Cores include different types of control cells in different numbers and positions. A periphery of the core just inside the perimeter may have higher reactivity fuel in outer control cells, and lower reactivity cells may be placed in an inner core inside the inner ring. Cores can include about half fresh fuel positioned in higher proportions in the inner ring and away from inner control cells. Cores are compatible with multiple core control cell setups, including BWRs, ESBWRs, ABWRs, etc. Cores can be loaded during conventional outages. Cores can be operated with control elements in only the inner ring control cells for reactivity adjustment. Control elements in outer control cells need be moved only at sequence exchanges. Near end of cycle, reactivity in the core may be controlled with inner control cells alone, and control elements in outer control cells can be fully withdrawn.
G21C 3/326 - Faisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles comprenant des éléments combustibles de différentes compositionsFaisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles comprenant, en plus des éléments combustibles, d'autres éléments en forme d'aiguille, de barre ou de tube, p. ex. barres de commande, barres de support de grilles, barres fertiles, barres à poison ou barres factices
G21C 19/20 - Dispositions pour introduire des objets à l'intérieur de l'enceinte sous pressionDispositions pour manipuler des objets à l'intérieur de l'enceinte sous pressionDispositions pour extraire des objets de l'enceinte sous pression
2.
Fuel assembly with outer channel including reinforced sidewall and non-reinforced sidewall
The fuel assembly includes at least one fuel rod and an outer channel with four sidewalls surrounding the fuel rod, the outer channel having a configuration based on a position of the fuel assembly within a core of the nuclear reactor, wherein at least a first select sidewall, of the four sidewalls of the outer channel, is a reinforced sidewall, the remaining sidewalls of the outer channel, other than the at least a first select sidewall, are non-reinforced sidewalls, the at least a first select sidewall being in a controlled location that faces and is directly adjacent to a control blade that is to be utilized in the nuclear reactor, wherein an entirety of the reinforced sidewall as a whole is at least one of thicker and made from a material that is more resistant to radiation-induced deformation as compared to an entirety of the non-reinforced sidewalls.
G21C 1/08 - Réacteurs hétérogènes, c.-à-d. dans lesquels le combustible et le modérateur sont séparés le modérateur étant hautement pressurisé, p. ex. réacteur à eau bouillante, réacteur à surchauffe intégrale, réacteur à eau pressurisée
G21C 21/02 - Fabrication des éléments combustibles ou surrégénérateurs à l'intérieur de gaines non-actives
G21C 15/02 - Aménagement ou disposition de passages dans lesquels la chaleur est transférée au réfrigérant, p. ex. pour la circulation du réfrigérant à travers les supports des éléments combustibles
3.
Nuclear reactor core loading and operation strategies
Cores include different types of control cells in different numbers and positions. A periphery of the core just inside the perimeter may have higher reactivity fuel in outer control cells, and lower reactivity cells may be placed in an inner core inside the inner ring. Cores can include about half fresh fuel positioned in higher proportions in the inner ring and away from inner control cells. Cores are compatible with multiple core control cell setups, including BWRs, ESBWRs, ABWRs, etc. Cores can be loaded during conventional outages. Cores can be operated with control elements in only the inner ring control cells for reactivity adjustment. Control elements in outer control cells need be moved only at sequence exchanges. Near end of cycle, reactivity in the core may be controlled with inner control cells alone, and control elements in outer control cells can be fully withdrawn.
G21C 19/20 - Dispositions pour introduire des objets à l'intérieur de l'enceinte sous pressionDispositions pour manipuler des objets à l'intérieur de l'enceinte sous pressionDispositions pour extraire des objets de l'enceinte sous pression
G21C 3/326 - Faisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles comprenant des éléments combustibles de différentes compositionsFaisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles comprenant, en plus des éléments combustibles, d'autres éléments en forme d'aiguille, de barre ou de tube, p. ex. barres de commande, barres de support de grilles, barres fertiles, barres à poison ou barres factices
4.
Methods of forming debris filters for nuclear fuel assemblies
Debris filters fit in fuel assembly lower tie plates and filter fluids passing therethrough. Filters use a series of adjacent plates with aligned peaks and valleys to create several channels. The plates have small excisions in diamond, triangle, or other debris-catching shapes, such as near a lower portion of the filter where fluid enters the filter. Excisions may alternate around each channel, such as four alternating cut-outs in 90-degree intervals about a channel circumference. Excisions may be sized to entrap smaller debris common in reactor coolant flow and liable for fretting damage to fuel cladding. Multiple vertical stages can be used in filters, with different channels for each stage. Ligaments may hold each stage to the next, potentially with a gap between stages for intermixing. Plates, peaks, valleys, ligaments, and excisions may all be formed in a single stamping operation to eliminate excess or overlapping pieces or extensions.
G21C 3/32 - Faisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles
G21C 19/307 - Dispositions pour introduire un matériau fluent à l'intérieur du cœur du réacteurDispositions pour enlever un matériau fluent du cœur du réacteur avec purification continue du matériau fluent en circulation, p. ex. par extraction des produits de fission spécialement adaptés pour des liquides
B01D 39/12 - Tamis filtrants essentiellement métalliques en toile métalliqueTamis filtrants essentiellement métalliques en fils métalliques tricotésTamis filtrants essentiellement métalliques en métal expansé
B01D 46/24 - Séparateurs de particules utilisant des corps filtrants creux et rigides, p. ex. appareils de précipitation de poussières
G21C 3/33 - Moyens pour supporter ou suspendre des éléments dans le faisceauMoyens faisant partie du faisceau pour l'insérer dans le cœur ou l'en extraireMoyens de couplage de faisceaux adjacents
5.
Method of configuring sidewalls of an outer channel of a fuel assembly
The method includes assessing operational characteristics of the fuel assembly, the assessing including determining if the fuel assembly is to be placed in a controlled location in the reactor core, a controlled location being positioned adjacent to a control blade that is to be utilized, and configuring the sidewalls of the outer channel by making at least a first select sidewall of the outer channel a reinforced sidewall, the remaining sidewalls of the outer channel, other than the at least a first select sidewall, being non-reinforced sidewalls. The entirety of the reinforced sidewall as a whole is at least one of thicker and made from a material that is more resistant to radiation-induced deformation as compared to an entirety of the non-reinforced sidewalls.
G21C 1/08 - Réacteurs hétérogènes, c.-à-d. dans lesquels le combustible et le modérateur sont séparés le modérateur étant hautement pressurisé, p. ex. réacteur à eau bouillante, réacteur à surchauffe intégrale, réacteur à eau pressurisée
G21C 21/02 - Fabrication des éléments combustibles ou surrégénérateurs à l'intérieur de gaines non-actives
G21C 15/02 - Aménagement ou disposition de passages dans lesquels la chaleur est transférée au réfrigérant, p. ex. pour la circulation du réfrigérant à travers les supports des éléments combustibles
G21C 3/324 - Chemisages ou enveloppes pour les faisceaux
6.
SYSTEMS AND METHODS FOR DEBRIS-FREE NUCLEAR COMPONENT HANDLING
Packaging structures and systems are used for handling components for use in a nuclear reactor. The packaging protects the component during transport and handling and then dissolves in liquid in the nuclear reactor or fuel pool. The packaging need not be removed and may block flow paths or otherwise interfere with operability were it not for its dissolution. The packaging may include shock absorbers in a fuel assembly or a seal on a water rod in the assembly. Mechanical, frictional, or chemical retaining materials may be used to secure the packaging and may also dissolve in the liquid. For a light water reactor, polymers, protein gels, and plastics can all be used where they will dissolve in the water and are otherwise compatible with reactor chemistry and neutronics. Materials with higher temperatures for solubility may be used because they will dissolve when reactor operations commence.
Packaging structures and systems are used for handling components for use in a nuclear reactor. The packaging protects the component during transport and handling and then dissolves in liquid in the nuclear reactor or fuel pool. The packaging need not be removed and may block flow paths or otherwise interfere with operability were it not for its dissolution. The packaging may include shock absorbers in a fuel assembly or a seal on a water rod in the assembly. Mechanical, frictional, or chemical retaining materials may be used to secure the packaging and may also dissolve in the liquid. For a light water reactor, polymers, protein gels, and plastics can all be used where they will dissolve in the water and are otherwise compatible with reactor chemistry and neutronics. Materials with higher temperatures for solubility may be used because they will dissolve when reactor operations commence.
A system for removing particulates of a fissile material includes first and second filtration paths. A first filter and a first valve are disposed in the first filtration path. A second filter and a second valve are disposed in the second filtration path. The first valve and the second valve are configured to switch between a dual open state and a mixed open/closed state. During the dual open state, the first valve and the second valve axe open to permit concurrent flows of the effluent gas through the first and second filtration paths. During the mixed open/closed state, one of the first valve and the second valve is open while the other of the first valve and the second valve is closed to permit the particulates on a corresponding one of the first filter and the second filter to be dislodged by a countercurrent flow of a purging gas.
B01D 35/12 - Dispositifs pour mettre hors service une ou plusieurs unités dans des filtres à unités multiples, p. ex. pour la régénération
B01D 46/71 - Régénération de la substance filtrante ou des éléments filtrants à l'intérieur du filtre par action à contre-courant sur la surface filtrante, p. ex. en rinçant du côté du filtre sans gâteau avec du gaz sous pression, p. ex. de l'air pulsé
B01D 46/24 - Séparateurs de particules utilisant des corps filtrants creux et rigides, p. ex. appareils de précipitation de poussières
B01D 46/58 - Filtres ou procédés spécialement modifiés pour la séparation de particules dispersées dans des gaz ou des vapeurs avec plusieurs éléments filtrants, caractérisés par leur disposition relative montés en parallèle
B01D 46/90 - Dispositifs permettant de mettre hors service une ou plusieurs unités de filtres multi-unités, p. ex. pour la régénération ou l’entretien
B01D 29/66 - Rinçage par chasse, p. ex. rafale ascendante d'air à contre-courant
B01D 29/52 - Filtres à éléments filtrants stationnaires pendant la filtration, p. ex. filtres à aspiration ou à pression, non couverts par les groupes Leurs éléments filtrants à plusieurs éléments filtrants caractérisés par leur agencement relatif montés en parallèle
B01D 29/00 - Filtres à éléments filtrants stationnaires pendant la filtration, p. ex. filtres à aspiration ou à pression, non couverts par les groupes Leurs éléments filtrants
G21F 9/00 - Traitement des matériaux contaminés par la radioactivitéDispositions à cet effet pour la décontamination
G21C 21/00 - Appareillage ou procédés spécialement adaptés pour la fabrication des réacteurs ou de pièces de ceux-ci
9.
Debris filters for nuclear fuel assembly and method of using the same
Debris filters fit in fuel assembly lower tie plates and filter fluids passing therethrough. Filters use a series of adjacent plates with aligned peaks and valleys to create several channels. The plates have small excisions in diamond, triangle, or other debris-catching shapes, such as near a lower portion of the filter where fluid enters the filter. Excisions may alternate around each channel, such as four alternating cut-outs in 90-degree intervals about a channel circumference. Excisions may be sized to entrap smaller debris common in reactor coolant flow and liable for fretting damage to fuel cladding. Multiple vertical stages can be used in filters, with different channels for each stage. Ligaments may hold each stage to the next, potentially with a gap between stages for intermixing. Plates, peaks, valleys, ligaments, and excisions may all be formed in a single stamping operation to eliminate excess or overlapping pieces or extensions.
G21C 3/32 - Faisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles
G21C 19/307 - Dispositions pour introduire un matériau fluent à l'intérieur du cœur du réacteurDispositions pour enlever un matériau fluent du cœur du réacteur avec purification continue du matériau fluent en circulation, p. ex. par extraction des produits de fission spécialement adaptés pour des liquides
B01D 46/24 - Séparateurs de particules utilisant des corps filtrants creux et rigides, p. ex. appareils de précipitation de poussières
G21C 3/33 - Moyens pour supporter ou suspendre des éléments dans le faisceauMoyens faisant partie du faisceau pour l'insérer dans le cœur ou l'en extraireMoyens de couplage de faisceaux adjacents
Nuclear reactor components are treated with thermal methods to increase wear resistance. Example treatments include thermal treatments using particulate or powderized materials to form a coating. Methods can use cold spray, with low heat and high velocities to blast particles on the surface. The particles impact and mechanically deform, forming an interlocking coating with the surface and each other without melting or chemically reacting. Materials in the particles and resultant coatings include metallic alloys, ceramics, and/or metal oxides. Nuclear reactor components useable with methods of increased wear resistance include nuclear fuel rods and assemblies containing the same. Coatings may be formed on any desired surface, including fuel rod positions where spacer contact and fretting is most likely.
Nuclear reactor components are treated with thermal methods to increase wear resistance. Example treatments include thermal treatments using particulate or powderized materials to form a coating. Methods can use cold spray, with low heat and high velocities to blast particles on the surface. The particles impact and mechanically deform, forming an interlocking coating with the surface and each other without melting or chemically reacting. Materials in the particles and resultant coatings include metallic alloys, ceramics, and/or metal oxides. Nuclear reactor components usable with methods of increased wear resistance include nuclear fuel rods and assemblies containing the same. Coatings may be formed on any desired surface, including fuel rod positions where spacer contact and fretting is most likely.
Fuel assemblies include an outer channel having a physical configuration optimized for a position of the fuel assembly within a core of a nuclear reactor. The position of the fuel assembly with respect to an employed control blade in the nuclear reactor determines if the outer channel may be thickened, reinforced, and/or fabricated of Zircaloy-4 or similar distortion-resistant material, so as to reduce or prevent distortion of the channel against the control blade, or thinned so as to increase water volume and enhance reactivity in the assembly. Reactor cores having configured fuel assemblies include fuel assemblies having different outer channels. Methods include determining operational characteristics of the fuel assembly, including likelihood of being placed directly adjacent to an employed control blade, and physically selecting or modifying the outer channel of the fuel assembly based thereon.
G21C 3/00 - Éléments combustibles pour réacteur ou leurs assemblagesEmploi de substances spécifiées pour utilisation comme éléments combustibles pour réacteurs
G21C 1/08 - Réacteurs hétérogènes, c.-à-d. dans lesquels le combustible et le modérateur sont séparés le modérateur étant hautement pressurisé, p. ex. réacteur à eau bouillante, réacteur à surchauffe intégrale, réacteur à eau pressurisée
G21C 21/02 - Fabrication des éléments combustibles ou surrégénérateurs à l'intérieur de gaines non-actives
G21C 3/322 - Moyens pour influencer l'écoulement du réfrigérant à travers ou autour des faisceaux
G21C 15/02 - Aménagement ou disposition de passages dans lesquels la chaleur est transférée au réfrigérant, p. ex. pour la circulation du réfrigérant à travers les supports des éléments combustibles
G21C 3/324 - Chemisages ou enveloppes pour les faisceaux
13.
Moderating fuel rods including metal hydride and methods of moderating fuel bundles of boiling water reactors using the same
A moderating fuel rod for a boiling water reactor may include a nuclear fuel section; a neutron moderator section including a metal hydride; and a threaded connector joining the nuclear fuel section and the neutron moderator section. By including one or more moderating fuel rods in a fuel bundle, the neutron moderation within the fuel bundle may be improved, thereby allowing energy to be more efficiently extracted from the entire length of the fuel bundle.
G21C 3/326 - Faisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles comprenant des éléments combustibles de différentes compositionsFaisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles comprenant, en plus des éléments combustibles, d'autres éléments en forme d'aiguille, de barre ou de tube, p. ex. barres de commande, barres de support de grilles, barres fertiles, barres à poison ou barres factices
G21C 5/02 - Structure du modérateur ou du cœurEmploi de matériaux spécifiés comme modérateur Détails
G21C 5/12 - Structure du modérateur ou du cœurEmploi de matériaux spécifiés comme modérateur caractérisée par la composition, p. ex. le modérateur contenant des substances additionnelles qui assurent une meilleure résistance du modérateur
Fuel spacers include a perimeter piece and alignment strips extending within the perimeter piece. Alignment strips may have directional variation while still extending in an overall straight line between two contact points on the perimeter piece. Two alignment strips, by their relative positioning and shape, create distinct openings for fuel rods, through which rods may pass and be supported by the spacer on all sides. Alignment strips can be parallel or skew but need not physically intersect or extend at overall right angles to form such surrounding and supporting openings. Shape may be variable, such as a waveform, zig-zag, or saw-tooth. Several layers of alignment strips at any desired angle are useable in spacers, and alignment strips may be varied in length, shape, and number to account for different fuel assembly sizes and features, such as water rods.
A method and apparatus for a fret resistant fuel rod for a Boiling Water Reactor (BWR) nuclear fuel bundle. An applied material entrained with fret resistant particles is melted or otherwise fused to a melted, thin layer of the fuel rod cladding. The applied material is made of a material that is chemically compatible with the fuel rod cladding, allowing the fret resistant particles to be captured in the thin layer of re-solidified cladding material to produce an effective and resilient fret resistant layer on an outer layer of the cladding.
Nuclear fuel spacers include a deflection-limited elastic rod contact. Spacers may additionally include a rigid contact without elastic functionality. A degree of deflection may be chosen based on plastic deformation threshold, maximum fuel rod movement, anticipated transverse loads related to fuel assembly, inspection, handling, transportation, operation, accidents, and/or any other operating characteristic. Spacers include deflection-limited elastic contacts and/or rigid contacts in several arrangements within the spacer and/or on a single fuel rod. Spacers are compatible with a simple fabrication method that forms rigid, deflection-limiting, and elastic components from a single substrate. Nuclear fuel spacers are useable with several fuel assembly types.
Cores include different types of control cells in different numbers and positions. A periphery of the core just inside the perimeter may have higher reactivity fuel in outer control cells, and lower reactivity cells may be placed in an inner core inside the inner ring. Cores can include about half fresh fuel positioned in higher proportions in the inner ring and away from inner control cells. Cores are compatible with multiple core control cell setups, including BWRs, ESBWRs, ABWRs, etc. Cores can be loaded during conventional outages. Cores can be operated with control elements in only the inner ring control cells for reactivity adjustment. Control elements in outer control cells need be moved only at sequence exchanges. Near end of cycle, reactivity in the core may be controlled with inner control cells alone, and control elements in outer control cells can be fully withdrawn.
G21C 19/00 - Dispositions pour le traitement, pour la manipulation, ou pour faciliter la manipulation, du combustible ou d'autres matériaux utilisés à l'intérieur du réacteur, p. ex. à l'intérieur de l'enceinte sous pression
G21C 3/326 - Faisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles comprenant des éléments combustibles de différentes compositionsFaisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles comprenant, en plus des éléments combustibles, d'autres éléments en forme d'aiguille, de barre ou de tube, p. ex. barres de commande, barres de support de grilles, barres fertiles, barres à poison ou barres factices
G21C 19/20 - Dispositions pour introduire des objets à l'intérieur de l'enceinte sous pressionDispositions pour manipuler des objets à l'intérieur de l'enceinte sous pressionDispositions pour extraire des objets de l'enceinte sous pression
18.
Spacers with deflection-limited peripheral springs for nuclear fuel assemblies and methods of making the same
Fuel spacers include at least one specialized bathtub on an outer perimeter band. Specialized bathtubs include an elastic resistive extension and a corresponding deflection limiter on a same outer face of the perimeter band. The elastic resistive extension provides flexible resistance to the channel, and the deflection limiter provides rigid movement limitation beyond a particular threshold between channel and spacer. The positioning, spring constant, length, number, and other properties of the specialized bathtub can be chosen based on the desired fuel assembly properties and expected transverse loads in fuel shipping and operation against which specialized bathtubs resiliently protect. The specialized bathtubs can be formed from a simplified stamp operation out of the perimeter band. Bathtubs can be placed on any position(s) on the perimeter band of example embodiment spacers used in nuclear fuel assemblies.
A fuel assembly may include a channel nosepiece; a lower tie plate positioned above the channel nosepiece; and at least one bundle retention clip connected to the channel nosepiece and the lower tie plate and configured to resist movement of the lower tie plate away from the channel nosepiece.
G21C 19/28 - Dispositions pour introduire un matériau fluent à l'intérieur du cœur du réacteurDispositions pour enlever un matériau fluent du cœur du réacteur
G21C 3/30 - Assemblages d'un certain nombre d'éléments combustibles sous forme d'une unité rigide
G21C 3/33 - Moyens pour supporter ou suspendre des éléments dans le faisceauMoyens faisant partie du faisceau pour l'insérer dans le cœur ou l'en extraireMoyens de couplage de faisceaux adjacents
Fuel assemblies include an outer channel having a physical configuration optimized for a position of the fuel assembly within a core of a nuclear reactor. The position of the fuel assembly with respect to an employed control blade in the nuclear reactor determines if the outer channel may be thickened, reinforced, and/or fabricated of Zircaloy-4 or similar distortion-resistant material, so as to reduce or prevent distortion of the channel against the control blade, or thinned so as to increase water volume and enhance reactivity in the assembly. Reactor cores having configured fuel assemblies include fuel assemblies having different outer channels. Methods include determining operational characteristics of the fuel assembly, including likelihood of being placed directly adjacent to an employed control blade, and physically selecting or modifying the outer channel of the fuel assembly based thereon.
G21C 3/30 - Assemblages d'un certain nombre d'éléments combustibles sous forme d'une unité rigide
G21C 3/324 - Chemisages ou enveloppes pour les faisceaux
G21C 3/322 - Moyens pour influencer l'écoulement du réfrigérant à travers ou autour des faisceaux
G21C 15/02 - Aménagement ou disposition de passages dans lesquels la chaleur est transférée au réfrigérant, p. ex. pour la circulation du réfrigérant à travers les supports des éléments combustibles
A debris trap catches debris falling through a fuel bundle orifice in a nuclear reactor. The debris trap includes a shaft and a debris capture tray attached to an end of the shaft. The debris capture tray includes a tray cavity sized larger than the fuel bundle orifice.
Disclosed are a fuel rod and a fuel bundle using the fuel rod. The fuel rod may include first enriched uranium in a boost zone of the fuel rod, wherein the boost zone may be arranged directly at a bottom of the fuel rod. The fuel rod may also include second enriched uranium in a second zone of the fuel rod, wherein the second zone is arranged over the boost zone. The fuel rod may also include natural uranium in a third zone of the fuel rod, wherein the third zone is arranged over the second zone. In this fuel rod, a percent of enrichment of the enriched uranium in the boost zone is at least one percent.
G21C 3/32 - Faisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles
G21C 3/326 - Faisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles comprenant des éléments combustibles de différentes compositionsFaisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles comprenant, en plus des éléments combustibles, d'autres éléments en forme d'aiguille, de barre ou de tube, p. ex. barres de commande, barres de support de grilles, barres fertiles, barres à poison ou barres factices
G21D 3/00 - Commande des installations à énergie nucléaire
23.
METHOD FOR PELLET CLADDING INTERACTION (PCI) EVALUATION AND MITIGATION DURING BUNDLE AND CORE DESIGN PROCESS AND OPERATION
Example embodiments are directed to a method of fuel bundle design, core design, or combined fuel and core design, to ensure Pellet Cladding Interaction (PCI) related fuel failures are mitigated. More specifically, example embodiments provide fuel and/or core designs that may be determined prior to operation of a nuclear power plant, or prior to production of fresh fuel bundles. The PCI optimized fuel / core designs may include some or all of seven PCI Evaluation Methods which may be incorporated into existing nuclear reactor simulation programs. PCI optimized fuel and/or core design enhances fuel reliability, allows faster beginning-of-cycle (BOC) startups and faster middle-of-cycle (MOC) sequence exchanges to maximize plant performance, and minimizes ramping restrictions, thereby maximizing nuclear power plant performance.
G21C 19/20 - Dispositions pour introduire des objets à l'intérieur de l'enceinte sous pressionDispositions pour manipuler des objets à l'intérieur de l'enceinte sous pressionDispositions pour extraire des objets de l'enceinte sous pression
G21D 3/00 - Commande des installations à énergie nucléaire
24.
Channel seating tool for nuclear fuel assembly and method for seating channel on the assembly
A tool to slide a channel on a nuclear reactor fuel bundle assembly, the tool includes: a plate having a slot to receive a handle of the fuel bundle and a lower surface that engages an upper edge of the channel; at least one post extends up from the plate, and an arm is attached to a pivot on the post and includes a first end to receive a downward force and a second end adapted to engage the handle of the fuel bundle to apply an upward force to the handle and push down on the channel.
G21C 19/00 - Dispositions pour le traitement, pour la manipulation, ou pour faciliter la manipulation, du combustible ou d'autres matériaux utilisés à l'intérieur du réacteur, p. ex. à l'intérieur de l'enceinte sous pression
Example embodiment fuel bundles use multiple types of spacers within the same fuel bundle. The type for each spacer location may be determined based on the axial position of the spacer, the characteristics of the spacer type, and the location and coolant characteristics for the particular example fuel bundle including the spacers. Historic performance data for the particular bundle location, predictive modeling, etc. may be used to determine what spacer types at which locations result in the best operating conditions and margins for example fuel bundles.
Example embodiments are directed to upper tie plates for debris mitigation and fuel bundles that use the upper tie plates. Example embodiment tie plates may include a plurality of debris capture elements that overlap each other so as to create debris traps for particulate debris that would fall onto the fuel bundle. Example embodiment fuel bundles may use the upper tie plates for debris mitigation.
G21C 3/30 - Assemblages d'un certain nombre d'éléments combustibles sous forme d'une unité rigide
G21C 19/28 - Dispositions pour introduire un matériau fluent à l'intérieur du cœur du réacteurDispositions pour enlever un matériau fluent du cœur du réacteur
G21C 19/30 - Dispositions pour introduire un matériau fluent à l'intérieur du cœur du réacteurDispositions pour enlever un matériau fluent du cœur du réacteur avec purification continue du matériau fluent en circulation, p. ex. par extraction des produits de fission
G21C 3/00 - Éléments combustibles pour réacteur ou leurs assemblagesEmploi de substances spécifiées pour utilisation comme éléments combustibles pour réacteurs
G21C 19/00 - Dispositions pour le traitement, pour la manipulation, ou pour faciliter la manipulation, du combustible ou d'autres matériaux utilisés à l'intérieur du réacteur, p. ex. à l'intérieur de l'enceinte sous pression
27.
Control rod guide tube and method for providing coolant to a nuclear reactor fuel assembly
Control rod guide tubes for a nuclear reactor having a body with an axial length that defines a lower end portion and an upper end portion and a cavity within a substantial length of the body. Orifices are included at the upper and lower end portions of the body. A control rod chamber is located within the cavity and is configured for receiving a control rod. A plurality of ports is coupled to the cavity and is positioned at a substantial length from the upper end portion of the body. Also included are at least two flow channels within the cavity that extend a substantial portion of the axial length of the body. Each flow channel is fluidly coupled to one or more of the ports for receiving fluid flow from outside the body and an outlet proximate to the upper end portion of the body for providing the received fluid flow.
G21C 19/00 - Dispositions pour le traitement, pour la manipulation, ou pour faciliter la manipulation, du combustible ou d'autres matériaux utilisés à l'intérieur du réacteur, p. ex. à l'intérieur de l'enceinte sous pression
A debris trap catches debris falling through a fuel bundle orifice in a nuclear reactor. The debris trap includes a shaft and a debris capture tray attached to an end of the shaft. The debris capture tray includes a tray cavity sized larger than the fuel bundle orifice.
Example embodiments are directed toward industrial packages. Example embodiments may meet several packaging requirements for different modes of transport, including both roadway and flight regulations such as Department of Transportation (DOT) Class 7 requirements for ground transport of radioactive materials and International Air Transport Association (IATA) Regulations for air transport of radioactive materials. Example embodiments may include integrated bumpers, specialized bottom tube skids, lid lattice support, multiple gasket pressurization seal, corner reinforcement, and/or multiple shielding and modular interior components.
A nuclear reactor fuel bundle assembly including: a fuel bundle including an array of fuel rods and water rods mounted in an upper tie plate and housed in walls of a channel, and a pore type debris shield mounted at least partially in the channel, above or below the upper tie plate, the shield extending to or over the walls of the channel, whereby deflecting and/or capturing falling debris from entering the fuel assembly, wherein the shield is design to be durable, yet flexible, and porous.
B29C 70/44 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant une pression isostatique, p. ex. moulage par différence de pression, avec un sac à vide, dans un autoclave ou avec un caoutchouc expansible
G21C 3/32 - Faisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles
G21C 9/00 - Dispositions pour la protection d'urgence structurellement associées avec le réacteur
G21C 3/33 - Moyens pour supporter ou suspendre des éléments dans le faisceauMoyens faisant partie du faisceau pour l'insérer dans le cœur ou l'en extraireMoyens de couplage de faisceaux adjacents
G21C 3/344 - Grilles d'espacement formées par un assemblage d'éléments tubulaires
31.
Method and apparatus for creating and editing a nuclear reactor core loading template
The apparatus for creating and editing a nuclear reactor core template includes a graphical user interface and a processor controlling the graphical user interface to display a graphical representation of a nuclear reactor core. Via the graphical user interface, the processor provides a user with graphical tools for at least one of assigning fuel bundle categories to fuel bundle positions in the graphical representation and editing assigned fuel bundle categories to the fuel bundle positions in the graphical representation.
G21C 19/00 - Dispositions pour le traitement, pour la manipulation, ou pour faciliter la manipulation, du combustible ou d'autres matériaux utilisés à l'intérieur du réacteur, p. ex. à l'intérieur de l'enceinte sous pression
32.
Methods of using fuel bundle groups as evaluation constraints
G21C 19/00 - Dispositions pour le traitement, pour la manipulation, ou pour faciliter la manipulation, du combustible ou d'autres matériaux utilisés à l'intérieur du réacteur, p. ex. à l'intérieur de l'enceinte sous pression
G21C 19/00 - Dispositions pour le traitement, pour la manipulation, ou pour faciliter la manipulation, du combustible ou d'autres matériaux utilisés à l'intérieur du réacteur, p. ex. à l'intérieur de l'enceinte sous pression
34.
Single cycle and equilibrium fuel loading method and system to reduce cycle outage in a boiling water nuclear reactor
A method for generating fuel loading data for a core in a nuclear reactor, wherein the core includes an array of fuel locations in the core, the method includes: defining an even cycle bundle shift map of fuel bundles to be shifted to another core location during an even fuel loading cycle; defining an odd cycle shift map of fuel bundles to be shifted to another core location during an odd loading cycle, wherein the odd cycle and even cycle are alternative and successive core refueling cycles; defining a discharge map identifying the another locations to receive the bundles from the locations identified in the even and odd cycle shift maps, and generating shuffling instructions indicating which fuel bundles from a prior fuel cycle are to be shifted to one of the another locations of the core for a subsequent fuel cycle, wherein bundles to be shifted during the even fuel loading cycle are selected from the fuel bundles to be shifted identified in the even cycle bundle shift map and bundles to be shifted during the odd fuel loading cycle are selected from the fuel bundles to be shifted identified in the odd cycle bundle shift map.
A method has been developed to select fuel rod enrichments for a fuel bundle of a nuclear reactor, the method including: creating an ordered list of fuel rod types in an initial fuel bundle design; perturbing at least a subset of the fuel rod types in the initial fuel bundle design to generate a plurality of perturbed fuel bundle designs; selecting perturbed fuel bundle designs having fuel rods with allowable fuel enrichment types and an allowable average enrichment for the perturbed bundle; determining a difference between each of the selected perturbed fuel bundle design and the initial fuel bundle design, and creating a group of the perturbed fuel bundle design having a difference less than a predetermined threshold difference value.
Method for improving energy output of a nuclear reactor, method for determining natural uranium blanket layer for a fuel bundle, and a fuel bundle having a variable blanket layer
In a method for improving the energy generating output of a nuclear reactor containing one or more fuel rods in one or more fuel rod bundles while satisfying a maximum subcritical banked withdrawal position (MSBWP) reactivity limit, enrichments of individual fuel rods in an axial cross-section of a lattice being evaluated at the top of the fuel bundle are ranked, and the fuel pins of the highest ranked rod location in the lattice are replaced with pins containing natural uranium. A core simulation is then performed to determine whether there is any margin to a MSBWP reactivity limit. For each lower ranked candidate rod position, the pin replacing and core simulation functions are repeated until no rod location violates the MSBWP reactivity limit, so as to achieve a desired lattice design for the top of the fuel bundle.
G21C 3/00 - Éléments combustibles pour réacteur ou leurs assemblagesEmploi de substances spécifiées pour utilisation comme éléments combustibles pour réacteurs
37.
Systems and methods of predicting a critical effective k for a nuclear reactor
Systems and methods for a method for determining a critical effective k at an off-rated core state of a nuclear power plant includes determining, for the off-rated core state a control rod density, a percent core power, a gadolinium reactivity worth, a doppler reactivity worth, and a xenon reactivity worth responsive to a control rod pattern, a reactor power plan including the off-rated core state, and a reference effective k, calculating a change in an effective k from the reference effective k at the off-rated core state responsive to two or more parameters selected from the group consisting of the control rod density, the percent core power, the gadolinium reactivity worth, the doppler reactivity worth, and the xenon reactivity worth, and generating the critical effective k for the off-rated core state responsive to the change in the effective k from the reference effective k.
A fuel rod for a nuclear reactor includes the fuel rod having a first axial zone positioned proximate to a bottom end, a second axial zone positioned adjacent to the first axial zone in the intermediate region, and a third axial zone positioned proximate to a top end. The first axial zone has an enrichment greater than the second axial zone and the second axial zone has an enrichment greater than or equal to the third axial zone. Also includes fuel assemblies having a plurality of fuel rods and methods of designing and manufacturing of fuel rods and fuel assemblies.
G21C 3/32 - Faisceaux d'éléments combustibles en forme d'aiguilles, de barres ou de tubes parallèles
G21C 3/00 - Éléments combustibles pour réacteur ou leurs assemblagesEmploi de substances spécifiées pour utilisation comme éléments combustibles pour réacteurs
In a fuel assembly for a nuclear reactor, a plurality of nuclear fuel rods and at least one fuel rod spacer assembly supporting the fuel rods in an organized array. The fuel rod spacer assembly includes a guide at a leading edge of the fuel rod spacer assembly. The guide is angled towards the fuel rod for directing debris to open passages in the fuel rod spacer assembly.
In a computer-implemented method of designing a nuclear reactor of a given reactor plant, an initial, test reactor core design is generated for the given plant based on a plurality of limits input by a user. The limits include a plurality of transient licensing constraints to be satisfied for operating the given plant. The method includes selecting, from a set of automated tools, one or more automated tools to evaluate the test core design, and operating one of more of selected automated tools to output data for display to the user. The displayed data is related to a core design that satisfies the limits inclusive of the transient licensing constraints.
G06G 7/54 - Calculateurs analogiques pour des procédés, des systèmes ou des dispositifs spécifiques, p. ex. simulateurs pour la physique nucléaire, p. ex. pour réacteurs nucléaires, pour retombées radioactives
G21D 3/00 - Commande des installations à énergie nucléaire
G21C 19/20 - Dispositions pour introduire des objets à l'intérieur de l'enceinte sous pressionDispositions pour manipuler des objets à l'intérieur de l'enceinte sous pressionDispositions pour extraire des objets de l'enceinte sous pression
G21D 3/08 - Régulation de différents paramètres dans l'installation
G06F 17/00 - Équipement ou méthodes de traitement de données ou de calcul numérique, spécialement adaptés à des fonctions spécifiques
G06G 7/00 - Dispositifs dans lesquels l'opération de calcul est effectuée en faisant varier des grandeurs électriques ou magnétiques
41.
Method and apparatus for evaluating robustness of proposed solution to constraint problem and considering robustness in developing a constraint problem solution
In an embodiment of a method of evaluating robustness of a proposed solution to a constraint problem, operational output data for at least first and second modified versions of the proposed solution is generated. The first modified version has at least one control variable of the proposed solution perturbed in a first direction and the second modified version has the at least one control variable of the proposed solution perturbed in a second direction. At least a portion of the generated operation output data is then presented such as on a graphical user interface.
G06E 1/00 - Dispositions pour traiter exclusivement des données numériques
G06E 3/00 - Dispositifs non prévus dans le groupe , p. ex. pour traiter des données analogiques hybrides
G06F 15/18 - dans lesquels un programme est modifié en fonction de l'expérience acquise par le calculateur lui-même au cours d'un cycle complet; Machines capables de s'instruire (systèmes de commande adaptatifs G05B 13/00;intelligence artificielle G06N)
G06G 7/00 - Dispositifs dans lesquels l'opération de calcul est effectuée en faisant varier des grandeurs électriques ou magnétiques
42.
Methods for installing a fuel pellet locking retainer in a nuclear fuel rod
A method for installing a locking retainer in a tube to maintain internal components within the tube under compression comprising the steps of: a) providing an elongated retainer spring having large and small diameter sections with the large diameter section of a size for an interference fit with the interior diameter of the tube and the smaller diameter section of a size having a clearance with the interior diameter of the tube; b) inserting a smaller diameter section of an elongated tool into the larger diameter section of the elongated retainer spring; c) engaging a transition between the smaller and larger diameter sections of the tool against a transition between the larger and smaller diameter sections of the elongated retainer spring; d) inserting the combined tool and retainer spring into an open end of the tube containing internal components with an end of the smaller diameter section of the retainer spring entering the tube first; e) advancing the combined tool and retainer spring within the tube to compress the smaller diameter spring against an adjacent internal component until an end of the tool engages the adjacent internal component enabling the spring to apply a selected axial preload on the internal components in the tube; and f) withdrawing the tool from the retainer spring.
B23P 11/00 - Assemblage ou désassemblage de pièces ou d'objets métalliques par des processus du travail du métal non prévus ailleurs
B23P 19/00 - Machines effectuant simplement l'assemblage ou la séparation de pièces ou d'objets métalliques entre eux ou des pièces métalliques avec des pièces non métalliques, que cela entraîne ou non une certaine déformationOutils ou dispositifs à cet effet dans la mesure où ils ne sont pas prévus dans d'autres classes
G21C 3/00 - Éléments combustibles pour réacteur ou leurs assemblagesEmploi de substances spécifiées pour utilisation comme éléments combustibles pour réacteurs
43.
LWR flow channel with reduced susceptibility to deformation and control blade interference under exposure to neutron radiation and corrosion fields
A zirconium alloy suitable for forming reactor components that exhibit reduced irradiation growth and improved corrosion resistance during operation of a light water reactor (LWR), for example, a boiling water reactor (BWR). During operation of the reactor, the reactor components will be exposed to a strong, and frequently asymmetrical, radiation fields sufficient to induce or accelerate corrosion of the irradiated alloy surfaces within the reactor core. Reactor components fabricated from the disclosed zirconium alloy will also tend to exhibit an improved tolerance for cold-working during fabrication of the component, thereby simplifying the fabrication of such components by reducing or eliminating subsequent thermal processing, for example, anneals, without unduly degrading the performance of the finished component.
In the method, performance of a nuclear reactor may be improved by implementing an operational solution for the nuclear reactor using at least one control rod criteria in order to increase scram effectiveness during at least a portion of an operating cycle for the nuclear reactor.
G21C 7/06 - Commande de la réaction nucléaire par application de matériau absorbant les neutrons, c.-à-d. matériau avec section efficace d'absorption excédant largement la section efficace de réflexion
G21C 19/00 - Dispositions pour le traitement, pour la manipulation, ou pour faciliter la manipulation, du combustible ou d'autres matériaux utilisés à l'intérieur du réacteur, p. ex. à l'intérieur de l'enceinte sous pression
46.
Method and apparatus for evaluating a proposed solution to a constraint problem
G06F 7/60 - Méthodes ou dispositions pour effectuer des calculs en utilisant une représentation numérique non codée, c.-à-d. une représentation de nombres sans baseDispositifs de calcul utilisant une combinaison de représentations de nombres codées et non codées
G05B 13/02 - Systèmes de commande adaptatifs, c.-à-d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques
47.
METHOD AND APPARATUS FOR OPERATING VAPORIZATION SYSTEMS
A method of operating a vaporization system (20) including a first cylinder (26), a second cylinder (28), and an eductor (32) having a suction inlet (34), a motive inlet (36), and an outlet (38) is provided. The method includes vaporizing uranium hexafluoride in the first cylinder, channeling the vaporized uranium hexafluoride in the first cylinder to the suction inlet of the eductor, monitoring the pressure of the vaporized uranium hexafluoride channeled to the suction inlet, and channeling the vaporized uranium hexafluoride through the outlet. The method also includes vaporizing uranium hexafluoride in the second cylinder, and channeling the vaporized uranium hexafluoride in the second cylinder to the motive inlet of the eductor when the flow of uranium hexafluoride channeled to the suction inlet is below a predetermined amount.
G21C 13/00 - Enceintes sous pressionEnceintes d'enveloppeEnveloppes en général
G21C 19/32 - Appareils pour enlever des objets ou matériaux radioactifs de l'aire de décharge du réacteur, p. ex. pour les porter à un emplacement de stockageAppareils pour manipuler des objets ou matériaux radioactifs à l'intérieur d'un emplacement de stockage ou les extraire de celui-ci
A method of operating a vaporization system including a first cylinder, a second cylinder, and an eductor having a suction inlet, a motive inlet, and an outlet is provided. The method includes vaporizing uranium hexaflouride in the first cylinder, channeling the vaporized uranium hexaflouride in the first cylinder to the suction inlet of the eductor, monitoring the pressure of the vaporized uranium hexaflouride channeled to the suction inlet, and channeling the vaporized uranium hexaflouride through the outlet. The method also includes vaporizing uranium hexaflouride in the second cylinder, and channeling the vaporized uranium hexaflouride in the second cylinder to the motive inlet of the eductor when the flow of uranium hexaflouride channeled to the suction inlet is below a predetermined amount.
A method of and a system for evaluating constraint functions for improving nuclear reactor performance involve generating an operational solution for a nuclear reactor using a constraint to account for a problem with the operation of the nuclear reactor. The problem is based at least in part on channel deformation criteria.
G06G 7/48 - Calculateurs analogiques pour des procédés, des systèmes ou des dispositifs spécifiques, p. ex. simulateurs
G05B 13/02 - Systèmes de commande adaptatifs, c.-à-d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques
A system and computer implemented method for automatically performing reload licensing analysis of a nuclear reactor and preparing and generating a reload licensing report. The system and method include collecting input data and processing a plurality of nuclear reactor analysis modules. Each of the nuclear reactor analysis modules receives analysis module input data and generates analysis output data. The analysis module input data is based at least in part on the collected input data. The method also includes verifying at least one analysis output data from one nuclear reactor analysis module by comparing the analysis output data to predetermined analysis output data for the one nuclear reactor analysis module. The method further includes generating a reload licensing report for the nuclear reactor as a function of the analysis output data from two or more nuclear reactor analysis modules.
−19 hour with the workpiece processing generally being limited to temperatures below 680° C. for extrusion and below 625° C. for all other operations, thereby simplifying the fabrication of the nuclear reactor components while providing corrosion resistance comparable with conventional alloys.
A reactor fuel bundle includes both full-length fuel rods and part-length fuel rods. The part-length rods are clumped in two groups—a first rod group surrounds one or more water passages which are generally centrally disposed in a channel of the fuel bundle, and a second rod group is distributed about an inner perimeter wall of the channel.
In the method for reactor simulation, a user modifies one or more design inputs used in creating a response surface. The response surface defines relationships between the design inputs and operational outputs of at least one or more aspects of a core design. A reactor simulation is then generated based on the response surface for the core design and the modified design input.