The present invention provides a separator comprising a vessel (1) and an electrode assembly (2), wherein the vessel (1) has an inlet section (3), a main settling section (14) and an outlet section (4) and comprises a fluid inlet (5) arranged in the inlet section (3), and an oil outlet (7) and a water outlet (8) arranged in the outlet section (4); the electrode assembly (2) is arranged in the inlet section and comprises at least one fluid pipe (9) and at least one rod-shaped electrode (10), the fluid pipe surrounds at least parts of the rod-shaped electrode and comprises a pipe inlet (11) arranged in the inlet section and a pipe outlet (12) arranged in fluid communication with the main settling section, wherein a liquid obstruction element (13) is arranged downstream the fluid inlet, such that at least a major part of a liquid component of a fluid stream entering the inlet section via the fluid inlet, during use, may be forced to pass through the at least one fluid pipe via the pipe inlet before entering the main settling section.
C02F 103/36 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'industrie chimique non prévue dans les groupes provenant de la fabrication de composés organiques
2.
Fluid inlet device for use in gas liquid separators
The present invention provides a fluid inlet device (1) for a separator, comprising a lower part (2) and an upper part (3), wherein the lower part (2) comprises an inner wall surface (4) having a horizontal cross-section comprising a circular arc, a top section (5) comprising a fluid outlet (6), a bottom section (7) comprising a liquid outlet (8), and a tangential fluid inlet (9) for introduction of a fluid flow to the inner wall surface (4); the upper part (3) comprises multiple guiding vanes (10) arranged to guide a fluid flow, entering the upper part through the fluid outlet (6), in a horizontal direction away from the fluid outlet.
A swirl generating pipe element for providing a rotational movement to a fluid, comprising a reluctance motor and a pipe section (9), wherein the reluctance motor comprises a stator element (1) and a rotor element (2); the stator element comprises multiple stator poles (3); the rotor element comprises a vane assembly having multiple rotor poles (4) and arranged to rotate around a rotor shaft (7) situated along the centerline of the pipe section (9), and each rotor pole has a first end (5) rotatably connected to the rotor shaft (7) and a second end (6) arranged close enough to one of the multiple stator poles (3) for a magnetic polarization to be induced in the rotor pole; and the pipe section (9) comprises a wall, having an external and an internal circumferential surface, and an inlet and an outlet for a fluid; wherein the stator element (1) and the rotor element (2) is separated by the wall (8) of the pipe section (9), and the multiple stator poles (3) are arranged at the external circumferential surface of the pipe section, and the second end (6) of the multiple rotor poles (4) are arranged adjacent to the internal circumferential surface of the pipe section, such that the vane assembly may provide a rotational movement to a fluid entering the inlet (10) of the pipe section (9).
B01D 45/12 - Séparation de particules dispersées dans des gaz ou des vapeurs par gravité, inertie ou force centrifuge en utilisant la force centrifuge
B01D 45/14 - Séparation de particules dispersées dans des gaz ou des vapeurs par gravité, inertie ou force centrifuge en utilisant la force centrifuge produite par des pales, disques, tambours ou brosses rotatives
B01F 7/04 - Mélangeurs à agitateurs tournant dans des récipients fixes; Pétrins avec agitateurs tournant autour d'un axe horizontal ou incliné à pales ou à bras
The present invention provides a separator comprising a vessel (1) and an electrode assembly (2), wherein the vessel (1) has an inlet section (3), a main settling section (14) and an outlet section (4) and comprises a fluid inlet (5) arranged in the inlet section (3), and an oil outlet (7) and a water outlet (8) arranged in the outlet section (4); the electrode assembly (2) is arranged in the inlet section and comprises at least one fluid pipe (9) and at least one rod-shaped electrode (10), the fluid pipe surrounds at least parts of the rod-shaped electrode and comprises a pipe inlet (11) arranged in the inlet section and a pipe outlet (12) arranged in fluid communication with the main settling section, wherein a liquid obstruction element (13) is arranged downstream the fluid inlet, such that at least a major part of a liquid component of a fluid stream entering the inlet section via the fluid inlet, during use, may be forced to pass through the at least one fluid pipe via the pipe inlet before entering the main settling section.
The present invention provides a method of purifying a contaminated liquid flow (A) comprising the steps of: introducing a first type of gas bubbles (8) in the contaminated liquid flow (A), the first type of gas bubbles obtained by at least partly saturating a liquid with a first gas (B′), at a first pressure, followed by a lowering of the first pressure to a second pressure; introducing a second type of gas bubbles (9) to the contaminated liquid flow (A) downstream of the introduction of the first type of gas bubbles, the second type of gas bubbles formed by sparging, entrainment or attrition of a second gas (B″); extracting a reject stream (C) comprising aggregates formed by the interaction of contaminants from the contaminated liquid flow (A) with both the first and the second type of gas bubbles; and obtaining a purified liquid flow (D) downstream of the introduction of the second type of gas bubbles; as well as a system and a vessel for use in such a method.
C02F 103/36 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'industrie chimique non prévue dans les groupes provenant de la fabrication de composés organiques
6.
INJECTION-MIXING DEVICE, FLUID TREATMENT SYSTEM AND METHOD FOR MIXING A FIRST FLUID AND A SECOND FLUID
The present invention provides an injection-mixing device comprising a main pipe (1) for a first fluid, an injection device (2,9,17) and a swirl-generating element (10), wherein the main pipe (1) comprises an inlet (5) for the first fluid and an outlet (6) for a treated fluid; the injection device (2) comprises an inlet (7) and at least one outlet (8) for a second, the at least one outlet (8) arranged within the main pipe (1); and the swirl-generating element (10) is arranged such that a centrifugal force is applied to the first fluid and the second fluid.
The present invention provides a fluid inlet device (1) for a separator, comprising a lower part (2) and an upper part (3), wherein the lower part (2) comprises an inner wall surface (4) having a horizontal cross-section comprising a circular arc, a top section (5) comprising a fluid outlet (6), a bottom section (7) comprising a liquid outlet (8), and a tangential fluid inlet (9) for introduction of a fluid flow to the inner wall surface (4); the upper part (3) comprises multiple guiding vanes (10) arranged to guide a fluid flow, entering the upper part through the fluid outlet (6), in a horizontal direction away from the fluid outlet.
A phase splitter for separating a multiphase fluid into a relatively light phase and a relatively heavy phase includes a separator tube which comprises a fluid inlet through which the multiphase fluid enters the apparatus, a heavy phase outlet through which the heavy phase exits the apparatus and an inner diameter surface which defines a flow bore that extends between the fluid inlet and the heavy phase outlet. A swirl element positioned in the flow bore downstream of the fluid inlet causes the multiphase fluid to rotate and separate the heavy phase from the light phase. The light phase forms an elongated core which extends axially through the flow bore radially inwardly of the heavy phase from proximate the swirl element toward the heavy phase outlet. A core stabilizer is positioned in the flow bore between the swirl element and the heavy phase outlet and engages the distal end of the light phase core to thereby inhibit the light phase from exiting the apparatus through the heavy phase outlet.
B01D 45/16 - Séparation de particules dispersées dans des gaz ou des vapeurs par gravité, inertie ou force centrifuge en utilisant la force centrifuge produite par le mouvement hélicoïdal du courant gazeux
B04C 3/06 - Structures des entrées ou sorties de la chambre où se produit le tourbillon
B04C 5/107 - Parties centralesDispositifs provoquant la présence d'air à la partie centrale des hydrocyclones
B04C 5/181 - Volets ou parties centrales des ouvertures de décharge
9.
SWIRL GENERATING PIPE ELEMENT AND PROCESS FOR GAS-LIQUID SEPARATION USING THE SAME
A swirl generating pipe element for providing a rotational movement to a fluid, comprising a reluctance motor and a pipe section (9), wherein the reluctance motor comprises a stator element (1) and a rotor element (2); the stator element comprises multiple stator poles (3); the rotor element comprises a vane assembly having multiple rotor poles (4) and arranged to rotate around a rotor shaft (7) situated along the centerline of the pipe section (9), and each rotor pole has a first end (5) rotatably connected to the rotor shaft (7) and a second end (6) arranged close enough to one of the multiple stator poles (3) for a magnetic polarization to be induced in the rotor pole; and the pipe section (9) comprises a wall, having an external and an internal circumferential surface, and an inlet and an outlet for a fluid; wherein the stator element (1) and the rotor element (2) is separated by the wall (8) of the pipe section (9), and the multiple stator poles (3) are arranged at the external circumferential surface of the pipe section, and the second end (6) of the multiple rotor poles (4) are arranged adjacent to the internal circumferential surface of the pipe section, such that the vane assembly may provide a rotational movement to a fluid entering the inlet (10) of the pipe section (9).
B01D 45/14 - Séparation de particules dispersées dans des gaz ou des vapeurs par gravité, inertie ou force centrifuge en utilisant la force centrifuge produite par des pales, disques, tambours ou brosses rotatives
10.
PROCESS AND SYSTEM FOR PURIFICATION OF GAS BY ADSORBING GASEOUS COMPOUNDS TO MOVING ADSORBENT PARTICLES
The present invention provides a process for removal of at least one type of compound from a gas flow, comprising the steps of introducing the gas flow into a fluid inlet (4) of a first mixing device (1); introducing compound adsorption particles into a particle inlet (5) of the first mixing device (1) to obtain a mixture of the gas flow and the compound adsorption particles exiting an outlet (6) of the first mixing device; and separating the gas flow from the compound adsorption particles in a first separator vessel (3) to obtain a compound-depleted gas flow. Further, the invention provides a system for the abovementioned process.
B01D 53/10 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse avec adsorbants mobiles avec adsorbants dispersés
B01D 53/96 - Régénération, réactivation ou recyclage des réactifs
C10L 3/10 - Post-traitement de gaz naturel ou de gaz naturel de synthèse
B01D 53/04 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse avec adsorbants fixes
B01D 53/06 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse avec adsorbants mobiles
The present invention provides a method of purifying a contaminated liquid flow (A) comprising the steps of: introducing a first type of gas bubbles (8) in the contaminated liquid flow (A), the first type of gas bubbles obtained by at least partly saturating a liquid with a first gas (Β'), at a first pressure, followed by a lowering of the first pressure to a second pressure; introducing a second type of gas bubbles (9) to the contaminated liquid flow (A) downstream of the introduction of the first type of gas bubbles, the second type of gas bubbles formed by sparging, entrainment or attrition of a second gas (B"); extracting a reject stream (C) comprising aggregates formed by the interaction of contaminants from the contaminated liquid flow (A) with both the first and the second type of gas bubbles; and obtaining a purified liquid flow (D) downstream of the introduction of the second type of gas bubbles; as well as a system and a vessel for use in such a method.
The present invention provides a fluidizing unit (1) for use in a vessel desanding system, comprising a discharge pipe (2) and a supply duct (3), the discharge pipe comprises a discharge inlet (4) and a discharge outlet (5), and the supply duct is formed by a housing (6) arranged around the discharge pipe defining an annular space (7) between an outer surface of said pipe and an inner surface of the housing, the supply duct comprises a pressurized liquid inlet (8) and a pressurized liquid outlet (9), wherein the pressurized liquid outlet, during use, is able to provide a pressurized liquid flow having a substantially elliptic cross-section.
The present invention provides a device for removing solids from a gas stream. The device comprises a longitudinal hollow element (2) comprising an inlet (9), a first outlet (10) and second outlet (11), and an internal rotation-generating element (12) for the gas stream, and the rotation-generating element (12), which causes the gas stream to rotate around a centerline (Y) of the hollow element (2), is arranged between the first outlet (10) and the second outlet (11) in the longitudinal direction of the hollow element (2), and comprises a central axial passage (13), said passage is fluidly connected to the first outlet (10) by an extraction line (14), said first outlet (10) arranged between the inlet (9) and the rotation-generating element (12) in the longitudinal direction of the hollow element, wherein a section (23) of the hollow element is arranged between the second outlet (11) and the rotation-generating element and has a decreasing inner circumference in the longitudinal direction of the hollow element (2) towards the second outlet.
B01D 50/00 - Combinaisons de procédés ou de dispositifs pour la séparation de particules de gaz ou de vapeurs
B01D 45/16 - Séparation de particules dispersées dans des gaz ou des vapeurs par gravité, inertie ou force centrifuge en utilisant la force centrifuge produite par le mouvement hélicoïdal du courant gazeux
B04C 5/103 - Bâtis ou éléments des appareils, p. ex. volets ou guides
B04C 3/06 - Structures des entrées ou sorties de la chambre où se produit le tourbillon
B04C 5/13 - Structure du guide pour la phase légère, p. ex. pour faire sortir la matière en spirale ou en la dispersant formé comme un capteur de tourbillon, et s'étendant à l'intérieur de la chambre du tourbillonÉvacuation du viseur de tourbillon autrement que par le haut du cycloneDispositifs de commande de l'évacuation de la phase légère
B04C 5/14 - Structure du guide pour la phase lourdeStructure de l'apexAménagement d'évacuation
The present invention regards an inline separator with a first pipe element (10) comprising a rotation-generating element (11) for the fluid flow downstream of an inlet (13) in the first pipe (10), a second pipe element (20) arranged at least partly inside the first pipe element (10), downstream of the rotation-generating element (11) and forming an outlet (25) for lighter density fluids, the first and second pipe elements (10, 20) forming an annular space (27) between an inner surface (15) of the first pipe element (10) and an outer surface (22) of the second pipe element (20), which annular space (27) is connected to a first outlet section (30) for heavier density fluids, wherein the second pipe element (20) is provided with a number of through-going openings (26) over at least a part of its length, the openings (26) leading to a second outlet section (31) for heavier density fluids, and both the first outlet section (30) and the second outlet section (31) are connected to a common container (40) with an outlet (41) for the heavier density fluids. The invention also related to a method for separating a fluid flow.
B01D 45/16 - Séparation de particules dispersées dans des gaz ou des vapeurs par gravité, inertie ou force centrifuge en utilisant la force centrifuge produite par le mouvement hélicoïdal du courant gazeux
B04C 3/06 - Structures des entrées ou sorties de la chambre où se produit le tourbillon
B04C 3/00 - Appareils dans lesquels la direction axiale du tourbillon ne change pas
The present invention provides a fluidizing unit (1) for use in a vessel desanding system, comprising a discharge pipe (2) and a supply duct (3), the discharge pipe comprises a discharge inlet (4) and a discharge outlet (5), and the supply duct is formed by a housing (6) arranged around the discharge pipe defining an annular space (7) between an outer surface of said pipe and an inner surface of the housing, the supply duct comprises a pressurized liquid inlet (8) and a pressurized liquid outlet (9), wherein the pressurized liquid outlet, during use, is able to provide a pressurized liquid flow having a substantially elliptic cross-section.
The present invention provides a device for removing solids from a gas stream. The device comprises a longitudinal hollow element (2) comprising an inlet (9), a first outlet (10) and second outlet (11), and an internal rotation-generating element (12) for the gas stream, and the rotation-generating element (12), which causes the gas stream to rotate around a centerline (Y) of the hollow element (2), is arranged between the first outlet (10) and the second outlet (11) in the longitudinal direction of the hollow element (2), and comprises a central axial passage (13), said passage is fluidly connected to the first outlet (10) by an extraction line (14), said first outlet (10) arranged between the inlet (9) and the rotation-generating element (12) in the longitudinal direction of the hollow element, wherein a section (23) of the hollow element is arranged between the second outlet (11) and the rotation-generating element and has a decreasing inner circumference in the longitudinal direction of the hollow element (2) towards the second outlet.
B01D 45/16 - Séparation de particules dispersées dans des gaz ou des vapeurs par gravité, inertie ou force centrifuge en utilisant la force centrifuge produite par le mouvement hélicoïdal du courant gazeux
B04C 3/00 - Appareils dans lesquels la direction axiale du tourbillon ne change pas
B04C 3/06 - Structures des entrées ou sorties de la chambre où se produit le tourbillon
The present invention provides a mesh for separation of liquids dispersed in a fluid stream, said mesh comprising a base section (7) and a surrounding wall (6), wherein the cross-sectional area of the wall, the cross-section being perpendicular to a centerline (Y) of the base section or a centerline (Y) of the wall, increases with the distance from the base section.
The present invention regards an inline separator with a first pipe element (10) comprising a rotation-generating element (11) for the fluid flow downstream of an inlet (13) in the first pipe (10), a second pipe element (20) arranged at least partly inside the first pipe element (10), downstream of the rotation-generating element (11) and forming an outlet (25) for lighter density fluids, the first and second pipe elements (10, 20) forming an annular space (27) between an inner surface (15) of the first pipe element (10) and an outer surface (22) of the second pipe element (20), which annular space (27) is connected to a first outlet section (30) for heavier density fluids, wherein the second pipe element (20) is provided with a number of through-going openings (26) over at least a part of its length, the openings (26) leading to a second outlet section (31) for heavier density fluids, and both the first outlet section (30) and the second outlet section (31) are connected to a common container (40) with an outlet (41) for the heavier density fluids. The invention also related to a method for separating a fluid flow.
B01D 45/16 - Séparation de particules dispersées dans des gaz ou des vapeurs par gravité, inertie ou force centrifuge en utilisant la force centrifuge produite par le mouvement hélicoïdal du courant gazeux
B04C 3/06 - Structures des entrées ou sorties de la chambre où se produit le tourbillon
A fluid inlet device (10, 40) for directing a fluid flow mixture into a separator, the fluid inlet device (10, 40) comprising; a hollow distributor device (11) having a longitudinal axis and at least a first end (A) and a second end (B),the first end (A) being in fluid connection with a fluid flow inlet pipe (16), and a sealing element (22) seals the second end (B), where a first set (20, 41) of distributor holes (13) are provided in an upper part of the fluid inlet device (10, 40), and a second set (21, 42) of distributor holes (13) are provided in a lower part of the fluid inlet device (10, 40), and the first set (20, 41) of distributor holes and the second set (21, 42) of distributor holes are separated by at least a non-holed portion on the distributor device (11).
A phase splitter for separating a multiphase fluid into a relatively light phase and a relatively heavy phase includes a separator tube which comprises a fluid inlet through which the multiphase fluid enters the apparatus, a heavy phase outlet through which the heavy phase exits the apparatus and an inner diameter surface which defines a flow bore that extends between the fluid inlet and the heavy phase outlet. A swirl element positioned in the flow bore downstream of the fluid inlet causes the multiphase fluid to rotate and separate the heavy phase from the light phase. The light phase forms an elongated core which extends axially through the flow bore radially inwardly of the heavy phase from proximate the swirl element toward the heavy phase outlet. A core stabilizer is positioned in the flow bore between the swirl element and the heavy phase outlet and engages the distal end of the light phase core to thereby inhibit the light phase from exiting the apparatus through the heavy phase outlet.
B01D 45/16 - Séparation de particules dispersées dans des gaz ou des vapeurs par gravité, inertie ou force centrifuge en utilisant la force centrifuge produite par le mouvement hélicoïdal du courant gazeux
B04C 3/06 - Structures des entrées ou sorties de la chambre où se produit le tourbillon
B04C 5/107 - Parties centralesDispositifs provoquant la présence d'air à la partie centrale des hydrocyclones
B04C 5/181 - Volets ou parties centrales des ouvertures de décharge
21.
Apparatus and method for separation of phases in a multiphase flow
A device is disclosed for the separation of liquid-liquid phase and/or a liquid-gas phase where one or more of the phases is suspended in water and has a bubble/drop/particle size in the sub micron and micron range, and/or fine particular organic or inorganic material is present in one or more of the phases. There is also disclosed a method and use for the device.
A cyclone separator for separating a heavy fraction from a multiphase fluid comprising a mixture of the heavy fraction, a medium fraction and a light fraction includes an elongated cyclone tube which comprises a fluid inlet, a heavy fraction outlet and a flow bore that extends between the fluid inlet and the heavy fraction outlet. A mandrel is positioned concentrically within the cyclone tube and comprises a light fraction outlet that extends generally axially therethrough and an outer diameter surface that together with the cyclone tube defines an annular flow path for the multiphase fluid which extends between the fluid inlet and the flow bore. The outer diameter surface comprises a generally cylindrical section which extends from proximate the fluid inlet to a convergence section which extends toward an outlet port that connects the light fraction outlet with the flow bore, and the mandrel further comprises a plurality of outlet holes which extend through the convergence section between the flow path and the light fraction outlet.
B04C 5/13 - Structure du guide pour la phase légère, p. ex. pour faire sortir la matière en spirale ou en la dispersant formé comme un capteur de tourbillon, et s'étendant à l'intérieur de la chambre du tourbillonÉvacuation du viseur de tourbillon autrement que par le haut du cycloneDispositifs de commande de l'évacuation de la phase légère
A device is disclosed for the separation of liquid-liquid phase and/or a liquid-gas phase where one or more of the phases is suspended in water and has a bubble/drop/particle size in the sub micron and micron range, and/or fine particular organic or inorganic material is present in one or more of the phases. There is also disclosed a method and use for the device.
The present invention relates to a separating cyclone for separating a mixture of liquids into a heavy fraction, the cyclone comprising:—a cyclone tube (2) in which a flow space is defined, wherein the cyclone tube is provided with an inlet for infeed of a mixture of at least two different liquids, a heavy fraction outlet for discharging the heavy fraction separated from the mixture and a light fraction outlet for discharging the light fraction separated from the mixture;—a rotation generating unit (8) for setting into rotation the mixture fed in via the inlet;—a flow body (6) arranged substantially concentrically in the cyclone tube, in which body is provided a light fraction discharge channel (12) connected to the light fraction discharge, wherein the discharge channel has in flow direction a cross-section substantially decreasing along at least a portion of the length thereof.