The present disclosure relates to methods of making electrodes for use in electrolysis cells. The method may include forming a TiB2 feedstock into a predetermined shaped product to realize an appropriate density. The method may also include producing a final shaped product from the predetermined shaped product by exposing the predetermined shaped product to elevated temperature. Due to the exposing step, the final shaped product may have a plurality of pores and may realize one or more properties and/or characteristics.
The present disclosure relates to products, systems, and methods for producing purified liquid metal (e.g., purified aluminum) from a feedstock (e.g., aluminum feedstock) in an electrolytic cell (e.g., purification cell) by purifying the feedstock and moving the purified liquid metal from a first location of the cell to a second location via at least one directing feature. The at least one directing feature may be electrically neutral and may be located proximal the first location. The at least one directing feature may be in fluid communication with the purified liquid metal (e.g., purified aluminum) and the second location.
The present disclosure includes a method for purifying aluminum. The method includes producing purified aluminum from an aluminum feedstock in an aluminum purification cell and flowing the purified aluminum from a cell chamber of the aluminum purification cell to a purified metal reservoir via an overflow passage, wherein the purified metal reservoir is located internal to the aluminum purification cell. In some embodiments, a feeding reservoir is located internal to the aluminum purification cell and can be accessed via a feeding port located in a refractory top cover of the cell chamber. In some embodiments, the method includes removing the purified aluminum from the purified metal reservoir via a tapping port located in a refractory top cover of the cell chamber. In some embodiments, concomitant with the removing step, the method includes restricting or preventing oxidation of the purified aluminum.
The application is directed to products and methods related to a TiB2 substrate with a directing feature, wherein the directing feature is configured to direct TiB2 wettable material in a predetermined direction. In some embodiments, the TiB2 substrate is at least partially covered with solid aluminum metal.
C04B 35/58 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures
The application is directed to products and methods related to an aluminum purification cell with a non-carbonaceous substrate with a directing feature. The directing feature can be configured to direct a wettable material in a predetermined direction. The non-carbonaceous substrate can be at least partially covered with solid aluminum metal. The wettable material can be aluminum metal.
The application is directed to products and methods related to aluminum scrap recycling. The method includes (a) adding a feedstock to an aluminum purification cell, wherein the feedstock comprises aluminum scrap, (b) purifying the feedstock, thereby producing a purified aluminum stream and a raffinate stream, (c) separating components of the raffinate stream, thereby producing at least a first byproduct stream and a second byproduct stream, and (d) mixing at least a portion of the first byproduct stream with at least a portion of the purified aluminum from the purified aluminum stream to produce an aluminum alloy product.
This disclosure provides an aging process or a method for aging aluminum alloys. For example, the aging process can be performed on 6xxx Al-Si-Mg-Cu aluminum alloys to result in production of such alloys with improved intergranular corrosion (IGC) resistance. The disclosed aging process includes subjecting a solution heat treated and quenched 6xxx aluminum alloy to a temperature above an aging hardening temperature of said alloy but below the solution heat treatment temperature for a short period of time, and then subjecting said alloy to an aging heat treatment at an aging hardening temperature.
C22F 1/05 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages de type Al-Si-Mg, c. à d. contenant du silicium et du magnésium en proportions sensiblement égales
C22C 21/08 - Alliages à base d'aluminium avec le magnésium comme second constituant majeur avec du silicium
This disclosure provides an aging process or a method for aging aluminum alloys. For example, the aging process can be performed on 6xxx Al-Si-Mg-Cu aluminum alloys to result in production of such alloys with improved intergranular corrosion (IGC) resistance. The disclosed aging process includes subjecting a solution heat treated and quenched 6xxx aluminum alloy to a temperature above an aging hardening temperature of said alloy but below the solution heat treatment temperature for a short period of time, and then subjecting said alloy to an aging heat treatment at an aging hardening temperature.
C22F 1/047 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le magnésium comme second constituant majeur
C22C 21/08 - Alliages à base d'aluminium avec le magnésium comme second constituant majeur avec du silicium
9.
ELECTRODES FOR ALUMINUM ELECTROLYSIS CELLS AND METHODS OF MAKING THE SAME
22 feedstock into a predetermined shaped product to realize an appropriate density. The method may also include producing a final shaped product from the predetermined shaped product by exposing the predetermined shaped product to elevated temperature. Due to the exposing step, the final shaped product may have a plurality of pores and may realize one or more properties and / or characteristics.
B22F 3/11 - Fabrication de pièces ou d'objets poreux
B22F 9/06 - Fabrication des poudres métalliques ou de leurs suspensions; Appareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide
C22C 29/14 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures à base de borures
The present disclosure includes a method for purifying aluminum. The method includes producing purified aluminum from an aluminum feedstock in an aluminum purification cell and flowing the purified aluminum from a cell chamber of the aluminum purification cell to a purified metal reservoir via an overflow passage, wherein the purified metal reservoir is located internal to the aluminum purification cell. In some embodiments, a feeding reservoir is located internal to the aluminum purification cell and can be accessed via a feeding port located in a refractory top cover of the cell chamber. In some embodiments, the method includes removing the purified aluminum from the purified metal reservoir via a tapping port located in a refractory top cover of the cell chamber. In some embodiments, concomitant with the removing step, the method includes restricting or preventing oxidation of the purified aluminum.
The present disclosure includes a method for purifying aluminum. The method includes producing purified aluminum from an aluminum feedstock in an aluminum purification cell and flowing the purified aluminum from a cell chamber of the aluminum purification cell to a purified metal reservoir via an overflow passage, wherein the purified metal reservoir is located internal to the aluminum purification cell. In some embodiments, a feeding reservoir is located internal to the aluminum purification cell and can be accessed via a feeding port located in a refractory top cover of the cell chamber. In some embodiments, the method includes removing the purified aluminum from the purified metal reservoir via a tapping port located in a refractory top cover of the cell chamber. In some embodiments, concomitant with the removing step, the method includes restricting or preventing oxidation of the purified aluminum.
The application is directed to products and methods related to an aluminum purification cell with a non-carbonaceous substrate with a directing feature. The directing feature can be configured to direct a wettable material in a predetermined direction. The non-carbonaceous substrate can be at least partially covered with solid aluminum metal. The wettable material can be aluminum metal.
The application is directed to products and methods related to a TiB2 substrate with a directing feature, wherein the directing feature is configured to direct TiB2 wettable material in a predetermined direction. In some embodiments, the TiB2 substrate is at least partially covered with solid aluminum metal.
The application is directed to products and methods related to an aluminum purification cell with a non-carbonaceous substrate with a directing feature. The directing feature can be configured to direct a wettable material in a predetermined direction. The non-carbonaceous substrate can be at least partially covered with solid aluminum metal. The wettable material can be aluminum metal.
The application is directed to products and methods related to an aluminum electrolysis cell with a non-carbonaceous substrate with a directing feature. The directing feature can be configured to direct a wettable material in a predetermined direction. The non-carbonaceous substrate can be at least partially covered with solid aluminum metal. The wettable material can be aluminum metal.
New aluminum casting (foundry) alloys are disclosed. The new aluminum casting alloys may include from 6.0 to 11.5 wt. % Si, from 0.30 to 0.80 wt. % Fe, optionally from 0.07 to 0.20 wt. % of X, wherein X is selected from the group consisting of Mg, Mo, Zr, and combinations thereof, and optionally 100-500 ppm Sr, the balance being aluminum and unavoidable impurities. The new aluminum casting alloys may be high-pressure die cast into complex shapes. The new aluminum casting alloys may be useful, for instance, in heat sink/antenna applications.
New methods of producing aluminum fluoride from cryolite are disclosed. A method may include a step of reacting cryolite bath materials with aluminum sulfate, thereby producing a reactant product, the reactant product comprising aluminum fluoride. The method may further include a step of removing impurities from the reactant product, thereby creating a purified product comprising the aluminum fluoride. The removed impurities may comprise at least one of sodium (Na), magnesium (Mg), and calcium (Ca). In one embodiment, due to the removing step, the purified product contains not greater than 0.2 wt. % of calcium.
New 3xx aluminum casting alloys are disclosed. The aluminum casting alloys generally include from 6.5 to 11.0 wt. % Si, from 0.20 to 0.80 wt. % Mg, from 0.05 to 0.50 wt. % Cu, from 0.10 to 0.80 wt. % Mn, from 0.005 to 0.05 wt. % Sr, up to 0.25 wt. % Ti, up to 0.30 wt. % Fe, and up to 0.20 wt. % Zn, the balance being aluminum and impurities.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
B22D 21/00 - Coulée de métaux non ferreux ou de composés métalliques, dans la mesure où leurs propriétés métallurgiques affectent le procédé de coulée; Utilisation de compositions appropriées
C22F 1/043 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le silicium comme second constituant majeur
Some embodiments of the present disclosure relate to a 6xxx aluminum alloy having: silicon (Si) in an amount of 0.70 wt % to 1.1 wt % based on a total weight of the 6xxx aluminum alloy; magnesium (Mg) in an amount of 0.75 wt % to 1.15 wt % based on the total weight of the 6xxx aluminum alloy; a weight ratio of Mg to Si in the 6xxx aluminum alloy from 0.68:1.0 to 1.65:1.0; and copper (Cu) in an amount of 0.30 wt % to 0.8 wt % based on the total weight of the 6xxx aluminum alloy. Some embodiments of the present disclosure further relate to a method including steps of: casting an exemplary 6xxx aluminum alloy, homogenizing the exemplary 6xxx aluminum alloy; extruding the exemplary 6xxx aluminum alloy; and aging the 6xxx aluminum alloy.
C22F 1/05 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages de type Al-Si-Mg, c. à d. contenant du silicium et du magnésium en proportions sensiblement égales
C22C 21/08 - Alliages à base d'aluminium avec le magnésium comme second constituant majeur avec du silicium
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
B21C 23/00 - Extrusion des métaux; Extrusion par percussion
(1) Aluminum and its alloys; ingots, castings, billets, tubing and rolled or extruded semi-finished articles of aluminum or its alloy, namely, bars, ingots, logs, rods, and billets of aluminum and aluminum alloy.
In one embodiment, the disclosed subject matter relates to an electrolytic cell that has: a cell reservoir; a cathode support retained on a bottom of the cell reservoir, wherein the cathode support contacts at least one of: a metal pad and a molten electrolyte bath within the cell reservoir, wherein the cathode support includes: a body having a support bottom, which is configured to be in communication with the bottom of the electrolysis cell; and a support top, opposite the support bottom, having a cathode attachment area configured to retain a at least one cathode plate therein.
New methods of producing aluminum fluoride from cryolite are disclosed. A method may include a step of reacting cryolite bath materials with aluminum sulfate, thereby producing a reactant product, the reactant product comprising aluminum fluoride. The method may further include a step of removing impurities from the reactant product, thereby creating a purified product comprising the aluminum fluoride. The removed impurities may comprise at least one of sodium (Na), magnesium (Mg), and calcium (Ca). In one embodiment, due to the removing step, the purified product contains not greater than 0.2 wt. % of calcium.
New methods of producing aluminum fluoride from cryolite are disclosed. A method may include a step of reacting cryolite bath materials with aluminum sulfate, thereby producing a reactant product, the reactant product comprising aluminum fluoride. The method may further include a step of removing impurities from the reactant product, thereby creating a purified product comprising the aluminum fluoride. The removed impurities may comprise at least one of sodium (Na), magnesium (Mg), and calcium (Ca). In one embodiment, due to the removing step, the purified product contains not greater than 0.2 wt. % of calcium.
New aluminum casting (foundry) alloys are disclosed. The new aluminum casting alloys may include from 6.0 to 11.5 wt. % Si, from 0.30 to 0.80 wt. % Fe, optionally from 0.07 to 0.20 wt. % of X, wherein X is selected from the group consisting of Mg, Mo, Zr, and combinations thereof, and optionally 100-500 ppm Sr, the balance being aluminum and unavoidable impurities. The new aluminum casting alloys may be high-pressure die cast into complex shapes. The new aluminum casting alloys may be useful, for instance, in heat sink / antenna applications.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
C22F 1/043 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le silicium comme second constituant majeur
New aluminum casting (foundry) alloys are disclosed. The new aluminum casting alloys may include from 6.0 to 11.5 wt. % Si, from 0.30 to 0.80 wt. % Fe, optionally from 0.07 to 0.20 wt. % of X, wherein X is selected from the group consisting of Mg, Mo, Zr, and combinations thereof, and optionally 100-500 ppm Sr, the balance being aluminum and unavoidable impurities. The new aluminum casting alloys may be high-pressure die cast into complex shapes. The new aluminum casting alloys may be useful, for instance, in heat sink / antenna applications.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
C22F 1/043 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le silicium comme second constituant majeur
New copper-coated titanium diboride electrodes are disclosed. The copper-coated titanium diboride electrodes may be used in an aluminum electrolysis cell. In one embodiment, a method includes installing the copper-coated titanium diboride electrode in the aluminum electrolysis cell and operating the aluminum electrolysis cell. During start-up, the aluminum electrolysis cell may be preheated and a bath may be formed from a molten electrolyte. Alumina (Al2O3) may in the added to the bath and reduced to aluminum metal. At least some of the copper film of the copper-coated titanium diboride electrode may be replaced by an aluminum film, thereby forming an aluminum-wetted titanium diboride electrode.
Systems and methods for making ceramic powders configured with consistent, tailored characteristics and/or properties are provided herein. In some embodiments a system for making ceramic powders, includes: a reactor body having a reaction chamber and configured with a heat source to provide a hot zone along the reaction chamber; a sweep gas inlet configured to direct a sweep gas into the reaction chamber and a sweep gas outlet configured to direct an exhaust gas from the reaction chamber; a plurality of containers, within the reactor body, configured to retain at least one preform, wherein each container is configured to permit the sweep gas to flow therethrough, wherein the preform is configured to permit the sweep gas to flow there through, such that the precursor mixture is reacted in the hot zone to form a ceramic powder product having uniform properties.
C04B 35/58 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures
B01J 8/08 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solides; Appareillage pour de tels procédés avec des particules mobiles
B01J 8/10 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solides; Appareillage pour de tels procédés avec des particules mobiles mues par des agitateurs ou par des tambours rotatifs ou par des récipients tournants
C04B 35/56 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbures
C04B 35/626 - Préparation ou traitement des poudres individuellement ou par fournées
C04B 35/65 - Frittage par réaction de compositions contenant un métal libre ou du silicium libre
C22C 29/00 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures
C22C 29/02 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures à base de carbures ou de carbonitrures
C22C 29/14 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures à base de borures
40 - Traitement de matériaux; recyclage, purification de l'air et traitement de l'eau
Produits et services
Processed scrap metal and alloys; processed scrap aluminum and aluminum alloys; purified scrap metal and alloys; purified scrap aluminum and aluminum alloys. Processing of scrap metal and alloys; processing of scrap aluminum and aluminum alloys; processing of scrap metal and alloys, namely, purifying scrap metal and alloys; processing of scrap aluminum and aluminum alloys, namely, purifying scrap aluminum and aluminum alloys.
40 - Traitement de matériaux; recyclage, purification de l'air et traitement de l'eau
Produits et services
(1) Processed scrap metal and alloys; processed scrap aluminum and aluminum alloys; purified scrap metal and alloys; purified scrap aluminum and aluminum alloys (1) Processing of scrap metal and alloys; processing of scrap aluminum and aluminum alloys; processing of scrap metal and alloys, namely, purifying scrap metal and alloys; processing of scrap aluminum and aluminum alloys, namely, purifying scrap aluminum and aluminum alloys
40 - Traitement de matériaux; recyclage, purification de l'air et traitement de l'eau
06 - Métaux communs et minerais; objets en métal
Produits et services
Processing of metal, scrap metal and alloys, namely, refining, recycling, remelting, and treatment of metal, scrap metal and alloys; processing of aluminum, scrap aluminum and aluminum alloys, namely, refining, recycling, remelting, and treatment of aluminum, scrap aluminum and aluminum alloys; refining of metal, scrap metal and alloys, namely, purifying metal, scrap metal and alloys; refining of aluminum, scrap aluminum and aluminum alloys, namely, purifying aluminum, scrap aluminum and aluminum alloys Processed metal, scrap metal and alloys, namely, purified common metals, scrap metal and common metal alloys in the form of ingots, billets, slabs, wire rods, and powder used in manufacturing; processed aluminum, scrap aluminum and aluminum alloys, namely, purified aluminum, scrap aluminum and aluminum alloys in the form of ingots, billets, slabs, wire rods, and powder used in manufacturing
New copper-coated titanium diboride electrodes are disclosed. The copper-coated titanium diboride electrodes may be used in an aluminum electrolysis cell. In one embodiment, a method includes installing the copper-coated titanium diboride electrode in the aluminum electrolysis cell and operating the aluminum electrolysis cell. During start-up, the aluminum electrolysis cell may be preheated and a bath may be formed from a molten electrolyte. Alumina (Al2O3) may in the added to the bath and reduced to aluminum metal. At least some of the copper film of the copper-coated titanium diboride electrode may be replaced by an aluminum film, thereby forming an aluminum-wetted titanium diboride electrode.
233) may in the added to the bath and reduced to aluminum metal. At least some of the copper film of the copper-coated titanium diboride electrode may be replaced by an aluminum film, thereby forming an aluminum-wetted titanium diboride electrode.
Some embodiments of the present disclosure relate to a 6xxx aluminum alloy having: silicon (Si) in an amount of 0.70 wt% to 1.1 wt % based on a total weight of the 6xxx aluminum alloy; magnesium (Mg) in an amount of 0.75 wt% to 1.15 wt% based on the total weight of the 6xxx aluminum alloy; a weight ratio of Mg to Si in the 6xxx aluminum alloy from 0.68:1.0 to 1.65:1.0; and copper (Cu) in an amount of 0.30 wt% to 0.8 wt% based on the total weight of the 6xxx aluminum alloy. Some embodiments of the present disclosure further relate to a method including steps of: casting an exemplary 6xxx aluminum alloy, homogenizing the exemplary 6xxx aluminum alloy; extruding the exemplary 6xxx aluminum alloy; and aging the 6xxx aluminum alloy.
B21C 23/00 - Extrusion des métaux; Extrusion par percussion
B22D 21/00 - Coulée de métaux non ferreux ou de composés métalliques, dans la mesure où leurs propriétés métallurgiques affectent le procédé de coulée; Utilisation de compositions appropriées
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
Some embodiments of the present disclosure relate to a 6xxx aluminum alloy having: silicon (Si) in an amount of 0.70 wt% to 1.1 wt % based on a total weight of the 6xxx aluminum alloy; magnesium (Mg) in an amount of 0.75 wt% to 1.15 wt% based on the total weight of the 6xxx aluminum alloy; a weight ratio of Mg to Si in the 6xxx aluminum alloy from 0.68:1.0 to 1.65:1.0; and copper (Cu) in an amount of 0.30 wt% to 0.8 wt% based on the total weight of the 6xxx aluminum alloy. Some embodiments of the present disclosure further relate to a method including steps of: casting an exemplary 6xxx aluminum alloy, homogenizing the exemplary 6xxx aluminum alloy; extruding the exemplary 6xxx aluminum alloy; and aging the 6xxx aluminum alloy.
B21C 23/00 - Extrusion des métaux; Extrusion par percussion
B22D 21/00 - Coulée de métaux non ferreux ou de composés métalliques, dans la mesure où leurs propriétés métallurgiques affectent le procédé de coulée; Utilisation de compositions appropriées
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
New shape-cast 7xx aluminum alloys products are disclosed. The new shape-cast products may include from 3.0 to 8.0 wt. % Zn, from 1.0 to 3.0 wt. % Mg, where the wt. % Zn exceeds the wt. % Mg, from 0.35 to 1.0 wt. % Cu, where the wt. % Mg exceeds the wt. % Cu, from 0.05 to 0.30 wt. % V, from 0.01 to 1.0 wt. % of at least one secondary element (Mn, Cr, Zr, Ti, B, and combinations thereof), up to 0.50 wt. % Fe, and up to 0.25 wt. % Si, the balance being aluminum and other elements, wherein the aluminum casting alloy include not greater than 0.05 wt. % each of the other elements, and wherein the aluminum casting alloy includes not greater than 0.15 wt. % in total of the other elements.
C22C 21/10 - Alliages à base d'aluminium avec le zinc comme second constituant majeur
C22F 1/053 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le zinc comme second constituant majeur
The present disclosure relates to an aluminum electrolysis cell comprising a cathode block positioned below a plurality of anodes, wherein the cathode block comprises a sump at least partially disposed within the cathode block, wherein the sump is at least partially defined by a first sump sidewall, a second sump sidewall and a sump bottom, wherein at least one of the first and second sump sidewalls is sloped relative to vertical.
There is provided a process for manufacturing a carbonaceous anode for an electrolysis cell for the production of aluminium. The process comprises contacting coke particles with a boron-containing solution to obtain boron-impregnated coke particles, mixing the boron-impregnated coke particles with coal tar pitch to form an anode paste, and forming a green anode with the anode paste. A carbonaceous anode for an electrolysis cell for the production of aluminium is also provided, which comprises at least a first fraction of coke particle, a second fraction of coke particles and coal tar pitch, wherein at least the first faction of coke particles comprises boron-impregnated coke particles, the boron-impregnated coke particles being distributed throughout the carbonaceous anode. The carbonaceous anode presents good resistivity towards air and CO2 oxidation, which translates into less dusting of the anode, thus improving its integrity throughout its lifetime.
C04B 35/532 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbone, p.ex. graphite obtenus à partir de particules carbonées avec ou sans autres composants non organiques contenant un liant carbonisable
The application is directed towards methods for purifying an aluminum feedstock material. A method provides: (a) feeding an aluminum feedstock into a cell (b) directing an electric current into an anode through an electrolyte and into a cathode, wherein the anode comprises an elongate vertical anode, and wherein the cathode comprises an elongate vertical cathode, wherein the anode and cathode are configured to extend into the electrolyte zone, such that within the electrolyte zone the anode and cathode are configured with an anode-cathode overlap and an anode-cathode distance; and producing some purified aluminum product from the aluminum feedstock.
B22D 21/00 - Coulée de métaux non ferreux ou de composés métalliques, dans la mesure où leurs propriétés métallurgiques affectent le procédé de coulée; Utilisation de compositions appropriées
C25C 3/08 - Construction des cellules, p.ex. fonds, parois, cathodes
New aluminum casting (foundry) alloys are disclosed. The new aluminum casting alloys generally include from 2.5 to 5.0 wt. % Mg, from 0.70 to 2.5 wt. % Si, wherein the ratio of Mg/Si (in weight percent) is from 1.7 to 3.6, from 0.40 to 1.50 wt. % Mn, from 0.15 to 0.60 wt. % Fe, optionally up to 0.15 wt. % Ti, optionally up to 0.10 wt. % Sr, optionally up to 0.15 wt. % of any of Zr, Sc, Hf, V, and Cr, the balance being aluminum and unavoidable impurities. The new aluminum casting alloys may be high pressure die cast, such as into automotive components. The new aluminum alloys may be supplied in an F or a T5 temper, for instance.
C22C 21/08 - Alliages à base d'aluminium avec le magnésium comme second constituant majeur avec du silicium
C22F 1/047 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le magnésium comme second constituant majeur
B22D 21/00 - Coulée de métaux non ferreux ou de composés métalliques, dans la mesure où leurs propriétés métallurgiques affectent le procédé de coulée; Utilisation de compositions appropriées
New aluminum casting (foundry) alloys are disclosed. The new aluminum casting alloys generally include from 2.5 to 5.0 wt. % Mg, from 0.70 to 2.5 wt. % Si, wherein the ratio of Mg/Si (in weight percent) is from 1.7 to 3.6, from 0.40 to 1.50 wt. % Mn, from 0.15 to 0.60 wt. % Fe, optionally up to 0.15 wt. % Ti, optionally up to 0.10 wt. % Sr, optionally up to 0.15 wt. % of any of Zr, Sc, Hf, V, and Cr, the balance being aluminum and unavoidable impurities. The new aluminum casting alloys may be high pressure die cast, such as into automotive components. The new aluminum alloys may be supplied in an F or a T5 temper, for instance.
New aluminum casting (foundry) alloys are disclosed. The new aluminum casting alloys generally include from 2.5 to 5.0 wt. % Mg, from 0.70 to 2.5 wt. % Si, wherein the ratio of Mg/Si (in weight percent) is from 1.7 to 3.6, from 0.40 to 1.50 wt. % Mn, from 0.15 to 0.60 wt. % Fe, optionally up to 0.15 wt. % Ti, optionally up to 0.10 wt. % Sr, optionally up to 0.15 wt. % of any of Zr, Sc, Hf, V, and Cr, the balance being aluminum and unavoidable impurities. The new aluminum casting alloys may be high pressure die cast, such as into automotive components. The new aluminum alloys may be supplied in an F or a T5 temper, for instance.
Systems and methods for making ceramic powders configured with consistent, tailored characteristics and/or properties are provided herein. In some embodiments a system for making ceramic powders, includes: a reactor body having a reaction chamber and configured with a heat source to provide a hot zone along the reaction chamber; a sweep gas inlet configured to direct a sweep gas into the reaction chamber and a sweep gas outlet configured to direct an exhaust gas from the reaction chamber; a plurality of containers, within the reactor body, configured to retain at least one preform, wherein each container is configured to permit the sweep gas to flow therethrough, wherein the preform is configured to permit the sweep gas to flow there through, such that the precursor mixture is reacted in the hot zone to form a ceramic powder product having uniform properties.
C04B 35/626 - Préparation ou traitement des poudres individuellement ou par fournées
C04B 35/58 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures
B01J 8/08 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solides; Appareillage pour de tels procédés avec des particules mobiles
C04B 35/56 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbures
B01J 8/10 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solides; Appareillage pour de tels procédés avec des particules mobiles mues par des agitateurs ou par des tambours rotatifs ou par des récipients tournants
C22C 29/02 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures à base de carbures ou de carbonitrures
C04B 35/65 - Frittage par réaction de compositions contenant un métal libre ou du silicium libre
C22C 29/14 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures à base de borures
C22C 29/00 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures
61.
METHODS OF RECYCLING ALUMINUM ALLOYS AND PURIFICATION THEREOF
The present disclosure relates to methods of producing purified aluminum alloys from aluminum alloy scrap by producing a melt of the aluminum alloy scrap, adding one or more intermetallic former materials, producing iron-bearing intermetallic particles, removing the iron-bearing intermetallic particles, and solidifying the low-iron melt.
Systems and methods for making ceramic powders are provided. The method for forming a ceramic powder includes: preparing a precursor mixture, wherein the preparing comprises adding at least one additive to a plurality of reagents, wherein the at least one additive includes at least one of: an oxide, a salt, a pure metal, or an alloy of elements ranging from atomic numbers 21 through 30, 39 through 51, and 57 through 77 and combinations thereof; and carbothermically reacting the precursor mixture to form a ceramic powder, wherein, due to the preparing step, the precursor mixture comprises a sufficient amount of the at least one additive to form the ceramic powder, wherein the ceramic powder comprises: (a) a morphology selected from the group consisting of irregular, equiaxed, plate-like, and combinations thereof; and (b) a particle size distribution selected from the group consisting of fine, intermediate, coarse, and combinations thereof.
C04B 35/58 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures
C04B 35/626 - Préparation ou traitement des poudres individuellement ou par fournées
The present disclosure relates to methods of producing purified aluminum alloys from aluminum alloy scrap by producing a melt of the aluminum alloy scrap, adding one or mor intermetallic former materials, producing iron-bearing intermetallic particles, removing the iron-bearing intermetallic particles, and solidifying the low- iron melt.
2) and metal additives. The amount of selected metal additives may result in production of electrodes having a tailored density and/or porosity. The electrodes may be durable and used in aluminum electrolysis cells.
C04B 35/58 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures
65.
METHODS OF RECYCLING ALUMINUM ALLOYS AND PURIFICATION THEREOF
The present disclosure relates to methods of producing purified aluminum alloys from aluminum alloy scrap by producing a melt of the aluminum alloy scrap, adding one or mor intermetallic former materials, producing iron-bearing intermetallic particles, removing the iron-bearing intermetallic particles, and solidifying the low-iron melt.
In some embodiments, an exemplary electrolytic cell includes: a cathode structure disposed within an electrolysis cell, wherein the electrolysis cell is configured to produce metal on a surface of the cathode structure, wherein the cathode structure is configured to fit along a floor of the electrolysis cell, wherein the cathode structure has a sloped surface when compared to a generally horizontal plane, and wherein via the sloped surface, the cathode structure is configured to drain a metal product from the sloped surface towards a lower end of the cathode structure.
In some embodiments, an exemplary electrolytic cell includes: a cathode structure disposed within an electrolysis cell, wherein the electrolysis cell is configured to produce metal on a surface of the cathode structure, wherein the cathode structure is configured to fit along a floor of the electrolysis cell, wherein the cathode structure has a sloped surface when compared to a generally horizontal plane, and wherein via the sloped surface, the cathode structure is configured to drain a metal product from the sloped surface towards a lower end of the cathode structure.
In some embodiments, an exemplary electrolytic cell includes: a cathode structure disposed within an electrolysis cell, wherein the electrolysis cell is configured to produce metal on a surface of the cathode structure, wherein the cathode structure is configured to fit along a floor of the electrolysis cell, wherein the cathode structure has a sloped surface when compared to a generally horizontal plane, and wherein via the sloped surface, the cathode structure is configured to drain a metal product from the sloped surface towards a lower end of the cathode structure.
There is provided a process for manufacturing a carbonaceous anode for an electrolysis cell for the production of aluminium. The process comprises contacting coke particles with a boron-containing solution to obtain boron-impregnated coke particles, mixing the boron- impregnated coke particles with coal tar pitch to form an anode paste, and forming a green anode with the anode paste. A carbonaceous anode for an electrolysis cell for the production of aluminium is also provided, which comprises at least a first fraction of coke particle, a second fraction of coke particles and coal tar pitch, wherein at least the first faction of coke particles comprises boron-impregnated coke particles, the boron- impregnated coke particles being distributed throughout the carbonaceous anode. The carbonaceous anode presents good resistivity towards air and CO2 oxidation, which translates into less dusting of the anode, thus improving its integrity throughout its lifetime.
There is provided a process for manufacturing a carbonaceous anode for an electrolysis cell for the production of aluminium. The process comprises contacting coke particles with a boron-containing solution to obtain boron-impregnated coke particles, mixing the boron- impregnated coke particles with coal tar pitch to form an anode paste, and forming a green anode with the anode paste. A carbonaceous anode for an electrolysis cell for the production of aluminium is also provided, which comprises at least a first fraction of coke particle, a second fraction of coke particles and coal tar pitch, wherein at least the first faction of coke particles comprises boron-impregnated coke particles, the boron- impregnated coke particles being distributed throughout the carbonaceous anode. The carbonaceous anode presents good resistivity towards air and CO2 oxidation, which translates into less dusting of the anode, thus improving its integrity throughout its lifetime.
New 3xx aluminum casting alloys are disclosed. The aluminum casting alloys generally include from 6.5 to 11.0 wt. % Si, from 0.20 to 0.80 wt. % Mg, from 0.05 to 0.50 wt. % Cu, from 0.10 to 0.80 wt. % Mn, from 0.005 to 0.05 wt. % Sr, up to 0.25 wt. % Ti, up to 0.30 wt. % Fe, and up to 0.20 wt. % Zn, the balance being aluminum and impurities.
C22F 1/043 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le silicium comme second constituant majeur
B22D 21/00 - Coulée de métaux non ferreux ou de composés métalliques, dans la mesure où leurs propriétés métallurgiques affectent le procédé de coulée; Utilisation de compositions appropriées
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
72.
Fertilizer compositions and methods of making and using the same
Generally, the instant disclosure relates to fertilizer compositions and methods of making and using the same. More specifically, the instant disclosure relates to blast suppressant and/or blast resistant ammonium nitrate fertilizer compositions, as well as methods of making and using the same.
In some embodiments, an anode apparatus comprises: (a) an anode body comprising at least one outer sidewall, wherein the outer sidewall is configured to define a shape of the anode body, and to perimetrically surround a hole in the anode body, wherein the hole comprises an upper opening in a top surface of the anode body and wherein the hole axially extends into the anode body; (b) a pin comprising: a first end and a second end opposite the first end, wherein the second end extends downward into the upper end of the anode body and into the hole of the anode body; and (c) a sealing material configured to cover at least a portion of at least one of the following: (1) an inner sidewall of the anode body; (2) the top surface of the anode body; (3) the pin; and (4) the anode support.
In some embodiments of the present invention a method includes: obtaining a first aluminum alloy sheet formed from rolling a first ingot of a 3xxx or a 5xxx series aluminum alloy, wherein, prior to rolling, the first ingot has been heated to a sufficient temperature for a sufficient time to achieve a first dispersoid f/r of less than 7.65; and forming a container precursor from the first aluminum alloy sheet, wherein when the first aluminum alloy sheet is formed into the container precursor, the container precursor has less observed surface striations and ridges as compared to a container precursor formed from a second aluminum alloy sheet rolled from a second ingot having a second dispersoid f/r value of 7.65 or greater.
C22F 1/04 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages
C22F 1/047 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le magnésium comme second constituant majeur
Systems and methods for making ceramic powders configured with consistent, tailored characteristics and/or properties are provided herein. In some embodiments a system for making ceramic powders, includes: a reactor body having a reaction chamber and configured with a heat source to provide a hot zone along the reaction chamber; a sweep gas inlet configured to direct a sweep gas into the reaction chamber and a sweep gas outlet configured to direct an exhaust gas from the reaction chamber, a plurality of containers, within the reactor body, configured to retain at least one preform, wherein each container is configured to permit the sweep gas to flow therethrough, wherein the preform is configured to permit the sweep gas to flow there through, such that the precursor mixture is reacted in the hot zone to form a ceramic powder product having uniform properties.
B01J 8/00 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solides; Appareillage pour de tels procédés
C22C 29/00 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures
C22C 29/02 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures à base de carbures ou de carbonitrures
C22C 29/14 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures à base de borures
In some embodiments, a ceramic armor product includes: a ceramic powder; an at least one metal-based additive; and a density of 4.3-4.7 g/cc, wherein the ceramic armor product is substantially lacking grain orientation. In some embodiments, a ceramic armor product, includes: a ceramic powder, wherein the ceramic powder is titanium diboride (TiB2); an at least one metal-based additive, wherein the at least one metal based additive comprises elements ranging from atomic numbers 21 through 30, 39 through 51, and 57 through 77; and a density of 4.3-4.7 g/cc, wherein the ceramic armor product is substantially lacking grain orientation.
F41H 5/04 - Structure des plaques composées de plus d'une couche
C04B 35/58 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures
F41H 5/00 - Blindage; Plaques de blindage; Boucliers
Systems and methods for making ceramic powders configured with consistent, tailored characteristics and/or properties are provided herein. In some embodiments a system for making ceramic powders, includes: a reactor body having a reaction chamber and configured with a heat source to provide a hot zone along the reaction chamber; a sweep gas inlet configured to direct a sweep gas into the reaction chamber and a sweep gas outlet configured to direct an exhaust gas from the reaction chamber, a plurality of containers, within the reactor body, configured to retain at least one preform, wherein each container is configured to permit the sweep gas to flow therethrough, wherein the preform is configured to permit the sweep gas to flow there through, such that the precursor mixture is reacted in the hot zone to form a ceramic powder product having uniform properties.
B01J 8/00 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solides; Appareillage pour de tels procédés
C22C 29/00 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures
C22C 29/02 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures à base de carbures ou de carbonitrures
C22C 29/14 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures à base de borures
In some embodiments, an electrolytic cell includes: an one anode module having a plurality of anodes; a one cathode module, opposing the anode module, and comprising a plurality of vertical cathodes, wherein each of the plurality of anodes and each of the plurality of vertical cathodes are vertically oriented and spaced one from another; a cell reservoir; and a cell bottom supporting the cathode module, wherein the cell bottom comprise an first upper surface, a second upper surface, and a channel, wherein the plurality of vertical cathodes extends upward from the upper surfaces, wherein at least one cathode block is located below the plurality of vertical cathodes, wherein the first upper surface and the second upper surface are configured to direct substantially all of the liquid aluminum produced in the electrolytic cell to the channel, and wherein the channel is configured to receive liquid aluminum from the upper surfaces.
Systems and methods for making ceramic powders are provided. In some embodiments, a method for forming a ceramic powder includes: adding a sufficient amount of additives to a plurality of reagents to form a precursor mixture so that when the precursor mixture is carbothermically reacted the precursor mixture forms a ceramic powder, wherein the additive includes at least one of: an oxide, a salt, a pure metal or an alloy of elements ranging from atomic numbers 21 through 30, 39 through 51, and 57 through 77 and combinations thereof; and carbothermically reacting the precursor mixture to form a ceramic powder, wherein the ceramic powder comprises: a) a morphology selected from the group consisting of irregular, equiaxed, plate-like, and combinations thereof, and b) a particle size distribution selected from the group consisting of fine, intermediate, coarse, and combinations thereof.
C04B 35/58 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures
C04B 35/52 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbone, p.ex. graphite
C04B 35/83 - Fibres de carbone dans une matrice carbonée
Systems and methods for making ceramic powders are provided. In some embodiments, a method for forming a ceramic powder includes: adding a sufficient amount of additives to a plurality of reagents to form a precursor mixture so that when the precursor mixture is carbothermically reacted the precursor mixture forms a ceramic powder, wherein the additive includes at least one of: an oxide, a salt, a pure metal or an alloy of elements ranging from atomic numbers 21 through 30, 39 through 51, and 57 through 77 and combinations thereof; and carbothermically reacting the precursor mixture to form a ceramic powder, wherein the ceramic powder comprises: a) a morphology selected from the group consisting of irregular, equiaxed, plate-like, and combinations thereof, and b) a particle size distribution selected from the group consisting of fine, intermediate, coarse, and combinations thereof.
C04B 35/58 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures
C04B 35/52 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbone, p.ex. graphite
Embodiments of the present disclosure generally relate to electrodes useful for the electrolytic production of metal. In some embodiments, an electrode includes: a core; an outer shell; and an intermediate layer disposed between the core and the outer shell, wherein the intermediate layer covers at least a portion of the core, wherein the intermediate layer comprises an inner boundary and an outer boundary, wherein the intermediate layer electrically contacts the core at the inner boundary and electrically contacts the outer shell at the outer boundary, wherein the intermediate layer at the inner boundary has a first coefficient of thermal expansion that is substantially similar to a coefficient of thermal expansion of the core, and wherein the intermediate layer at the outer boundary has a second coefficient of thermal expansion that is substantially similar to a coefficient of thermal expansion of the outer shell.
H01L 51/52 - Dispositifs à l'état solide qui utilisent des matériaux organiques comme partie active, ou qui utilisent comme partie active une combinaison de matériaux organiques et d'autres matériaux; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de tels dispositifs ou de leurs parties constitutives spécialement adaptés pour l'émission de lumière, p.ex. diodes émettrices de lumière organiques (OLED) ou dispositifs émetteurs de lumière à base de polymères (PLED) - Détails des dispositifs
H01L 51/44 - Dispositifs à l'état solide qui utilisent des matériaux organiques comme partie active, ou qui utilisent comme partie active une combinaison de matériaux organiques et d'autres matériaux; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de tels dispositifs ou de leurs parties constitutives spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement en énergie électrique, soit comme dispositifs de commande de l'énergie électrique par ledit rayonnement - Détails des dispositifs
82.
APPARATUSES AND SYSTEMS FOR VERTICAL ELECTROLYSIS CELLS
In one embodiment, the disclosed subject matter relates to an electrolytic cell that has: a cell reservoir; a cathode support retained on a bottom of the cell reservoir, wherein the cathode support contacts at least one of: a metal pad and a molten electrolyte bath within the cell reservoir, wherein the cathode support includes: a body having a support bottom, which is configured to be in communication with the bottom of the electrolysis cell; and a support top, opposite the support bottom, having a cathode attachment area configured to retain a at least one cathode plate therein.
C25C 3/08 - Construction des cellules, p.ex. fonds, parois, cathodes
C25B 9/17 - Cellules comprenant des électrodes fixes de dimensions stables; Assemblages de leurs éléments de structure
C04B 35/58 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures
In one embodiment, the disclosed subject matter relates to an electrolytic cell that has: a cell reservoir; a cathode support retained on a bottom of the cell reservoir, wherein the cathode support contacts at least one of: a metal pad and a molten electrolyte bath within the cell reservoir, wherein the cathode support includes: a body having a support bottom, which is configured to be in communication with the bottom of the electrolysis cell; and a support top, opposite the support bottom, having a cathode attachment area configured to retain a at least one cathode plate therein.
In one embodiment, the disclosed subject matter relates to an electrolytic cell that has: a cell reservoir; a cathode support retained on a bottom of the cell reservoir, wherein the cathode support contacts at least one of: a metal pad and a molten electrolyte bath within the cell reservoir, wherein the cathode support includes: a body having a support bottom, which is configured to be in communication with the bottom of the electrolysis cell; and a support top, opposite the support bottom, having a cathode attachment area configured to retain a at least one cathode plate therein.
C25C 3/08 - Construction des cellules, p.ex. fonds, parois, cathodes
C25C 3/10 - Cadres ou structures de support extérieurs à la cellule
C04B 35/58 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures
In one embodiment, a feed system for distributing fluidized feed material, comprises: a distribution unit configured to fluidize feed material; and a control unit fluidity coupled to the distribution unit, wherein the control unit comprises: a chamber configured to hold the feed material provided from the distribution unit; and a feeder unit fluidity coupled to the chamber: and a second gas inlet configured to provide gas to the chamber; and a material discharge pipe fluidity coupled to the chamber and the second gas inlet.
B65G 53/66 - Utilisation de dispositifs indicateurs ou de commande, p.ex. pour commander la pression du gaz, pour régler le pourcentage matériaux-gaz, pour signaler ou éviter l'embouteillage des matériaux
B65G 53/16 - Systèmes de pression de gaz fonctionnant avec fluidification des matériaux
B65G 53/18 - Systèmes de pression de gaz fonctionnant avec fluidification des matériaux à travers une paroi poreuse
B65G 53/22 - Systèmes de pression de gaz fonctionnant avec fluidification des matériaux à travers une paroi poreuse les systèmes comprenant un réservoir, p.ex. un caisson
In one embodiment, an electrolytic cell for the production of aluminum from alumina includes: at least one anode module having a plurality of anodes; at least one cathode module, opposing the anode module, wherein the at least one cathode module comprises a plurality of cathodes, wherein the plurality of anodes are suspended above the cathode module and extending downwards towards the cathode module, wherein the plurality of cathodes are positioned extending upwards towards the anode module, wherein each of the plurality of anodes and each of the plurality of cathodes are alternatingly positioned, wherein the plurality of anodes is selectively positionable in a horizontal direction relative to adjacent cathodes, wherein the anode module is selectively positionable in a vertical direction relative to the cathode module, and wherein a portion of each of the anode electrodes overlap a portion of adjacent cathodes.
An insulation assembly (10) is provided, including a body (12) of an insulating material with a lower surface (14) configured to contact a sidewall (120) of an electrolysis cell (100); an upper surface (16) generally opposed to the lower surface; and a perimetrical sidewall (18) extending between the upper surface and the lower surface to surround the remainder of the body, the perimetrical sidewall including an inner portion (20) configured to face an anode surface (112) of the electrolysis cell and provide a gap (54) between the body and the anode surface of the electrolysis cell; wherein the body is configured to extend from the sidewall of the electrolysis cell towards the anode surface.
Generally, the instant disclosure is directed towards various methods of EMF-forming workpieces and the resulting workpieces. More specifically, the instant disclosure is directed towards various embodiments of imparting EMF-features onto workpieces, where workpieces with resulting EMF-features are configured as metal containers.
B21D 26/14 - Mise en forme sans coupage, autrement qu'en utilisant des dispositifs ou outils rigides, des masses souples ou élastiques, p.ex. mise en forme en appliquant une pression de fluide ou des forces magnétiques en appliquant des forces magnétiques
B21D 51/38 - Fabrication des dispositifs pour remplir ou vider les boîtes de conserve, bidons, cuvettes, bouteilles ou autres récipients; Fabrication des fonds des boîtes de conserve; Fabrication des dispositifs de fermeture
89.
IMPROVED 3XX ALUMINUM CASTING ALLOYS, AND METHODS FOR MAKING THE SAME
New 3xx aluminum alloy shape cast products are disclosed. The 3xx aluminum alloy shape cast products generally include 6.5 - 8.9 wt. % Si; 0.20 - 0.80 wt. % Mg; 0.05 - 0.50 wt. % Cu; 0.10 - 0.80 wt. % Mn; 0.005 - 0.040 wt. % Sr; up to 0.25 wt. % Ti; up to 0.30 wt. % Fe; and up to 0.20 wt. % Zn; the balance being aluminum and impurities. The 3xx aluminum alloy shape cast products are processed to a T6 temper and are capable of achieving a tensile yield strength of at least 265 MPa when tested in accordance with ASTM E9 and B557.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
B22D 21/00 - Coulée de métaux non ferreux ou de composés métalliques, dans la mesure où leurs propriétés métallurgiques affectent le procédé de coulée; Utilisation de compositions appropriées
New 3xx aluminum casting alloys are disclosed. The aluminum casting alloys generally include from 6.5 to 11.0 wt. % Si, from 0.20 to 0.80 wt. % Mg, from 0.05 to 0.50 wt. % Cu, from 0.10 to 0.80 wt. % Mn, from 0.005 to 0.05 wt. % Sr, up to 0.25 wt. % Ti, up to 0.30 wt. % Fe, and up to 0.20 wt. % Zn, the balance being aluminum and impurities.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
B22D 21/00 - Coulée de métaux non ferreux ou de composés métalliques, dans la mesure où leurs propriétés métallurgiques affectent le procédé de coulée; Utilisation de compositions appropriées
The present disclosure is directed towards methods of making titanium diboride products in various sizes. An aspect of the method provides (a) selecting a target average particle size for a target titanium diboride product; (b) selecting at least one processing variable from the group consisting of: an amount of sulfur, an inert gas flow rate, a soak time, and a reaction temperature; (c) selecting a condition of the processing variable based upon the target average particle size; and (d) producing an actual titanium diboride product having an actual average particle size using the at least one processing variable, wherein due to the at least one processing variable, the actual average particle size corresponds to the target average particle size.
System, method and apparatus for measuring electrolysis cell operating conditions and communicating the same are disclosed. The system includes a selectively positionable member coupled to an analytical apparatus, wherein the selectively positionable is configured to move the analytical apparatus into and out of physical communication with a bath. The system may also include a crust breaker for breaking the surface of a bath and an electronic device for measuring bath level.
New aluminum casting alloys having 8.5-9.5 wt. % silicon, 0.8-2.0 wt. % copper (Cu), 0.20-0.53 wt. % magnesium (Mg), and 0.35 to 0.8 wt. % manganese are disclosed. The alloy may be solution heat treated, treated in accordance with T5 tempering and/or artificially aged to produce castings, e.g., for cylinder heads and engine blocks. In one embodiment, the castings are made by high pressure die casting.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
C22F 1/043 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le silicium comme second constituant majeur
B22D 17/02 - Machines à chambres chaudes, c. à d. avec chambre de presse préchauffée dans laquelle le métal est fondu
B22D 17/08 - Machines à chambre froide, c. à d. dont la chambre de presse où on verse le métal liquide, n'est pas préchauffée
B22D 21/00 - Coulée de métaux non ferreux ou de composés métalliques, dans la mesure où leurs propriétés métallurgiques affectent le procédé de coulée; Utilisation de compositions appropriées
94.
Fertilizer compositions and methods of making and using the same
Broadly, the instant disclosure is directed towards: fertilizer compositions and methods of making the same, in which, due to the composition, the fertilizer exhibits blast suppression (e.g. measured via specific impulse) and/or desensitization (e.g. measured via unconfined critical diameter and/or booster quantity needed to initiate detonation) as compared to existing ammonium nitrate fertilizer(s).
Generally, the instant disclosure relates to fertilizer compositions and methods of making and using the same. More specifically, the instant disclosure relates to blast suppressant and/or blast resistant ammonium nitrate fertilizer compositions, as well as methods of making and using the same.
The application is directed towards methods for purifying an aluminum feedstock material. A method provides: (a) feeding an aluminum feedstock into a cell (b) directing an electric current into an anode through an electrolyte and into a cathode, wherein the anode comprises an elongate vertical anode, and wherein the cathode comprises an elongate vertical cathode, wherein the anode and cathode are configured to extend into the electrolyte zone, such that within the electrolyte zone the anode and cathode are configured with an anode-cathode overlap and an anode-cathode distance; and producing some purified aluminum product from the aluminum feedstock.
The application is directed towards methods for purifying an aluminum feedstock material. A method provides: (a) feeding an aluminum feedstock into a cell (b) directing an electric current into an anode through an electrolyte and into a cathode, wherein the anode comprises an elongate vertical anode, and wherein the cathode comprises an elongate vertical cathode, wherein the anode and cathode are configured to extend into the electrolyte zone, such that within the electrolyte zone the anode and cathode are configured with an anode-cathode overlap and an anode-cathode distance; and producing some purified aluminum product from the aluminum feedstock.
B22D 21/00 - Coulée de métaux non ferreux ou de composés métalliques, dans la mesure où leurs propriétés métallurgiques affectent le procédé de coulée; Utilisation de compositions appropriées
C25C 3/08 - Construction des cellules, p.ex. fonds, parois, cathodes
2 through a gas scrubbing apparatus. A scrubbing liquor comprising hydroxide ions and at least one oxidation catalyst may be flowed into the gas scrubbing apparatus, thereby contacting the gas stream with the scrubbing liquor. In response to the contacting, at least 90 wt. % of the sulfur dioxide may be removed from the gas stream. Concomitant to the contacting, at least some of the sulfur dioxide may react with at least some of the hydroxide ions, thereby forming sulfite ions in the scrubbing liquor. Some of the sulfite ions may be oxidized, via the oxidation catalyst, thereby forming sulfate ions in the scrubbing liquor. A used scrubbing liquor may be discharged from the scrubbing apparatus.
B01D 53/14 - SÉPARATION Épuration chimique ou biologique des gaz résiduaires, p.ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/73 - Post-traitement des composants éliminés
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
02 - Couleurs, vernis, laques
06 - Métaux communs et minerais; objets en métal
12 - Véhicules; appareils de locomotion par terre, par air ou par eau; parties de véhicules
40 - Traitement de matériaux; recyclage, purification de l'air et traitement de l'eau
Produits et services
Aluminum and other chemicals. Aluminum paint and paint pigments. Aluminum ingot, semi-fabricated aluminum (various forms), metal building products, aluminum closures. Vehicle wheels. Reclamation of metals.