along a supporting surface. The device includes at least one drive wheel and at least one caster that is rotatable about a generally vertical axis. During motion, the caster is configured to reorient so that an swivel joint of the caster to the device leads a wheel of the caster. The method also includes planning a drive instruction for the device to implement the instruction for movement based on an orientation or expected orientation of the at least one caster upon beginning of the movement. The drive instruction is tailored to the drive wheel and the caster of the device and configured to limit reorientation of the caster during motion in accordance with the drive instruction.
B62D 7/15 - Timonerie de directionFusées ou leur montage pour roues pivotant individuellement, p. ex. sur pivot de fusée les axes de pivotement étant situés dans plus d'un plan perpendiculaire à l'axe longitudinal du véhicule, p. ex. toutes les roues étant directrices caractérisée par des moyens modifiant le rapport entre les angles de direction des roues directrices
The present invention relates to a basic mobile robot (1) where the weight on the drive wheels (6) can be adjusted in order to achieve the optimal traction and braking performance of the mobile robot (1) for the relevant application. With the inventive design of the bogie arm (4) and the modular traction weights (9), the gravitation forces and resulting friction acting on the drive wheels (6) can be increased by attaching one or more traction weight modules (13) to the bogie arm extensions (12), while due to the cantilever effect, the resulting gravitation forces acting on the (front) caster wheels (7) are decreased. Thus, making it relatively easy to achieve just enough traction on the drive wheels (6) for the intended application, without compromising safety and with a minimum impact on the overall energy efficiency of the mobile robot (1). The mobile robot (1) is configurable for different applications including transportation of goods loaded on top of the mobile robot (1), cart pulling or automated hauling of materials indoors.
B62D 61/10 - Véhicules à moteur ou remorques, caractérisés par la disposition ou le nombre de roues et non prévus ailleurs, p. ex. quatre roues disposées en losange avec plus de quatre roues
An autonomous mobile robot can include a body, at least one sensor configured to detect aspects of the environment in the vicinity of the autonomous mobile robot, and a control unit configured to process data received from the sensor to identify a position of a workpiece of the autonomous mobile robot and to define a safety field that has a position referenced to the position of the workpiece. The safety field is an area or a volume in which the presence of an object triggers a safety response by the autonomous mobile robot.
Methods, systems, and non-transitory machine-readable media encoding instructions for managing a fleet of autonomous mobile robots in a facility. In one aspect, a computer-implemented system for managing a fleet of autonomous mobile robots in a facility can include a log of characteristics of cycle times of communications between the system and the autonomous mobile robots in the fleet over time, and an analysis component configured to determine, based on the logged characteristics of the cycle times, i) a location in a facility at which or ii) a time of day during which or iii) equipment used in communications between the system and the autonomous mobile robots in the plurality that are either inadequate or deficient. Each communications cycle includes wireless transmission of test signals to a plurality of the autonomous mobile robots in the fleet and receipt of responses to the test signals transmitted wirelessly from each of the autonomous mobile robots in the plurality.
G05D 1/00 - Commande de la position, du cap, de l'altitude ou de l'attitude des véhicules terrestres, aquatiques, aériens ou spatiaux, p. ex. utilisant des pilotes automatiques
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions
G08C 17/00 - Dispositions pour transmettre des signaux caractérisées par l'utilisation d'une voie électrique sans fil
H04W 4/00 - Services spécialement adaptés aux réseaux de télécommunications sans filLeurs installations
H04W 4/029 - Services de gestion ou de suivi basés sur la localisation
An example system includes a positioning surveillance system (PSS) to identify locations of objects that are movable throughout a space. The PSS is configured to identify the locations without requiring a line-of-sight between the objects. A control system is configured to determine distances based on the locations of the objects in the space and to communicate information to the objects that is based on the distances. The information is usable by the objects for collision avoidance.
An example system includes a positioning surveillance system (PSS) to identify locations of objects that are movable throughout a space. The PSS is configured to identify the locations without requiring a line-of-sight between the objects. A control system is configured to determine distances based on the locations of the objects in the space and to communicate information to the objects that is based on the distances. The information is usable by the objects for collision avoidance.
G05D 1/00 - Commande de la position, du cap, de l'altitude ou de l'attitude des véhicules terrestres, aquatiques, aériens ou spatiaux, p. ex. utilisant des pilotes automatiques
G05D 1/10 - Commande de la position ou du cap dans les trois dimensions simultanément
B60Q 5/00 - Agencement ou adaptation des dispositifs de signalisation acoustique
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions
H04W 84/04 - Réseaux à grande échelleRéseaux fortement hiérarchisés
There is provided an automatically guided vehicle (AGV), which is configured to detect if a payload mass differs significantly from a preset payload mass towed and/or carried by the vehicle, and if a payload mass different from the preset payload is detected, the control system of the vehicle is automatically updated to adjust either: i) the speed of the vehicle based on preset safety brake distance information associated with the detected different payload mass; or ii) increase the safety zone or switch to a safer safety zone in order to avoid collision with any obstacles.
B60T 8/1755 - Régulation des freins spécialement adaptée pour la commande de la stabilité du véhicule, p. ex. en tenant compte du taux d'embardée ou de l'accélération transversale dans une courbe
B60T 7/22 - Organes d'attaque de la mise en action des freins par déclenchement automatiqueOrganes d'attaque de la mise en action des freins par déclenchement non soumis à la volonté du conducteur ou du passager déclenchés par le contact du véhicule, p. ex. du pare-chocs, avec un obstacle extérieur, p. ex. un autre véhicule
B60T 8/17 - Utilisation de moyens de régulation électriques ou électroniques pour la commande du freinage
A gripping system for an autonomous guided vehicle (AGV) and such AGV are disclosed herein. The gripping system for automated gripping and pulling/pushing a cart comprises a unique gripping end effector ensuring controlled steering of the cart while allowing rolling of the cart relative to the body of the AGV. The end effector comprises means for indication of state of connection between the cart and the gripping system, ensuring a reliable, safe and efficient cart gripping and pulling operation.
An example system includes a sensor for obtaining information about an object in an environment and one or more processing devices configured to use the information in generating or updating a map of the environment. The map includes the object and boundaries or landmarks in the environment. The map includes a static score associated with the object. The static score represents a likelihood that the object will remain immobile within the environment. The likelihood may be between certain immobility and certain mobility.
An example system includes a sensor for obtaining information about an object in an environment and one or more processing devices configured to use the information in generating or updating a map of the environment. The map includes the object and boundaries or landmarks in the environment. The map includes a static score associated with the object. The static score represents a likelihood that the object will remain immobile within the environment. The likelihood may be between certain immobility and certain mobility.
An example autonomous device is configured to detect objects within a vicinity of the autonomous device. The autonomous device is configured to move along a surface. The autonomous device includes a body, at least one long-range sensor on the body configured for detection in a first field, and at least one short-range sensor on the body. Each short-range sensor is configured for detection in a second field directed towards the surface. The second field is smaller than the first field. Each short-range sensor is configured to output signals based on detection of an object within the second field. A control system is configured to control movement of the autonomous device based, at least in part, on the signals.
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions
G05D 1/00 - Commande de la position, du cap, de l'altitude ou de l'attitude des véhicules terrestres, aquatiques, aériens ou spatiaux, p. ex. utilisant des pilotes automatiques
A chassis for an autonomous mobile robot comprises a moulded frame having a stable support for any payload or additional machinery loaded on top of the mobile robot, while ensuring a rigidity of the chassis which again ensures that the supporting elements for the sensors are kept in a stable position relative to each other. The chassis has several separated compartments for EEE placement. These EEE compartments are accessible from the sides and ends of the mobile robot by removing detachable cover parts. A removable top cover is mounted on top of the moulded frame providing a top covering for central inside compartment and outside side compartments. Side covers and end covers are provided for outside compartments and are removable.
B62D 29/04 - Carrosseries caractérisées par le matériau utilisé principalement en matières synthétiques
B62D 21/18 - Châssis, c.-à-d. armature sur laquelle une carrosserie peut être montée caractérisés par le type de véhicule et non couverts par les groupes
There is provided a system and method for evacuating one or more mobile robots from a confined area. The system and method involve one or more mobile robots equipped with sensors or receivers for receiving evacuation commands directing the one or more mobile robots to leave the evacuation area and enter a location outside the evacuation area.
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions
G05D 1/00 - Commande de la position, du cap, de l'altitude ou de l'attitude des véhicules terrestres, aquatiques, aériens ou spatiaux, p. ex. utilisant des pilotes automatiques
35.
AUTONOMOUS MOBILE ROBOT SYSTEM FOR TRANSPORTING PAYLOADS
The present invention provides a transport system comprising an Autonomous Mobile Robot (AMRs) (1) and the equipment to be moved (2), which can be operated safely and efficiently within an industrial/commercial environment, while the AMRs (1), as well as the equipment to be moved (2), can be produced in a cost-efficient way. A particular object of the invention is to: providing supporting members (4) of the equipment to be moved, which have no or only a negligible impact on the safety system, providing equipment to be moved (2) which can carry heavy payloads, preferably of hundreds and thousands of kilograms; providing a safety sensor system for an AMR, which can provide protective zones (5) around the AMR and the equipment to be moved and where the supporting members (4) of the equipment to be moved (2) have no or only a negligible impact on the safety of transportation. Another object of the invention is the correct attachment of the cart/shelf (2) to the AMR (1) is ensured before and during driving.
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions
B66F 5/00 - Crics mobiles, du type garage, montés sur roulettes ou rouleaux
G01S 17/00 - Systèmes utilisant la réflexion ou la reradiation d'ondes électromagnétiques autres que les ondes radio, p. ex. systèmes lidar
B66F 9/06 - Dispositifs pour lever ou descendre des marchandises volumineuses ou lourdes aux fins de chargement ou de déchargement se déplaçant, avec leurs charges, sur des roues ou sur un dispositif analogue, p. ex. chariots élévateurs à fourche
The present invention relates to a basic mobile robot (1) where the weight on the drive wheels (6) can be adjusted in order to achieve the optimal traction and braking performance of the mobile robot (1) for the relevant application. With the inventive design of the bogie arm (4) and the modular traction weights (9), the gravitation forces and resulting friction acting on the drive wheels (6) can be increased by attaching one or more traction weight modules (13) to the bogie arm extensions (12), while due to the cantilever effect, the resulting gravitation forces acting on the (front) caster wheels (7) are decreased. Thus, making it relatively easy to achieve just enough traction on the drive wheels (6) for the intended application, without compromising safety and with a minimum impact on the overall energy efficiency of the mobile robot (1). The mobile robot (1) is configurable for different applications including transportation of goods loaded on top of the mobile robot (1), cart pulling or automated hauling of materials indoors.
A system comprises a computing system configured to identify an event in an area between a first location and a second location and to adjust, based on the event, content of a cost map containing a representation of one or more routes between the first location and the second location. The system also includes an autonomous device configured to move between the first location and the second location based on the cost map.
An example system includes a computing system configured to identify an event in an area between a first location and a second location and to adjust, based on the event, content of a cost map containing a representation of one or more routes between the first location and the second location. The system also includes an autonomous device configured to move between the first location and the second location based on the cost map.
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions
G05D 1/00 - Commande de la position, du cap, de l'altitude ou de l'attitude des véhicules terrestres, aquatiques, aériens ou spatiaux, p. ex. utilisant des pilotes automatiques
An example autonomous device is configured to move within a space. The autonomous device includes a first system to detect a first location of the autonomous device within the space, with the first location being based on a first fixed reference; a second system to detect a second location of the autonomous device within the space, with the second location being based on a second fixed reference; and a third system to detect a third location of the autonomous device within the space based on relative movements of the autonomous device. One or more processing devices are configured to select one of the first location or the second location based on reliability of at least one of the first location or the second location, and to control movement of the autonomous device using an estimated location that is based on the third location and the selected one of the first location or the second location.
An example autonomous device is configured to move within a space. The autonomous device includes a first system to detect a first location of the autonomous device within the space, with the first location being based on a first fixed reference; a second system to detect a second location of the autonomous device within the space, with the second location being based on a second fixed reference; and a third system to detect a third location of the autonomous device within the space based on relative movements of the autonomous device. One or more processing devices are configured to select one of the first location or the second location based on reliability of at least one of the first location or the second location, and to control movement of the autonomous device using an estimated location that is based on the third location and the selected one of the first location or the second location.
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions
G01S 17/931 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour prévenir les collisions de véhicules terrestres
G01C 22/00 - Mesure de la distance parcourue sur le sol par des véhicules, des personnes, des animaux ou autres corps solides en mouvement, p. ex. en utilisant des odomètres ou en utilisant des podomètres
G01S 17/86 - Combinaisons de systèmes lidar avec des systèmes autres que lidar, radar ou sonar, p. ex. avec des goniomètres
G01S 17/48 - Systèmes de triangulation active, c.-à-d. utilisant la transmission et la réflexion d'ondes électromagnétiques autres que les ondes radio
There is provided an automatically guided vehicle (AGV), which is configured to detect if a payload mass differs significantly from a preset payload mass towed and/or carried by the vehicle, and if a payload mass different from the preset payload is detected, the control system of the vehicle is automatically updated to adjust either: i) the speed of the vehicle based on preset safety brake distance information associated with the detected different payload mass; or ii) increase the safety zone or switch to a safer safety zone in order to avoid collision with any obstacles.
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions
B60T 7/00 - Organes d'attaque de la mise en action des freins
B60T 8/18 - Dispositions pour adapter la force de freinage sur la roue aux conditions propres au véhicule ou à l'état du sol, p. ex. par limitation ou variation de la force de freinage selon le chargement ou le poids du véhicule, p. ex. répartition du chargement
B60T 8/17 - Utilisation de moyens de régulation électriques ou électroniques pour la commande du freinage
B60T 8/00 - Dispositions pour adapter la force de freinage sur la roue aux conditions propres au véhicule ou à l'état du sol, p. ex. par limitation ou variation de la force de freinage
B60T 7/22 - Organes d'attaque de la mise en action des freins par déclenchement automatiqueOrganes d'attaque de la mise en action des freins par déclenchement non soumis à la volonté du conducteur ou du passager déclenchés par le contact du véhicule, p. ex. du pare-chocs, avec un obstacle extérieur, p. ex. un autre véhicule
B60T 17/22 - Dispositifs pour surveiller ou vérifier les systèmes de freinsDispositifs de signalisation
An example system includes an autonomous device. The system includes a movement assembly to move the autonomous device, memory storing information about classes of objects and storing rules governing operation of the autonomous device based on a class of an object in a path of the autonomous device, one or more sensors to detect at least one attribute of the object, and one or more processing devices. The one or more processing devices determine the class of the object based on the at least one attribute, execute a rule to control the autonomous device based on the class, and control the movement assembly based on the rule.
G06K 9/00 - Méthodes ou dispositions pour la lecture ou la reconnaissance de caractères imprimés ou écrits ou pour la reconnaissance de formes, p.ex. d'empreintes digitales
An example autonomous device is configured to detect objects within a vicinity of the autonomous device. The autonomous device is configured to move along a surface. The autonomous device includes a body, at least one long-range sensor on the body configured for detection in a first field, and at least one short-range sensor on the body. Each short-range sensor is configured for detection in a second field directed towards the surface. The second field is smaller than the first field. Each short-range sensor is configured to output signals based on detection of an object within the second field. A control system is configured to control movement of the autonomous device based, at least in part, on the signals.
There is provided a system and method for evacuating one or more mobile robots from a confined area. The system and method involve one or more mobile robots equipped with sensors or receivers for receiving evacuation commands directing the one or more mobile robots to leave the evacuation area and enter a location outside the evacuation area.
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions
G01C 21/34 - Recherche d'itinéraireGuidage en matière d'itinéraire
G08G 1/00 - Systèmes de commande du trafic pour véhicules routiers
G08B 7/06 - Systèmes de signalisation selon plus d'un des groupes Systèmes d'appel de personnes selon plus d'un des groupes utilisant une transmission électrique
46.
Robotic cart pulling vehicle for automated pulling of carts
There is provided a robotic cart pulling vehicle for automated docking and pulling a cart, such as a wheeled hospital cart for e.g. linen. In particular the vehicle is provided with a unique gripping means for holding the cart. Furthermore, the robotic vehicle implements a positioning system for safely driving on hospital corridors and further comprises one or more sensors to indicate the position of the robot relative to the surroundings for avoiding unnecessary impacts.
B25J 13/08 - Commandes pour manipulateurs au moyens de dispositifs sensibles, p. ex. à la vue ou au toucher
B60D 1/04 - Couplages par crochet ou par crochet et moraillon
B60D 1/24 - Couplages de tractionAttelagesOrganes de tractionDispositifs de remorquage caractérisés par des dispositions en vue de fonctions particulières
B60D 1/62 - Dispositifs auxiliaires comportant des conduites d'alimentation, des circuits électriques ou analogues
B60D 1/44 - Couplages de tractionAttelagesOrganes de tractionDispositifs de remorquage caractérisés par des dispositions en vue de fonctions particulières permettant le réglage horizontal
G05D 1/02 - Commande de la position ou du cap par référence à un système à deux dimensions
B60D 1/00 - Couplages de tractionAttelagesOrganes de tractionDispositifs de remorquage
47.
ROBOTIC CART PULLING VEHICLE FOR AUTOMATED PULLING OF CARTS
There is provided a robotic cart pulling vehicle (2) for automated docking and pulling a cart (3), such as a wheeled hospital cart for e.g. linen. In particular the vehicle (2) is provided with a unique gripping means (1) for holding the cart (3). Furthermore, the robotic vehicle (2) implements a positioning system for safely driving on hospital corridors and further comprises one or more sensors to indicate the position of the robot (2) relative to the surroundings for avoiding unnecessary impacts.