Systems and methods of deploying seismic data acquisition units from a marine vessel are disclosed. The system can include a mechanical attachment device comprising a cavity formed by interlocking a first member and a second member. Protrusions located on the first member and second member can increase the coefficient of friction between a rope and the mechanical attachment device responsive to an increase in tension on the rope. A lanyard can couple a seismic data acquisition unit to the mechanical attachment device.
Systems and methods for retrieving seismic data acquisition units from an underwater seismic survey are provided. The system includes an underwater vehicle with a base and an underwater vehicle interlocking mechanism. The underwater vehicle receives environmental information and identifies a seismic data acquisition unit located on an ocean bottom. The underwater vehicle obtains an indication to perform a non-landing retrieval operation. The underwater vehicle sets a position of the underwater vehicle interlocking mechanism to extend away from the base of the underwater vehicle. The underwater vehicle retrieves the seismic data acquisition unit by coupling the underwater vehicle interlocking mechanism with a seismic data acquisition unit interlocking mechanism. The underwater vehicle stores the seismic data acquisition unit and then sets the underwater vehicle interlocking mechanism in a second position to perform the non-landing retrieval operation for a second seismic data acquisition unit.
The present disclosure relates to a method of processing seismic signals comprising: receiving a set of seismic signals, applying a wavelet transformation to the set of signals and generating transformed signals across a plurality of scales. Then for each scale determining coherence information indicative of the transformed signals and generating a comparison matrix comparing the transformed signals, then outputting seismic attribute information based on combined coherence information.
G01V 1/28 - Traitement des données sismiques, p. ex. pour l’interprétation ou pour la détection d’événements
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
A system to improve calibration of geophone and hydrophone pairs is described. The system generates first and second phase shifted data by applying a first and second phase shift to first seismic data acquired by the geophone. The system generates a first upgoing wavefield by summing the first phase shifted data and second seismic data acquired by the hydrophone, and a second upgoing wavefield by summing the second phase shifted data and the second seismic data. The system generates a first downgoing wavefield from a difference of the first phase shifted data and the second seismic data, and a second downgoing wavefield from a difference of the second phase shifted data and the second seismic data. The system determines ratios of the upgoing wavefields and the downgoing wavefields for each phase shift to identify the highest ratio, and selects the phase shift corresponding to the highest ratio for calibration.
G01V 13/00 - Fabrication, étalonnage, nettoyage ou réparation des instruments ou dispositifs couverts par les groupes
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
G01V 1/18 - Éléments récepteurs, p. ex. sismomètre, géophone
G01V 1/38 - SéismologieProspection ou détection sismique ou acoustique spécialement adaptées aux zones recouvertes d'eau
5.
Seismic imaging with a temporal decomposition imaging condition
Systems and methods of performing a seismic survey are described. The system can receive seismic data. The system receives seismic data from one or more seismic data sources. The system propagates the seismic data forward in time through a subsurface model to generate a first wavefield. The system propagates the seismic data backward in time through the subsurface model to generate a second wavefield. The system combines the first wavefield with the second wavefield using a time gate imaging condition to produce subsurface images and image gathers.
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
G01V 1/28 - Traitement des données sismiques, p. ex. pour l’interprétation ou pour la détection d’événements
6.
SEISMIC IMAGING WITH A TEMPORAL DECOMPOSITION IMAGING CONDITION
Systems and methods of performing a seismic survey are described. The system can receive seismic data. The system receives seismic data from one or more seismic data sources. The system propagates the seismic data forward in time through a subsurface model to generate a first wavefield. The system propagates the seismic data backward in time through the subsurface model to generate a second wavefield. The system combines the first wavefield with the second wavefield using a time gate imaging condition to produce subsurface images and image gathers.
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
The present disclosure is directed to systems and methods to perform or facilitate operation of a seismic survey. The system can include a seismic data acquisition unit. The seismic data acquisition unit can include a cap free subsea connector. The connector can be formed of a snap ring, pin interconnect and socket insert. The snap ring can contact the pin interconnect. The pin interconnect can contact the socket insert. The socket insert can be in contact with isolation electronics within the seismic data acquisition unit. The snap ring can lock or keep the pin interconnect in contact with the socket insert. The pin interconnect can be removable and replaceable.
Systems and methods of performing a seismic survey are described. The system can receive seismic data in a first domain, and transform the seismic data into a tau-p domain. The system can identify a value on an envelope in the tau-p domain, select several values on the tau-p envelope using a threshold, and then generate a masking function. The system can combine the masking function with the tau-p transformed seismic data, and then perform an inverse tau-p transform on the combined seismic data. The system can adjust amplitudes in the inverse tau-p transformed combined seismic data, and identify one or more coherent events corresponding to subsea lithologic formations or hydrocarbon deposits.
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Licensing seismic data to others Conducting geophysical surveys, data acquisition and analysis; design of seismic acquisition parameters, models or plans for acquiring seismic data; seismic data acquisition, processing and analysis; collection of seismic data for others; seismic exploration; marine exploration and surveying; exploration for natural resources
A system to improve calibration of geophone and hydrophone pairs is described. The system generates first and second phase shifted data by applying a first and second phase shift to first seismic data acquired by the geophone. The system generates a first upgoing wavefield by summing the first phase shifted data and second seismic data acquired by the hydrophone, and a second upgoing wavefield by summing the second phase shifted data and the second seismic data. The system generates a first downgoing wavefield from a difference of the first phase shifted data and the second seismic data, and a second downgoing wavefield from a difference of the second phase shifted data and the second seismic data. The system determines ratios of the upgoing wavefields and the downgoing wavefields for each phase shift to identify the highest ratio, and selects the phase shift corresponding to the highest ratio for calibration.
G01V 1/38 - SéismologieProspection ou détection sismique ou acoustique spécialement adaptées aux zones recouvertes d'eau
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
Systems and methods of optical link communication with seismic data acquisition units are provided. The systems and methods can perform at least portions of seismic data acquisition survey. A plurality of seismic data acquisition units can be deployed on a seabed. An optical communications link can be established between an extraction vehicle and at least one of the seismic data acquisition units. A frequency of the at least one seismic data acquisition unit can be syntonized or synchronized via the optical communications link. The at least one seismic data acquisition unit can be instructed to enter a low power state subsequent to syntonizing the frequency of the at least one seismic data acquisition unit. The seismic data acquisition unit can exit the low power state and acquire seismic data in an operational state.
The present disclosure relates to a method of processing seismic signals comprising: receiving a set of seismic signals, applying a wavelet transformation to the set of signals and generating transformed signals across a plurality of scales. Then for each scale determining coherence information indicative of the transformed signals and generating a comparison matrix comparing the transformed signals, then outputting seismic attribute information based on combined coherence information.
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
The present disclosure provides optical link management in a marine seismic environment. A first device can transmit, to a second device, a first optical transmission at a first output level. The first optical transmission can include a first packet corresponding to a network protocol. The first device can determine that the second device failed to receive the first packet via the first optical transmission. The first device can transmit, responsive to failure of the first optical transmission, a second optical transmission at a second output level different than the first output level. The second optical transmission can include a second packet corresponding to the network protocol. The first device can identify that the second packet was successfully received by the second link manager agent. The first device can establish, responsive to the identification that the second packet was successfully received, the second output level as a transmission output level for the first device.
The present disclosure is directed to underwater seismic exploration with a helical conveyor and skid structure. The system can include an underwater vehicle comprising a sensor to identify a case having a hydrodynamic shape, wherein the case stores one or more ocean bottom seismometer (“OBS”) units. The underwater vehicle includes an arm. The underwater vehicle includes an actuator to position the arm in an open state above a cap of the case, or to close the arm. The underwater vehicle can move the arm to a bottom portion of the case opposite the cap. An opening of the case can be aligned with the conveyor of the underwater vehicle. The conveyor can receive, via the opening of the case, a first OBS unit of the one or more OBS units. The conveyor can move the first OBS unit to the seabed to acquire seismic data from the seabed.
G01V 1/38 - SéismologieProspection ou détection sismique ou acoustique spécialement adaptées aux zones recouvertes d'eau
B63G 8/00 - Navires submersibles, p. ex. sous-marins
B65G 11/06 - Colonnes de descente hélicoïdales ou en spirale
B65G 33/14 - Transporteurs rotatifs à vis ou à hélice pour matériaux solides fluents comportant une vis ou plusieurs vis enfermées dans un carter tubulaire
The present disclosure is directed to loading a helical conveyor for underwater seismic exploration. The system includes a case and a first conveyor having a helix structure provided within the case to support one or more OBS units. The case can include a first opening at a first end of the first conveyor and a second opening at a second end of the first conveyor. The system can include a base to receive at least a portion of the case. The system can include a second conveyor positioned external to the case that can move an OBS unit into the first opening at the first end of the first conveyor. The first conveyor can receive the OBS unit and direct the OBS unit towards the second opening at the second end of the first conveyor.
The present disclosure is directed to a skid structure for underwater seismic exploration. The system can include an underwater vehicle comprising a skid structure. A conveyor is provided in the skid structure. The conveyor includes a first end and a second end opposite the first end. A capture appliance is provided at the first end of the conveyor. The capture appliance includes an arm to close to hold a case storing one or more ocean bottom seismometer ("OBS") units, and to open to release the case. The capture appliance includes an alignment mechanism to align an opening of the case with the first end of the conveyor. A deployment appliance can be at the second end of the conveyor. The deployment appliance can place an OBS unit of the one or more OBS units onto the seabed to acquire seismic data from the seabed.
The present disclosure is directed to a helical conveyor for underwater seismic exploration. The system can include a case having a cylindrical portion. A cap is positioned adjacent to a first end of the case. A conveyor having a helix structure is provided within the case. The conveyor can receive an ocean bottom seismometer ("OBS") unit at a first end of the conveyer and transport the OBS unit via the helix structure to a second end of the conveyor to provide the OBS unit on the seabed to acquire the seismic data. The system can include a propulsion system to receive an instruction and, responsive to the instruction, facilitate movement of the case.
The present disclosure is directed to underwater seismic exploration with a helical conveyor and skid structure. The system can include an underwater vehicle comprising a sensor to identify a case having a hydrodynamic shape, wherein the case stores one or more ocean bottom seismometer ("OBS") units. The underwater vehicle includes an arm. The underwater vehicle includes an actuator to position the arm in an open state above a cap of the case, or to close the arm. The underwater vehicle can move the arm to a bottom portion of the case opposite the cap. An opening of the case can be aligned with the conveyor of the underwater vehicle. The conveyor can receive, via the opening of the case, a first OBS unit of the one or more OBS units. The conveyor can move the first OBS unit to the seabed to acquire seismic data from the seabed.
Systems and methods of deploying seismic data acquisition units from a marine vessel are disclosed. The system can include a spindle coupled to a tether. A robotic arm can couple the spindle to a tether via one or more tumblers. The tether can connect to a seismic data acquisition unit via a connection block having a mechanical force device. The assembled spindle, tether and seismic data acquisition unit can be deployed from the deck via a deployment block.
G01V 1/20 - Aménagements d'éléments récepteurs, p. ex. oscillogrammes géophoniques
B63B 21/66 - Équipements spécialement adaptés au remorquage sous l'eau des objets ou des navires, p. ex. carénages hydrodynamiques pour câbles de remorquage
F16G 11/02 - Moyens pour attacher les câbles ou les cordes l'un à l'autre ou à d'autres objetsChapeaux ou manchons à fixer sur les câbles ou les cordes avec parties déformables pour saisir le câble ou les câblesMoyens d'attache engageant un manchon ou élément similaire fixé au câble
G01V 1/38 - SéismologieProspection ou détection sismique ou acoustique spécialement adaptées aux zones recouvertes d'eau
21.
DETERMINING NODE DEPTH AND WATER COLUMN TRANSIT VELOCITY
Systems and methods of detecting marine seismic survey parameters are provided. A data processing system can obtain seismic data from seismic data acquisition units disposed on a seabed responsive to an acoustic signal propagated from an acoustic source through a water column. The data processing system can determine from the seismic data, a direct arrival time for the acoustic signal at each of the plurality of seismic data acquisition units, and can obtain an estimated depth value of each of the plurality of seismic data acquisition units and an estimated water column transit velocity of the acoustic signal. The data processing system can apply a depth model and a water column transit velocity model to the estimated depth value and to the estimated water column transit velocity determine an updated depth value and an updated water column transit velocity for each of the plurality of seismic data acquisition units.
G01V 1/28 - Traitement des données sismiques, p. ex. pour l’interprétation ou pour la détection d’événements
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
G01V 1/38 - SéismologieProspection ou détection sismique ou acoustique spécialement adaptées aux zones recouvertes d'eau
22.
Systems and methods for detecting subsurface features using 3D angle gathers
The present disclosure is directed to detecting subsurface features via a seismic survey. A system can obtain seismic data from nodes separated from each other by at least a threshold distance on a ground surface. The seismic data can include image trace data based on field trace data detected from each of the plurality of seismic data acquisition units. The system retrieves a sample interval and a parameter. The system configures a bandlimited binning function with the sampling interval and the predetermined parameter. The system applies the bandlimited binning function to a plurality of image traces of the image trace data to generate a bandlimited angle gather value for a bin in an angle gathers grid. The system generates an image based on the angle gathers grid and provides the image for display.
G01V 1/34 - Représentation des enregistrements sismiques
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
G01V 1/32 - Transformation d'un mode d'enregistrement en un autre
23.
SYSTEMS AND METHODS FOR DETECTING SUBSURFACE FEATURES USING 3D ANGLE GATHERS
The present disclosure is directed to detecting subsurface features via a seismic survey. A system can obtain seismic data from nodes separated from each other by at least a threshold distance on a ground surface. The seismic data can include image trace data based on field trace data detected from each of the plurality of seismic data acquisition units. The system retrieves a sample interval and a parameter. The system configures a bandlimited binning function with the sampling interval and the predetermined parameter. The system applies the bandlimited binning function to a plurality of image traces of the image trace data to generate a bandlimited angle gather value for a bin in an angle gathers grid. The system generates an image based on the angle gathers grid and provides the image for display.
Apparatus and methods to operationally deploy land-based seismic nodes. An autonomous or semi-autonomous vehicle includes apparatus for placing, monitoring, testing, servicing, and collecting nodes in a harsh environment such as, e.g., tundra or desert. Associated methods of node deployment and retrieval are disclosed including a 'rollover deployment. '
Methods and systems for minimizing RMS travel time error in a seismic data acquisition. Field measurements of source and receiver coordinates, speed of sound in water as a function of depth and time, receiver timing, and clock drift are first collected. The seismic data is then examined to measure travel time from each source to each receiver. A model travel time is computed based on the field measurements. By iteratively perturbing at least one of the field measured data using a look-up table and calculating the travel time after each perturbation until an acceptable RMS error has been achieved, conditioned seismic data that takes into account the dynamic nature of the water column will provide the basis for creating an accurate seismic map that is unaffected by the changing water conditions.
G01V 1/38 - SéismologieProspection ou détection sismique ou acoustique spécialement adaptées aux zones recouvertes d'eau
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Seismic sensors; seismic detection equipment, namely, detectors, recorders, data processors and transmitters for collecting, recording and processing seismic data; computer programs for seismic data processing in the petroleum industry. Providing services in the field of exploration for oil and gas, namely, conducting geophysical surveys, data acquisition and analysis; design of seismic acquisition parameters, models or plans for acquiring seismic data; seismic data acquisition, processing and analysis.
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Seismic sensors; seismic exploration machines and apparatus; seismic detection, imaging and data acquisition instruments. Providing services in the field of exploration for oil and gas, namely, conducting geophysical surveys, data acquisition and analysis; design of seismic acquisition parameters, models or plans for acquiring seismic data.
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Providing services in the field of exploration for oil and gas, namely, conducting geophysical surveys, data acquisition and analysis; design of seismic acquisition parameters, models or plans for acquiring seismic data; seismic data acquisition, processing and analysis.
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
(1) Seismic sensors; seismic detection equipment, namely, detectors, recorders, data processors and transmitters for collecting, recording and processing seismic data; computer programs for seismic data processing in the petroleum industries (1) Providing services in the field of exploration for oil and gas, namely, conducting geophysical surveys, data acquisition and analysis; design of seismic acquisition parameters, models and plans for acquiring seismic data; seismic data acquisition, processing and analysis
30.
Detecting structural and stratigraphic information from seismic data
The present invention relates to a method of processing seismic signals comprising: receiving a set of seismic signals, applying a wavelet transformation to the set of signals and generating transformed signals across a plurality of scales. Then for each scale determining coherence information indicative of the transformed signals and generating a comparison matrix comparing the transformed signals, then outputting seismic attribute information based on combined coherence information.
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Seismic sensors; seismic exploration machines and apparatus; seismic detection, imaging and data acquisition instruments. Providing services in the field of exploration for oil and gas, namely, conducting geophysical surveys, data acquisition and analysis; design of seismic acquisition parameters, models or plans for acquiring seismic data.
32.
SUB-SEA PAYLOAD EXCHANGE SYSTEM, APPARATUS AND METHODS
Apparatus and methods are described whereby a free-flying, remotely operated vehicle (ROV) can capture and take on board lightly managed seismic sensor devices (payload) while they are towed behind a surface vessel and therefore in motion in the mid-water column, possibly at great depths (e.g., 3000 meters). These apparatus and methods enable replenishment of payload on the ROV, obviate the need for the ROV to return to the surface vessel to receive additional payload, to do so without launch and recovery machinery, and without the need to heave compensate the payload. These apparatus and methods also enable the reverse process, returning payload from the ROV to the surface vessel again without the need to heave compensate the payload.
A real-time, marine acoustic monitoring system and method for detecting, tracking, recording, analyzing, communicating and otherwise obtaining and manipulating data indicative of marine presence and/or activity, and using such data to avoid or mitigate detrimental impact on the marine environment. The system includes sub-sea instrumentation packages (SPs) including sensors recording acoustic signals and other sensor data that allow elapsed and/or real-time, in-situ data communications and control of the individual instrumentation packages and system configuration. Each SP may have wireless, acoustic, and/or optical modules or components to enable the communication between SPs and/or other collection points such as surface vessels, ROVs, sub-sea transceivers, or AUVs. The SPs may further include additional single or multi-component seismic or other functionalized sensors for collecting data that may be used in combination with acquired acoustic data (which may relate to environmental conditions as described below as well as to marine mammal acoustic data) to assist in the identification, localization, and/or changes in the characteristics and/or population(s) of mammals in the sensed environment or other stimuli such as, but not limited to, radiation, movement, and any other detectable stimuli of real or potential interest.
An apparatus is described which uses directly modulated InGaN Light-Emitting Diodes (LEDs) or InGaN lasers as the transmitters for an underwater data-communication device. The receiver uses automatic gain control to facilitate performance of the apparatus over a wide-range of distances and water turbidities.
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Seismic exploration machines and apparatus. Analysis services for oil field exploration; design of seismic acquisition parameters, namely, models or plans for acquiring seismic data in connection with drilling operations.
37.
ITEM STORAGE, DISPENSING, AND RECEIVING SYSTEM, APPARATUS, METHODS, AND APPLICATIONS
An item storage, dispensing, and receiving apparatus includes a frame assembly having a height and length, including at least one section thereof having two opposing side wall sections, wherein each opposing side wall section includes vertically spaced rails disposed on an inner surface thereof such that each rail on a respective side wall section is located opposite a corresponding rail on the opposing side wall section, further wherein the at least one section has an open space fully extending between the vertically spaced rails between the two opposing side wall sections over the height and length, and a conveyance mechanism located within the open space along at least a portion of the length, wherein the conveyance mechanism is movable in a vertical direction in the open space along the height. A method for moving an item in a tiered, spaced relation involves the steps of vertically moving an item conveyance mechanism from a position below a lowest tiered item until it engages the item or from a position above a highest tiered item until it engages the item, and horizontally conveying the engaged item to a location different than the horizontal engagement location of the item.
A method of performing a seismic survey including: deploying nodal seismic sensors at positions in a survey region; activating a plurality of seismic sources; and using the nodal seismic sensors to record seismic signals generated in response to the activation of the plurality of signals. Seismic exploration generally utilizes a seismic energy source to generate an acoustic signal that propagates into the earth and is partially reflected by subsurface seismic reflectors (i.e., interfaces between subsurface lithologic or fluid layers characterized by different elastic properties).
Machinery and methods are described whereby a free flying, remotely operated vehicle (ROV) can safely capture and take on board lightly managed seismic sensor devices (payload) while they are in-transit via a surface vessel in a (deep) water column. ROV payload can be replenished without the need for the ROV to return to the surface vessel to receive additional payload and to do so without the need for heavy launch and recovery machinery. The reverse process of returning payload from the ROV to the surface vessel is also disclosed.
Apparatus and methods to operationally link (couple/decouple) a plurality of relatively massive, complimentary payload platforms (i.e., suspended machinery and ROV) at relatively deep working depths in an unstable marine environment (water column) while the payload platforms are in-transit. An apparatus includes a suspended machinery, an ROV, a capture collar, an extendable/retractable harpoon, and actuating machinery to controllably effect extension and retraction thereof. A method includes providing an in-transit suspended machinery having a capture collar, providing an in-transit ROV having an extendable/retractable harpoon, approaching the in-transit suspended machinery with the ROV, maneuvering the ROV so as to bring an end of the partially extended harpoon into aligned proximity with the capture collar, and further extending the harpoon so that it securely engages the capture collar.
In one aspect, a seismic data acquisition unit is disclosed including a closed housing containing: a seismic sensor; a processor operatively coupled to the seismic sensor; a memory operatively coupled to the processor to record seismic data from the sensor; and a power source configured to power the sensor, processor and memory. The sensor, processor, memory and power source are configured to be assemble as an operable unit in the absence of the closed housing.
A payload control apparatus includes a spring-line a spring line actuating mechanism, a spring line flying sheave over which a load line can pass, and a spring line, wherein the spring line flying sheave can move into a position either where the flying sheave is spaced from and in non-contact with or contacting but non-path-altering in relation to the load line, further wherein the spring-line flying sheave can be moved into another position such that the flying sheave engages the load-line and alters its path length. Thus, when a marine surface vessel falls in a heave event that would otherwise cause the payload at the end of the load line to fall as well, the flying sheave will move to increase the path length causing a shortening of the path length, thereby preventing the payload from falling.
B66D 3/04 - Moufles ou dispositifs similaires dans lesquels la force est appliquée à une corde, un câble ou une chaîne qui passe sur une ou plusieurs poulies, p. ex. pour obtenir une démultiplication
B66D 3/12 - Dispositifs à chaînes ou à éléments similaires manœuvrés manuellement, avec ou sans mécanisme de transmission entre l'organe de manœuvre et la corde, la chaîne ou le câble de hissage
43.
SEISMIC DATA ANALYSIS USING OCEAN BOTTOM NODE DATA COLLECTION
The present invention permits RMS traveltime error in a seismic data acquisition to be minimized. Field measurements of source and receiver coordinates, speed of sound in water as a function of depth and time, receiver timing, and clock drift are first collected. The seismic data is then examined to measure travel time from each source to each reciever. A model travel time can then be computed based on the field measurements. By iteratively perturbing at least one of the field measured data using a look-up table and calculating the travel time after each perturbation until an acceptable RMS error has been achieved, conditioned seismic data that takes into account the dynamic nature of the water column will provide the basis for creating an accurate seismic map that is unaffected by the changing water conditions.
G01V 1/38 - SéismologieProspection ou détection sismique ou acoustique spécialement adaptées aux zones recouvertes d'eau
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
A coupler for a load-bearing, non-signal-transmitting cable includes a body portion having integral first and second ends and an integral gate having a key entry region, wherein the body portion has a free space at least partially enclosed by an inner surface of the body portion and the gate. A complimentary coupling ring includes an integral perimetal body having a head section, a foot section, and two arm sections therebetween, wherein at least one of the arm sections has a key region, further wherein the key region consists of a solid, integral portion of the at least one arm section. A coupler/coupling ring assembly comprises a coupler and a coupling ring that is removeably engageable with the coupler. The coupler/coupling ring assembly is particularly suited for interconnecting lengths of load-bearing, non-signal- transmitting cable, particularly suited for, but not limited to, undersea applications such as attaching a seismic data recording device to the coupler via the coupling ring.
A coupler for a load-bearing, non-signal-transmitting cable includes a body portion having integral first and second ends and an integral gate having a key entry region, wherein the body portion has a free space at least partially enclosed by an inner surface of the body portion and the gate. A complimentary coupling ring includes an integral perimetal body having a head section, a foot section, and two arm sections therebetween, wherein at least one of the arm sections has a key region, further wherein the key region consists of a solid, integral portion of the at least one arm section. A coupler/coupling ring assembly comprises a coupler and a coupling ring that is removeably engageable with the coupler. The coupler/coupling ring assembly is particularly suited for interconnecting lengths of load-bearing, non-signal-transmitting cable, particularly suited for, but not limited to, undersea applications such as attaching a seismic data recording device to the coupler via the coupling ring.
A coupler for a load-bearing, non-signal-transmitting cable includes a body portion having integral first and second ends and an integral gate having a key entry region, wherein the body portion has a free space at least partially enclosed by an inner surface of the body portion and the gate. A complimentary coupling ring includes an integral perimetal body having a head section, a foot section, and two arm sections therebetween, wherein at least one of the arm sections has a key region, further wherein the key region consists of a solid, integral portion of the at least one arm section. A coupler/coupling ring assembly comprises a coupler and a coupling ring that is removeably engageable with the coupler. The coupler/coupling ring assembly is particularly suited for interconnecting lengths of load-bearing, non-signal-transmitting cable, particularly suited for, but not limited to, undersea applications such as attaching a seismic data recording device to the coupler via the coupling ring.
A coupler for a load-bearing, non-signal-transmitting cable includes a body portion having integral first and second ends and an integral gate having a key entry region, wherein the body portion has a free space at least partially enclosed by an inner surface of the body portion and the gate. A complimentary coupling ring includes an integral perimetal body having a head section, a foot section, and two arm sections therebetween, wherein at least one of the arm sections has a key region, further wherein the key region consists of a solid, integral portion of the at least one arm section. A coupler/coupling ring assembly comprises a coupler and a coupling ring that is removeably engageable with the coupler. The coupler/coupling ring assembly is particularly suited for interconnecting lengths of load-bearing, non-signal-transmitting cable, particularly suited for, but not limited to, undersea applications such as attaching a seismic data recording device to the coupler via the coupling ring.
A coupler for a load-bearing, non-signal-transmitting cable includes a body portion having integral first and second ends and an integral gate having a key entry region, wherein the body portion has a free space at least partially enclosed by an inner surface of the body portion and the gate. A complimentary coupling ring includes an integral perimetal body having a head section, a foot section, and two arm sections therebetween, wherein at least one of the arm sections has a key region, further wherein the key region consists of a solid, integral portion of the at least one arm section. A coupler/coupling ring assembly comprises a coupler and a coupling ring that is removeably engageable with the coupler. The coupler/coupling ring assembly is particularly suited for interconnecting lengths of load-bearing, non-signal- transmitting cable, particularly suited for, but not limited to, undersea applications such as attaching a seismic data recording device to the coupler via the coupling ring.
A coupler for a load-bearing, non-signal-transmitting cable includes a body portion having integral first and second ends and an integral gate having a key entry region, wherein the body portion has a free space at least partially enclosed by an inner surface of the body portion and the gate. A complimentary coupling ring includes an integral perimetal body having a head section, a foot section, and two arm sections therebetween, wherein at least one of the arm sections has a key region, further wherein the key region consists of a solid, integral portion of the at least one arm section. A coupler/coupling ring assembly comprises a coupler and a coupling ring that is removeably engageable with the coupler. The coupler/coupling ring assembly is particularly suited for interconnecting lengths of load-bearing, non-signal-transmitting cable, particularly suited for, but not limited to, undersea applications such as attaching a seismic data recording device to the coupler via the coupling ring.
The present invention relates to a method of processing seismic signals comprising: receiving a set of seismic signals, applying a wavelet transformation to the set of signal and generating transformed signals across a plurality of scales. Then for each scale determining coherence information indicative of the transformed signals arid generating a comparison matrix comparing the transformed signals, then outputting seismic attribute information based on combined coherence information.
The transmission system combines a selfcontained, wireless seismic acquistion unit and a wireless, line of site, communications unit to form a plurality of individual shortrange transmission networks and also a midrange, line of sight transmission network. Each seismic unit has a power source with a shortrange transceiver and a geophone disposed within a casing. Each communications unit has an elongated support structure on which is mounted an independent power source, midrange radio tranceiver; and a shortrange transceiver configured to wirelessly communicate with the shortrange transceiver of the acquisition unit. The acquisition unit is buried under the surface of the ground, while the wireless communications unit is positioned in the near vicinity of the buried unit so as to vertically protrude above the ground. The acquisition unit and the wireless communications unit communicate by shortrange transmissions, while the wireless communications unit communicates with other seismic acquisition systems using midrange radio transmission.
A method for adjusting an isotropic depth image based on a mis-tie volume is provided. The method generally includes obtaining an isotropic velocity volume for a geophysical volume, obtaining an isotropic depth image of the geophysical volume, obtaining time-depth pairs at downhole locations in the geophysical volume, generating mis-tie values based on the time-depth pairs and the isotropic velocity volume, assigning uncertainties to the mis-tie values, generating a smoothest mis-tie volume that satisfies a target goodness of fit with the mis-tie values. Adjustment of the isotropic depth image may be achieved based on the mis-tie volume or a calibration velocity obtained from the mis-tie volume.
Embodiments described herein relate to an apparatus and method of transferring seismic equipment to and from a marine vessel and subsurface location. In one embodiment, the method includes deploying at least one remotely operated vehicle from a vessel operating in a first direction, and operating the at least one remotely operated vehicle in a pattern relative to the direction of the vessel to form at least two receiver lines.
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Seismic detection and seismic data acquisition instruments. Providing services in the field of exploration for oil and gas, namely, geophysical surveys, data acquisition and analysis.
A method and apparatus for a seismic cable is described. The apparatus includes a plurality of cable segments comprising at least a first cable segment and a second cable segment coupled by a connector. The connector comprises a cylindrical body having a first diameter, a portion of the body having a second diameter that is smaller than the first diameter and centrally positioned between opposing ends of the body, a first coupling section having a terminating end of the first cable segment anchored therein, and a second coupling section having a terminating end of the second cable segment anchored therein, at least a portion of the first and second coupling sections being rotatably coupled to respective ends of the body, wherein the connector isolates the first cable segment from the second cable segment. A method of deployment and retrieval of the seismic cable is also described.
A method and apparatus for a seismic cable is described. In one embodiment, the seismic cable includes a first cable segment and a second cable segment coupled together by a connector. Each cable segment includes an inner jacket defining a hollow core, a braided strength fiber surrounding the inner jacket, and an outer jacket circumferentially surrounding the braided strength fiber, wherein the connector isolates the first and second cable segments.
A method and apparatus for deploying a plurality of seismic sensor units into a water column is described. The method includes providing a length of flexible cable from a cable storage device disposed on a vessel to a powered sheave, the cable having a plurality of spaced apart attachment points, routing the cable from the powered sheave to pass adjacent a workstation disposed on the vessel, deploying a free end of the cable into the water column while increasing the motion of the vessel to a first speed, operating the vessel at the first speed while providing a deployment rate of the cable at a second speed, the second speed being greater than the first speed, decreasing the second speed of the cable as an attachment point approaches the work station, and attaching at least one of the plurality of seismic sensor units to the attachment point at the workstation.
A self-contained, wireless seismic data acquisition unit having a cylindrically shaped case with smooth side walls along the length of the case. A retaining ring around the circumference is used to secure the cylindrical upper portion of the case to the cylindrical lower portion of the case. Interleaved fingers on the upper portion of the case and the lower portion of the case prevent the upper portion and the lower portion from rotating relative to one another. Ruggedized external electrical contacts are physically decoupled from rigid attachment to the internal electrical components of the unit utilizing electrical pins that "float" relative to the external case and the internal circuit board on which the pins are carried. The seismic sensors in the unit, such as geophones, and the antennae for the unit are located along the major axis of the cylindrically shaped case to improve fidelity and timing functions.
A wavelet-based method for improving the quality of seismic data utilizing the intercept determined by applying least squares regression to the wavelet transform of a seismic trace. The intercept is calculated for every time point of the wavelet transform for each seismic trace. The intercepts are then plotted versus time or depth. These plots are used in place of seismic traces themselves to create two dimensional and three dimensional seismic section images. In one embodiment, the real and imaginary portions of the selected wavelet transform are weighted to generate a finer representation of the intercept. In another embodiment, a minimum amplitude value is utilized to establish a noise floor, thus stabilizing the regression calculation. In yet another embodiment, a taper of the amplitude is applied to wavelet enhance the resolving power of the wavelet.
Methods and apparatus for determining an accurate differential transfer function (DTF) between two closely spaced hydrophones in a dual-hydrophone configuration such that the wavefield may be properly separated into up- and down-going components are provided. The methods disclosed herein are based on the premise that the cross-correlation at a lag of zero between up- and down-going wavefields should be at a minimum for perfectly matched hydrophones. Thus, any suitable global optimization technique may be utilized to determine an accurate DTF where the zero-lag cross-correlation between up- and down-going energy is at a minimum after multiplying a particular hydrophone spectrum of the pair (depending on how the DTF was defined) with a possible DTF suggested by the global optimization technique.
Methods and apparatus for removing noise from signal traces collected during a seismic gather, particularly removing the aliased energy in the time-slowness (tau-P) domain so that aliasing noise does not lead to high noise levels in the inverse transformed data are provided. Removal of the aliasing noise may provide for quieter seismic traces and may increase the likelihood for successful three-dimensional (3-D) tau-P interpolation and detection of seismic events.
Methods and apparatus for removing noise from signal traces collected during a seismic gather, particularly removing the aliased energy in the time-slowness (tau-P) domain so that aliasing noise does not lead to high noise levels in the inverse transformed data are provided. Removal of the aliasing noise may provide for quieter seismic traces and may increase the likelihood for successful three-dimensional (3-D) tau-P interpolation and detection of seismic events.
A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by a plurality of wireless seismic data acquisition units in a seismic system The receiver replicates local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized The receiver replicates local version of remote common time reference for time-stamping local node events The receiver can enter a low power, nonoperational state over penods of time dunng which the seismic data acquisition unit continues to record seismic data, thus conserving unit battery power The system implements a method to correct the local time clock based on intermittent access to the common remote time reference using a voltage controlled oscillator to account for environmentally induced timing errors The invention further provides for a more stable method of correcting drift in the local time clock
A method and apparatus for storing, transporting, and transferring one or more sensor devices is described. In one embodiment, the apparatus includes a transfer device having a frame, and a movable platform coupled to the frame. A mesh material may be coupled to the frame and surround at least one side of the movable platform and a mating interface is formed in a side of the frame that is adapted to couple with a remotely operated vehicle in an underwater location.
Methods and apparatus for processing dual sensor (e.g., hydrophone and vertical geophone) data that includes intrinsic removal of noise as well as enhancing the wavefield separation are provided. The methods disclosed herein are based on a decomposition of data simultaneously into dip and frequency while retaining temporal locality. The noise removed may be mainly coherent geophone noise from the vertical geophone, also known as V(z) noise.
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
66.
Geophone noise attenuation and wavefield separation using a multi-dimensional decomposition technique
Methods and apparatus for processing dual sensor (e.g., hydrophone and vertical geophone) data that includes intrinsic removal of noise as well as enhancing the wavefield separation are provided. The methods disclosed herein are based on a decomposition of data simultaneously into dip and frequency while retaining temporal locality. The noise removed may be mainly coherent geophone noise from the vertical geophone, also known as V(z) noise.
Coherent wave noise energy is removed from seismic data by modeling both the P-wave primary energy and the coherent wave noise energy. The P-wave primary energy is modeled first and then subtracted from the input data. The data with the P-wave primary energy removed is used as the input for coherent wave energy removal. The coherent wave energy is modeled and subtracted from the original input data, i.e. the data input into P-wave primary removal. This leaves a dataset with P-wave primary energy and noise energy not related to coherent waves. This method can be utilized to remove all types of coherent noise with a velocity difference to the desired P-wave primary energy or with a different type of moveout (change of time of arrival with source-receiver distance) such as, for example, linear moveout.
G01V 1/28 - Traitement des données sismiques, p. ex. pour l’interprétation ou pour la détection d’événements
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
Coherent wave noise energy is removed from seismic data by modeling both the P-wave primary energy and the coherent wave noise energy. The P-wave primary energy is modeled first and then subtracted from the input data. The data with the P-wave primary energy removed is used as the input for coherent wave energy removal. The coherent wave energy is modeled and subtracted from the original input data, i.e. the data input into P-wave primary removal. This leaves a dataset with P-wave primary energy and noise energy not related to coherent waves. This method can be utilized to remove all types of coherent noise with a velocity difference to the desired P-wave primary energy or with a different type of moveout (change of time of arrival with source-receiver distance) such as, for example, linear moveout.
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
69.
DECK CONFIGURATION FOR OCEAN BOTTOM SEISMOMETER LAUNCH PLATFORMS
A configuration for the deck of a marine vessel, wherein parallel and perpendicular travel paths, for movement of individual OBS unit storage baskets, are formed along a deck utilizing, in part, the storage baskets themselves. A portion of the deck is divided into a grid defined by a series of low-to-the-deck perpendicular and parallel rails and each square in the grid is configured to hold an OBS unit storage basket. Around the perimeter of the grid is an external containment wall which has a greater height than the rails. Storage baskets seated within the grid are configured to selectively form internal containment walls. Opposing internal and external containment walls define travel paths along which a storage basket can be moved utilizing a low, overhead gantry. A basket need only be lifted a minimal height above the deck in order to be moved along a path. The containment walls and the deck itself constraining uncontrolled swinging of baskets, even in onerous weather or sea conditions. The system is flexible to meet the needs of a desired operation since the internal walls of the grid can be reconfigured as desired in order to free up a particular storage basket or define a particular travel path.
B63B 21/66 - Équipements spécialement adaptés au remorquage sous l'eau des objets ou des navires, p. ex. carénages hydrodynamiques pour câbles de remorquage
09 - Appareils et instruments scientifiques et électriques
35 - Publicité; Affaires commerciales
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Seismic sensors; seismic detection equipment, namely, detectors, recorders, data processors and transmitters for collecting, recording and processing seismic data [ ; computer programs for seismic data processing in the petroleum industry ] Licensing seismic data to others Providing services in the field of exploration for oil and gas, namely, geophysical surveys, seismic data acquisition, seismic data processing, seismic data analysis
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
[ Seismic sensors; seismic detection equipment, namely, detectors, recorders, data processors and transmitters for collecting, recording and processing seismic data; computer programs for seismic data processing in the petroleum industry ] Providing services in the field of exploration for oil and gas, namely geophysical surveys, seismic data acquisition and seismic data analysis