Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences

Chine

Retour au propriétaire

1-100 de 216 pour Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences Trier par
Recheche Texte
Affiner par
Juridiction
        International 156
        États-Unis 58
        Canada 2
Date
Nouveautés (dernières 4 semaines) 2
2025 mars (MACJ) 1
2025 février 2
2025 janvier 2
2024 novembre 2
Voir plus
Classe IPC
E21B 43/01 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits spécialement adaptés à l'extraction à partir d'installations sous l'eau 18
E21B 41/00 - Matériel ou accessoires non couverts par les groupes 15
C10L 3/10 - Post-traitement de gaz naturel ou de gaz naturel de synthèse 11
E21B 49/00 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits 11
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium 11
Voir plus
Statut
En Instance 9
Enregistré / En vigueur 207
Résultats pour  brevets
  1     2     3        Prochaine page

1.

DRILLING EQUIPMENT FOR IN-SITU SEABED EXPLOITATION OF NATURAL GAS HYDRATES

      
Numéro d'application CN2024094218
Numéro de publication 2025/044313
Statut Délivré - en vigueur
Date de dépôt 2024-05-20
Date de publication 2025-03-06
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Wang, Yi
  • Liu, Jianwu
  • Chen, Zhaoyang
  • Li, Gang
  • Zhang, Yu

Abrégé

Drilling equipment for in-situ seabed exploitation of natural gas hydrates, the drilling equipment comprising a drilling module. The drilling module comprises a frame (1), wherein a door-shaped guide rail (2) and a manipulator (3) are mounted in the frame (1), a lower hydraulic tong (4) is mounted at the bottom of the frame (1), an upper hydraulic tong (5) is coaxially arranged above the lower hydraulic tong (4), and a coaxial section between the upper hydraulic tong (5) and the lower hydraulic tong (4) is a drill string placement position; the upper hydraulic tong (5) is mounted in a top drive (6), and the top drive (6) is fitted in the door-shaped guide rail (2), so as to vertically move in the direction of height of the door-shaped guide rail (2); and a pipe rack (8) is provided within the rotation range of the manipulator (3), the pipe rack (8) is configured to store and place drill strings (100), and the manipulator (3) is configured to grab a drill string and place same between the upper hydraulic tong (5) and the lower hydraulic tong (4). The drilling equipment can be transferred from an offshore platform to the seabed, thereby significantly increasing the drilling speed and reducing the exploitation cost.

Classes IPC  ?

2.

ON-SITE SAMPLE CUTTING AND TRANSFER DEVICE FOR NATURAL GAS HYDRATE

      
Numéro d'application CN2024103908
Numéro de publication 2025/039765
Statut Délivré - en vigueur
Date de dépôt 2024-07-05
Date de publication 2025-02-27
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Wang, Yi
  • Liu, Jianwu
  • Xu, Rui
  • Chen, Zhaoyang
  • Li, Gang
  • Zhang, Yu

Abrégé

The present invention relates to the technical field of natural gas hydrate exploitation, and specifically to an on-site sample cutting and transfer device for a natural gas hydrate. The device comprises a servo transmission mechanism, a pressure-resistant operator, a high-pressure sealed operation mechanism, a pressure maintaining unit and a data acquisition system. During operation, a servo operation transmission mechanism is configured to drive a pressure-resistant manipulator to reciprocatingly move; a servo rotary mechanism is configured to hold a sample and then implement 360-degree rotation of the sample, and the pressure-resistant manipulator is configured to drive a gripper to grab the sample, assist a sample cutting unit in cutting the sample in cooperation with a high-pressure sealed mechanism, and reciprocatingly move under the action of the servo operation transmission mechanism; the cut sample is placed in a high-pressure maintaining compartment for storage; and during the whole cutting process, system pressure acquisition is performed by means of a pressure acquisition system, and data is transmitted to a data acquisition and control system for data processing and analysis.

Classes IPC  ?

  • G01N 1/04 - Dispositifs pour prélever des échantillons à l'état solide, p. ex. par coupe à l'outil
  • G01N 1/28 - Préparation d'échantillons pour l'analyse

3.

FIELD BASIC PARAMETER CHARACTERIZATION AND TEST DEVICE FOR NATURAL GAS HYDRATE

      
Numéro d'application CN2024103570
Numéro de publication 2025/025963
Statut Délivré - en vigueur
Date de dépôt 2024-07-04
Date de publication 2025-02-06
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Wang, Yi
  • Liu, Jianwu
  • Xu, Rui
  • Chen, Zhaoyang
  • Li, Gang
  • Zhang, Yu

Abrégé

The present invention relates to the technical field of natural gas hydrate exploitation, and in particular to a field basic parameter characterization and test device for a natural gas hydrate. The device comprises a non-disturbed permeability test module, a pressurization system, a servo transmission mechanism, a data collection system, a resistivity test system and an outlet metering system, wherein the non-disturbed permeability test module is used for performing a permeability test on a hydrate sample after sample transfer; the pressurization system is used for adjusting the pressure of each point in the field basic parameter characterization and test device for a natural gas hydrate; the servo transmission mechanism comprises a pressure-resistant sample transfer operator and a servo driver, the servo driver being used for driving the pressure-resistant sample transfer operator to reciprocate, and the pressure-resistant sample transfer operator being used for separating a test sample from a sheath under pressure, and pushing the sample into a clamp holder; and the resistivity test system is used for measuring a resistivity value.

Classes IPC  ?

  • G01N 15/08 - Recherche de la perméabilité, du volume des pores ou de l'aire superficielle des matériaux poreux
  • G01N 27/04 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant l'impédance en recherchant la résistance
  • G01D 21/02 - Mesure de plusieurs variables par des moyens non couverts par une seule autre sous-classe

4.

NATURAL GAS HYDRATE RESERVOIR STIMULATION AND YIELD INCREASE EXPERIMENTAL APPARATUS

      
Numéro d'application CN2024114241
Numéro de publication 2025/021223
Statut Délivré - en vigueur
Date de dépôt 2024-08-23
Date de publication 2025-01-30
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Wang, Yi
  • Liu, Jianwu
  • Zhang, Longhai
  • Chen, Zhaoyang
  • Li, Gang
  • Zhang, Yu

Abrégé

A natural gas hydrate reservoir stimulation and yield increase experimental apparatus, comprising a simulation reaction vessel (1), and a high-pressure sand filling system (2), a crack-forming loading system (3), an overlying-pressure loading system (4), a gas pressurization system (7), a fracturing system and a data collection system, which are respectively connected to the simulation reaction vessel (1), wherein during a simulation test process, a reservoir medium is arranged in the simulation reaction vessel (1); by means of the crack-forming loading system (3), cracks having various widths and/or shapes are simulated and generated in the simulation reaction vessel (1); by means of the high-pressure sand filling system (2), the reservoir medium is compacted; by means of the overlying-pressure loading system (4), seabed overlying pressure is simulated for the reservoir medium; by means of the gas pressurization system (7), gas is pressurized, and then enters the simulation reaction vessel (1); by means of the fracturing system, a fracturing fluid or proppant (23) is injected into the simulation reaction vessel (1); and by means of the data collection system, experimental data is collected.

Classes IPC  ?

  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
  • E21B 47/00 - Relevés dans les trous de forage ou dans les puits
  • E21B 43/26 - Procédés pour activer la production par formation de crevasses ou de fractures

5.

NATURAL GAS HYDRATE SEABED IN-SITU MINING METHOD

      
Numéro d'application CN2024094199
Numéro de publication 2025/011195
Statut Délivré - en vigueur
Date de dépôt 2024-05-20
Date de publication 2025-01-16
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Wang, Yi
  • Liu, Jianwu
  • Chen, Zhaoyang
  • Li, Gang
  • Zhang, Yu

Abrégé

Disclosed is a natural gas hydrate seabed in-situ mining method, comprising: on the basis of a natural gas hydrate simulation mining model, obtaining a well pattern arrangement diagram of a natural gas hydrate mining block; according to the well pattern arrangement diagram, using a vessel having deepwater equipment deployment capacity to carry a seabed in-situ mining system and go to a target sea area, and carrying out wellhead position selection; after the wellhead position selection is completed, lowering a drilling device from the water surface, and performing drilling by using a casing drilling technique; lowering a well completion device from the water surface, placing a well completion string into the well, and at the wellhead, connecting the well completion device to a seabed wellhead, and performing well completion operation; lowering a wellhead device from the water surface, connecting the wellhead device to the well completion string, performing a depressurization mining process, reducing the pressure at the underground reservoir, and gas water flowing into a production pipeline to complete mining. In the present invention, the mining devices, especially the drilling device, are transferred from the sea surface platform to the seabed, such that the mining efficiency is improved, the mining cost is reduced, and the potential risks in sea surface mining are reduced.

Classes IPC  ?

  • E21B 43/295 - Gazéification de matières minérales, p. ex. pour produire des mélanges de gaz combustibles
  • E21B 43/01 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits spécialement adaptés à l'extraction à partir d'installations sous l'eau
  • E21B 43/18 - Procédés par recompression ou par le vide

6.

CYANO FUNCTIONALIZED ORGANOSILOXANE COMPOUND, AND PREPARATION AND USE THEREOF

      
Numéro d'application CN2024105690
Numéro de publication 2024/235358
Statut Délivré - en vigueur
Date de dépôt 2024-07-16
Date de publication 2024-11-21
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Zhang, Lingzhi
  • Chen, Cheng
  • Sun, Yuanyuan
  • Luo, Xuan

Abrégé

A cyano functionalized organosiloxane compound having a chemical structural formula as shown in formula 1-4. The compound is used as an electrolyte high-pressure/high-temperature additive or solvent of a lithium-ion battery or other electrochemical energy storage devices. A dense and stable protective film containing nitrogen and silicon is formed on the electrode interface, such that the interface performance and compatibility between the positive and negative electrodes and the electrolyte are improved, oxidative decomposition of the electrolyte is effectively inhibited, and electrochemical properties such as the cycle life, the discharge capacity and multiplier of the battery at high-temperature/high-pressure are improved.

Classes IPC  ?

  • C07F 7/08 - Composés comportant une ou plusieurs liaisons C—Si
  • C07F 7/10 - Composés comportant une ou plusieurs liaisons C—Si azotés
  • H01M 10/0567 - Matériaux liquides caracterisés par les additifs
  • H01M 10/0569 - Matériaux liquides caracterisés par les solvants
  • H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium

7.

ALTERNATING STEPPING DEEP-SEA MINING SYSTEM AND METHOD BASED ON CLEAN ENERGY PLATFORM

      
Numéro d'application 18419579
Statut En instance
Date de dépôt 2024-01-23
Date de la première publication 2024-11-07
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Sheng, Songwei
  • Wang, Kunlin
  • Wang, Zhenpeng
  • Ding, Weiwei
  • Chen, Min

Abrégé

An alternating stepping deep-sea mining system and method based on a clean energy platform are provided. The platform comprises a main hull, a mining system, a mooring system and an electric propulsion apparatus. The middle of the main hull is provided with a workshop. The mining system comprises a plurality of mining vehicles, and the plurality of mining vehicles are placed in the workshop. The mooring system comprises winches, anchor cable cabins, anchor cables and anchor heads. The winches are arranged at four corners of the top of the main hull, the anchor cable cabin is arranged below each winch, and the anchor cable has one end connected to the winch and the other end connected to the anchor head. The electric propulsion apparatuses are arranged at the front end and the rear end of the bottom of the main hull.

Classes IPC  ?

  • B63B 35/44 - Constructions, magasins, plates-formes de forage ou ateliers flottants, p. ex. portant des appareils séparateurs huile-eau
  • E21C 50/00 - Extraction de matières minérales sous l'eau, non prévue ailleurs

8.

SYSTEM AND METHOD FOR ENHANCING GAS HYDRATE GENERATION BY MEANS OF WALL-CLIMBING PROCESS

      
Numéro d'application CN2023136328
Numéro de publication 2024/212544
Statut Délivré - en vigueur
Date de dépôt 2023-12-05
Date de publication 2024-10-17
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Yu, Yisong
  • Sun, Wenzhe
  • Chen, Zhaoyang

Abrégé

The present invention relates to the field of gas hydrate generation enhancement, and in particular to a system and method for enhancing gas hydrate generation by means of a wall-climbing process. In the present invention, a hydrate is induced to grow upwards along a wall surface; during this process, a large number of capillary channels are formed in the initially grown hydrate; a reaction liquid moves upwards along said capillary channels under the action of capillary force until a front end comes into contact with a rich gas phase to form a hydrate; this repeats until all reactions of the reaction liquid finish; wherein during a reaction a hydrate is to be induced to be generated as "wall climbing" upwards rather than growing towards a liquid phase. The present invention enhances gas-liquid mass transfer, and also enhances gas-hydrate mass transfer.

Classes IPC  ?

  • B01J 3/04 - Récipients sous pression, p. ex. autoclaves
  • B01J 3/00 - Procédés utilisant une pression supérieure ou inférieure à la pression atmosphérique pour obtenir des modifications chimiques ou physiques de la matièreAppareils à cet effet
  • B01J 10/00 - Procédés chimiques généraux faisant réagir un liquide avec des milieux gazeux autrement qu'en présence de particules solidesAppareillage spécialement adapté à cet effet
  • B01J 19/24 - Réacteurs fixes sans élément interne mobile
  • B01J 19/00 - Procédés chimiques, physiques ou physico-chimiques en généralAppareils appropriés
  • B01J 19/18 - Réacteurs fixes avec éléments internes mobiles
  • G01N 25/48 - Recherche ou analyse des matériaux par l'utilisation de moyens thermiques en recherchant la production de quantités de chaleur, c.-à-d. la calorimétrie, p. ex. en mesurant la chaleur spécifique, en mesurant la conductivité thermique sur une solution, sorption ou réaction chimique n'impliquant pas une oxydation par combustion ou catalyse
  • B01J 19/08 - Procédés utilisant l'application directe de l'énergie ondulatoire ou électrique, ou un rayonnement particulaireAppareils à cet usage
  • B01J 4/00 - Dispositifs d'alimentationDispositifs de commande d'alimentation ou d'évacuation

9.

NITROGEN-CARBON DIOXIDE MIXED GAS JETTING APPARATUS FOR HORIZONTAL WELL AND EXPLOITATION METHOD

      
Numéro d'application 18578322
Statut En instance
Date de dépôt 2022-10-27
Date de la première publication 2024-09-12
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Dongliang
  • Li, Xiang
  • Lu, Fuqin
  • Liang, Deqing
  • Zhou, Xuebing
  • Lu, Jingsheng

Abrégé

A nitrogen-carbon dioxide mixed gas jet apparatus for a horizontal well and an exploitation method is presented. The jet apparatus includes: an offshore platform, a natural gas processing unit, and a pressurizing unit, wherein a portion of the gas exploitation pipe in the hydrate layer is provided with a gas injection horizontal well; a mixed gas jet unit and a nozzle assembly are disposed in the gas injection horizontal well; the mixed gas jet unit is configured to mix nitrogen and carbon dioxide, and then inject the mixed gas into a hydrate deposition layer through the nozzle assembly, so that the mixed gas replaces methane gas in the hydrate deposition layer; the portion of the gas exploitation pipe in the hydrate layer is provided with a gas exploitation horizontal well configured to collect the methane gas and convey the methane gas to the natural gas processing unit.

Classes IPC  ?

  • C09K 8/52 - Compositions pour éviter, limiter ou éliminer les dépôts, p. ex. pour le nettoyage
  • C09K 8/70 - Compositions pour la formation de crevasses ou de fractures caractérisées par leur forme ou par la forme de leurs composants, p. ex. mousses
  • C10L 3/10 - Post-traitement de gaz naturel ou de gaz naturel de synthèse
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • E21B 43/16 - Procédés de récupération assistée pour l'extraction d'hydrocarbures

10.

REACTION DEVICE AND METHOD COMMONLY USED FOR HIGH-PRESSURE IN-SITU DSC AND NEUTRON TEST OF GAS HYDRATE

      
Numéro d'application CN2023131929
Numéro de publication 2024/183329
Statut Délivré - en vigueur
Date de dépôt 2023-11-16
Date de publication 2024-09-12
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Yu, Yisong
  • Ruan, Xuke
  • Liu, Jianwu
  • Sun, Wenzhe
  • Chen, Zhaoyang

Abrégé

A reaction device and method commonly used for high-pressure in-situ DSC and a neutron test of a gas hydrate. The reaction device can be used for performing a high-pressure and low-temperature in-situ DSC experiment of a hydrate, and can also be suitable for a neutron diffraction test of the hydrate. Moreover, the reaction device can be adapted to existing high-pressure and low-temperature in-situ DSC devices without researching and developing a whole set of systems again, thereby greatly reducing the replacement cost of the device. In addition, the sectional design of the reaction device can ensure the flexibility and applicability of the reaction device, a researcher can conveniently perform pressure-maintained transferring of a hydrate, and even if the distance is long, with the assistance of a liquid nitrogen tank or a vehicle-mounted refrigerator, it can be ensured that the hydrate does not decompose during transferring, such that the service range of a neutron diffraction test is greatly broadened.

Classes IPC  ?

  • G01N 23/207 - Diffractométrie, p. ex. en utilisant une sonde en position centrale et un ou plusieurs détecteurs déplaçables en positions circonférentielles

11.

METHOD FOR STORING AND TRANSPORTING HYDRATE STORING HIGH AMOUNT OF NATURAL GAS

      
Numéro d'application CN2023131396
Numéro de publication 2024/169281
Statut Délivré - en vigueur
Date de dépôt 2023-11-14
Date de publication 2024-08-22
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Yu, Yisong
  • Liu, Jianwu
  • Sun, Wenzhe
  • Chen, Zhaoyang

Abrégé

Disclosed is a method for storing and transporting a hydrate storing a high amount of natural gas. In the method, a means of low-temperature generation and high-temperature storage of a hydrate is utilized, which specifically comprises the following steps: a mixed hydrate reaction liquid is placed in a hydrate reaction tank adapted for a transport vehicle, natural gas is introduced, and a hydrate generation reaction is carried out under at a temperature of 273.65-283.15 K; once the reaction reaches equilibrium, the temperature is increased to ≤ 298.15 K and storage is carried out for long-distance transportation. The technical solution of "low-temperature generation and high-temperature storage of a hydrate" is utilized, a hydrate storing a high amount of natural gas can be synthesized in a short period of time, and the hydrate can be safely, economically, and efficiently transported to a destination.

Classes IPC  ?

  • F17C 5/06 - Procédés ou appareils pour remplir des récipients sous pression de gaz liquéfiés, solidifiés ou comprimés pour le remplissage avec des gaz comprimés

12.

2 capture by double-bed hydrate process

      
Numéro d'application 18575341
Numéro de brevet 12121854
Statut Délivré - en vigueur
Date de dépôt 2021-12-17
Date de la première publication 2024-08-08
Date d'octroi 2024-10-22
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Long, Zhen
  • He, Yong
  • Liang, Deqing
  • Zhou, Xuebing

Abrégé

2 capture and separation.

Classes IPC  ?

  • B01D 53/62 - Oxydes de carbone
  • B01D 53/00 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols
  • B01D 53/78 - Procédés en phase liquide avec un contact gaz-liquide
  • C01B 32/50 - Anhydride carbonique

13.

NATURAL GAS HYDRATE PRODUCTION AND TRANSPORTATION SYSTEM

      
Numéro d'application CN2023131909
Numéro de publication 2024/159863
Statut Délivré - en vigueur
Date de dépôt 2023-11-16
Date de publication 2024-08-08
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Yu, Yisong
  • Liu, Jianwu
  • Sun, Wenzhe
  • Chen, Zhaoyang

Abrégé

Disclosed in the present invention is a natural gas hydrate production and transportation system, comprising a gas storage, hydrate storage and transportation tanks, a refrigerator, a pressure regulating valve, a liquid storage tank, a living area/surrounding users, a hydrate storage, several connecting pipes, and several one-way gas valves, several one-way liquid valves and several optional liquid pumps, wherein several hydrate storage and transportation tanks are provided; the several hydrate storage and transportation tanks are connected in parallel by means of the connecting pipes, and are then connected to an output end of the gas storage by means of the pressure regulating valve, and the liquid storage tank is sequentially connected to the several hydrate storage and transportation tanks after being connected to the optional liquid pump; and the several hydrate storage and conveying tanks, after being connected in parallel, are connected to an input end of the living area/surrounding users by means of the optional liquid pump, and an output end of the living area/surrounding user is sequentially connected to input ends of the several hydrate storage and transportation tanks, the hydrate storage and transportation tanks being filled with water-insoluble hydrate thermodynamic additives. The present apparatus shortens the process flow of hydrate production and transportation, and conveniently achieves separation of additives and water, thereby reducing the loss of additives and saving on the hydrate transportation cost.

Classes IPC  ?

  • F17C 11/00 - Utilisation de solvants ou d'absorbants des gaz dans les récipients
  • F17C 13/00 - Détails des récipients ou bien du remplissage ou du vidage des récipients
  • F17C 13/04 - Disposition ou montage des soupapes
  • F17D 1/14 - Transfert des liquides ou des produits visqueux par pompage
  • C10L 3/06 - Gaz naturelGaz naturel de synthèse obtenu par des procédés non prévus dans , ou

14.

EXTRATERRESTRIAL WATER ICE IN-SITU SYNTHESIS AND EXPLOITATION SIMULATION APPARATUS AND METHOD

      
Numéro d'application CN2023136039
Numéro de publication 2024/159908
Statut Délivré - en vigueur
Date de dépôt 2023-12-04
Date de publication 2024-08-08
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Lu, Jingsheng
  • Li, Dongliang
  • Liang, Deqing
  • Lin, Decai
  • Chen, Yong

Abrégé

An extraterrestrial water ice in-situ synthesis and exploitation simulation apparatus and method. The extraterrestrial water ice in-situ synthesis and exploitation simulation apparatus comprises an extraterrestrial water ice sample synthesis system, an exploitation system, an environment simulation system and a data collection system. A low-temperature weightless vacuum environment for in-situ exploitation of an extraterrestrial water ice sample is simulated by means of the environment simulation system; under the combined action of the extraterrestrial water ice sample synthesis system and the exploitation system, synthesis, tamping, drilling and heating can be performed in a simulated in-situ low-temperature weightless vacuum environment to exploit the extraterrestrial water ice sample, and extraterrestrial water and gas resources are acquired; and simulation experiment data is obtained by means of a plurality of sensing elements in the data collection system, and can also be directly applied to an extraterrestrial environment experiment and operation.

Classes IPC  ?

  • E21B 43/00 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits
  • E21B 43/12 - Procédés ou appareils pour commander l'écoulement du fluide extrait vers ou dans les puits
  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits

15.

Indirect hydraulic load hierarchical control system and method for wave energy device

      
Numéro d'application 18685233
Numéro de brevet 12085096
Statut Délivré - en vigueur
Date de dépôt 2023-04-28
Date de la première publication 2024-08-08
Date d'octroi 2024-09-10
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Ye, Yin
  • Sheng, Songwei
  • Wang, Wensheng
  • Wang, Kunlin

Abrégé

An indirect hydraulic load hierarchical control system and method for a wave energy device includes a first hydraulic cylinder group, a second hydraulic cylinder group, a third hydraulic cylinder group, a high-pressure energy accumulator group, a pressure detection control module, a first hydraulic power generator set, a second hydraulic power generator set and a third hydraulic power generator set. A detection end of the pressure detection control module is used for acquiring an internal pressure of the high-pressure energy accumulator group, comparing the internal pressure with a preset pressure level, and respectively controlling the on-off of reversing valves and electromagnetic valves according to a comparison result. The present invention has the beneficial effects that all hydraulic loads can be automatically loaded or automatically unloaded, so that the wave energy device operates in a full load state or in an optimal energy conversion efficiency state.

Classes IPC  ?

  • F03B 13/18 - Utilisation du mouvement relatif entre un élément déplacé par les vagues et un autre élément l'autre élément étant fixé, à au moins un point, par rapport au fond ou au bord de la mer
  • F15B 1/04 - Accumulateurs
  • F15B 13/06 - Dispositifs de distribution ou d'alimentation du fluide caractérisés par leur adaptation à la commande de servomoteurs pour utilisation avec plusieurs servomoteurs
  • F03B 13/14 - Utilisation de l'énergie des vagues
  • F03B 13/22 - Utilisation de l'écoulement de l'eau résultant du mouvement des vagues, p. ex. pour entraîner un moteur hydraulique ou une turbine

16.

System and method for exploiting marine natural gas hydrate resource

      
Numéro d'application 18016683
Numéro de brevet 12084947
Statut Délivré - en vigueur
Date de dépôt 2022-10-25
Date de la première publication 2024-07-18
Date d'octroi 2024-09-10
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Ruan, Xuke
  • Chen, Zhaoyang
  • Li, Gang
  • Zhang, Yu
  • Wang, Yi
  • Yan, Kefeng
  • Zhou, Jiayuan

Abrégé

A system and method for exploiting a marine natural gas hydrate resource including a vertical well, comprising a sleeve configured to penetrate through a marine layer and a hydrate reservoir covering layer, and penetrate downwards into a natural gas hydrate reservoir; a section of the sleeve in the natural gas hydrate reservoir is provided with a perforating channel; a horizontal well, connected to a bottom end of the sleeve; a production string, disposed in the sleeve and extending downwards into the horizontal well, wherein a bottom of the production string is provided with a gas/water collection inlet; a hot water injection pipe, disposed in the production string; and a bottom of the hot water injection pipe is provided with a hot water injection opening; and a gas bladder, disposed in the horizontal well and connected to the hot water injection opening in the hot water injection pipe.

Classes IPC  ?

  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • E21B 43/01 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits spécialement adaptés à l'extraction à partir d'installations sous l'eau
  • E21B 43/24 - Procédés de récupération assistée pour l'extraction d'hydrocarbures utilisant la chaleur, p. ex. injection de vapeur

17.

CONTROLLABLE ARRANGEMENT STRAIGHT-THROUGH HOLE GAS-LIQUID DIFFUSION ELECTRODE WITH THREE-DIMENSIONAL CATALYST LAYER FOR SOLID POLYMER WATER ELECTROLYSIS, AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2024075108
Numéro de publication 2024/146657
Statut Délivré - en vigueur
Date de dépôt 2024-02-01
Date de publication 2024-07-11
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Yan, Changfeng
  • Lu, Zhuoxin
  • Ding, Chao
  • Shi, Yan
  • Shen, Lisha
  • Guo, Changqing
  • Wang, Zhida
  • Tan, Hongyi

Abrégé

Disclosed in the present invention are a controllable arrangement straight-through hole gas-liquid diffusion electrode with a three-dimensional catalyst layer for solid polymer water electrolysis, and a preparation method therefor. The gas-liquid diffusion electrode is composed of a gas-liquid diffusion layer with controllable arrangement straight-through holes and a three-dimensional catalyst layer that is loaded on the gas-liquid diffusion layer, wherein a catalyst on the three-dimensional catalyst layer is selected from one of more of iridium, ruthenium, an iridium oxide and a ruthenium oxide. By constructing the catalyst layer with a three-dimensional structure on the controllable arrangement straight-through hole gas-liquid diffusion layer in the present invention, the high surface area, high structural stability and high mass transfer performance of the three-dimensional catalyst layer are combined with the high gas evacuating capacity and high transverse conductivity of the controllable arrangement straight-through hole gas-liquid diffusion layer, and the three-dimensional controllable arrangement straight-through hole gas-liquid diffusion electrode with a low loading capacity, a high efficiency and a long service life is constructed, such that the use amount of an anode noble metal in the membrane electrode is reduced to 1/5 of the current commercialized level or less.

Classes IPC  ?

  • C25B 11/032 - Électrodes à diffusion de gaz
  • C25B 11/052 - Électrodes comportant un substrat et un ou plusieurs revêtements électro-catalytiques
  • C25B 11/097 - Plusieurs métaux nobles ou alliages de métaux nobles
  • C25B 1/04 - Hydrogène ou oxygène par électrolyse de l'eau

18.

Two-stage stochastic programming based V2G scheduling model for operator revenue maximization

      
Numéro d'application 18282413
Statut En instance
Date de dépôt 2021-04-22
Date de la première publication 2024-06-06
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Huang, Yuping
  • Hu, Chen

Abrégé

A two-stage stochastic programming based V2G scheduling for operator revenue maximization is provided. Said method aims for the charge/discharge scheduling of electric vehicles, and establishes, based on a distributed renewable energy-storage-EVs charge/discharge power system, a V2G two-stage nonlinear stochastic programming model combining the V2G scheduling randomness with the renewable energy power generation randomness. Said model is converted into a mixed integer linear programming model (MILP) by means of constraint linearization. Furthermore, in order to enable random scenarios to cover uncertainty factors comprehensively, a scenario generation and combination method is designed to combine the V2G scheduling resources with the randomness of the renewable energy level. The V2G two-stage stochastic programming model solves an optimal charge/discharge plan of the electric vehicles seeking to adapt the randomness of the V2G scheduling layer and the renewable energy randomness, and increases the revenue of said model participating in power assistance services.

Classes IPC  ?

  • G06Q 10/0631 - Planification, affectation, distribution ou ordonnancement de ressources d’entreprises ou d’organisations
  • G06Q 50/06 - Fourniture d’énergie ou d’eau

19.

System and method for exploiting natural gas hydrate with downhole gas-liquid synergic depressurization

      
Numéro d'application 18016674
Numéro de brevet 12024984
Statut Délivré - en vigueur
Date de dépôt 2022-10-24
Date de la première publication 2024-06-06
Date d'octroi 2024-07-02
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Ruan, Xuke
  • Chen, Zhaoyang
  • Li, Gang
  • Zhang, Yu
  • Wang, Yi
  • Yan, Kefeng
  • Zhou, Jiayuan

Abrégé

A system for exploiting natural gas hydrate with downhole gas-liquid synergic depressurization includes a casing configured to form an exploitation well. An upper end of the exploitation well is connected to a produced gas collection pipeline, and the produced gas collection pipeline is configured to be connected to a produced gas recovery system. A perforated channel is distributed in a section of the casing located in a natural gas hydrate reservoir. A tubular string component assembly is mounted in the exploitation well, and includes an outer string, a production tubular string and an auxiliary riser. A first check valve is mounted at the bottom of the outer string, a gas supply pipeline is connected into an upper portion of the outer string, and a flow controller is mounted in the gas supply pipeline. The production tubular string is mounted in the outer string.

Classes IPC  ?

  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • E21B 43/38 - Aménagements pour séparer les matériaux produits par le puits dans le puits

20.

PREPARATION METHOD FOR AND USE OF SELF-ASSEMBLY-BASED NITROGEN-DOPED ORDERED POROUS PRECIOUS METAL NANOMATERIAL

      
Numéro d'application 18279880
Statut En instance
Date de dépôt 2021-03-19
Date de la première publication 2024-05-16
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Wang, Zhida
  • Yan, Changfeng
  • Yang, Yi
  • Lu, Zhuoxin
  • Shi, Yan
  • Guo, Changqing
  • Tan, Hongyi
  • Shen, Lisha
  • Deng, Linxiu

Abrégé

Provided are a preparation method for and use of a self-assembly-based nitrogen-doped ordered porous precious metal nanomaterial. The preparation method includes: with a pyridine nitrogen-containing amphiphilic block copolymer as a structure-directing agent and a phenolic resin as a template agent, adding a precious metal precursor, inducing self-assembly by means of volatilization of a solvent, and carbonizing in an inert atmosphere to prepare the nitrogen-doped ordered porous precious metal nanomaterial. The regularity, dispersity and uniformity of the precious metal nanomaterial are achieved; the problems of migration and inactivation after agglomeration of precious metal nanoparticles are solved; the lifespan of precious metal particles is prolonged; and in addition, the ORR electro-catalytic property of the material can be improved, and the nitrogen-doped ordered porous precious metal nanomaterial can be used to prepare a cathodic oxygen reduction catalyst for a fuel cell.

Classes IPC  ?

  • H01M 4/92 - Métaux du groupe du platine
  • H01M 4/86 - Électrodes inertes ayant une activité catalytique, p. ex. pour piles à combustible
  • H01M 4/88 - Procédés de fabrication

21.

MICROSPHERE TYPE HYDRATE INHIBITOR AND USE THEREOF

      
Numéro d'application CN2023135894
Numéro de publication 2024/099465
Statut Délivré - en vigueur
Date de dépôt 2023-12-01
Date de publication 2024-05-16
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Long, Zhen
  • Zhang, Lexin
  • Liang, Deqing
  • Wang, Jinhang
  • He, Yong

Abrégé

Disclosed in the present invention are a microsphere type hydrate inhibitor and the use thereof. The microsphere type hydrate inhibitor comprises polymethylsilsesquioxane microspheres, which are prepared by means of the following steps: adding methyltrimethoxysilane to a hydrochloric acid aqueous solution dropwise at 20-35ºC, and stirring the mixed solution; adjusting the pH value of the mixed solution to 8-9, then stirring the mixed solution; and finally, filtering out sediment from the mixed solution, and washing and drying same, so as to obtain polymethylsilsesquioxane microspheres. The microsphere type hydrate inhibitor provided in the present invention is non-toxic, has relatively high biological safety, and can stably exist on an oil-water interface; and in a water system containing wax oil, the low-temperature rheological property of wax oil is improved, and the microsphere type hydrate inhibitor can cooperate with wax to inhibit the generation of a hydrate, and has a wider use range and conditions.

Classes IPC  ?

  • C09K 8/524 - Compositions pour éviter, limiter ou éliminer les dépôts, p. ex. pour le nettoyage les dépôts organiques, p. ex. paraffines ou asphaltènes
  • C09K 8/588 - Compositions pour les méthodes de récupération assistée pour l'extraction d'hydrocarbures, c.-à-d. pour améliorer la mobilité de l'huile, p. ex. fluides de déplacement caractérisées par l'utilisation de polymères spécifiques
  • C08G 77/06 - Procédés de préparation
  • C08G 77/18 - Polysiloxanes contenant du silicium lié à des groupes contenant de l'oxygène à des groupes alcoxyle ou aryloxyle
  • C10L 1/28 - Composés organiques contenant du silicium
  • F17D 3/16 - Dispositions pour la surveillance ou la commande des opérations de fonctionnement pour éliminer des particules en suspension
  • E21B 37/06 - Procédés ou appareils pour nettoyer les trous de forage ou les puits utilisant des moyens chimiques pour empêcher ou limiter le dépôt de paraffine ou de substances analogues

22.

MULTI-BRANCH GEOTHERMAL WELL SYSTEM AND CONSTRUCTION METHOD

      
Numéro d'application CN2022139329
Numéro de publication 2024/082412
Statut Délivré - en vigueur
Date de dépôt 2022-12-15
Date de publication 2024-04-25
Propriétaire
  • SHUANGLIANG ECO-ENERGY SYSTEM CO., LTD. (Chine)
  • GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Long
  • Wang, Junyi
  • Ju, Guidong
  • Jiang, Fangming
  • Huang, Wenbo
  • Chen, Juanwen

Abrégé

A multi-branch geothermal well system, comprising an overground heat exchange unit and an underground heat exchange unit. The underground heat exchange unit comprises a geothermal well and a heat exchange pipe; the heat exchange pipe is arranged in the geothermal well and communicates with the overground heat exchange unit; the geothermal well comprises a main well (1) and a plurality of branch wells; the main well (1) is a straight well; at least one fixed sleeve is provided on the inner wall of the main well (1), and the fixed sleeve extends in the length direction of the main well (1); a plurality of branch wells obliquely arranged downwards are formed in an open hole portion and/or the fixed sleeve of the main well (1), heat exchange pipes are provided in the plurality of branch wells and the main well (1), plugging layers are provided at the joints of the heat exchange pipes and the branch wells and at the joints of the heat exchange pipes and the main well (1), and the heat exchange pipes are gravity heat pipes or coaxial sleeves. According to the system, the main well (1) is shared, and the multi-branch structure is used in a deep layer with high geothermal temperature, thereby increasing the heat exchange area, and increasing the heat collection amount of a single well.

Classes IPC  ?

  • F24T 10/20 - Collecteurs géothermiques utilisant l’eau souterraine comme fluide vecteurCollecteurs géothermiques utilisant un fluide vecteur injecté directement dans le sol, p. ex. utilisant des puits d’injection et des puits de récupération
  • F24T 10/17 - Collecteurs géothermiques avec circulation des fluides vecteurs dans des conduits souterrains, les fluides vecteurs n’entrant pas en contact direct avec le sol utilisant des assemblages de conduits adéquats pour l’insertion dans des trous forés dans le sol, p. ex. sondes géothermiques utilisant des conduits fermés à une extrémité, c.-à-d. du type à retour

23.

WAVE-ENERGY POWER GENERATION DEVICE IN CONCEALED STATE FOR POWERING UNDERWATER VEHICLE

      
Numéro d'application CN2023122693
Numéro de publication 2024/046497
Statut Délivré - en vigueur
Date de dépôt 2023-09-28
Date de publication 2024-03-07
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Wang, Wensheng
  • Wang, Zhenpeng
  • Ye, Yin
  • Sheng, Songwei
  • Wang, Kunlin

Abrégé

A wave-energy power generation device in a concealed state for powering an underwater vehicle, the device comprising a wave-absorbing floating body (1), a buoyancy bin (2), a permanent magnet electric motor (3), a storage battery (4), tension legs (5) and a gravity anchor (6), wherein the permanent magnet electric motor (3) and the storage battery (4) are both mounted in the buoyancy bin (2) and are connected to each other; the permanent magnet electric motor (3) comprises a rotor (32); the wave-absorbing floating body (1) is connected to the rotor (32) of the permanent magnet electric motor (3) by means of a connection rod (7), the relative swing of the wave-absorbing floating body (1) and the buoyancy bin (2) drives the permanent magnet electric motor (3) to generate power, and the storage battery (4) is charged with the power; and the buoyancy bin (2) is connected to the gravity anchor (6) by means of the tension legs (5), and the gravity of the gravity anchor (6) is greater than the buoyancy of the buoyancy bin (2). The underwater buoyancy bin (2) and the gravity anchor (6) are moored together by means of the elastic tension legs (5), so that the buoyancy bin (2) keeps stable under the action of waves; and the wave-absorbing floating body (1) is of a light mushroom type and thus has a motion response sensitivity under the action of waves, so that the wave-absorbing floating body (1) and the buoyancy bin (2) move relative to each other to drive the rotor (32) of the permanent magnet electric motor to do work, so as to capture wave energy and generate power.

Classes IPC  ?

  • F03B 13/20 - Utilisation du mouvement relatif entre un élément déplacé par les vagues et un autre élément les deux éléments étant mobiles par rapport au fond ou au bord de la mer
  • F03B 11/00 - Parties constitutives ou détails non couverts par les groupes ou présentant un intérêt autre que celui visé par ces groupes
  • F03B 11/02 - Carcasses d'enveloppe

24.

BLADE-TYPE ZERO-MASS INERTIA HIGH-EFFICIENCY POWER GENERATION WAVE ENERGY DEVICE

      
Numéro d'application CN2023122689
Numéro de publication 2024/046496
Statut Délivré - en vigueur
Date de dépôt 2023-09-28
Date de publication 2024-03-07
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Wang, Wensheng
  • Ye, Yin
  • Yue, Wanzhen
  • Wang, Kunlin
  • Sheng, Songwei

Abrégé

A blade-type zero-mass inertia high-efficiency power generation wave energy device, comprising: a wave absorption floating body (1), which comprises a wave absorption floating body underwater thin-walled arc-shaped portion (12) and a wave absorption floating body overwater flat plate portion (11); and a support truss (2), one end of which is connected and mounted in the wave absorption floating body underwater thin-walled arc-shaped portion (12), and the other end of which is hinged to a support base (3), wherein the mounting position of the support base (3) is positioned at the center of a circle of the wave absorption floating body underwater thin-walled arc-shaped portion (12). Under the action of incident waves, the blade-type wave absorption floating body receives excitation from the incident waves to perform a pitching motion and drive a hydraulic cylinder to do work, and the wave absorption floating body starts rotating around a hinged rotation support point simultaneously. Due to the arc shape on the rear of the wave absorption floating body, pitching does not create waves and does not generate radiation damping to dissipate energy. Secondly, due to the light weight of the blade-type wave absorption floating body, less energy is required during the rotation thereof, and most of the work applied on the floating body by waves is obtained by a PTO energy conversion system, which improves the efficiency of the wave energy device capturing energy.

Classes IPC  ?

  • F03B 13/20 - Utilisation du mouvement relatif entre un élément déplacé par les vagues et un autre élément les deux éléments étant mobiles par rapport au fond ou au bord de la mer
  • F03B 11/00 - Parties constitutives ou détails non couverts par les groupes ou présentant un intérêt autre que celui visé par ces groupes
  • F03B 11/02 - Carcasses d'enveloppe

25.

DEVICE AND METHOD FOR PREPARING CLEAN SYNTHESIS GAS BY MEANS OF ORGANIC SOLID WASTE PYROLYSIS-CHEMICAL CHAIN REFORMING

      
Numéro d'application CN2023119588
Numéro de publication 2024/041663
Statut Délivré - en vigueur
Date de dépôt 2023-09-19
Date de publication 2024-02-29
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Huang, Zhen
  • Lin, Yan
  • Chen, Xinfei
  • Yan, Shuchang
  • Lu, Canming
  • Zhao, Kun
  • Zhao, Zengli
  • Huang, Hongyu

Abrégé

The present invention relates to the technical field of environmental protection and chemical chain application, and disclosed are a device and a method for preparing clean synthesis gas by means of organic solid waste pyrolysis-chemical chain reforming. The device comprises an electric motor, a pyrolysis gas pipeline, a chemical chain reforming area, a pyrolysis gasification area and a coke combustion area, wherein the chemical chain reforming area is provided with a honeycomb reactor, two argon inlets and an air outlet, and comprises both an air reaction area and a fuel reaction area. The pyrolysis gasification area is provided with a coke outlet, an organic solid waste inlet, a pipe opening, a grate furnace and a quartz baffle. The coke combustion area is provided with an argon inlet, an air inlet, an inclined plate and a vertical baffle. Compared with a traditional organic solid waste treatment device, the device of the present invention not only provides effective reduction, hazard-free and energy regeneration treatment of organic solid waste, but also realizes great reduction of the disposal cost during the treatment process. In addition, the device further has the characteristics of small initial investment, low operation difficulty, etc., and is applicable for a scenario with small handling capacity.

Classes IPC  ?

  • C10B 53/00 - Distillation destructive spécialement conçue pour des matières premières solides particulières ou sous forme spéciale
  • C10B 57/00 - Autres procédés de carbonisation ou de cokéfactionCaractéristiques générales des procédés de distillation destructive
  • C10L 10/00 - Utilisation d'additifs à des fins particulières dans les combustibles ou les feux
  • C01B 3/36 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec l'oxygène ou des mélanges contenant de l'oxygène comme agents gazéifiants

26.

METHOD FOR IMPROVING GAS STORAGE AMOUNT OF NATURAL GAS HYDRATE BASED ON CRYSTAL REGULATION AND CONTROL PRINCIPLE

      
Numéro d'application CN2023131467
Numéro de publication 2024/032830
Statut Délivré - en vigueur
Date de dépôt 2023-11-14
Date de publication 2024-02-15
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Yu, Yisong
  • Liu, Jianwu
  • Sun, Wenzhe
  • Chen, Zhaoyang

Abrégé

A method for improving the gas storage amount of a natural gas hydrate based on a crystal regulation and control principle. An II structure is formed on the basis that a thermodynamic additive, which is slightly-soluble or insoluble in water, is added to a hydrate generation system to lower the hydrate generation conditions, and the hydrate crystal structure generated in the system is then regulated and controlled to be an I-type methane hydrate by controlling the temperature and the pressure, such that the problem of a low gas storage amount in the thermodynamic additive system is fundamentally solved.

Classes IPC  ?

  • C10L 3/10 - Post-traitement de gaz naturel ou de gaz naturel de synthèse

27.

METHOD FOR REGULATING AND CONTROLLING GENERATED CRYSTAL FORM OF NATURAL GAS HYDRATE

      
Numéro d'application CN2023131536
Numéro de publication 2024/032831
Statut Délivré - en vigueur
Date de dépôt 2023-11-14
Date de publication 2024-02-15
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Yu, Yisong
  • Liu, Jianwu
  • Sun, Wenzhe
  • Chen, Zhaoyang

Abrégé

A method for regulating and controlling the generated crystal form of a natural gas hydrate. A composition composed of a salt substance, a surfactant, a water-soluble thermodynamic additive and water is introduced during a generation process of a natural gas hydrate. The salt substance and the surfactant also have a synergistic effect with a water-soluble thermodynamic accelerator, and the addition of the salt substance and the surfactant can change the local solubility of the water-soluble thermodynamic additive in water, such that the regulation and control process of a hydrate crystal is achieved, thereby improving the gas storage amount of the hydrate, and solving the problem of the low storage amount of natural gas in the generated natural gas hydrate in the water-soluble thermodynamic additive system.

Classes IPC  ?

  • C10L 3/10 - Post-traitement de gaz naturel ou de gaz naturel de synthèse

28.

AMINO-FUNCTIONALIZED POLYSILOXANE COMPOUND AND ELECTROCHEMICAL ENERGY STORAGE DEVICE USING SAME AS ELECTROLYTE SOLUTION

      
Numéro d'application CN2023108678
Numéro de publication 2024/012597
Statut Délivré - en vigueur
Date de dépôt 2023-07-21
Date de publication 2024-01-18
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Zhang, Lingzhi
  • Yan, Xiaodan

Abrégé

An amino-functionalized polysiloxane compound represented by formula (I) and an electrolyte solution comprising the compound, wherein n is an integer of 1-4; R1is selected from any one of C1-C5 alkyl and alkoxy; R2, R3and R42322x322, wherein x is 1-3; and R2, R3and R42322x322.

Classes IPC  ?

  • C07F 7/08 - Composés comportant une ou plusieurs liaisons C—Si
  • H01M 10/0567 - Matériaux liquides caracterisés par les additifs
  • H01M 10/052 - Accumulateurs au lithium
  • H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium

29.

ALTERNATE STEPPING DEEP-SEA MINING SYSTEM AND METHOD BASED ON CLEAN ENERGY PLATFORM

      
Numéro de document 03225775
Statut En instance
Date de dépôt 2023-08-24
Date de disponibilité au public 2024-01-11
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Sheng, Songwei
  • Wang, Kunlin
  • Wang, Zhenpeng
  • Ding, Weiwei
  • Chen, Min

Abrégé

An alternate stepping deep-sea mining system and method based on a clean energy platform. The system comprises a main hull, a mining system, an anchoring system and electric propulsion devices. A workshop (5) is arranged in the middle of the main hull. The mining system comprises several mining vehicles (6), and the several mining vehicles (6) are arranged in the workshop (5). The anchoring system comprises winches (1), anchor cable cabins (2), anchor cables (3) and anchor heads (4), wherein the winches (1) are arranged at four corners of the top of the main hull; the anchor cable cabin (2) is arranged below each winch (1); one end of each anchor cable (3) is connected to the winch (1), and the other end thereof is connected to the anchor head (4); and the electric propulsion devices are arranged at a front and a rear end of the bottom of the main hull. Compared with traditional deep-sea mining platforms, the anchoring system and the electric propulsion devices of the system cooperate with each other, such that a platform can advance in an alternate stepping manner and has a relatively good ability to withstand wind and waves, and energy is also saved on.

Classes IPC  ?

  • B63B 21/50 - Dispositifs d'ancrage pour navires spéciaux, p. ex. pour plates-formes flottantes de forage ou dragues
  • B63B 35/00 - Embarcations ou structures flottantes similaires spécialement adaptées à des finalités spécifiques et non prévues ailleurs
  • E21C 50/00 - Extraction de matières minérales sous l'eau, non prévue ailleurs

30.

ALTERNATE STEPPING DEEP-SEA MINING SYSTEM AND METHOD BASED ON CLEAN ENERGY PLATFORM

      
Numéro d'application CN2023114715
Numéro de publication 2024/008211
Statut Délivré - en vigueur
Date de dépôt 2023-08-24
Date de publication 2024-01-11
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Sheng, Songwei
  • Wang, Kunlin
  • Wang, Zhenpeng
  • Ding, Weiwei
  • Chen, Min

Abrégé

An alternate stepping deep-sea mining system and method based on a clean energy platform. The system comprises a main hull, a mining system, an anchoring system and electric propulsion devices. A workshop (5) is arranged in the middle of the main hull. The mining system comprises several mining vehicles (6), and the several mining vehicles (6) are arranged in the workshop (5). The anchoring system comprises winches (1), anchor cable cabins (2), anchor cables (3) and anchor heads (4), wherein the winches (1) are arranged at four corners of the top of the main hull; the anchor cable cabin (2) is arranged below each winch (1); one end of each anchor cable (3) is connected to the winch (1), and the other end thereof is connected to the anchor head (4); and the electric propulsion devices are arranged at a front and a rear end of the bottom of the main hull. Compared with traditional deep-sea mining platforms, the anchoring system and the electric propulsion devices of the system cooperate with each other, such that a platform can advance in an alternate stepping manner and has a relatively good ability to withstand wind and waves, and energy is also saved on.

Classes IPC  ?

  • E21C 50/00 - Extraction de matières minérales sous l'eau, non prévue ailleurs
  • B63B 35/00 - Embarcations ou structures flottantes similaires spécialement adaptées à des finalités spécifiques et non prévues ailleurs
  • B63B 21/50 - Dispositifs d'ancrage pour navires spéciaux, p. ex. pour plates-formes flottantes de forage ou dragues

31.

FLOATING OSCILLATING WATER COLUMN-TYPE WAVE ENERGY POWER GENERATION APPARATUS

      
Numéro d'application 18030081
Statut En instance
Date de dépôt 2020-12-29
Date de la première publication 2023-11-16
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Liang, Xianguang
  • Zhang, Yaqun
  • Sheng, Songwei
  • Ye, Yin

Abrégé

A floating oscillating water column-type wave energy power generation apparatus includes a first runner chamber and a protective cap, wherein a nozzle is mounted inside the first runner chamber, a flow-guiding cone is coaxially mounted below the nozzle, the flow-guiding cone is conical and arranged with a tip facing down; an impeller is coaxially mounted above the nozzle; a power generator is coaxially mounted above the impeller; the protective cap is mounted at the top of the first runner chamber; and a gap is provided between an edge of the protective cap and an edge of the first runner chamber for air circulation. According to the floating oscillating water column-type wave energy power generation apparatus, as the nozzle with the flow-guiding cone structure is used, the flow-guiding cone can guide air flowing, and increase the air flowing speed in the apparatus.

Classes IPC  ?

  • F03B 13/24 - Utilisation de l'énergie des vagues pour produire un déplacement d'air, p. ex. pour entraîner une turbine à air
  • F03B 11/00 - Parties constitutives ou détails non couverts par les groupes ou présentant un intérêt autre que celui visé par ces groupes

32.

MULTI-STAGE BUFFER HYDRAULIC CYLINDER FOR WAVE ENERGY POWER GENERATION DEVICE, AND CONTROL METHOD

      
Numéro d'application CN2023091032
Numéro de publication 2023/193822
Statut Délivré - en vigueur
Date de dépôt 2023-04-27
Date de publication 2023-10-12
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Ye, Yin
  • Wang, Kunlin
  • Sheng, Songwei
  • Wang, Zhenpeng

Abrégé

A multi-stage buffer hydraulic cylinder for a wave energy power generation device, and a control method. A built-in fixing rod (11) is arranged inside a hydraulic cylinder barrel (1) and is nested in a piston rod (9), and an inner cavity of the built-in fixing rod (11) and an inner cavity of the piston rod (9) are used as a high-pressure working cavity, so that the diameter of the piston rod (9) can be increased while the effective working area is reduced. In addition, buffer springs (13, 14) are provided on a front end cover (8) and a rear end cover (2) of the hydraulic cylinder.

Classes IPC  ?

  • F15B 15/14 - Dispositifs actionnés par fluides pour déplacer un organe d'une position à une autreTransmission associée à ces dispositifs caractérisés par la structure de l'ensemble moteur le moteur étant du type à cylindre droit
  • F15B 15/20 - Autres parties constitutives
  • F15B 15/22 - Autres parties constitutives pour accélérer ou ralentir le mouvement
  • F15B 1/02 - Installations ou systèmes comprenant des accumulateurs
  • F15B 11/072 - Systèmes combinés hydrauliques-pneumatiques
  • F03B 13/18 - Utilisation du mouvement relatif entre un élément déplacé par les vagues et un autre élément l'autre élément étant fixé, à au moins un point, par rapport au fond ou au bord de la mer

33.

HYDRAULIC LOAD HIERARCHICAL CONTROL SYSTEM AND METHOD FOR INDIRECT WAVE ENERGY APPARATUS

      
Numéro d'application CN2023091531
Numéro de publication 2023/179803
Statut Délivré - en vigueur
Date de dépôt 2023-04-28
Date de publication 2023-09-28
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Ye, Yin
  • Sheng, Songwei
  • Wang, Wensheng
  • Wang, Kunlin

Abrégé

A hydraulic load hierarchical control system and method for an indirect wave energy apparatus. The system comprises a first hydraulic cylinder group (1), a second hydraulic cylinder group (2), a third hydraulic cylinder group (3), a high-voltage energy accumulator group (4), a pressure detection control module (5), a first hydraulic generator set (6), and a second hydraulic generator set (7) and a third hydraulic generator set (8). A detection end of the pressure detection control module (5) is used for acquiring an internal pressure of the high-voltage energy accumulator group (4) and comparing the internal pressure with a preset pressure level. The on-off of reversing valves (204, 304) and electromagnetic valves (601, 701, 801) are controlled according to a comparison result.

Classes IPC  ?

  • F15B 1/02 - Installations ou systèmes comprenant des accumulateurs
  • F15B 11/16 - Systèmes de servomoteurs dépourvus d'asservissement avec plusieurs servomoteurs
  • F15B 13/06 - Dispositifs de distribution ou d'alimentation du fluide caractérisés par leur adaptation à la commande de servomoteurs pour utilisation avec plusieurs servomoteurs
  • F15B 20/00 - Dispositions propres à la sécurité pour systèmes de manœuvre utilisant les fluidesUtilisation des dispositifs de sécurité dans les systèmes de manœuvre utilisant des fluidesMesures d'urgence pour les systèmes de manœuvre utilisant des fluides
  • F03B 13/14 - Utilisation de l'énergie des vagues

34.

GAS POWERED-TYPE WAVE ENERGY POWER SUPPLY SUBSURFACE BUOY

      
Numéro d'application CN2023091499
Numéro de publication 2023/169602
Statut Délivré - en vigueur
Date de dépôt 2023-04-28
Date de publication 2023-09-14
Propriétaire
  • GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
  • SOUTHERN MARINE SCIENCE AND ENGINEERING GUANGDONG LABORATORY (GUANGZHOU) (Chine)
Inventeur(s)
  • Ye, Yin
  • Wang, Wensheng
  • Sheng, Songwei
  • Wang, Zhenpeng

Abrégé

A gas powered-type wave energy power supply subsurface buoy, which comprises a spindle-shaped subsurface buoy body (1); two ends of a Y-shaped armored optic-electric composite cable (16) are mounted at two ends of a short axis of the subsurface buoy body (1); a third end of the Y-shaped armored optic-electric composite cable (16) is connected to one end of a vertical armored optic-electric composite cable (17); the other end of the vertical armored optic-electric composite cable (17) is connected to a sunken anchoring block (18); a gas power loop electricity generation unit is mounted inside the subsurface buoy body (1); and a plane where the gas power loop electricity generation unit is located is perpendicular to the short axis of the subsurface buoy body (1).

Classes IPC  ?

  • F03B 13/24 - Utilisation de l'énergie des vagues pour produire un déplacement d'air, p. ex. pour entraîner une turbine à air

35.

Device for supplying cold energy, heat energy and electrical energy by efficiently converting renewable deep-space energies

      
Numéro d'application 18024062
Numéro de brevet 12126302
Statut Délivré - en vigueur
Date de dépôt 2021-10-18
Date de la première publication 2023-08-24
Date d'octroi 2024-10-22
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Dong, Kaijun
  • Zhang, Bobo
  • Sun, Qin
  • Guan, Haifeng
  • Tang, Zhanchao

Abrégé

A device for supplying cold energy, heat energy and electrical energy by efficiently converting renewable deep-space energies includes a solar-energy conversion device, a radiation refrigeration device, a rotary bracket, a dip-angle adjustment component, and a support base. The solar-energy conversion device and the radiation refrigeration device are connected to the rotary bracket in a mutually perpendicular manner, and the rotary bracket is connected to the dip-angle adjustment component which is connected to the support base. The dip-angle adjustment component is configured to adjust a dip angle between the rotary bracket and a horizontal plane, and the rotary bracket is configured to drive the solar-energy conversion device and the radiation refrigeration device to rotate, such that a sunward side of the solar-energy conversion device is always perpendicular to light rays irradiated by the sun, and a reflective surface of the radiation refrigeration device is always parallel to the light rays.

Classes IPC  ?

  • H02S 40/44 - Moyens pour utiliser l’énergie thermique, p. ex. systèmes hybrides produisant de l’eau chaude et de l’électricité en même temps
  • F24S 30/428 - Agencements pour mouvoir ou orienter des modules de collecteurs de chaleur solaire pour le déplacement en rotation avec un seul axe de rotation avec un axe incliné
  • F25B 23/00 - Machines, installations ou systèmes ayant un seul principe de fonctionnement non compris dans les groupes , p. ex. utilisant l'effet de radiation sélective
  • H02S 20/32 - Structures de support mobiles ou réglables, p. ex. pour réglage de l’angle spécialement adaptées pour le suivi du soleil
  • F24S 80/50 - Couvertures transparentesÉléments transmettant les rayons solaires entrants et empêchant les rayonnements thermiques sortants

36.

Heat-pipe type heat extraction integrated with combined cooling power and heating exploitation-utilization integrated geothermal system

      
Numéro d'application 18012994
Numéro de brevet 12152810
Statut Délivré - en vigueur
Date de dépôt 2021-09-14
Date de la première publication 2023-08-10
Date d'octroi 2024-11-26
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Jiang, Fangming
  • Chen, Juanwen
  • Huang, Wenbo
  • Cen, Jiwen
  • Cao, Wenjiong

Abrégé

A heat-pipe type heat extraction integrated with combined cooling power and heating exploitation-utilization integrated geothermal system includes an underground heat pipe, a steam pump, a first absorption bed, a second absorption bed, a first condenser, an electronic expansion valve, an evaporator, a liquid storage tank, a balance valve, a steam turbine, an generator connected to the steam turbine, a second condenser, a heat utilization device connected to the second condenser, a pressurizing pump connected to the second condenser, and relevant linkage valve assemblies. The system controls a flow direction and a flow rate after heat pipe steam is extracted from the ground through the steam pump and the regulating valves on the refrigeration side and the power generation side, so as to select the refrigeration/electric heating single-mode heat utilization or adjust flow distribution during refrigeration/electric heating dual-mode combined use.

Classes IPC  ?

  • F24T 10/40 - Collecteurs géothermiques fonctionnant sans source d’énergie externe, p. ex. utilisant la circulation thermosiphonique ou des tubes de chaleur
  • F24T 50/00 - Systèmes géothermiques

37.

HEAT PUMP SYSTEM AND METHOD FOR IMPLEMENTING EFFICIENT EVAPORATION BY USING GEOTHERMAL WELL

      
Numéro d'application 18012991
Statut En instance
Date de dépôt 2021-09-07
Date de la première publication 2023-08-03
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Huang, Wenbo
  • Jiang, Fangming
  • Chen, Juanwen
  • Cen, Jiwen
  • Cao, Wenjiong

Abrégé

A heat pump system and a method for implementing efficient evaporation by using a geothermal well are provided. The system includes a stepped underground evaporator, a compressor, a condenser, a liquid storage tank, and a throttle. The underground evaporator includes an inner pipe and an outer pipe. The inner pipe is designed into a multi-section structure. Each section includes a gas guiding pipeline, a baffle plate, and a seepage hole. Under the action of the structure, a liquid working medium flowing into the underground evaporator flows downwards along an inner wall of the outer pipe, and absorbs heat from an underground rock mass and gasifies into a gas working medium; and the gas working medium flows upwards to ground. Compared with the prior art, neither gas-liquid re-entrainment nor a liquid accumulation effect can occur in the underground evaporator designed according to the system and method.

Classes IPC  ?

  • F25B 30/06 - Pompes à chaleur caractérisées par la source de chaleur à faible potentiel
  • F24T 10/10 - Collecteurs géothermiques avec circulation des fluides vecteurs dans des conduits souterrains, les fluides vecteurs n’entrant pas en contact direct avec le sol
  • F24T 10/30 - Collecteurs géothermiques utilisant des réservoirs souterrains pour l’accumulation des fluides vecteurs ou des fluides intermédiaires

38.

SYSTEM AND METHOD FOR EXPLOITING MARINE NATURAL GAS HYDRATE RESOURCES

      
Numéro d'application CN2022127373
Numéro de publication 2023/142553
Statut Délivré - en vigueur
Date de dépôt 2022-10-25
Date de publication 2023-08-03
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Ruan, Xuke
  • Chen, Zhaoyang
  • Li, Gang
  • Zhang, Yu
  • Wang, Yi
  • Yan, Kefeng
  • Zhou, Jiayuan

Abrégé

Disclosed is a system for exploiting marine natural gas hydrate resources, the system comprising a vertical well. The vertical well comprises a casing (9), wherein the casing (9) is configured to penetrate a seawater layer (1) and a hydrate reservoir overlying layer (2) and penetrate downwards through a natural gas hydrate reservoir stratum (3); a perforation channel (11) is arranged at a section of the casing (9) located in the natural gas hydrate reservoir stratum; a horizontal well (4) is connected to a bottom end of the casing (9); a production string (8) is arranged in the casing (9) and extends downwards into the horizontal well (4); the bottom of the production string (8) is provided with a gas-water collecting inlet (13); a hot-water injection pipe (6) is arranged in the production string (8), and an annulus region formed between the production string (8) and the hot-water injection pipe (6) is configured to perform gas and water pumping depressurization operations; the bottom of the hot-water injection pipe (6) is provided with a hot-water injection port (16); and an air bag (14) is arranged in the horizontal well (4) and is connected to the hot-water injection port (16) of the hot-water injection pipe (6). Further disclosed is a method for using the system. A large-size natural gas hydrate exploitation well structure having the vertical well and the horizontal well enlarges an exploitation radius of natural gas hydrates and thus increases a hydrate decomposition exploitation area.

Classes IPC  ?

  • E21B 43/01 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits spécialement adaptés à l'extraction à partir d'installations sous l'eau

39.

SYSTEM AND METHOD FOR EXPLOITING NATURAL GAS HYDRATE BY UNDERGROUND GAS-LIQUID SYNERGISTIC PRESSURE REDUCTION

      
Numéro d'application CN2022126879
Numéro de publication 2023/124449
Statut Délivré - en vigueur
Date de dépôt 2022-10-24
Date de publication 2023-07-06
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Ruan, Xuke
  • Chen, Zhaoyang
  • Li, Gang
  • Zhang, Yu
  • Wang, Yi
  • Yan, Kefeng
  • Zhou, Jiayuan

Abrégé

Disclosed in the present invention is a system and method for exploiting natural gas hydrate by underground gas-liquid synergistic pressure reduction. The system comprises a casing pipe used for constructing a mining well .The upper end of the mining well is connected to a gas production collection pipeline. The gas production collection pipeline is used for being connected to a gas production recovery system. Perforated channels are distributed in the section of the casing pipe located on a natural gas hydrate reservoir layer. A wellbore tubular assembly is installed in the mining well. The wellbore tubular assembly comprises an outer tubing, a production tubing, and an auxiliary riser. A first one-way valve is installed at the bottom of the outer tubing. An air supply pipeline is connected to the upper portion of the outer tubing. A flow controller is installed in the air supply pipeline. The production tubing is installed in the outer tubing, and the space between the two is used as a water storage chamber. A second one-way valve is installed at the bottom of the production tubing. The auxiliary riser is installed in the production tubing. The solution of the present invention can be quickly applied to industrial mining of natural gas hydrate.

Classes IPC  ?

  • E21B 43/01 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits spécialement adaptés à l'extraction à partir d'installations sous l'eau
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • E21B 43/02 - Filtration souterraine
  • E21B 43/34 - Aménagements pour séparer les matériaux produits par le puits
  • E21B 47/06 - Mesure de la température ou de la pression

40.

METHOD AND APPARATUS FOR REMOVING POLLUTANTS FROM ORGANIC SOLID WASTE BY PYROLYSIS COUPLED WITH CHEMICAL LOOPING COMBUSTION

      
Numéro d'application 17926148
Statut En instance
Date de dépôt 2022-01-29
Date de la première publication 2023-06-22
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Huang, Zhen
  • Lin, Yan
  • Yuan, Haoran
  • Wei, Guoqiang
  • Zheng, Anqing
  • Zhao, Kun
  • Zhao, Zengli
  • Li, Haibin

Abrégé

A method and apparatus for removing pollutants from organic solid waste by pyrolysis coupled with chemical looping combustion are provided. The apparatus includes: an air reactor, a fuel reactor, and a pyrolysis gasifier. The pyrolysis gasifier is sleeved outside the fuel reactor, and the air reactor is connected with the fuel reactor. A top end of the air reactor is connected with a top delivery pipe; the top delivery pipe is connected with a first cyclone separator; and the first cyclone separator is connected with an oxygen carrier refeeder provided at a top end of the fuel reactor. The apparatus forms a two-stage reaction unit of pyrolysis and chemical looping combustion by decoupling the pyrolysis process from the chemical looping combustion, which avoids the contact between the complex ash of organic solid waste and the oxygen carrier, thereby improving the service life of the oxygen carrier.

Classes IPC  ?

  • F23G 5/027 - Procédés ou appareils, p. ex. incinérateurs, spécialement adaptés à la combustion de déchets ou de combustibles pauvres comportant un traitement préalable par pyrolyse ou par gazéification
  • F23C 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
  • F23G 5/16 - Procédés ou appareils, p. ex. incinérateurs, spécialement adaptés à la combustion de déchets ou de combustibles pauvres comportant un chauffage supplémentaire comportant une combustion secondaire dans une chambre de combustion séparée

41.

System and method for comprehensive utilization of renewable energy and waste heat of data center

      
Numéro d'application 17921366
Numéro de brevet 12247761
Statut Délivré - en vigueur
Date de dépôt 2021-08-31
Date de la première publication 2023-06-15
Date d'octroi 2025-03-11
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Zhang, Bobo
  • Dong, Kaijun
  • Sun, Qin
  • Luo, Weimin

Abrégé

A system and a method for comprehensive utilization of renewable energy and waste heat of a data center are provided. The system includes a data center, a water cistern, a water circulating system and a refrigerant circulating system. The water cistern is used to adopt heating capacity of the data center to complete a heat storage process within a set first period, and adopt the heating capacity stored in the heat storage process to supply a heat release process within a set second period. The water circulating system is provided with a plurality of water circulating loops. The refrigerant circulating system is provided with a plurality of circulating systems. The heat storage process and the heat release process are implemented by cooperation of the plurality of water circulating loops and/or the plurality of circulating systems, which may effectively reduce heat costs of users in winter.

Classes IPC  ?

  • F24F 5/00 - Systèmes ou appareils de conditionnement d'air non couverts par ou
  • F25B 27/00 - Machines, installations ou systèmes utilisant des sources d'énergie particulières
  • F25B 30/02 - Pompes à chaleur du type à compression
  • F25B 41/40 - Agencements de conduites de fluide
  • H05K 7/20 - Modifications en vue de faciliter la réfrigération, l'aération ou le chauffage

42.

WAVE POWER GENERATION GLIDER AND WORKING METHOD THEREFOR

      
Numéro d'application CN2021130675
Numéro de publication 2023/082260
Statut Délivré - en vigueur
Date de dépôt 2021-11-15
Date de publication 2023-05-19
Propriétaire
  • SOUTHERN MARINE SCIENCE AND ENGINEERING GUANGDONG LABORATORY (GUANGZHOU) (Chine)
  • GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Sheng, Songwei
  • Wang, Kunlin
  • Wang, Zhenpeng
  • Zhang, Yaqun
  • Chen, Min
  • Ding, Weiwei

Abrégé

A wave power generation glider and a working method therefor. The wave power generation glider comprises a floating body (1) and a wave glider which are connected by means of a traction rope assembly (2); a communication device (3), a positioning device (4), a control device (5), a power storage device (6), and an energy converter are arranged in the floating body (1), and the communication device (3), the positioning device (4), and the power storage device (6) are separately connected to the control device (5); the wave glider comprises a glider body (7), a plurality of wave power generation mechanisms (8) are disposed on two sides of the glider, the plurality of wave power generation mechanisms (8) are separately connected to the energy converter, and the energy converter is connected to the power storage device (6); each wave power generation mechanism comprises a rotating shaft, and two ends of the rotating shaft are respectively movably connected to the glider body (7) and a wing plate (11); each rotating shaft comprises a sleeve (9) and a movable rod (10) which is telescopic in the sleeve (9), and the corresponding wing plate (11) is connected to the movable rod (10). The wave power generation glider may implement gliding and power generation.

Classes IPC  ?

  • F03B 13/20 - Utilisation du mouvement relatif entre un élément déplacé par les vagues et un autre élément les deux éléments étant mobiles par rapport au fond ou au bord de la mer
  • F03B 11/00 - Parties constitutives ou détails non couverts par les groupes ou présentant un intérêt autre que celui visé par ces groupes
  • B63H 19/04 - Propulsion marine non prévue ailleurs utilisant l'énergie due au mouvement ambiant de la mer, p. ex. au roulis ou au tangage par les courants marins
  • B63H 21/17 - Aménagements de l'appareil moteur de propulsion ou de certains de ses éléments pour utilisation à bord des navires le navire étant actionné par moteurs par moteur électrique
  • B63B 35/00 - Embarcations ou structures flottantes similaires spécialement adaptées à des finalités spécifiques et non prévues ailleurs

43.

MARINE FLOAT CAPABLE OF AVOIDING MARINE HAZARDS SUCH AS TYPHOONS, AND AVOIDANCE METHOD THEREOF

      
Numéro d'application CN2021130674
Numéro de publication 2023/082259
Statut Délivré - en vigueur
Date de dépôt 2021-11-15
Date de publication 2023-05-19
Propriétaire
  • SOUTHERN MARINE SCIENCE AND ENGINEERING GUANGDONG LABORATORY (GUANGZHOU) (Chine)
  • GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Sheng, Songwei
  • Zhang, Yaqun
  • Wang, Zhenpeng
  • Wang, Kunlin

Abrégé

A marine float capable of avoiding marine hazards such as typhoons, and avoidance method thereof. The float comprises a float body (1). A cavity (2) is formed in the middle of the float body (1). An air bag (3) for driving the float body (1) to float after being inflated is arranged in the cavity (2). An air pipe (4) is installed at the top of the air bag (3). The top of the air pipe (4) extends to the outside of the float body (1). An air valve (5) is installed at the top of the air pipe (4). The arrangement height of the top of the air valve (5) is higher than that of the top of the float body (1). The bottom of the cavity (2) is provided with a normally open water passing pipe (6). The float is simple in structure and can reduce the probability of being completely destroyed by marine hazards such as typhoons.

Classes IPC  ?

  • B63B 43/12 - Amélioration de la sécurité des navires, p. ex. contrôle des avaries, non prévue ailleurs réduisant le risque de chavirer ou de sombrer par augmentation de la flottabilité employant des caissons à air du bord
  • B63B 22/18 - Coffres d'amarrage ou bouées comportant des moyens pour régler l'assiette ou la position, p. ex. des surfaces de réaction ou des orins

44.

DEVICE FOR JETTING NITROGEN AND CARBON DIOXIDE MIXED GAS IN HORIZONTAL WELL, AND PRODUCTION METHOD

      
Numéro d'application CN2022127832
Numéro de publication 2023/041090
Statut Délivré - en vigueur
Date de dépôt 2022-10-27
Date de publication 2023-03-23
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Dongliang
  • Li, Xiang
  • Lu, Fuqin
  • Liang, Deqing
  • Zhou, Xuebing
  • Lu, Jingsheng

Abrégé

Disclosed in the present invention are a device for jetting nitrogen and carbon dioxide mixed gas in a horizontal well, and a production method, which relate to the technical field of energy production. The device comprises: an offshore platform, a natural gas processing unit and a pressure boosting unit, wherein a gas injection horizontal well is arranged in a portion of a gas production tube in a hydrate layer, the gas injection horizontal well is internally provided with a mixed gas jetting unit and a nozzle assembly, the mixed gas jetting unit is used for mixing nitrogen and carbon dioxide and then injecting the nitrogen and carbon dioxide mixed gas into a hydrate deposit layer of the hydrate layer in a dispersed manner by means of the nozzle assembly, methane gas of the hydrate deposit layer is replaced with the nitrogen and carbon dioxide mixed gas, and a gas production horizontal well is arranged at a portion of the gas production tube in the hydrate layer, and is used for collecting the methane gas and conveying the methane gas to the natural gas processing unit. According to the present invention, gap injection of the mixed gas can be achieved, it is ensured that a replacement gas channel is smooth, and the efficiency of carbon dioxide replacement of methane is improved.

Classes IPC  ?

  • E21B 43/16 - Procédés de récupération assistée pour l'extraction d'hydrocarbures

45.

METHOD FOR PREPARING 2-BUTANOL BY MEANS OF CATALYTIC HYDROGENATION OF LEVULINIC ACID

      
Numéro d'application CN2022128925
Numéro de publication 2023/041091
Statut Délivré - en vigueur
Date de dépôt 2022-11-01
Date de publication 2023-03-23
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Chen, Lungang
  • Gu, Canshuo
  • Wang, Chenguang
  • Ma, Longlong
  • Zhang, Xinghua

Abrégé

Disclosed in the present invention is a method for preparing 2-butanol by means of the catalytic hydrogenation of levulinic acid, the method comprising: by taking levulinic acid as a raw material and isopropanol as a solvent, carrying out hydrodeoxygenation under the action of a reduced nano γ-alumina-loaded RuMn or NiMn catalyst to highly selectively prepare 2-butanol at a reaction temperature of 190-250ºC for a reaction time of 1-5 hours, wherein the hydrogen pressure in the reaction system is 1-5 MPa. The reaction process is simple, the conditions are mild, and the whole reaction process is basically free of carbon deposition. The preparation process of the catalyst of the present invention has short time consumption, a simple process, and very good application prospects.

Classes IPC  ?

  • C07C 29/145 - Préparation de composés comportant des groupes hydroxyle ou O-métal liés à un atome de carbone ne faisant pas partie d'un cycle aromatique à six chaînons par réduction d'un groupe fonctionnel contenant de l'oxygène de groupes contenant C=O, p. ex. —COOH de cétones avec de l'hydrogène ou des gaz contenant de l'hydrogène
  • C07C 31/12 - Alcools monohydroxyliques acycliques contenant quatre atomes de carbone
  • B01J 37/18 - Réduction avec des gaz contenant de l'hydrogène libre
  • B01J 37/02 - Imprégnation, revêtement ou précipitation
  • B01J 23/889 - Manganèse, technétium ou rhénium
  • B01J 23/656 - Manganèse, technétium ou rhénium

46.

BIOMASS-BASED ESTER COMPOUND FUEL AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2022110455
Numéro de publication 2023/029878
Statut Délivré - en vigueur
Date de dépôt 2022-08-05
Date de publication 2023-03-09
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Miao, Changlin
  • Zhuang, Xinshu
  • Tan, Xuesong
  • Li, Huiwen
  • Lv, Pengmei
  • Wu, Peng
  • Li, Wuhuan

Abrégé

Disclosed in the present invention are a biomass-based ester compound fuel and a preparation method therefor. Alkyl glucoside is used as a raw material, and an acidified mesoporous carbon material is used for catalyzing one-step conversion thereof in order to prepare levulinate and a formate; the levulinate and the formate are directly used as fuel additives, separation and purification steps are not needed, and a formate byproduct does not need to be removed from the levulinate, such that the utilization rate of the raw material is increased, and the preparation cost is thus reduced; and diesel oil is partially replaced with same, such that the energy structure is improved.

Classes IPC  ?

  • C10L 1/04 - Combustibles carbonés liquides à base essentielle de mélanges d'hydrocarbures
  • C10L 1/10 - Combustibles carbonés liquides contenant des additifs
  • C10L 10/00 - Utilisation d'additifs à des fins particulières dans les combustibles ou les feux
  • C07C 69/04 - Esters d'acide formique
  • C10L 1/14 - Composés organiques
  • C07C 69/06 - Esters d'acide formique de composés monohydroxylés
  • C10L 10/02 - Utilisation d'additifs à des fins particulières dans les combustibles ou les feux pour réduire l'émission de fumée
  • C10L 1/19 - Esters
  • C07C 67/00 - Préparation d'esters d'acides carboxyliques
  • C07C 69/716 - Esters d'acides céto-carboxyliques
  • C10L 1/18 - Composés organiques contenant de l'oxygène

47.

A METHOD FOR CO-PRODUCING MONOPHENOLS AND CELLULOSE BY CATALYTIC OXIDATION OF BIOMASS OVER A TRANSITION METAL OXIDE

      
Numéro d'application 17781959
Statut En instance
Date de dépôt 2020-06-15
Date de la première publication 2023-01-19
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Wang, Chenguang
  • Zhu, Yuting
  • Ma, Longlong
  • Liu, Jing
  • Lv, Wei
  • Zhang, Qi

Abrégé

A method for co-production of monophenols and cellulose by transition metal oxide catalytic oxidation of biomass is disclosed. The method uses transition metal oxide as catalyst and pretreated dry biomass as raw material to obtain high purity and selectivity of monophenolic chemicals with co-produced cellulose under mild conditions.

Classes IPC  ?

  • C07C 37/54 - Préparation de composés comportant des groupes hydroxyle ou O-métal liés à un atome de carbone d'un cycle aromatique à six chaînons par des réactions diminuant le nombre d'atomes de carbone par scission de composés polyaromatiques, p. ex. de polyphénolalcanes par hydrolyse de lignine ou de lessive résiduaire de sulfite
  • D21C 5/00 - Autres procédés pour obtenir de la cellulose, p. ex. cuisson des linters de coton

48.

Expandable liner and method for running the same

      
Numéro d'application 17276495
Numéro de brevet 11773697
Statut Délivré - en vigueur
Date de dépôt 2021-01-25
Date de la première publication 2022-12-22
Date d'octroi 2023-10-03
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Deng, Fucheng

Abrégé

An expandable liner and a method for running the same including a base pipe, wherein the base pipe is provided with a passage extending through an axial direction of the base pipe, a connection structure disposed at both ends of the base pipe, and screen openings on a wall of the base pipe; a porous expandable layer is fixedly attached to an exterior of the base pipe and made of a non-memory formed and compressible material. The expandable liner and the method, by adopting a non-memory porous expandable layer, realize a sand-control performance and a wellbore-supporting capability of a technology where memory materials are used in manufacturing, operating and running.

Classes IPC  ?

  • E21B 43/10 - Mise en place de tubages, filtres ou crépines dans les puits
  • E21B 34/06 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits
  • E21B 43/08 - Tubes filtres ou crépines

49.

Deep-sea multi-energy integrated platform for complementary power generation, production, living and exploration

      
Numéro d'application 17717170
Numéro de brevet 11555478
Statut Délivré - en vigueur
Date de dépôt 2022-04-11
Date de la première publication 2022-10-13
Date d'octroi 2023-01-17
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Sheng, Songwei
  • Wang, Kunlin
  • Ye, Yin
  • Lin, Hongjun
  • Wang, Zhenpeng
  • Du, Bing

Abrégé

A deep-sea multi-energy integrated platform for complementary power generation, production, living and exploration includes a platform body and a sustainable power supply system, where the platform body includes a column cabin, an upper platform housing, a lower platform housing and a current guide column; the column cabin, the current guide column, the lower platform housing and the upper platform housing are mutually connected to form a triangular platform with a hollow cavity, and a net is disposed in the hollow cavity to form a mariculture zone; the sustainable power supply system includes a wind-driven generator disposed at an end of a top surface of the upper platform housing, a solar panel disposed above a middle portion of the top surface of the upper platform housing, a wave power generation apparatus disposed on the current guide column, and several tidal current power generation apparatuses.

Classes IPC  ?

  • F03D 9/00 - Adaptations des mécanismes moteurs à vent pour une utilisation particulièreCombinaisons des mécanismes moteurs à vent avec les appareils qu’ils entrainentMécanismes moteurs à vent spécialement adaptés à l’installation dans des endroits particuliers
  • F03D 9/30 - Mécanismes moteurs à vent spécialement adaptés à l’installation dans des endroits particuliers
  • F03D 9/45 - Bâtiments
  • F03D 13/25 - Dispositions pour monter ou supporter des mécanismes moteurs à ventPylônes ou tours pour des mécanismes moteurs à vent spécialement adaptés à l’installation offshore
  • F24S 20/70 - Modules collecteurs de chaleur solaire flottants sur l’eau
  • B63B 77/10 - Transport ou installation de structures en mer sur site par flottaison, p. ex. en utilisant des barges semi-submersibles, en ballastant la structure ou transport de plateformes pétrolières-gazières spécialement adaptés aux installations de production d'énergie électrique, p. ex. aux éoliennes ou aux générateurs à turbine marémotrice
  • B63B 35/44 - Constructions, magasins, plates-formes de forage ou ateliers flottants, p. ex. portant des appareils séparateurs huile-eau
  • F03B 13/10 - Ensembles fonctionnels immergés comportant génératrices ou moteurs électriques
  • F03B 13/16 - Utilisation du mouvement relatif entre un élément déplacé par les vagues et un autre élément
  • F03B 13/18 - Utilisation du mouvement relatif entre un élément déplacé par les vagues et un autre élément l'autre élément étant fixé, à au moins un point, par rapport au fond ou au bord de la mer
  • F03B 13/26 - Utilisation de l'énergie des marées

50.

Device and method for simulating layered stratum containing natural gas hydrates

      
Numéro d'application 17255991
Numéro de brevet 12046153
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de la première publication 2022-09-22
Date d'octroi 2024-07-23
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Chen, Zhaoyang
  • Wang, Yi
  • Xia, Zhiming
  • Li, Gang
  • Zhang, Yu

Abrégé

A device and a method for simulating layered stratum containing natural gas hydrates are provided. The device includes a reactor; wherein the reactor includes an upper cover, a lower cover, and a reactor body, wherein the upper cover and the lower cover are sealably attached to two ends of the reactor body to form a closed chamber; an overlying pressure layer, a superstratum layer, a hydrate layer and a substratum layer are sequentially formed throughout inside of the closed chamber from the upper cover to the lower cover, wherein each layer is respectively filled with different kinds of porous media and fluids and the each layer is provided with a stratal-fluid annular container; each stratal-fluid annular container has an outer periphery contacting an inner surface of the reactor body. The method is conducted using the device.

Classes IPC  ?

  • G09B 23/40 - Modèles à usage scientifique, médical ou mathématique, p. ex. dispositif en vraie grandeur pour la démonstration pour la géologie

51.

Device and method for gas-water-sand separation and measurement in experiment of natural gas hydrate exploitation

      
Numéro d'application 17257313
Numéro de brevet 11708748
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de la première publication 2022-09-22
Date d'octroi 2023-07-25
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Chen, Zhaoyang
  • Wang, Yi
  • Xia, Zhiming
  • Zhang, Yu
  • Li, Gang

Abrégé

A device and a method for gas-water-sand separation and measurement during a simulated exploitation of natural gas hydrates are disclosed. The device includes a natural gas hydrate formation and dissociation system and a filtering unit. The natural gas hydrate formation and dissociation system includes a compressed air pump, a reactor, and a water-bath temperature regulating unit. The filtering unit includes a kettle body, wherein an inlet end of the kettle body is connected to the sand-control liner zone, an outlet end of the kettle body is connected to a water-collecting container, and a plurality of filtering layers are disposed inside the kettle body from the inlet end to the outlet end. The method is conducted using the device. The device and the method realize the gas-water-sand separation and measurement of produced gas-water-sand mixture during a simulative exploitation process, allowing for a direct inspection on a sand production and sand control.

Classes IPC  ?

  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • E21B 43/34 - Aménagements pour séparer les matériaux produits par le puits
  • E21B 43/08 - Tubes filtres ou crépines
  • E21B 47/06 - Mesure de la température ou de la pression

52.

Divisible experimental device and method for sand production and sand control during natural gas hydrate exploitation

      
Numéro d'application 17257311
Numéro de brevet 11899005
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de la première publication 2022-09-22
Date d'octroi 2024-02-13
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Wang, Yi
  • Chen, Zhaoyang
  • Xia, Zhiming
  • Li, Gang
  • Zhang, Yu

Abrégé

A divisible device and a method for sand production and sand control experiment for natural gas hydrate exploitation. The experimental device includes a reactor system, a feeding system, a separation and measurement system, a water-bath jacket system, a support and safety system, and a software recording and analyzing system. In the reactor system, the reactor units can be combined in different ways depending on the experimental conditions and purposes. The reactor units include: left/right reactor units, secondary reactor units, central reactor units, and caps. The combination of a left/right reactor unit with a cap gives a hydrate formation reactor without sand control screens. Combining the left/right reactor unit, secondary left/right reactor units and central reactor units with other accessories allows the reactor system to carry out the simulation experiments with either zero, one, or two view zones, and with either one or two wells.

Classes IPC  ?

  • G01N 33/24 - Matériaux de la terre
  • B01J 19/18 - Réacteurs fixes avec éléments internes mobiles
  • E21B 43/08 - Tubes filtres ou crépines
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes

53.

Natural gas hydrate exploitation experimental device and method for full-sized production wells

      
Numéro d'application 17257312
Numéro de brevet 11946345
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de la première publication 2022-09-22
Date d'octroi 2024-04-02
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Chen, Zhaoyang
  • Wang, Yi
  • Xia, Zhiming
  • Li, Gang
  • Zhang, Yu

Abrégé

A device and a method for experimental exploitation of natural gas hydrates in full-sized production wells are provided. The device includes a full-diameter well, and the full-diameter well includes a heating circulation tube, a temperature sensor tube, an upper sealing unit and a lower sealing unit. Perforations are provided along a body of the full-diameter well. A reactor includes an upper cover, a lower cover, and a reactor body. The method is conducted by using the device and the reactor. The device and method allow simulation of sand-control wellbores in actual exploitation of natural gas hydrates, and realize horizontal and vertical sand-control experiments.

Classes IPC  ?

  • G09B 23/40 - Modèles à usage scientifique, médical ou mathématique, p. ex. dispositif en vraie grandeur pour la démonstration pour la géologie
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes

54.

DEVICE FOR CONDUCTING COOLING, HEATING AND POWER SUPPLY BY MEANS OF EFFICIENT CONVERSION OF RENEWABLE DEEP-SPACE ENERGY

      
Numéro d'application CN2021124297
Numéro de publication 2022/160780
Statut Délivré - en vigueur
Date de dépôt 2021-10-18
Date de publication 2022-08-04
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Dong, Kaijun
  • Zhang, Bobo
  • Sun, Qin
  • Guan, Haifeng
  • Tang, Zhanchao

Abrégé

A device for conducting cooling, heating and power supply by means of efficient conversion of renewable deep-space energy, the device comprising a solar energy conversion device (1), a radiation refrigeration device (2), a rotation support (3), an inclination angle adjustment component, and a supporting base (6). The solar energy conversion device (1) and the radiation refrigeration device (2) are connected to the rotation support (3) in a mutually perpendicular manner, the rotation support (3) is connected to the inclination angle adjustment component, and the inclination angle adjustment component is connected to the supporting base (6). The inclination angle adjustment component is used for adjusting an inclination angle between the rotation support (3) and a ground plane, and the rotation support (3) is used for driving the solar energy conversion device (1) and the radiation refrigeration device (2) to rotate, such that a reflecting face of the radiation refrigeration device (2) is always parallel to light rays of solar illumination, while a sunward face of the solar energy conversion device (1) is always perpendicular to the light rays of solar illumination, such that efficient conversion and simultaneous superposed utilization of two kinds of deep-space energy, namely solar energy and radiation energy, are realized in the same area, the energy utilization rate and energy density of a unit area are improved, and land resources and space are used sparingly.

Classes IPC  ?

  • F24S 30/42 - Agencements pour mouvoir ou orienter des modules de collecteurs de chaleur solaire pour le déplacement en rotation avec un seul axe de rotation
  • F25B 23/00 - Machines, installations ou systèmes ayant un seul principe de fonctionnement non compris dans les groupes , p. ex. utilisant l'effet de radiation sélective
  • H02S 20/32 - Structures de support mobiles ou réglables, p. ex. pour réglage de l’angle spécialement adaptées pour le suivi du soleil

55.

Comprehensive three-dimensional exploitation experimental system for large-scale and full-sized exploitation wells

      
Numéro d'application 17251501
Numéro de brevet 11879322
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de la première publication 2022-07-28
Date d'octroi 2024-01-23
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Wang, Yi
  • Chen, Zhaoyang
  • Xia, Zhiming
  • Zhang, Yu
  • Li, Gang

Abrégé

A comprehensive three-dimensional exploitation experimental system for large-scale and full-sized exploitation wells includes a reactor, configured to prepare a natural gas hydrate sample, for simulating an environment for forming a natural gas hydrate reservoir in seafloor sediments. The reactor includes a reactor body, an upper cover disposed at an upper surface of the reactor body, and a lower cover disposed at a lower surface of the reactor body; a gas introducing module, configured to introduce gas to the reactor during hydrate formation; a liquid introducing module, configured to introduce liquid to the reactor during hydrate formation; a temperature regulating module, configured to regulate a temperature in the reactor; a data collecting-processing-displaying module, configured to collect, store, process and display data of the comprehensive three-dimensional exploitation experimental system during an experiment.

Classes IPC  ?

  • E21B 47/002 - Relevés dans les trous de forage ou dans les puits par inspection visuelle
  • E21B 34/06 - Aménagements des vannes pour les trous de forage ou pour les puits dans les puits
  • E21B 43/01 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits spécialement adaptés à l'extraction à partir d'installations sous l'eau
  • E21B 47/06 - Mesure de la température ou de la pression
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes

56.

Physical characterization device and method for scale model of natural gas hydrate reservoir

      
Numéro d'application 16973784
Numéro de brevet 11566493
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de la première publication 2022-07-28
Date d'octroi 2023-01-31
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Chen, Zhaoyang
  • Wang, Yi
  • Xia, Zhiming
  • Li, Gang
  • Zhang, Yu

Abrégé

A device and a method for physical characterization in a large-scale natural gas hydrate experimental system are provided. The device includes a reactor, horizontal wellbores, and vertical wellbores. The reactor includes an upper cover, a lower cover, and a reactor body, and the upper cover and the lower cover are sealably attached to two ends of the reactor to form a closed chamber. The physical characterization device further includes lateral vertical well assemblies and temperature-pressure-resistance assemblies, wherein the lateral vertical well assemblies and the temperature-pressure-resistance assemblies are disposed to penetrate the reactor from the upper cover to the lower cover. The physical characterization method is conducted using the physical characterization device, including a step of producing contour plots using a data processing software with three-dimensional matrix data collected by the pressure measuring tubes, the temperature measuring tubes, and the resistivity measuring columns.

Classes IPC  ?

57.

Flow field measurement device and method for scale model of natural gas hydrate reservoir

      
Numéro d'application 17059202
Numéro de brevet 11746647
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de la première publication 2022-07-21
Date d'octroi 2023-09-05
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Wang, Yi
  • Chen, Zhaoyang
  • Xia, Zhiming
  • Li, Gang
  • Zhang, Yu

Abrégé

A flow field measurement device and a method for a scale model of a natural gas hydrate reservoir are provided. The measurement device includes non-central vertical well pressure sensors, non-central vertical well outlet valves, communicating vessel valves, differential pressure sensors, a communicating vessel, a central vertical well outlet valve, and a central vertical well pressure sensor. By providing differential pressure sensors, between a measuring point of the central vertical well and a measuring point of each of the non-central vertical wells, to measure pressure differences, the flow field measurement device enables a reasonable distribution of a three-dimensional space inside the reactor to analyze gas-liquid flow trends in the reactor with a simulated flow field. Determining whether to turn on the differential pressure sensors according to a predetermination based on a feedback from the pressure sensors, allows flow field measurements in the reactor under both high and low pressure differences.

Classes IPC  ?

  • G01N 11/02 - Recherche des propriétés d'écoulement des matériaux, p. ex. la viscosité, la plasticitéAnalyse des matériaux en déterminant les propriétés d'écoulement en mesurant l'écoulement du matériau
  • E21B 47/06 - Mesure de la température ou de la pression
  • G01L 13/06 - Dispositifs ou appareils pour la mesure des différences entre plusieurs valeurs de la pression des fluides en utilisant des éléments électriques ou magnétiques sensibles à la pression

58.

Device for measuring stratum deformation during natural gas hydrate exploitation

      
Numéro d'application 17059252
Numéro de brevet 11795785
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de la première publication 2022-07-21
Date d'octroi 2023-10-24
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Wang, Yi
  • Chen, Zhaoyang
  • Xia, Zhiming
  • Zhang, Yu
  • Li, Gang

Abrégé

A device for measuring stratum deformation caused by natural gas hydrate dissociation is provided. The device is configured to be disposed inside a natural gas hydrate reactor, wherein the natural gas hydrate reactor is configured to simulate natural gas hydrate formation layers in the natural gas hydrate reactor, and the natural gas hydrate formation layers include a superstratum layer, a sediment layer and a substratum layer from top to bottom. The device includes a displacement sensor fixing plate, displacement sensors and a flexible elastic plate. A plurality of displacement sensors are provided and evenly distributed, wherein a first end of each displacement sensor is fixed to the displacement sensor fixing plate and a second end of each displacement sensor is stretchably and sealingly fixed to the flexible elastic plate. The flexible elastic plate is tightly attached to the superstratum layer.

Classes IPC  ?

  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • G01B 11/16 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la déformation dans un solide, p. ex. indicateur optique de déformation
  • G01B 7/24 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour mesurer les déformations dans un solide, p. ex. au moyen d'une jauge de contrainte à résistance en utilisant la variation des propriétés magnétiques
  • G01N 33/24 - Matériaux de la terre

59.

METHOD FOR PREPARING SILICON CARBIDE FROM WASTE CIRCUIT BOARD LIGHT PANEL CRACKING RESIDUE

      
Numéro d'application CN2021137128
Numéro de publication 2022/122022
Statut Délivré - en vigueur
Date de dépôt 2021-12-10
Date de publication 2022-06-16
Propriétaire
  • BEIJING UNIVERSITY OF TECHNOLOGY (Chine)
  • GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Wu, Yufeng
  • Yuan, Haoran

Abrégé

A method for preparing silicon carbide from a waste circuit board light panel cracking residue, belonging to the field of comprehensive utilization of waste circuit board cracking products, and particularly relating to a new method for high-value utilization of non-metal components of a waste circuit board light panel substrate cracking residue. The method comprises the following main steps: rolling and crushing, vibrating and sorting, ultra-fine pulverization and electric separation, quantitative burdening, microwave sintering and discharging and grading. Compared with the prior art, rolling and crushing is used in the present invention instead of traditional shearing and crushing, and microwave sintering is used instead of a traditional Acheson smelting furnace, such that the method has the effects of being easy to operate, and saving energy and reducing consumption, and greatly improves the production efficiency and reduces the production cost. According to the new method involving partially replacing anthracite and quartz sand with cracked coke and silicon dioxide from a waste circuit board light panel or epoxy resin cracking residue to obtain high-purity silicon carbide, the high-value utilization of waste resources is achieved. The method has the characteristics of a simple and feasible process, low manufacturing costs and a wide adaptability, and is beneficial for improving the economic and social benefits of enterprise production.

Classes IPC  ?

  • C01B 32/97 - Préparation à partir de SiO ou de SiO2
  • C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p. ex. des rognures, pour produire des métaux non ferreux ou leurs composés
  • C22B 15/00 - Obtention du cuivre
  • C01B 32/40 - Oxyde de carbone
  • F27B 17/00 - Fours d'un genre non couvert par l'un des groupes

60.

NOVEL INTEGRATED COOLING AND REFRIGERATING APPARATUS

      
Numéro d'application CN2021109092
Numéro de publication 2022/116568
Statut Délivré - en vigueur
Date de dépôt 2021-07-29
Date de publication 2022-06-09
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Dong, Kaijun
  • Shao, Zhenhua
  • Tang, Zhanchao
  • Sun, Qin
  • Zhang, Bobo

Abrégé

An integrated cooling and refrigerating apparatus, comprising a cooling unit, a refrigeration unit, and a control unit. The cooling unit comprises a water pump (6), an air treatment unit (5) and a condenser (2), connected in sequence. The refrigeration unit comprises a compressor (1), a condenser (2), a throttling expansion valve (3) and a fan coil (4), connected in sequence. The cooling unit is connected to the refrigeration unit by means of the condenser (2), and the control unit is electrically connected to the cooling unit and the refrigeration unit respectively. Chilled water from the cooling unit is conveyed to the air treatment unit (5) under the action of the water pump (6) and cools the air, thus achieving first-stage utilization of the chilled water and cooling by the cooling unit, and meanwhile, the chilled water used in the first stage enters the condenser (2), and cools a high-pressure side of the refrigeration unit, thus achieving second-stage utilization of the chilled water and refrigeration by the refrigeration unit, and thus effectively increasing the temperature difference between supply and return water, and implementing large-temperature difference and low-flow chilled water operation, with the energy consumption of transportation being greatly reduced.

Classes IPC  ?

  • F24F 5/00 - Systèmes ou appareils de conditionnement d'air non couverts par ou
  • F25B 7/00 - Machines, installations ou systèmes à compression fonctionnant en cascade, c.-à-d. avec plusieurs circuits, l'évaporateur d'un circuit refroidissant le condenseur du circuit suivant

61.

SYSTEM AND METHOD FOR COMBINED RENEWABLE ENERGY SOURCE AND WASTE HEAT UTILIZATION FOR DATA CENTER

      
Numéro d'application CN2021115502
Numéro de publication 2022/116608
Statut Délivré - en vigueur
Date de dépôt 2021-08-31
Date de publication 2022-06-09
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Zhang, Bobo
  • Dong, Kaijun
  • Sun, Qin
  • Luo, Weimin

Abrégé

A system and a method for combined renewable energy source and waste heat utilization for a data center. The system comprises a data center, a water reservoir, a water circulation system and a refrigerant circulation system. The water reservoir is used to: within a set first period, utilize heat from the data center to complete a heat storage process, and within a set second period, utilize a heat release process supplied by the heat stored in the heat storage process. The water circulation system is provided with a plurality of water circulation loops. The refrigerant circulation system is provided with a plurality of circulation systems, the heat storage process and the heat release process being accomplished by means of cooperation between the plurality of water circulation loops and/or the plurality of circulation systems. User heat-use costs in winter can be effectively reduced, and the combustion of fossil fuels, the generation of carbon dioxide and the PUE value of the data center are reduced, and the invention thus has important economic value and environmental protection value.

Classes IPC  ?

  • F24F 5/00 - Systèmes ou appareils de conditionnement d'air non couverts par ou
  • F25B 30/02 - Pompes à chaleur du type à compression
  • F25B 41/40 - Agencements de conduites de fluide
  • H05K 7/20 - Modifications en vue de faciliter la réfrigération, l'aération ou le chauffage

62.

METHOD AND APPARATUS FOR REMOVING POLLUTANTS FROM ORGANIC SOLID WASTE BY MEANS OF PYROLYSIS COUPLED CHEMICAL LOOPING COMBUSTION

      
Numéro d'application CN2022074859
Numéro de publication 2022/105946
Statut Délivré - en vigueur
Date de dépôt 2022-01-29
Date de publication 2022-05-27
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Huang, Zhen
  • Lin, Yan
  • Yuan, Haoran
  • Wei, Guoqiang
  • Zheng, Anqing
  • Zhao, Kun
  • Zhao, Zengli
  • Li, Haibin

Abrégé

An apparatus for removing pollutants from organic solid waste by means of pyrolysis coupled chemical looping combustion, comprising an air reactor (1), a fuel reactor (3) and a pyrolysis gasifier (4); the pyrolysis gasifier (4) is sleeved outside the fuel reactor (3), the air reactor (1) is connected to the fuel reactor (3) by means of a U-shaped return feeder (2); the top end of the air reactor (1) is in communication with one end of a top delivery pipe (1-6), and the other end of the top delivery pipe (1-6) is in communication with the top end of a first cyclone separator (1-7), the bottom end of the first cyclone separator (1-7) is connected to an oxygen carrier return feeder (1-8) arranged at the top end of the fuel reactor (3), an air inlet is provided at the bottom of the air reactor (1), and a fluidizing gas nozzle (2-7) and several ejectors are provided at the lower portion of the fuel reactor (3). Disclosed is a method for removing pollutants from organic solid waste by means of pyrolysis coupled chemical looping combustion, which is applied to the described apparatus.

Classes IPC  ?

  • F23G 5/027 - Procédés ou appareils, p. ex. incinérateurs, spécialement adaptés à la combustion de déchets ou de combustibles pauvres comportant un traitement préalable par pyrolyse ou par gazéification

63.

DEVICE AND METHOD FOR TWO-BED HYDRATE CONTINUOUS CO2 CAPTURE

      
Numéro d'application CN2021139064
Numéro de publication 2022/096026
Statut Délivré - en vigueur
Date de dépôt 2021-12-17
Date de publication 2022-05-12
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Long, Zhen
  • He, Yong
  • Liang, Deqing
  • Zhou, Xuebing

Abrégé

2222 separation, thus being able to raise cyclical material utilization rates, and also effectively improve separation efficiency.

Classes IPC  ?

64.

COMPREHENSIVE TESTING DEVICE FOR IMPACT OF EXTERNAL FIELD ON PHYSICAL PROPERTIES OF GAS HYDRATE

      
Numéro d'application CN2021139031
Numéro de publication 2022/096025
Statut Délivré - en vigueur
Date de dépôt 2021-12-17
Date de publication 2022-05-12
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Shi, Lingli
  • Liang, Deqing
  • Lu, Jingsheng
  • He, Yong

Abrégé

A comprehensive testing device for the impact of an external field on physical properties of a gas hydrate, relating to the field of gas hydrate testing. The device comprises a gas-liquid supply unit, a temperature control unit, a reaction kettle unit, an external field generation unit, a physical property test unit and a data acquisition and processing unit. The reaction kettle unit is used for providing a location for a gas-liquid system to reaction to generate a hydrate; the gas-liquid supply unit is used for providing or expelling a gas and/or a liquid in the reaction kettle unit and a pipeline to which the reaction kettle unit is connected; the temperature control unit is used for controlling the ambient temperature of the reaction kettle unit by means of controlling the temperature of circulating air, thereby controlling the reaction temperature of the gas-liquid system in the reaction kettle unit; the external field generation unit is used for generating a single or coupled external field that affects the reaction kettle unit; the physical property test unit is used for acquiring data from the reaction kettle unit in a testing process; and the data acquisition and processing unit is used for processing the acquired data.

Classes IPC  ?

  • G01N 23/207 - Diffractométrie, p. ex. en utilisant une sonde en position centrale et un ou plusieurs détecteurs déplaçables en positions circonférentielles
  • G01N 21/65 - Diffusion de Raman
  • G01N 1/28 - Préparation d'échantillons pour l'analyse
  • B01J 19/18 - Réacteurs fixes avec éléments internes mobiles
  • B01J 19/00 - Procédés chimiques, physiques ou physico-chimiques en généralAppareils appropriés

65.

GAS HYDRATE PROMOTER BASED ON NANOPARTICLES AND GEMINI SURFACTANT, AND USE THEREOF

      
Numéro d'application CN2021139050
Numéro de publication 2022/083794
Statut Délivré - en vigueur
Date de dépôt 2021-12-17
Date de publication 2022-04-28
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Long, Zhen
  • Liang, Deqing
  • Zhou, Xuebing
  • He, Yong

Abrégé

3434344 immobilized on the surface of the polymer occupying the position originally belonging to the single-chain surfactant SDS.

Classes IPC  ?

  • C09K 3/00 - Substances non couvertes ailleurs
  • C10L 3/10 - Post-traitement de gaz naturel ou de gaz naturel de synthèse
  • C08F 2/26 - Polymérisation en émulsion utilisant des agents émulsifiants anioniques
  • C08F 112/08 - Styrène
  • C08F 2/44 - Polymérisation en présence d'additifs, p. ex. plastifiants, matières colorantes, charges
  • C08K 3/22 - OxydesHydroxydes de métaux

66.

Hydrate kinetics inhibitor

      
Numéro d'application 17257318
Numéro de brevet 11919978
Statut Délivré - en vigueur
Date de dépôt 2018-12-27
Date de la première publication 2022-03-24
Date d'octroi 2024-03-05
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Liang, Deqing
  • Wan, Li

Abrégé

A hydrate kinetic inhibitor, which is prepared by a polymerization of mercaptoethanol and N-vinylcaprolactam, is hydroxyl terminated poly(N-vinylcaprolactam) having a structure of formula (I) below, wherein n=10 to 1000. The inhibitor is a novel hydrate kinetic inhibitor, which has low effective concentration and high cloud point, and is effective when the degree of supercooling is relatively high.

Classes IPC  ?

  • C08F 126/06 - Homopolymères de composés contenant un ou plusieurs radicaux aliphatiques non saturés, chaque radical ne contenant qu'une seule liaison double carbone-carbone et l'un au moins étant terminé par une liaison simple ou double à l'azote ou par un hétérocycle contenant de l'azote par un hétérocycle contenant de l'azote
  • C08F 8/34 - Introduction d'atomes de soufre ou de groupes contenant du soufre
  • C08K 5/315 - Composés contenant des liaisons triples carbone-azote
  • C09K 8/524 - Compositions pour éviter, limiter ou éliminer les dépôts, p. ex. pour le nettoyage les dépôts organiques, p. ex. paraffines ou asphaltènes

67.

HEAT-PIPE-TYPE HEAT-TAKING INTEGRATION OF COOLING, ELECTRICITY AND HEATING COMBINED EXPLOITATION-UTILIZATION INTEGRATED GEOTHERMAL SYSTEM

      
Numéro d'application CN2021118084
Numéro de publication 2022/033604
Statut Délivré - en vigueur
Date de dépôt 2021-09-14
Date de publication 2022-02-17
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Jiang, Fangming
  • Chen, Juanwen
  • Huang, Wenbo
  • Cen, Jiwen
  • Cao, Wenjiong

Abrégé

A heat-pipe-type heat-taking integration of cooling, electricity and heat combined exploitation-utilization integrated geothermal system, the system comprising an underground heat pipe (1), a steam pump (2), a first absorption bed (3), a second absorption bed (4), a first condenser (5), an electronic expansion valve (6), an evaporator (7), a liquid storage tank (8), a balance valve (10), a steam turbine (11), a generator (12) connected to the steam turbine (11), a second condenser (13), a heat utilization apparatus (14) connected to the second condenser (13), a pressure pump (15) connected to the second condenser (13), and related and coupled valve assemblies. By means of the steam pump (2), and adjustment valves provided on a refrigeration side and a power generation side, the flow direction and flow rate of steam in the underground heat pipe (1) after being extracted out of the ground are controlled, such that refrigerating/electric heating single-mode heat utilization is selected or flow distribution during cooling/electric heating dual-mode combined use is adjusted, and the balance relationship between refrigeration capacity and power generation capacity is adjusted according to seasonal requirements; and the flow direction of a refrigerant is controlled by means of a valve assembly on the refrigeration side, thereby achieving extraction of geothermal energy for continuously refrigerating, and a steam working medium in the underground heat pipe (1) is stably and efficiently used for refrigerating/electric heating dual-mode combined use.

Classes IPC  ?

  • F25B 17/00 - Machines, installations ou systèmes à sorption, à marche discontinue, p. ex. à absorption ou à adsorption
  • F03G 4/00 - Dispositifs produisant une puissance mécanique à partir d'énergie géothermique

68.

TWO-STAGE STOCHASTIC PROGRAMMING-BASED V2G SCHEDULING MODEL FOR MAXIMIZING OPERATOR REVENUE

      
Numéro d'application CN2021088841
Numéro de publication 2022/021957
Statut Délivré - en vigueur
Date de dépôt 2021-04-22
Date de publication 2022-02-03
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Huang, Yuping
  • Hu, Chen

Abrégé

A two-stage stochastic programming-based V2G scheduling method for maximizing operator revenue, relating to the field of energy management optimization models. Said method aims for the charge/discharge scheduling problem of electric vehicles, and establishes, on the basis of a distributed renewable energy-storage-EVs charge/discharge power system, a V2G two-stage nonlinear stochastic programming model combining the V2G scheduling randomness with the renewable energy power generation randomness. Said model is converted into a mixed integer linear programming model (MILP) by means of constraint linearization. In addition, in order to enable random scenarios to cover a plurality of uncertainty factors comprehensively, a scenario generation and combination method is designed to combine the V2G scheduling resources with the randomness of the renewable energy level. The V2G two-stage stochastic programming model solves an optimal charge/discharge plan of the electric vehicles seeking to adapt the randomness of the V2G scheduling layer and the renewable energy randomness, and increases the revenue of said model participating in power assistance services.

Classes IPC  ?

  • G06Q 10/06 - Ressources, gestion de tâches, des ressources humaines ou de projetsPlanification d’entreprise ou d’organisationModélisation d’entreprise ou d’organisation

69.

HEAT PUMP SYSTEM AND METHOD FOR ACHIEVING EFFICIENT EVAPORATION USING GEOTHERMAL WELL

      
Numéro d'application CN2021116886
Numéro de publication 2022/022750
Statut Délivré - en vigueur
Date de dépôt 2021-09-07
Date de publication 2022-02-03
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Huang, Wenbo
  • Jiang, Fangming
  • Chen, Juanwen
  • Cen, Jiwen
  • Cao, Wenjiong

Abrégé

Disclosed are a heat pump system and method for achieving efficient evaporation using a geothermal well, relating to the field of geothermal energy development. Said system comprises a stepped underground evaporator, a compressor, a condenser, a liquid storage tank, and a throttle valve. The underground evaporator comprises an inner pipe and an outer pipe, the inner pipe is designed as a multi-segment structure, each segment is comprised of a gas flow guide pipe, a baffle plate and a seepage hole, and under the effect of this structure, a liquid working medium flowing into the underground evaporator flows downward against an inner wall of the outer pipe, absorbs heat from underground rock mass and is gasified into a gaseous working medium to flow upward to the ground. Compared with the prior art, the underground evaporator designed according to the present invention does not produce gas-liquid entrainment and liquid accumulation effects, and can achieve efficient evaporation of the liquid working medium using a geothermal well, without the need of water pump circulation for heat supply, such that the required ground equipment of the heat pump system is simplified, and the operating efficiency of the heat pump system can be significantly increased, thereby increasing the overall economical efficiency of the ground source heat pump system.

Classes IPC  ?

  • F24T 10/40 - Collecteurs géothermiques fonctionnant sans source d’énergie externe, p. ex. utilisant la circulation thermosiphonique ou des tubes de chaleur
  • F28D 15/02 - Appareils échangeurs de chaleur dans lesquels l'agent intermédiaire de transfert de chaleur en tubes fermés passe dans ou à travers les parois des canalisations dans lesquels l'agent se condense et s'évapore, p. ex. tubes caloporteurs

70.

PREPARATION METHOD FOR AND USE OF SELF-ASSEMBLY-BASED NITROGEN-DOPED ORDERED POROUS PRECIOUS METAL NANOMATERIAL

      
Numéro d'application CN2021081666
Numéro de publication 2022/012072
Statut Délivré - en vigueur
Date de dépôt 2021-03-19
Date de publication 2022-01-20
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Wang, Zhida
  • Yan, Changfeng
  • Yang, Yi
  • Lu, Zhuoxin
  • Shi, Yan
  • Guo, Changqing
  • Tan, Hongyi
  • Shen, Lisha
  • Deng, Linxiu

Abrégé

A preparation method for and the use of a self-assembly-based nitrogen-doped ordered porous precious metal nanomaterial. According to the method, an amphiphilic block copolymer containing pyridine nitrogen is taken as a structure-directing agent, phenolic resin is taken as a template, and a precious metal precursor is added, and self-assembling and carbonization are induced by means of volatilization of a solvent to prepare the nitrogen-doped ordered porous precious metal nanomaterial. The orderliness, dispersity and uniformity of the precious metal nanomaterial are realized, the problems of easy migration and inactivation after agglomeration of precious metal nanoparticles are solved, the lifespan of precious metal particles is prolonged; in addition, the ORR electro-catalytic property of the material can be improved, and the nitrogen-doped ordered porous precious metal nanomaterial can be used to prepare a cathode oxygen reduction catalyst of a fuel cell.

Classes IPC  ?

  • B01J 23/38 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe des métaux nobles

71.

Method and device for exploiting natural gas hydrate from marine rock

      
Numéro d'application 16647887
Numéro de brevet 11486232
Statut Délivré - en vigueur
Date de dépôt 2019-11-19
Date de la première publication 2021-12-30
Date d'octroi 2022-11-01
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Shen, Pengfei
  • Li, Gang
  • Chen, Zhaoyang
  • Zhang, Yu
  • Wang, Yi
  • Liu, Jianwu

Abrégé

An exploiting method and device of marine facies natural gas hydrate. The exploiting method comprises the following steps: (1) after the construction of a vertical well, a fixed pipe is constructed, the exploiting well is set in the center of the fixed pipe, and the mixture is filled between the inner wall of the fixed pipe and the outer wall of the exploiting well; (2) the self-excited oscillating jet nozzle enters the exploiting well along the vertical well to the designated position through an orifice on the exploiting well and sprays the mixture, so that the mixture is broken evenly to form artificial fractures; (3) under the corresponding temperature, the hydrate decomposes to produce gas by depressurized exploiting; (4) the gas-liquid mixture exploited by the exploiting well is separated into liquid and gas in the gas-liquid separation device to collect liquid and gas.

Classes IPC  ?

  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • E21B 43/02 - Filtration souterraine
  • E21B 47/06 - Mesure de la température ou de la pression
  • E21B 36/00 - Aménagements pour le chauffage, le refroidissement ou l'isolation dans les trous de forage ou dans les puits, p. ex. pour être utilisés dans les zones de permagel
  • E21B 43/38 - Aménagements pour séparer les matériaux produits par le puits dans le puits
  • E21B 47/07 - Température

72.

RADIATION COOLING DEVICE FOR HIGH-HEAT-FLUX HEAT GENERATING ELEMENT

      
Numéro d'application CN2021109088
Numéro de publication 2021/259385
Statut Délivré - en vigueur
Date de dépôt 2021-07-29
Date de publication 2021-12-30
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Dong, Kaijun
  • Shao, Zhenhua
  • Su, Lin

Abrégé

A radiation cooling device for a high-heat-flux heat generating element. The device is composed of a cold plate, a first thermal conductive silica gel layer, a graphene thermal conduction layer, a second thermal conductive silica gel layer and a heat generating element, wherein the graphene thermal conduction layer is composed of a metal housing, several pieces of graphene and several metal sheets; the graphene and the metal sheets are successively stacked from left to right, and are all vertically arranged between the cold plate and the heat generating element; and thermal conductive silica gel is filled between the cold plate and the graphene thermal conduction layer, and between the graphene thermal conduction layer and the heat generating element. Heat generated by the heat generating element is conducted, by using the ultrahigh thermal conductivity of the graphene in the plane direction, from the heat generating element, which has a very small surface area, to the cold plate, which has a relatively large area, and the thermal conductive silica gel layers can also effectively reduce thermal contact resistance during a heat transfer process, such that the heat generated by the heat generating element can be rapidly dissipated to the external environment by means of a cooling medium inside the cold plate, thereby greatly improving the radiation efficiency.

Classes IPC  ?

  • H05K 7/20 - Modifications en vue de faciliter la réfrigération, l'aération ou le chauffage

73.

In-situ hydraulic jet exploiting device and method of low-permeability natural gas hydrate reservoir

      
Numéro d'application 16648261
Numéro de brevet 11401784
Statut Délivré - en vigueur
Date de dépôt 2019-11-19
Date de la première publication 2021-12-30
Date d'octroi 2022-08-02
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Shen, Pengfei
  • Li, Gang
  • Chen, Zhaoyang
  • Zhang, Yu
  • Wang, Yi

Abrégé

An in-situ hydraulic jet exploiting device and method of a low-permeability natural gas hydrate reservoir. The device includes a high-pressure reaction kettle configured for formation, fracturing and exploiting of a hydrate, a stable-pressure gas supply module configured to adjust and control a gas flow rate, a constant-speed constant-pressure liquid supply module configured to control a liquid flow rate or keep liquid injection pressure constant, a thermostatic water bath configured to provide a constant-temperature environment for a device system, a back-pressure module configured to automatically control an exploiting rate or exploiting pressure, an in-situ hydraulic jet permeability enhancement module, a data collection and processing module configured to collect and process basic system parameters, and a pipeline connecting various components.

Classes IPC  ?

  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes
  • E21B 43/26 - Procédés pour activer la production par formation de crevasses ou de fractures
  • G01N 15/08 - Recherche de la perméabilité, du volume des pores ou de l'aire superficielle des matériaux poreux

74.

SOLAR ENERGY UTILIZATION AND RADIATIVE COOLING COMPOSITE SYSTEM

      
Numéro d'application CN2021110101
Numéro de publication 2021/249576
Statut Délivré - en vigueur
Date de dépôt 2021-08-02
Date de publication 2021-12-16
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Dong, Kaijun
  • Su, Lin

Abrégé

Provided are a solar energy utilization and radiative cooling composite system, comprising a radiative cooling system and a solar energy conversion and utilization system; the radiative cooling system comprises a radiative cooling apparatus and a radiative-cold energy collection and utilization system; the solar energy conversion and utilization system comprises a solar energy conversion apparatus and an energy utilization system; the solar energy conversion apparatus is located on the two sides of the radiative cooling apparatus; the two constitute a composite structure energy conversion apparatus; the radiative cooling apparatus converts heat energy into electromagnetic waves, radiating electromagnetic waves into space to achieve cooling, and simultaneously reflecting the solar energy irradiated on the surface to the solar energy conversion apparatus; the solar energy conversion apparatus receives direct sunlight, sunlight reflected by the radiative cooling apparatus, and radiated electromagnetic waves from the body of the radiative cooling apparatus, and converts same into electricity, thermal energy, or cold, thus achieving the overlapping utilization of solar energy and radiative cooling in the same area. The invention greatly improves the energy utilization rate and energy density per unit area.

Classes IPC  ?

  • F25B 23/00 - Machines, installations ou systèmes ayant un seul principe de fonctionnement non compris dans les groupes , p. ex. utilisant l'effet de radiation sélective

75.

Power allocation of multi-parallel power electronic transformers

      
Numéro d'application 16620892
Numéro de brevet 11245284
Statut Délivré - en vigueur
Date de dépôt 2018-10-09
Date de la première publication 2021-11-18
Date d'octroi 2022-02-08
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Huang, Lei
  • Shu, Jie
  • Cui, Qiong
  • Zhang, Jiyuan
  • Wang, Hao

Abrégé

A method and an electronic device for power allocation of multi-parallel power electronic transformers, the method including: determining a quantity of conversion stages of the power electronic transformers; obtaining a load ratio-efficiency relationship between the two ports of each conversion stage in turn, performing a curve fitting to obtain a load ratio-efficiency curve of each conversion stage of the power electronic transformers; calculating a load ratio-loss relationship of each conversion stage, based on the load ratio-efficiency curve of each conversion stage; obtaining a multi-parallel minimum-operation-loss power allocation curve of each conversion stage; performing a piecewise curve fitting of the minimum-operation-loss power allocation curve to obtain a multi-parallel optimum power allocation mathematical model of each stage; and determining an optimum power allocation to each port of the multi-parallel power electronic transformers, based on the multi-parallel optimum power allocation mathematical model of each stage.

Classes IPC  ?

  • H02J 13/00 - Circuits pour pourvoir à l'indication à distance des conditions d'un réseau, p. ex. un enregistrement instantané des conditions d'ouverture ou de fermeture de chaque sectionneur du réseauCircuits pour pourvoir à la commande à distance des moyens de commutation dans un réseau de distribution d'énergie, p. ex. mise en ou hors circuit de consommateurs de courant par l'utilisation de signaux d'impulsion codés transmis par le réseau
  • G05B 13/04 - Systèmes de commande adaptatifs, c.-à-d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques impliquant l'usage de modèles ou de simulateurs

76.

METHOD FOR ENHANCING RESERVOIR STABILITY IN HYDRATE EXPLOITATION PROCESS

      
Numéro d'application CN2020140516
Numéro de publication 2021/212902
Statut Délivré - en vigueur
Date de dépôt 2020-12-29
Date de publication 2021-10-28
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Dongliang
  • Guo, Zehui
  • Liang, Deqing
  • Zeng, Jiaming
  • Yao, Yuanxin
  • Lu, Jingsheng

Abrégé

255, and the balance being clear water or seawater. On the one hand, the use of the clay stabilizer in well cementing can not only reduce the expansion of clay, but can also avoid the dispersive migration of the soil particles; on the other hand, the mortar containing a clay stabilizer can effectively enhance the cementing between the soil particles and hydrate molecules and increase the formation strength, thereby reducing geological disasters and engineering problems that may occur during hydrate depressurizing exploitation.

Classes IPC  ?

  • E21B 43/01 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits spécialement adaptés à l'extraction à partir d'installations sous l'eau
  • E21B 33/138 - Plâtrage de la paroi du trou de forageInjections dans la formation
  • C09K 8/467 - Compositions de cimentation, p. ex. pour la cimentation des tubes dans les trous de forageCompositions de bouchage, p. ex. pour tuer des puits contenant des liants inorganiques, p. ex. ciment Portland contenant des additifs pour des utilisations spécifiques

77.

METHOD FOR MEASURING GAS SATURATION OF GAS HYDRATE

      
Numéro d'application CN2020140523
Numéro de publication 2021/212903
Statut Délivré - en vigueur
Date de dépôt 2020-12-29
Date de publication 2021-10-28
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Zhou, Xuebing
  • Liang, Deqing
  • He, Yong
  • Zang, Xiaoya
  • Luo, Jinqiong

Abrégé

A method for measuring the gas saturation of a gas hydrate. The method comprises: taking a characteristic peak of a water molecule in a gas hydrate as a reference peak, calculating the ratio of a peak intensity integral of a characteristic peak of a gas molecule in the hydrate to a peak intensity integral of the characteristic peak of the water molecule in the hydrate, and obtaining a relative peak intensity integral of the characteristic peak of the gas molecule in the gas hydrate; by means of macroscopic measurement, quantitatively calculating the saturation of component gases in the hydrate; according to the saturation, which was measured many times, of the component gases in the hydrate, and the relative peak intensity integral of characteristic peaks, and by means of linear fitting, establishing a function of the saturation of different component gases to the relative peak intensity integral of the characteristic peaks; and measuring and calculating a relative peak intensity integral of a characteristic peak of a certain gas component in a hydrate sample, and using the function to calculate the gas saturation of the gas in the hydrate sample. By means of the method, the problem of the gas saturation of a gas hydrate being unable to be rapidly and accurately measured for a long time in the field of gas hydrate research is solved, and the method has important significance in the research on the aspects of rapid quantitative measurement of the gas saturation of a natural gas hydrate, the evaluation of gas reserves in a natural gas hydrate reservoir stratum, etc.

Classes IPC  ?

78.

APPARATUS AND METHOD FOR RAPID PREPARATION OF GAS HYDRATE COLUMN

      
Numéro d'application CN2020140509
Numéro de publication 2021/208509
Statut Délivré - en vigueur
Date de dépôt 2020-12-29
Date de publication 2021-10-21
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Zhou, Xuebing
  • Liang, Deqing
  • Li, Dongliang
  • Lu, Jingsheng
  • Long, Zhen
  • Liu, Chanjuan

Abrégé

An apparatus and a method for rapid preparation of a gas hydrate column, comprising a high-pressure-resistant kettle, a pressure control apparatus, a liquid compensation apparatus, a liquid discharge apparatus, a temperature measurement and control apparatus, a liquid pressure control apparatus, and an electric heating apparatus. In a hydrate generation process, a piston at the top of the high-pressure-resistant kettle creates shocks in the pressure of a gas phase in the high-pressure-resistant kettle by means of small-amplitude reciprocating motion, thereby causing a dissolved gas to form a large amount of bubbles in a liquid phase, so as to increase the surface area of gas/liquid contact in the high-pressure-resistant kettle, and accelerating hydrate generation. After the solution in the high-pressure-resistant kettle is transformed into a solid-state hydrate, by means of the piston at the top of the high-pressure-resistant kettle compressing the resulting hydrate powder, a block-shaped hydrate is obtained. The present invention is able to provide a hydrate product having a regular geometric shape, and the apparatus features a simple structure, stable operation, and relatively low energy consumption.

Classes IPC  ?

  • B01J 3/04 - Récipients sous pression, p. ex. autoclaves
  • G01N 1/28 - Préparation d'échantillons pour l'analyse
  • C10L 3/10 - Post-traitement de gaz naturel ou de gaz naturel de synthèse

79.

EXPANDING SCREEN TUBE AND CONSTRUCTION METHOD THEREFOR

      
Numéro d'application CN2021073556
Numéro de publication 2021/203799
Statut Délivré - en vigueur
Date de dépôt 2021-01-25
Date de publication 2021-10-14
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Deng, Fucheng

Abrégé

An expanding screen tube, comprising a screen tube base tube (1). An axial through hole is provided in the screen tube base tube (1), connection structures that connect to one another are provided on both ends of the screen tube base tube (1), a filtration hole is provided in a wall of the filter tube base tube (1), and a porous expansion layer (2) is fixedly connected on an outer wall of the filter tube base tube (1), the porous expansion layer (2) being produced using a compressible non-memory-foam foam material. The present expanding screen tube is able to achieve sand control and well wall support effects using a porous expansion layer not having a memory function that can only be achieved in the prior art by using a memory material, greatly reducing costs for manufacturing, using, and constructing the expanding screen tube. Further provided is a construction method for the expanding screen tube.

Classes IPC  ?

  • E21B 43/08 - Tubes filtres ou crépines
  • E21B 41/00 - Matériel ou accessoires non couverts par les groupes

80.

FRACTURING FLUID FOR SEABED NATURAL GAS HYDRATE MINERAL RESOURCES

      
Numéro d'application CN2020135068
Numéro de publication 2021/169480
Statut Délivré - en vigueur
Date de dépôt 2020-12-10
Date de publication 2021-09-02
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Dongliang
  • Yao, Yuanxin
  • Liang, Deqing

Abrégé

Disclosed is a fracturing fluid for seabed natural gas hydrate mineral resources. The fracturing fluid is comprised of the following components in percentages by weight, with the total percentage by weight being 100%: a thickener: 0.15-0.6%; a clay stabilizer: 0.5-4.0%; an organic boron crosslinker: 0.05-1.0%; a gel breaker: 0.2-0.5%; a low temperature activator: 0.05-0.3%; a scale inhibitor: 0.1-0.6%; a bactericide: 0.05-0.1%; a pH adjusting agent: 0.1-1.0%; a hydrate inhibitor: 0.5-1.0%; and the remaining component being a base liquid. The fracturing fluid is a seawater-based fracturing fluid for seabed natural gas hydrate mineral resources, which has a good low temperature gel breaking performance, a good clay hydration inhibiting performance, and a good hydrate inhibition performance and scale inhibition ability.

Classes IPC  ?

  • C09K 8/68 - Compositions à base d'eau ou de solvants polaires contenant des composés organiques
  • C09K 8/88 - Composés macromoléculaires
  • C09K 8/90 - Composés macromoléculaires d'origine naturelle, p. ex. polysaccharides, cellulose

81.

NATURAL GAS HYDRATE MINING STRATUM DEFORMATION MEASUREMENT APPARATUS

      
Numéro d'application CN2020114084
Numéro de publication 2021/159695
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de publication 2021-08-19
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Wang, Yi
  • Chen, Zhaoyang
  • Xia, Zhiming
  • Zhang, Yu
  • Li, Gang

Abrégé

A natural gas hydrate mining stratum deformation measurement apparatus used for installing in a natural gas reaction kettle (100). The reaction kettle is used for simulating a natural gas hydrate geological layer. The geological layer is divided from top to bottom into an upper overburden layer (1001), a deposit layer (1002), and a lower overburden layer (1003). The deformation measurement comprises a displacement sensor fastener (1), displacement sensors (2), and a flexible and elastic panel. Multiple displacement sensors are present and are distributed uniformly. One end of each displacement sensor is fastened and installed on a displacement sensor fastening plate, and the other end is telescopic and hermetically fixed in the flexible and elastic panel. The flexible and elastic panel is in close contact with the upper overburden layer. The displacement sensor fastening plate is fastened and installed in the reaction kettle. The apparatus can not only measure the stratum deformation brought about by the large-scale decomposition of the natural gas hydrate, but also can transcend the limit of one-dimensional measurement of stratum deformation and implement three-dimensional measurement of stratum deformation.

Classes IPC  ?

  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
  • E21B 43/01 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits spécialement adaptés à l'extraction à partir d'installations sous l'eau

82.

REDUCED SCALE NATURAL GAS HYDRATE RESERVOIR PHYSICAL CHARACTERISTICS REPRESENTATION APPARATUS AND METHOD

      
Numéro d'application CN2020114087
Numéro de publication 2021/159696
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de publication 2021-08-19
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Chen, Zhaoyang
  • Wang, Yi
  • Xia, Zhiming
  • Li, Gang
  • Zhang, Yu

Abrégé

Disclosed are a reduced scale natural gas hydrate reservoir physical characteristics representation apparatus and a method. The apparatus comprises a reaction kettle, a horizontal well pipe (24), and a vertical well pipe (8). The reaction kettle comprises an upper kettle lid (201), a lower kettle lid (202), and a kettle body (200), the upper kettle lid (201) and the lower kettle lid (202) being sealed and closed against two ends of the kettle body (200) to form a sealed cavity. The reaction kettle also comprises a side vertical well assembly and a temperature and pressure resistor assembly, the side vertical well assembly and the temperature and pressure resistor assembly being configured to penetrate the reaction kettle from the upper kettle lid (201) to the lower kettle lid (202). With the method, according to the lattice data of the pressure measurement pipe, the temperature measurement pipe, and the sensor of the resistivity measurement post, a data processing software is used to generate a change cloud graph, so as to observe in real time the temperature field, the pressure field, and the resistivity field in the reaction kettle, thereby simulating the hydrate distribution field, pressure field, and temperature field in the reaction kettle. The representation apparatus and method can represent in real time and in situ the heat transfer, mass transfer, and hydrate phase transition during the hydrate mining process.

Classes IPC  ?

  • G01N 33/00 - Recherche ou analyse des matériaux par des méthodes spécifiques non couvertes par les groupes
  • E21B 47/06 - Mesure de la température ou de la pression

83.

COMPREHENSIVE EXPERIMENTAL EXPLOITATION SYSTEM HAVING LARGE-SCALE, FULL-SIZE, THREE-DIMENSIONAL EXPLOITATION WELL

      
Numéro d'application CN2020114092
Numéro de publication 2021/159697
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de publication 2021-08-19
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Wang, Yi
  • Chen, Zhaoyang
  • Xia, Zhiming
  • Zhang, Yu
  • Li, Gang

Abrégé

A comprehensive experimental exploitation system having a large-scale, full-size, three-dimensional exploitation well, comprising: a reaction kettle (1), used to prepare a natural gas hydrate sample and realistically simulate an natural gas hydrate accumulation environment in a sea floor sedimentation layer, the reaction kettle comprising a reaction kettle body (10) and an upper kettle cover (11) mounted on an upper end face of the reaction kettle body, and a lower kettle cover (12) mounted on a lower end face of the reaction kettle body; a gas injection module (2), used inject a quantity of a gas into the reaction kettle during hydrate synthesis a liquid injection module (3), used to inject a quantity of a liquid into the reaction kettle during hydrate synthesis; a temperature control module, used to control the temperature of the reaction kettle; and a data collection, processing, and display module (4), used to collect, store, process, and display data during performance of testing in the test exploitation system. The present system is able to prepare a natural gas hydrate sample, and carry out experimental simulation research on exploitation techniques such as depressurization and heat injection, and investigate hydrate decomposition, gas and liquid seepage, heat transfer, and sediment stabilization in an exploitation process.

Classes IPC  ?

  • E21B 43/01 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits spécialement adaptés à l'extraction à partir d'installations sous l'eau
  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
  • E21B 47/002 - Relevés dans les trous de forage ou dans les puits par inspection visuelle

84.

APPARATUS AND METHOD FOR GEOLOGICAL STRATIFICATION OF NATURAL GAS HYDRATE

      
Numéro d'application CN2020114094
Numéro de publication 2021/159698
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de publication 2021-08-19
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Chen, Zhaoyang
  • Wang, Yi
  • Xia, Zhiming
  • Li, Gang
  • Zhang, Yu

Abrégé

An apparatus for geological stratification of a natural gas hydrate, comprising a reaction kettle, the reaction kettle being placed in a constant-temperature water bath, and comprising an upper kettle cover (20), a lower kettle cover (14), and a kettle body (11), the upper kettle cover and the lower kettle cover sealingly closing the two ends of the kettle body so as to form an enclosed chamber, inside the chamber an overburden layer (19), an upper cover layer (4), a hydrate layer (7), and a lower cover layer (9) being formed sequentially from the upper kettle cover to the lower kettle cover, each layer being filled with a different porous medium and a liquid, and each layer being provided with an annular formation fluid container, the outer circumference of the annular formation fluid containers being in contact with inner walls of the kettle body. The present apparatus is used to simulate stratification conditions of a hydrate in a reservoir, and allows for research into amounts of formation replenishment fluids in different strata during the hydrate formation process. Further disclosed is a method for using the apparatus for geological stratification of a natural gas hydrate.

Classes IPC  ?

  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
  • E21B 43/01 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits spécialement adaptés à l'extraction à partir d'installations sous l'eau

85.

TEST APPARATUS FOR SEPARATING AND MEASURING GENERATED GAS, WATER, AND SAND DURING NATURAL GAS HYDRATE MINING, AND METHOD

      
Numéro d'application CN2020114099
Numéro de publication 2021/159699
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de publication 2021-08-19
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Chen, Zhaoyang
  • Wang, Yi
  • Xia, Zhiming
  • Zhang, Yu
  • Li, Gang

Abrégé

A test apparatus for separating and measuring generated gas, water, and sand during natural gas hydrate mining, and a method. The apparatus comprises a natural gas hydrate generation and decomposition system and a filter apparatus. The natural gas hydrate generation and decomposition system comprises a compressed air pump (51), a natural gas hydrate generation and decomposition reaction kettle (55), and a water bath constant temperature control apparatus. The filter apparatus comprises a filter apparatus kettle body (20). An inlet end of the filter apparatus kettle body is connected to a sand sieve pipe region, and the outlet end of the filter apparatus kettle body is connected to a water collection sealed container. Multiple filter layers are provided from the inlet end to the outlet end of the filter apparatus kettle body. The method and the apparatus can separate and measure the gas, water, and sand mixture during a simulated mining process and can more visually reflect the sand generation and prevention effect.

Classes IPC  ?

  • G01M 13/00 - Test des pièces de machines
  • G01N 15/00 - Recherche de caractéristiques de particulesRecherche de la perméabilité, du volume des pores ou de l'aire superficielle effective de matériaux poreux

86.

FULL-SIZE NATURAL GAS HYDRATE PRODUCTION WELL EXPLOITATION EXPERIMENTATION APPARATUS AND METHOD

      
Numéro d'application CN2020114104
Numéro de publication 2021/159700
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de publication 2021-08-19
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Chen, Zhaoyang
  • Wang, Yi
  • Xia, Zhiming
  • Li, Gang
  • Zhang, Yu

Abrégé

A full-size natural gas hydrate production well exploitation experimentation apparatus, the apparatus comprising a full-diameter well bore (11). A central well heating circulation pipe (19) and a central well thermal transfer plug-in pipe (12) are provided inside the full-diameter well bore (11), and the full-diameter well bore (11) is provided with an upper sealing assembly and a lower sealing assembly. An injection hole having a sand blocking assembly is provided in a bore body portion of the full-diameter well bore (11). Further disclosed is a hull-size natural gas hydrate production well exploitation experimentation method, the method being performed using the full-size natural gas production exploitation simulation well apparatus described above and a hydrate generation kettle. The present apparatus and method are able to simulate a real sand-blocking well bore for natural gas hydrate extraction, and make possible experimentation on horizontal and vertical sand-blocking exploitation.

Classes IPC  ?

  • E21B 43/01 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits spécialement adaptés à l'extraction à partir d'installations sous l'eau
  • E21B 43/00 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits

87.

DETACHABLE NATURAL GAS HYDRATE SAND GENERATION AND PREVENTION TEST APPARATUS, AND METHOD

      
Numéro d'application CN2020114106
Numéro de publication 2021/159701
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de publication 2021-08-19
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Wang, Yi
  • Chen, Zhaoyang
  • Xia, Zhiming
  • Li, Gang
  • Zhang, Yu

Abrégé

Disclosed are a detachable natural gas hydrate sand generation and prevention test apparatus, and a method. The test apparatus comprises a reaction kettle system (100), a gas, water, and sand insertion system (200), a gas, water, and sand separation and measurement system (300), a low-temperature water bath fastener system (400), and a support and safety system (500). Reaction kettles in reaction kettle system (100) can be combined into different reaction kettles according to different experiment conditions and purposes. The reaction kettles include a left reaction kettle and a right reaction kettle, a secondary left reaction kettle and a secondary right reaction kettle, and a central reaction kettle, as well as a sealing lid. The reaction kettle system is designed to be combined flexibly. The combination of the left reaction kettle, the right reaction kettle, and the sealing lid implements a hydrate generation and decomposition reaction kettle having no sieve tube. The combination of the left reaction kettle and the right reaction kettle, reaction kettle accessories, the secondary left reaction kettle and the secondary right reaction kettle, and the central reaction kettle can simulate a series of sand generation and prevention tests such as single wells and double wells have no observation area, single wells and double wells having a single observation area, and single wells and double wells having double observation areas.

Classes IPC  ?

  • G01N 33/00 - Recherche ou analyse des matériaux par des méthodes spécifiques non couvertes par les groupes
  • G01N 33/24 - Matériaux de la terre
  • G09B 25/00 - Modèles à usages non prévus dans , p. ex. dispositif en vraie grandeur pour la démonstration
  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits

88.

HYPERBRANCHED AMIDE HYDRATE KINETIC INHIBITOR AND PREPARATION METHOD THEREFOR AND APPLICATION THEREOF

      
Numéro d'application CN2020135060
Numéro de publication 2021/159835
Statut Délivré - en vigueur
Date de dépôt 2020-12-10
Date de publication 2021-08-19
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Long, Zhen
  • Lu, Zhilin
  • Liang, Deqing

Abrégé

A hyperbranched amide hydrate kinetic inhibitor and a preparation method therefor and an application thereof. The structural formula of the hyperbranched amide hydrate kinetic inhibitor is represented by formula (1), wherein the weight-average molecular weight of the hyperbranched amide hydrate kinetic inhibitor is 10000-40000, and the molecular weight distribution coefficient is 1-3. The hydrate kinetic inhibitor has the advantages of being good in solubility and small in dosage and can be applied to an oil-gas-water system, and the preparation method for the hydrate kinetic inhibitor is simple in production process and controllable in production process.

Classes IPC  ?

  • C08F 226/06 - Copolymères de composés contenant un ou plusieurs radicaux aliphatiques non saturés, chaque radical ne contenant qu'une seule liaison double carbone-carbone et l'un au moins étant terminé par une liaison simple ou double à l'azote ou par un hétérocycle contenant de l'azote par un hétérocycle contenant de l'azote
  • C08F 238/00 - Copolymères de composés contenant une ou plusieurs liaisons triples carbone-carbone
  • C09K 8/52 - Compositions pour éviter, limiter ou éliminer les dépôts, p. ex. pour le nettoyage
  • F17D 1/02 - Systèmes de canalisation pour gaz ou vapeurs
  • F17D 1/08 - Systèmes de canalisation pour liquides ou produits visqueux

89.

Ladder-structural gravity-assisted-heat-pipe geothermal energy recovery system without liquid-accumulation effect

      
Numéro d'application 16960328
Numéro de brevet 11408646
Statut Délivré - en vigueur
Date de dépôt 2019-06-25
Date de la première publication 2021-08-19
Date d'octroi 2022-08-09
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Jiang, Fangming
  • Huang, Wenbo
  • Cao, Wenjiong
  • Wang, Yiwei

Abrégé

A ladder-structural gravity-assisted-heat-pipe geothermal energy recovery system without liquid-accumulation effect, comprises a ladder-structural gravity-assisted heat pipe, a condenser, and a liquid tank. The ladder-structural gravity-assisted heat pipe comprises a return pipe, an outer pipe and an inner pipe. The return pipe is provided in a space between the outer pipe and the inner pipe and communicated with the liquid tank, and the space between the outer pipe and the inner pipe is divided to form a ladder structure. A liquid working medium flows from the liquid tank through the return pipe into each section sequentially, absorbs heat from a high-temperature rock through a wall of the outer pipe, vaporizes into a gaseous working medium, gets into the inner pipe, and rises to the condenser to condense and flows to the liquid tank to circulate. Such design greatly improves the heat transfer efficiency in geothermal energy recovery using ultra-long heat pipes.

Classes IPC  ?

  • F24T 10/40 - Collecteurs géothermiques fonctionnant sans source d’énergie externe, p. ex. utilisant la circulation thermosiphonique ou des tubes de chaleur
  • F28D 15/02 - Appareils échangeurs de chaleur dans lesquels l'agent intermédiaire de transfert de chaleur en tubes fermés passe dans ou à travers les parois des canalisations dans lesquels l'agent se condense et s'évapore, p. ex. tubes caloporteurs
  • F28D 15/04 - Appareils échangeurs de chaleur dans lesquels l'agent intermédiaire de transfert de chaleur en tubes fermés passe dans ou à travers les parois des canalisations dans lesquels l'agent se condense et s'évapore, p. ex. tubes caloporteurs avec des tubes ayant une structure capillaire
  • F24T 10/00 - Collecteurs géothermiques

90.

REDUCED SCALE NATURAL GAS HYDRATE RESERVOIR FLOW FIELD MEASUREMENT APPARATUS AND METHOD

      
Numéro d'application CN2020114080
Numéro de publication 2021/159694
Statut Délivré - en vigueur
Date de dépôt 2020-09-08
Date de publication 2021-08-19
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Li, Xiaosen
  • Wang, Yi
  • Chen, Zhaoyang
  • Xia, Zhiming
  • Li, Gang
  • Zhang, Yu

Abrégé

A reduced scale natural gas hydrate reservoir flow field measurement apparatus and a method. The measurement apparatus comprises a non-center vertical well pressure transducer (6), a non-center vertical well outlet valve (7), a connector valve (9), a differential pressure sensor (8), a connector (4), a center vertical well outlet valve (3), and a center vertical well pressure transducer (2). Differential pressure sensors (8) are connected separately between measurement sites of the center vertical well of a natural gas hydrate experiment system and the measurement sites of vertical wells to measure the pressure difference, making the allocation of the three dimensional space in the whole reaction kettle (20) logical and the flow field simulated more conducive to the analysis of the gas and liquid flows in the reaction kettle (20). The information fed back by means of the pressure transducers undergoes initial determination, and it is then decided whether or not the differential pressure sensor (8) are turned on. In working conditions with a large pressure difference and a small pressure difference, the flow field inside of the reaction kettle (20) can be measured, and the differential pressure sensor (8) can be effectively protected.

Classes IPC  ?

  • G01N 33/22 - CombustiblesExplosifs
  • G01D 21/02 - Mesure de plusieurs variables par des moyens non couverts par une seule autre sous-classe
  • G01L 13/00 - Dispositifs ou appareils pour la mesure des différences entre plusieurs valeurs de la pression des fluides

91.

SAMPLING AND CULTURING APPARATUS FOR USE IN EXPERIMENTATION FOR PREVENTING DISTURBANCE TO MARINE MICROORGANISM SYSTEM

      
Numéro d'application CN2020120464
Numéro de publication 2021/159721
Statut Délivré - en vigueur
Date de dépôt 2020-10-12
Date de publication 2021-08-19
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Liu, Lihua
  • Wei, Xueqin
  • Jin, Guangrong
  • Yuan, Yuan
  • Zhao, Yongli

Abrégé

A sampling and culturing apparatus for use in experimentation for preventing disturbance to a marine microorganism system, comprising a power fixing apparatus, sampling/gas injection fixing apparatuses, culturing and sampling apparatuses, electric gas injection apparatuses, electric sampling apparatuses, an apparatus housing, and a gas circulation and vacuum suction pressurizing apparatus. The power fixing apparatus is used to position the electric gas injection apparatuses at the locations of gas flasks and microorganism culture flasks respectively, and position the electric sampling apparatuses at the locations of the microorganism culture flasks and the gas flasks respectively; the electric gas injection apparatuses are used to extract gas from a gas flask and inject same into a microorganism culture flask; the electric sampling apparatuses are used to extract supernatant liquid from a microorganism culture flask and inject same into a sampling flask; the sampling/gas injection fixing apparatuses are used to fix the electric gas injection apparatuses and the electric sampling apparatuses; and the gas circulation and vacuum suction pressurizing apparatus is used to control gas circulation inside the apparatus housing. The present apparatus is able to reduce the impact of system disturbances on the growth of marine microorganisms.

Classes IPC  ?

  • C12M 1/36 - Appareillage pour l'enzymologie ou la microbiologie comportant une commande sensible au temps ou aux conditions du milieu, p. ex. fermenteurs commandés automatiquement
  • C12M 1/38 - Commande sensible à la température
  • C12M 1/26 - Inoculateur ou échantillonneur
  • C12M 1/00 - Appareillage pour l'enzymologie ou la microbiologie

92.

NATURAL GAS HYDRATE CAVITY COMPLETION EVALUATION AND TESTING APPARATUS AND METHOD

      
Numéro d'application CN2020135065
Numéro de publication 2021/159836
Statut Délivré - en vigueur
Date de dépôt 2020-12-10
Date de publication 2021-08-19
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Lu, Jingsheng
  • Liang, Deqing
  • Li, Dongliang
  • He, Yong
  • Shi, Lingli

Abrégé

A natural gas hydrate cavity completion evaluation and testing apparatus, comprising a reaction kettle system, a cavity completion system, a confining pressure control system, an entrance pressure control system, an exit pressure control system, a gas-liquid-solid separation system, a temperature control system, and a data collection and processing system. The reaction kettle system is used to simulate in situ generation of a natural gas hydrate, cavity completion, and exploitation. The temperature control system provides a constant temperature environment for the apparatus. The cavity completion system, the confining pressure control system, the entrance pressure control system, the exit pressure control system, and the gas-liquid-solid separation system are used to control pressure and flow states during experimentation. The data collection and processing system is used to collect and process parameters during experimentation. A natural gas hydrate cavity completion evaluation and testing method, implemented using the testing apparatus.

Classes IPC  ?

  • E21B 43/01 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits spécialement adaptés à l'extraction à partir d'installations sous l'eau
  • E21B 43/25 - Procédés pour activer la production
  • G01N 33/00 - Recherche ou analyse des matériaux par des méthodes spécifiques non couvertes par les groupes

93.

WAVE ENERGY POWER GENERATING OBSERVATION BUOY

      
Numéro d'application CN2021080162
Numéro de publication 2021/160186
Statut Délivré - en vigueur
Date de dépôt 2021-03-11
Date de publication 2021-08-19
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Sheng, Songwei
  • Jiang, Jiaqiang
  • Ye, Yin
  • Du, Bing

Abrégé

A wave energy power generating observation buoy, comprising a semi-submerged main platform (7), a disk-shaped platform (1), and a plate-shaped underwater auxiliary body (11). A plurality of wave absorbing floaters (8) are distributed evenly around the periphery of the semi-submerged main platform (7), a wave energy to rectilinear motion conversion mechanism (8.1) being installed between each wave absorbing floater (8) and the semi-submerged main platform (7), a plurality of gas chambers (7.5) are distributed evenly in a central part of the semi-submerged main platform, a pneumatic wave energy power generation unit (7.4) being installed at the top of each gas chamber (7.5), and an ocean observation device is connected below the semi-submerged main platform (7) by means of a photoelectric suspension cable (12). The disk-shaped platform (1) is fixed above the semi-submerged main platform (7) by means of a cylindrical support post, and solar energy power generation panels (1.1) and a meteorological observation instrument (1.8) are arranged thereon. The plate-shaped underwater auxiliary body (11) is connected below the semi-submerged main platform (7) by means of a plurality of vertically arranged rectilinear columnar structures (10). The buoy is able to implement integration of power generation, navigation, observation, and communications, solving the problems that marine buoys are unable to effectively acquire energy and are unable to support long-lasting operation of navigation, observation, and communications devices at sea.

Classes IPC  ?

  • F03B 13/20 - Utilisation du mouvement relatif entre un élément déplacé par les vagues et un autre élément les deux éléments étant mobiles par rapport au fond ou au bord de la mer
  • B63B 22/00 - Coffres d'amarrage ou bouées
  • G01C 13/00 - Géodésie spécialement adaptée à l'eau libre, p. ex. à la mer, aux lacs, aux rivières ou aux canaux

94.

CORE-SHELL IRON-BASED CATALYST USED FOR DIRECT PRODUCTION OF AROMATIC HYDROCARBONS FROM SYNGAS, AND PREPARATION METHOD AND APPLICATION THEREFOR

      
Numéro d'application CN2020090025
Numéro de publication 2021/147213
Statut Délivré - en vigueur
Date de dépôt 2020-05-13
Date de publication 2021-07-29
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Wang, Chenguang
  • Wen, Chengyan
  • Ma, Longlong
  • Liu, Qiying
  • Zhang, Xinghua
  • Chen, Lungang

Abrégé

2424244 by-product selectivity, and low CO utilization.

Classes IPC  ?

  • B01J 29/46 - Métaux du groupe du fer ou cuivre
  • C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone

95.

METHOD FOR EVALUATING QUALITY OF MARINE NATURAL GAS HYDRATE RESERVOIR

      
Numéro d'application CN2020126084
Numéro de publication 2021/129164
Statut Délivré - en vigueur
Date de dépôt 2020-11-03
Date de publication 2021-07-01
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Zhang, Hui
  • Su, Zheng

Abrégé

A method for evaluating the quality of a marine natural gas hydrate reservoir. The method comprises: S1, acquiring columnar marine sediment layer drilled cores at different positions in a target region, and for each columnar marine sediment layer drilled core, preparing a plurality of samples at certain intervals in the axial direction of a reservoir section containing natural gas hydrates; S2, measuring the surface area of the samples; S3, constructing a sediment sample pore size calculation model; S4, constructing a calculation model for the solidification temperature variation of the natural gas hydrates in a pore state; and S5, calculating the solidification temperature variation of the natural gas hydrates in each sample in order to obtain the three-dimensional distribution of the solidification temperature variation of the marine natural gas hydrate reservoir and obtain the quality of the marine natural gas hydrate reservoir, thereby realizing accurate and efficient evaluation of the quality of the marine natural gas hydrate reservoir.

Classes IPC  ?

96.

METHOD FOR CALCULATING PORE DISTRIBUTION OF MARINE SEDIMENT LAYER

      
Numéro d'application CN2020132584
Numéro de publication 2021/129315
Statut Délivré - en vigueur
Date de dépôt 2020-11-30
Date de publication 2021-07-01
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Zhang, Hui
  • Su, Zheng

Abrégé

Provided is a method for calculating the pore distribution of a marine sediment layer. The method comprises: S1, acquiring columnar marine sediment layer drilled cores at different positions in a target region, and with regard to each columnar marine sediment layer drilled core, preparing a plurality of samples at certain intervals in the axial direction; S2, measuring the surface area of the samples; S3, constructing a sediment sample pore size calculation model; and S4, calculating an average pore diameter of each sample by using the sediment sample pore size calculation model to obtain the pore distribution of a marine sediment layer. According to the method, the pore distribution of a marine sediment layer is easily, conveniently and effectively calculated, and the method can be applied to the analysis of submarine stability, the analysis of marine engineering safety, the prediction of submarine landslide and tsunami occurrence, the prediction of submarine fluid channels, and the prediction of the accumulation and reservoir formation of new-type mineral resources such as natural gas hydrates.

Classes IPC  ?

  • G01N 15/08 - Recherche de la perméabilité, du volume des pores ou de l'aire superficielle des matériaux poreux

97.

TESTING DEVICE AND METHOD FOR BALANCED DRAINAGE OF NATURAL GAS HYDRATE HORIZONTAL WELL

      
Numéro d'application CN2019128121
Numéro de publication 2021/120251
Statut Délivré - en vigueur
Date de dépôt 2019-12-25
Date de publication 2021-06-24
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Lu, Jingsheng
  • Liang, Deqing
  • Li, Dongliang
  • He, Yong
  • Shi, Lingli

Abrégé

Disclosed is a testing device and method for balanced drainage of a natural gas hydrate horizontal well. The testing device comprises a simulated reservoir chamber, a pressure control system, and a data acquisition and processing system, wherein the simulated reservoir chamber comprises a horizontally arranged reaction kettle (21), a horizontal well arranged inside the reaction kettle (21), and a water bath jacket (18) wrapped outside the reaction kettle (21); the pressure control system comprises a water pump (1), a constant-flux pump (2), a constant-speed constant-pressure pump (4), a vacuum pump (5), a gas source (8), a gas booster pump (6), a gas buffer tank (19), an electric valve (13), a backpressure gas flowmeter (14) and a gas-liquid-solid separation tank (15); and the data acquisition and processing system is electrically connected to sensing elements (7) of the simulation reservoir chamber and the pressure control system, so as to acquire and process a sensing signal of each sensing element (7). By means of the method, drainage testing can be carried out on a hydrate reservoir of the horizontal well, and support and verification is provided for a balanced drainage design of a horizontal well.

Classes IPC  ?

  • E21B 43/01 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits spécialement adaptés à l'extraction à partir d'installations sous l'eau
  • E21B 49/00 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
  • E21B 47/00 - Relevés dans les trous de forage ou dans les puits

98.

METHOD FOR PREPARING MONOPHENOL COMPOUND AND CO-PRODUCING CELLULOSE BY CATALYTICALLY OXIDIZING BIOMASS BY TRANSITION METAL OXIDE

      
Numéro d'application CN2020096029
Numéro de publication 2021/109533
Statut Délivré - en vigueur
Date de dépôt 2020-06-15
Date de publication 2021-06-10
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Wang, Chenguang
  • Zhu, Yuting
  • Ma, Longlong
  • Liu, Jing
  • Lv, Wei
  • Zhang, Qi

Abrégé

A method for preparing a monophenol compound and co-producing cellulose by catalytically oxidizing a biomass by a transition metal oxide. The method comprises the following steps: (1) putting a pre-treated dry basis biomass, a transition metal oxide, and an aqueous hydroxide solution of an alkali metal into a closed reaction container, introducing oxygen into the reaction container, stirring a reaction mixture for reaction, and performing cooling to obtain a suspension; (2) centrifuging the suspension to obtain a supernatant liquid and solid residues, using an acid liquid to acidify the supernatant liquid until a pH value is equal to 2-3, adding an organic solvent to extract a monophenol compound so as to obtain an organic solution, adding weak-base salt to the organic solution and removing water, and finally distilling the organic solution under reduced pressure to obtain the monophenol compound; and recycling a catalyst in the solid residues. The method uses lignocellulose as a raw material, oxygen as an oxidant, and a transition metal oxide as a catalyst, and prepares a monophenol chemical product and co-produces cellulose under mild conditions, thereby achieving the efficient utilization of lignocellulose.

Classes IPC  ?

  • C07C 45/27 - Préparation de composés comportant des groupes C=O liés uniquement à des atomes de carbone ou d'hydrogènePréparation des chélates de ces composés par oxydation
  • C07C 47/58 - Vanilline
  • C07C 47/575 - Composés comportant des groupes —CHO liés à des atomes de carbone de cycles aromatiques à six chaînons contenant des groupes éther, des groupes , des groupes ou des groupes
  • C07C 47/565 - Composés comportant des groupes —CHO liés à des atomes de carbone de cycles aromatiques à six chaînons contenant des groupes hydroxyle tous les groupes hydroxyle étant liés au cycle
  • D21C 5/00 - Autres procédés pour obtenir de la cellulose, p. ex. cuisson des linters de coton

99.

EXPERIMENTAL DEVICE AND METHOD FOR CARBON DIOXIDE SEQUESTRATION ON SEABED BY HYDRATE METHOD

      
Numéro d'application CN2019128115
Numéro de publication 2021/103237
Statut Délivré - en vigueur
Date de dépôt 2019-12-25
Date de publication 2021-06-03
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Zhou, Xuebing
  • Liang, Deqing
  • Yao, Yuanxin

Abrégé

An experimental device and method for carbon dioxide sequestration on seabed by a hydrate method. The experimental device comprises a high-pressure reaction kettle, a pressure control system and a data acquisition system; the high-pressure reaction kettle is used for simulating a seabed stratum environment for hydrate formation, the pressure control system is used for controlling pressure and gas flow in the high-pressure reaction kettle, and the data acquisition system is used for acquiring sensing signals of various sensing elements in an experimental process, so as to obtain specific experimental parameters. By the experimental device and the method, one-dimensional dynamic processes such as the diffusion of carbon dioxide in seabed sediments and hydrate formation can truly simulated, a large number of measurement parameters can be provided for comprehensive investigation of the kinetic mechanism of carbon dioxide sequestration on seabed by the hydrate method. Furthermore, the experimental device is compact in structure, and the experimental method is scientific and reasonable, having great significance in enriching gas hydrate kinetic research methods and promoting the application of carbon dioxide sequestration on seabed technologies by the hydrate method.

Classes IPC  ?

  • C01B 32/50 - Anhydride carbonique
  • F16J 12/00 - Récipients sous pression en général
  • B01J 19/00 - Procédés chimiques, physiques ou physico-chimiques en généralAppareils appropriés

100.

FLOATING OSCILLATING WATER COLUMN-TYPE WAVE ENERGY POWER GENERATION APPARATUS

      
Numéro d'application CN2020140465
Numéro de publication 2021/093899
Statut Délivré - en vigueur
Date de dépôt 2020-12-29
Date de publication 2021-05-20
Propriétaire GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Liang, Xianguang
  • Zhang, Yaqun
  • Sheng, Songwei
  • Ye, Yin

Abrégé

A floating oscillating water column-type wave energy power generation apparatus (6), comprising a first rotary disk chamber (1) and a protective cap (8); a nozzle (3) is mounted inside the first rotary disk chamber (1), a flow-guiding cone (4) is coaxially mounted below the nozzle (3), the flow-guiding cone (4) is conical and arranged with the tip facing down, an impeller (5) is coaxially mounted above the nozzle (3), a power generator is coaxially mounted above the impeller (5), the protective cap (8) is mounted at the top of the first rotary disk chamber (1), and a gap is provided between the edges of the two components for air circulation. The power generation apparatus reduces wave upsurging within the rotary disk chamber, protects the components within the apparatus, and prolongs the service life.

Classes IPC  ?

  • F03B 13/24 - Utilisation de l'énergie des vagues pour produire un déplacement d'air, p. ex. pour entraîner une turbine à air
  1     2     3        Prochaine page