Deargen Inc.

République de Corée

Retour au propriétaire

1-27 de 27 pour Deargen Inc. Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 26
        Marque 1
Juridiction
        International 21
        États-Unis 6
Date
2025 août 1
2025 (AACJ) 2
2024 10
2023 12
2022 1
Voir plus
Classe IPC
G06N 3/08 - Méthodes d'apprentissage 13
G06N 3/04 - Architecture, p. ex. topologie d'interconnexion 9
G16B 40/20 - Analyse de données supervisée 8
G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques 8
G16B 15/30 - Ciblage de médicament à l’aide de données structurellesPrévision d’amarrage ou de liaison moléculaire 6
Voir plus
Statut
En Instance 4
Enregistré / En vigueur 23

1.

METHOD FOR GENERATING MOLECULE ON BASIS OF REINFORCEMENT LEARNING MODEL

      
Numéro d'application KR2025001565
Numéro de publication 2025/165142
Statut Délivré - en vigueur
Date de dépôt 2025-01-31
Date de publication 2025-08-07
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Lee, Daeseok
  • Cho, Yongjun

Abrégé

Disclosed is a method, performed by a computing device, for generating a molecule on the basis of a reinforcement learning model, according to an embodiment of the present disclosure. The method comprises the steps of: inputting target pocket information into a molecule generation model; performing a reinforcement learning process on the basis of the target pocket information by using the molecule generation module; and generating a final molecule corresponding to the target pocket information on the basis of the reinforcement learning process by using the molecule generation model, wherein the reinforcement learning process may use an action or state associated with a partially generated molecule.

Classes IPC  ?

  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie
  • G16C 20/50 - Conception moléculaire, p. ex. de médicaments
  • G16C 20/20 - Identification d’entités moléculaires, de leurs parties ou de compositions chimiques
  • G16C 20/90 - Langages de programmationArchitectures informatiquesSystèmes de bases de donnéesStockage de données
  • G06N 3/092 - Apprentissage par renforcement
  • G06N 3/096 - Apprentissage par transfert
  • G06N 3/0475 - Réseaux génératifs

2.

MOLECULAR FRAGMENT-BASED MOLECULE GENERATION METHOD

      
Numéro d'application KR2024015841
Numéro de publication 2025/095409
Statut Délivré - en vigueur
Date de dépôt 2024-10-18
Date de publication 2025-05-08
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s) Lee, Bora

Abrégé

A method by which a computing device generates molecular fragment-based molecules, according to one embodiment of the present disclosure, comprises the steps of: acquiring an initial molecular structure; acquiring one or more attachment sites to which a molecular fragment is to be attached in the initial molecular structure; and utilizing a reinforcement learning model so as to generate a new molecule on the basis of candidate molecular fragments to be attached to the one or more attachment sites of the initial molecular structure, wherein the reinforcement learning model utilizes an action space based on the one or more attachment sites and the candidate molecular fragments.

Classes IPC  ?

  • G16C 20/50 - Conception moléculaire, p. ex. de médicaments
  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie
  • G16C 20/90 - Langages de programmationArchitectures informatiquesSystèmes de bases de donnéesStockage de données
  • G16C 20/40 - Recherche de structures chimiques ou de données physicochimiques
  • G16C 20/20 - Identification d’entités moléculaires, de leurs parties ou de compositions chimiques
  • G06N 3/044 - Réseaux récurrents, p. ex. réseaux de Hopfield
  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/092 - Apprentissage par renforcement
  • G06N 3/088 - Apprentissage non supervisé, p. ex. apprentissage compétitif

3.

METHOD OF TRAINING PROTEIN STRUCTURE PREDICTION MODEL

      
Numéro d'application KR2023016117
Numéro de publication 2024/172241
Statut Délivré - en vigueur
Date de dépôt 2023-10-18
Date de publication 2024-08-22
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Lee, Daeseok
  • Shin, Bonggun

Abrégé

The present disclosure relates to a method of training a protein structure prediction model, performed by a computing device. According to an embodiment of the present disclosure, the method may comprise the steps of: repeating protein structure prediction multiple times by using the protein structure prediction model; and calculating a plurality of loss functions on the basis of the plurality of predictions, wherein the plurality of loss functions may include loss functions calculated in different manners according to the number of repetitions.

Classes IPC  ?

  • G16B 40/20 - Analyse de données supervisée
  • G16B 15/00 - TIC spécialement adaptées à l’analyse de structures moléculaires bidimensionnelles ou tridimensionnelles, p. ex. relations structurelles ou fonctionnelles ou alignement de structures
  • G16B 30/00 - TIC spécialement adaptées à l’analyse de séquences impliquant des nucléotides ou des aminoacides
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion

4.

Method For Predicting Protein Binding Site

      
Numéro d'application 18497318
Statut En instance
Date de dépôt 2023-10-30
Date de la première publication 2024-08-22
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Lee, Daeseok
  • Byun, Jeunghyun
  • Shin, Bonggun

Abrégé

Disclosed is a method for predicting a binding site of a protein, the method performed by one or more processors of a computing device. Disclosed is a method for predicting a binding site of a protein, the method performed by one or more processors of a computing device. The method may include: obtaining one or more candidate data; filtering the one or more candidate data, and obtaining the filtered candidate data, by using a first neural network model for detecting a binding site; and predicting a binding residue based on the filtered candidate data by using a second neural network model for identifying the binding residue, and the first neural network model may share some parameters with the second neural network model.

Classes IPC  ?

  • G16B 20/30 - Détection de sites de liaison ou de motifs
  • G16B 40/20 - Analyse de données supervisée

5.

METHOD FOR PREDICTING PROTEIN STRUCTURE BY USING TWIST-BASED STRUCTURE UPDATING

      
Numéro d'application KR2023015741
Numéro de publication 2024/167094
Statut Délivré - en vigueur
Date de dépôt 2023-10-12
Date de publication 2024-08-15
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Lee, Daeseok
  • Shin, Bonggun

Abrégé

In the present disclosure, a method by which a computing device predicts a protein structure by using a neural network model may comprise the steps of: obtaining information about each residue of a protein; updating the information about each residue by using update information associated with a twist structure; and adjusting the protein structure on the basis of the updated information about each residue.

Classes IPC  ?

  • G16B 40/20 - Analyse de données supervisée
  • G16B 15/00 - TIC spécialement adaptées à l’analyse de structures moléculaires bidimensionnelles ou tridimensionnelles, p. ex. relations structurelles ou fonctionnelles ou alignement de structures
  • G16B 30/00 - TIC spécialement adaptées à l’analyse de séquences impliquant des nucléotides ou des aminoacides
  • G16B 45/00 - TIC spécialement adaptées à la visualisation de données liées à la bio-informatique, p. ex. affichage de cartes ou de réseaux
  • G06N 3/08 - Méthodes d'apprentissage

6.

Method for predict affinity between drug and target substance

      
Numéro d'application 18558164
Numéro de brevet 12142350
Statut Délivré - en vigueur
Date de dépôt 2022-03-15
Date de la première publication 2024-08-08
Date d'octroi 2024-11-12
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Kim, Yeachan
  • Shin, Bonggun

Abrégé

Disclosed is a method for predicting an affinity between a drug and a target substance, which is performed by a computing device including at least one processor according to some embodiments of the present disclosure. The method for predicting an affinity between a drug and a target substance may include: extracting a feature value of each of the drug and the target substance by using a first neural network; performing a cross attention between the feature values by using a second neural network; and predicting the affinity between the drug and the target substance based on a result of performing the cross attention by using a third neural network.

Classes IPC  ?

  • G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques
  • G16C 20/40 - Recherche de structures chimiques ou de données physicochimiques

7.

METHOD FOR PREDICTING BINDING STRUCTURE BETWEEN PROTEIN AND LIGAND

      
Numéro d'application KR2023016541
Numéro de publication 2024/136076
Statut Délivré - en vigueur
Date de dépôt 2023-10-24
Date de publication 2024-06-27
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Park, Jimin
  • Lee, Daeseok

Abrégé

The present disclosure relates to a method for predicting a binding structure between a protein and a ligand by using a neural network model performed by a computing device, the method comprising the steps of: obtaining a first pair representation associated with the protein; obtaining a second pair representation associated with the ligand; obtaining an interaction representation between the protein and the ligand; updating the first pair representation, the second pair representation, and the interaction representation; and, after the updating, predicting a binding structure between the protein and the ligand, on the basis of the first pair representation, the second pair representation, and the interaction representation.

Classes IPC  ?

  • G16B 40/20 - Analyse de données supervisée
  • G16B 20/30 - Détection de sites de liaison ou de motifs
  • G06N 3/02 - Réseaux neuronaux
  • G16B 50/00 - TIC pour la programmation d’outils ou de systèmes de bases de données spécialement adaptées à la bio-informatique

8.

METHOD FOR PREDICTING INTERACTION STRUCTURE BETWEEN PROTEIN AND COMPOUND

      
Numéro d'application KR2023016149
Numéro de publication 2024/117538
Statut Délivré - en vigueur
Date de dépôt 2023-10-18
Date de publication 2024-06-06
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Joung, Jong Young
  • Oh, Dongpin

Abrégé

The present disclosure relates to a method, performed by at least one computing device, for predicting an interaction structure between a protein and a compound. The method may comprise the steps of: obtaining information regarding a protein graph representing a structure of a protein; obtaining information regarding a compound graph representing a structure of a compound; and predicting, on the basis of the information regarding the protein graph and the information regarding the compound graph, an interaction feature between a node of the protein graph and a node of the compound graph. In this regard, the node of the protein graph may be associated with a substructure of the protein, and the node of the compound graph may be associated with a fragment of the compound, which is greater than an atomic unit.

Classes IPC  ?

  • G16B 15/30 - Ciblage de médicament à l’aide de données structurellesPrévision d’amarrage ou de liaison moléculaire
  • G16C 20/40 - Recherche de structures chimiques ou de données physicochimiques
  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie
  • G16B 40/20 - Analyse de données supervisée
  • G16B 45/00 - TIC spécialement adaptées à la visualisation de données liées à la bio-informatique, p. ex. affichage de cartes ou de réseaux
  • G16C 20/80 - Visualisation de données
  • G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques

9.

Method For Data Augmentation Related To Target Protein

      
Numéro d'application 17973918
Statut En instance
Date de dépôt 2022-10-26
Date de la première publication 2024-05-02
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Lee, Daeseok
  • Shin, Bonggun

Abrégé

Disclosed is a computer program stored in a computer-readable storage medium. The method may include: obtaining a target protein included in training data and indicator information related to the target protein; identifying a homologous protein of the target protein; and augmenting the training data by matching the homologous protein to the indicator information related to the target protein.

Classes IPC  ?

  • G16B 15/30 - Ciblage de médicament à l’aide de données structurellesPrévision d’amarrage ou de liaison moléculaire
  • G06N 3/08 - Méthodes d'apprentissage

10.

DATA AUGMENTATION METHOD ASSOCIATED WITH TARGET PROTEIN

      
Numéro d'application KR2023015594
Numéro de publication 2024/090848
Statut Délivré - en vigueur
Date de dépôt 2023-10-11
Date de publication 2024-05-02
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Lee, Daeseok
  • Shin, Bonggun

Abrégé

Disclosed according to an embodiment of the present disclosure is a computer program stored on a computer-readable storage medium. The method comprises the steps of: acquiring target proteins and index information associated with the target protein contained in training data; identifying homologous proteins of the target proteins; and augmenting the training data by correlating the index information associated with the target proteins and the homologous proteins.

Classes IPC  ?

  • G16B 40/20 - Analyse de données supervisée
  • G16B 30/10 - Alignement de séquenceRecherche d’homologie
  • G16B 15/30 - Ciblage de médicament à l’aide de données structurellesPrévision d’amarrage ou de liaison moléculaire
  • G16B 45/00 - TIC spécialement adaptées à la visualisation de données liées à la bio-informatique, p. ex. affichage de cartes ou de réseaux
  • G16B 50/00 - TIC pour la programmation d’outils ou de systèmes de bases de données spécialement adaptées à la bio-informatique
  • G06N 20/00 - Apprentissage automatique

11.

METHOD FOR TRAINING LOCAL NEURAL NETWORK MODEL FOR FEDERATED LEARNING

      
Numéro d'application KR2023012843
Numéro de publication 2024/058465
Statut Délivré - en vigueur
Date de dépôt 2023-08-30
Date de publication 2024-03-21
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Kim, Yeachan
  • Shin, Bonggun

Abrégé

A task to be achieved in the present disclosure is to train a local neural network model based on federated learning in consideration of a heterogeneous environment providing different training data. A training method for training a local neural network model based on federated learning, the method being performed by at least one computing device, according to an embodiment of the present disclosure for achieving the task described above, may comprises the steps of: calculating the difference between a global neural network model and the local neural network model; determining additional regularization for training the local neural network model, on the basis of the calculated difference; and training the local neural network model on the basis of a loss function including the determined additional regularization.

Classes IPC  ?

  • G06N 3/098 - Apprentissage distribué, p. ex. apprentissage fédéré
  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/0985 - Optimisation d’hyperparamètresMeta-apprentissageApprendre à apprendre

12.

Method Of Training Local Neural Network Model For Federated Learning

      
Numéro d'application 17944650
Statut En instance
Date de dépôt 2022-09-14
Date de la première publication 2024-03-14
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Kim, Yeachan
  • Shin, Bonggun

Abrégé

The present disclosure relates to training a local neural network model based on federated learning in consideration of a heterogeneous environment in which training data are different from each other. An exemplary embodiment of the present disclosure provides a method of training a local neural network model based on federated learning, the method being performed by at least one computing device, the method including: calculating a difference between a global neural network model and a local neural network model; determining an additional regularization for training the local neural network model based on the calculated difference; and training the local neural network model based on a loss function including the determined additional regularization.

Classes IPC  ?

13.

New Drug Prediction Method, And Apparatus For Performing Method

      
Numéro d'application 18248855
Statut En instance
Date de dépôt 2020-11-26
Date de la première publication 2023-11-30
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Park, Sung Soo
  • Shin, Bonggun
  • Beck, Bo Ram

Abrégé

The present disclosure relates to a new drug predicting method, and device for performing method. A method for predicting new drugs includes generating preprocessed compound information by preprocessing compound information of a compound, by a new drug predicting device; generating preprocessed protein information by preprocessing protein information of a protein, by the new drug predicting device; concatenating the preprocessed compound information and the preprocessed protein information by the new drug predicting device; and predicting a binding affinity based on the concatenated preprocessed compound information and preprocessed protein information by the new drug predicting device.

Classes IPC  ?

  • G16B 15/30 - Ciblage de médicament à l’aide de données structurellesPrévision d’amarrage ou de liaison moléculaire
  • G16B 40/20 - Analyse de données supervisée
  • G16C 20/50 - Conception moléculaire, p. ex. de médicaments
  • G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques

14.

METHOD FOR IDENTIFYING BINDING AREA HAVING SELECTIVITY FOR TARGET PROTEIN

      
Numéro d'application KR2022003742
Numéro de publication 2023/176998
Statut Délivré - en vigueur
Date de dépôt 2022-03-17
Date de publication 2023-09-21
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s) Park, Jimin

Abrégé

Disclosed according to one embodiment of the present disclosure are a method for identifying a binding area having selectivity for a target protein, and a computer program stored in a computer-readable storage medium, using same. Particularly, according to the present disclosure, a computer device: determines at least one binding area of a homologous protein, corresponding to at least one binding area of a target protein; compares the at least one binding area of the homologous protein and the at least one binding area of the target protein that have been determined; identifies, on the basis of the comparison, a binding area, among the at least one binding area of the target protein, having selectivity in relation to the at least one binding area of the homologous protein; and identifies an amino acid residue included in the identified binding area, which contributes to selectivity.

Classes IPC  ?

  • G16B 15/30 - Ciblage de médicament à l’aide de données structurellesPrévision d’amarrage ou de liaison moléculaire
  • G16B 45/00 - TIC spécialement adaptées à la visualisation de données liées à la bio-informatique, p. ex. affichage de cartes ou de réseaux
  • G16B 5/00 - TIC spécialement adaptées à la modélisation ou aux simulations dans la biologie des systèmes, p. ex. réseaux de régulation génétique, réseaux d’interaction entre protéines ou réseaux métaboliques

15.

DATA SAMPLING METHOD FOR ACTIVE LEARNING

      
Numéro d'application KR2022003581
Numéro de publication 2023/033280
Statut Délivré - en vigueur
Date de dépôt 2022-03-15
Date de publication 2023-03-09
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Kim, Yeachan
  • Shin, Bonggun

Abrégé

According to an embodiment of the present disclosure, a data sampling method for active learning performed by a computing device comprising at least one processor may comprise the steps of: generating normalized feature vectors for an unlabeled data set on the basis of a neural network model; estimating the density of the normalized feature vectors by grouping the normalized feature vectors on a vector space; and extracting query data for active learning from the unlabeled data set on the basis of the estimated density.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique

16.

METHOD FOR PREDICTING AFFINITY BETWEEN DRUG AND TARGET SUBSTANCE

      
Numéro d'application KR2022003582
Numéro de publication 2023/033281
Statut Délivré - en vigueur
Date de dépôt 2022-03-15
Date de publication 2023-03-09
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Kim, Yeachan
  • Shin, Bonggun

Abrégé

According to some embodiments of the present disclosure, disclosed is a method for predicting the affinity between a drug and a target substance that is performed by a computing device including at least one processor. The method for predicting the affinity between a drug and a target substance may comprise the steps of: extracting a feature value of each of the drug and the target substance by using a first neural network; performing cross attention between the feature values by using a second neural network; and predicting the affinity between the drug and the target substance on the basis of the result of performing the cross attention by using a third neural network.

Classes IPC  ?

  • G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques
  • G16C 20/60 - Chimie combinatoire in silico
  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie
  • G16C 20/40 - Recherche de structures chimiques ou de données physicochimiques
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion

17.

METHOD FOR TRAINING MULTI-TASK MODEL

      
Numéro d'application KR2022003583
Numéro de publication 2023/033282
Statut Délivré - en vigueur
Date de dépôt 2022-03-15
Date de publication 2023-03-09
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Oh, Dongpin
  • Shin, Bonggun

Abrégé

Disclosed is a method for training a multi-task model, performed by a computing device comprising at least one processor, according to some embodiments of the present disclosure. The method for training a multi-task model may comprise the steps of: acquiring a training data set; and on the basis of the training data set, training a neural network model for outputting a result of prediction of an input value and estimating uncertainty of the prediction, wherein a loss function for training the neural network model includes a first loss function for quantifying the prediction result and the uncertainty of the prediction, and a second loss function for improving the prediction accuracy of the neural network model.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique

18.

METHOD FOR PREDICTING MEDICINE FOR CONTROLLING ENTRANCE OF VIRUS INTO HOST

      
Numéro d'application KR2022003586
Numéro de publication 2023/033283
Statut Délivré - en vigueur
Date de dépôt 2022-03-15
Date de publication 2023-03-09
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Choi, Yoonjung
  • Shin, Bonggun
  • Kang, Keunsoo
  • Park, Sungsoo
  • Beck, Bo Ram

Abrégé

Disclosed is a method, performed by a computing device, for predicting a medicine for controlling the entrance of a virus into a host according to an embodiment. The method may comprise the steps of: estimating first affinity between a medicine and a protein receptor and second affinity between the medicine and a protease by using a pre-trained neural network model; and filtering a database on the basis of the first affinity and the second affinity to predict a medicine for controlling the entrance of a virus into a host.

Classes IPC  ?

  • G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques
  • G16C 20/60 - Chimie combinatoire in silico
  • G16C 20/50 - Conception moléculaire, p. ex. de médicaments
  • G16C 20/90 - Langages de programmationArchitectures informatiquesSystèmes de bases de donnéesStockage de données
  • G06N 20/00 - Apprentissage automatique
  • G06N 3/08 - Méthodes d'apprentissage

19.

TRAINING METHOD FOR NEURAL NETWORK MODEL DIVERSITY

      
Numéro d'application KR2022003578
Numéro de publication 2023/027277
Statut Délivré - en vigueur
Date de dépôt 2022-03-15
Date de publication 2023-03-02
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Oh, Dongpin
  • Shin, Bonggun

Abrégé

According to an embodiment of the present disclosure, disclosed is a training method for neural network model diversity performed by a computing device. The method may comprise the steps of: training a first neural network model on the basis of a training data set; and training a second neural network model on the basis of the training data set such that the trained first neural network model and the second neural network model generate different outputs.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion

20.

CURRICULUM-BASED ACTIVE LEARNING METHOD

      
Numéro d'application KR2022003580
Numéro de publication 2023/027278
Statut Délivré - en vigueur
Date de dépôt 2022-03-15
Date de publication 2023-03-02
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Kim, Yeachan
  • Shin, Bonggun

Abrégé

A curriculum-based active learning method carried out by a computing device is disclosed according to one embodiment of the present disclosure. The method may comprise the steps of: training a neural network model on the basis of a first training data set among training data sets acquired through active learning; and training the neural network model by using, among the training data sets acquired through active learning, a second training data set having a higher training difficulty level than that of the first training data set.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique

21.

METHOD FOR PREDICTING WHETHER OR NOT ATOM INSIDE CHEMICAL STRUCTURE BINDS TO KINASE

      
Numéro d'application KR2022003743
Numéro de publication 2023/027279
Statut Délivré - en vigueur
Date de dépôt 2022-03-17
Date de publication 2023-03-02
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s) Joung, Jong Young

Abrégé

The present disclosure relates to a method for predicting whether or not a compound binds to a hinge of the active site of a kinase, the method comprising the steps of: generating a feature vector representing information about the surrounding environment of each of the atoms of the compound on the basis of the chemical structure of the compound; and classifying, on the basis of the feature vector, whether or not each atom of the compound binds to a hinge region of the kinase.

Classes IPC  ?

  • G16B 35/10 - Conception de bibliothèques
  • G16B 5/00 - TIC spécialement adaptées à la modélisation ou aux simulations dans la biologie des systèmes, p. ex. réseaux de régulation génétique, réseaux d’interaction entre protéines ou réseaux métaboliques
  • G16B 15/30 - Ciblage de médicament à l’aide de données structurellesPrévision d’amarrage ou de liaison moléculaire
  • G16B 20/30 - Détection de sites de liaison ou de motifs
  • G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques
  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie

22.

GENETIC INFORMATION ANALYSIS METHOD

      
Numéro d'application KR2022003752
Numéro de publication 2023/027281
Statut Délivré - en vigueur
Date de dépôt 2022-03-17
Date de publication 2023-03-02
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s) Lee, Bora

Abrégé

The present disclosure relates to a method for analyzing genetic information by using a sparsely connected neural network model generated on the basis of gene ontology (GO) information so as to analyze genetic information by using a high-accuracy model while reducing the cost of learning the existing fully connected neural network. Specifically, the method may comprise the steps of: learning a neural network model generated on the basis of gene ontology information; and analyzing genetic information on the basis of the neural network model, wherein the neural network model includes a hierarchical structure in which nodes are sparsely connected on the basis of gene ontology information.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion

23.

METHOD FOR DERIVING EPITOPE CANDIDATE

      
Numéro d'application KR2022003750
Numéro de publication 2023/027280
Statut Délivré - en vigueur
Date de dépôt 2022-03-17
Date de publication 2023-03-02
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s) Park, Sungsoo

Abrégé

The present disclosure relates to a method adapted to derive an epitope candidate on the basis of the amino acid sequence of an antigen, the method comprising the steps of: generating a plurality of amino acid sub-sequences on the basis of the amino acid sequence of an antigen; generating characteristic values for the plurality of amino acid sub-sequences; and deriving at least one epitope candidate on the basis of the characteristic values for the plurality of amino acid sub-sequences.

Classes IPC  ?

  • G16B 5/00 - TIC spécialement adaptées à la modélisation ou aux simulations dans la biologie des systèmes, p. ex. réseaux de régulation génétique, réseaux d’interaction entre protéines ou réseaux métaboliques
  • G16B 15/00 - TIC spécialement adaptées à l’analyse de structures moléculaires bidimensionnelles ou tridimensionnelles, p. ex. relations structurelles ou fonctionnelles ou alignement de structures
  • G16B 40/20 - Analyse de données supervisée
  • G16B 30/10 - Alignement de séquenceRecherche d’homologie
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/08 - Méthodes d'apprentissage

24.

METHOD FOR SEARCHING FOR HIT-COMPOUND CANDIDATES BY USING PHARMACOPHORE CHARACTERISTICS

      
Numéro d'application KR2022003756
Numéro de publication 2023/027282
Statut Délivré - en vigueur
Date de dépôt 2022-03-17
Date de publication 2023-03-02
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s) Shim, Won Sang

Abrégé

The present disclosure relates to a method for searching for a compound related to a biological target, and the method may comprise the steps of: calculating a plurality of associations between the biological target and a plurality of compounds; extracting some of the plurality of compounds on the basis of the associations; analyzing frequencies of a plurality of pharmacophore characteristics in the extracted some compounds; extracting some of the plurality of pharmacophore characteristics on the basis of the analysis of the frequencies; and searching for compounds that share the extracted some pharmacophore characteristics.

Classes IPC  ?

  • G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques
  • G16C 20/90 - Langages de programmationArchitectures informatiquesSystèmes de bases de donnéesStockage de données
  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie

25.

NEW DRUG PREDICTION METHOD, AND APPARATUS FOR PERFORMING METHOD

      
Numéro d'application KR2020016951
Numéro de publication 2022/085855
Statut Délivré - en vigueur
Date de dépôt 2020-11-26
Date de publication 2022-04-28
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s)
  • Park, Sung Soo
  • Shin, Bong Gun
  • Beck, Bo Ram

Abrégé

The present invention relates to a new drug prediction method, and an apparatus for performing the method. The new drug prediction method can comprise steps in which: a new drug prediction apparatus preprocesses compound information about a compound to generate compound information (preprocessing); the new drug prediction apparatus preprocesses protein information about a protein to generate protein information (preprocessing); the new drug prediction apparatus concatenates the compound information (preprocessing) and the protein information (preprocessing); and the new drug prediction apparatus predicts a binding force on the basis of the compound information (preprocessing) and the protein information (preprocessing) that have been concatenated.

Classes IPC  ?

  • G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques
  • G16C 20/10 - Analyse ou conception des réactions, des synthèses ou des procédés chimiques
  • G16C 20/50 - Conception moléculaire, p. ex. de médicaments
  • G16C 60/00 - Science informatique des matériaux, c.-à-d. TIC spécialement adaptées à la recherche des propriétés physiques ou chimiques de matériaux ou de phénomènes associés à leur conception, synthèse, traitement, caractérisation ou utilisation

26.

DEARGEN

      
Numéro de série 90336147
Statut Enregistrée
Date de dépôt 2020-11-23
Date d'enregistrement 2023-01-24
Propriétaire DEARGEN INC. (République de Corée)
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

genetic testing for scientific research purposes; development of computer software systems for the storage of data; development of computer software systems for the transmission of data; development of computer software systems for the processing of data; database design and development; development of computer software for data processing; providing information relating to scientific analysis of the genetic information via online networks; biological information check being genetic testing for scientific research purposes; providing platform as a service (PaaS) services featuring computer software platforms for use in database management; platform as a service (PaaS) services featuring computer software platforms for use in drug development for use in prediction, identification or discovery of biological targets, molecular structures, drug binding affinity, drug absorption, drug distribution, drug metabolism, drug excretion and drug toxicity; software design and development; software engineering; development of pharmaceutical preparations and medicines; pharmaceutical research services; research relating to medicines being pharmaceutical research services; pharmaceutical drug development services; scientific research in the field of genetic engineering; scientific research in the field of gene analysis; scientific research for medical products; application service provider, namely, hosting computer application software for others in the field of knowledge management for creating searchable databases of information and data

27.

METHOD AND SYSTEM FOR DETERMINING FEATURE INFLUENCE

      
Numéro d'application KR2018013256
Numéro de publication 2019/088759
Statut Délivré - en vigueur
Date de dépôt 2018-11-02
Date de publication 2019-05-09
Propriétaire DEARGEN INC. (République de Corée)
Inventeur(s) Shin, Bong Gun

Abrégé

A method and system for determining a feature influence is disclosed. A method for determining, using a neural network for classification of input data having J number of features (J is a natural number of 2 or greater) into K number of different classes (K is a natural number of 2 or greater), a degree by which each of one or more features among the J number of features influences the classification, comprises the steps of: extracting, from N number of input data, k class input data classified as a specific k class among K number of classes in order to calculate an influence (DIj) of a specific j feature among J number of features, by a feature influence determination system; calculating, by the feature influence determination system, a kk influence indicating a degree of influence on the classifying of the j feature (xij) of the extracted k class input data as the k class; calculating at least one kr influence that is data indicating a degree of influence on classifying of the j feature (xij) of the k class input data, as an r(r=!k) class other than the k class, by the feature influence determination system; and calculating the influence (DIj) on the basis of a difference between each of the at least one kr influence and a value of the kk influence, by the feature influence determination system.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/08 - Méthodes d'apprentissage
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques