Institute of New Materials, Guangdong Academy of Sciences

Chine

Retour au propriétaire

1-24 de 24 pour Institute of New Materials, Guangdong Academy of Sciences Trier par
Recheche Texte
Affiner par
Juridiction
        International 20
        États-Unis 4
Date
2024 octobre 3
2024 15
2023 3
2022 4
2021 1
Voir plus
Classe IPC
B33Y 10/00 - Procédés de fabrication additive 4
C22C 30/00 - Alliages contenant moins de 50% en poids de chaque constituant 4
C23C 24/10 - Revêtement à partir de poudres inorganiques en utilisant la chaleur ou une pression et la chaleur avec formation d'une phase liquide intermédiaire dans la couche 3
C23C 4/134 - Pulvérisation plasma 3
B22F 12/41 - Moyens de rayonnement caractérisés par le type, p.ex. laser ou faisceau d’électrons 2
Voir plus
Statut
En Instance 1
Enregistré / En vigueur 23
Résultats pour  brevets

1.

COPPER INTERCONNECT STRUCTURE SYSTEM AND PREPARATION METHOD THEREFOR, AND ELECTRONIC COMPONENT

      
Numéro d'application CN2023086097
Numéro de publication 2024/207173
Statut Délivré - en vigueur
Date de dépôt 2023-04-04
Date de publication 2024-10-10
Propriétaire INSTITUTE OF NEW MATERIALS GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Lin, Songsheng
  • Yin, Zhendong
  • Tang, Peng
  • Su, Yifan
  • Zhang, Cheng
  • Shi, Qian
  • Wei, Chunbei
  • Huang, Liwei
  • Dai, Mingjiang

Abrégé

The present application relates to the technical field of integrated circuit manufacturing and advanced packaging, and discloses a copper interconnect structure system and a preparation method therefor, and an electronic component. The copper interconnect structure system comprises a dielectric layer disposed on the surface of a substrate and a copper-based alloy thin film disposed on the surface of the dielectric layer, and a diffusion barrier layer interconnect structure is formed between the copper-based alloy thin film and the dielectric layer; doping elements are doped in the copper-based alloy thin film; the doping elements comprise a metal which is easy to form an oxide self-passivation layer and a refractory metal, and no intermetallic compound is formed between the doping elements and copper; the doping amount of the doping elements in the copper-based alloy thin film is 0.1-3 at.%. The copper interconnect structure system has relatively high thermal stability and reliability, can maintain relatively low thin film resistivity, is not only conducive to reducing circuit power consumption, but also conducive to prolonging the service life of a circuit, and has important guiding significance for improving the performance of an integrated circuit.

Classes IPC  ?

  • H01L 23/538 - Dispositions pour conduire le courant électrique à l'intérieur du dispositif pendant son fonctionnement, d'un composant à un autre la structure d'interconnexion entre une pluralité de puces semi-conductrices se trouvant au-dessus ou à l'intérieur de substrats isolants
  • H01L 21/768 - Fixation d'interconnexions servant à conduire le courant entre des composants distincts à l'intérieur du dispositif

2.

MACHINE-LEARNING-ORIENTED METHOD FOR EXTENDING TENSILE STRENGTH FEATURES OF ALUMINUM ALLOY

      
Numéro d'application CN2023123412
Numéro de publication 2024/198296
Statut Délivré - en vigueur
Date de dépôt 2023-10-08
Date de publication 2024-10-03
Propriétaire
  • FOSHAN UNIVERSITY (Chine)
  • INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
  • FOSHAN INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE OF GUANGDONG ACADEMY OF SCIENCES CO., LTD. (Chine)
Inventeur(s)
  • Wang, Kai
  • Huang, Zhuming
  • Zhang, Zhibo
  • Zheng, Kaihong
  • Liu, Chuan
  • Hu, Yu
  • Ding, Zongye
  • He, Kuanfang

Abrégé

A machine-learning-oriented method for extending tensile strength features of an aluminum alloy. The method comprises the following steps: collecting tensile strength data, and selecting a plurality of pieces of tensile strength data as features values of machine learning for predicting tensile strength; performing one-hot encoding processing on the selected plurality of pieces of tensile strength data, and then performing pre-processing; establishing a machine learning model, training the established machine learning model by using a data set, and predicting tensile strength by using the trained machine learning model; finding out a feature variable that has the greatest impact on the establishment of the machine learning model; and performing feature extension, so as to obtain an extended feature having greater importance.

Classes IPC  ?

  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p.ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
  • G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques
  • G06N 20/00 - Apprentissage automatique

3.

CRYSTAL INTERFACE CODING METHOD AND SYSTEM, TERMINAL DEVICE, AND STORAGE MEDIUM

      
Numéro d'application CN2023124944
Numéro de publication 2024/198308
Statut Délivré - en vigueur
Date de dépôt 2023-10-17
Date de publication 2024-10-03
Propriétaire
  • FOSHAN UNIVERSITY (Chine)
  • INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
  • FOSHAN INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE OF GUANGDONG ACADEMY OF SCIENCES CO., LTD. (Chine)
Inventeur(s)
  • Wang, Kai
  • Tan, Jielin
  • Zhang, Zhibo
  • Zheng, Kaihong
  • Liu, Chuan
  • Hu, Yu
  • Ding, Zongye
  • He, Kuanfang

Abrégé

The present application is suitable for the technical field of crystal material characterization, and provides a crystal interface coding method and system, a terminal device and a storage medium. The method comprises: acquiring first phase basic information of a first interface corresponding to a first target object and second phase basic information of a second interface corresponding to a second target object; according to first atomic coordinate information and second atomic coordinate information, determining lattice information of a third interface corresponding to a third target object; and inputting the first phase basic information, the second phase basic information and the lattice information into a preset interface matrix calculation formula, so as to determine interface information of the third interface. The present application can provide the interface information serving as a unique identifier of the interface, and accurately define the interface of a crystal on the basis of the interface information, helping to subsequently analyze and store interface data, reducing the effect of redundant information on the interface data, and achieving high practicability.

Classes IPC  ?

  • G16C 60/00 - Science informatique des matériaux, c. à d. TIC spécialement adaptées à la recherche des propriétés physiques ou chimiques de matériaux ou de phénomènes associés à leur conception, synthèse, traitement, caractérisation ou utilisation

4.

HIGH-ENTROPY ALLOY COATING AND PREPARATION METHOD AND USE THEREOF

      
Numéro d'application 17926993
Statut En instance
Date de dépôt 2022-09-30
Date de la première publication 2024-08-01
Propriétaire Institute of New Materials, Guangdong Academy of Sciences (Chine)
Inventeur(s)
  • Yan, Xingchen
  • Chang, Cheng
  • Lu, Bingwen
  • Deng, Changguang
  • Liu, Min

Abrégé

Disclosed are a high-entropy alloy (HEA) coating and a preparation method and use thereof. Laser cladding is conducted with an HEA powder to obtain the HEA coating, where the HEA is a FeCoCrNiAl0.5Ti0.5 alloy, and the HEA includes the following chemical components in atomic percentage: Al: 10.01% to 12.30%, Co: 18.1% to 22.5%, Cr: 18.05% to 20.12%, Fe: 18.77% to 21.02%, Ni: 19.21% to 20.99%, and Ti: 8.43% to 11.5%. The HEA material with high hardness and wear resistance provided by the present disclosure is suitable for laser cladding of a surface of a precision mold, an offshore component, or a drilling rod. A powder is prepared from the above alloy components and then prepared into a corresponding HEA coating with high strength, high hardness, and prominent wear resistance through laser cladding. The material has prominent weldability and is a special nickel-based HEA material suitable for laser additive manufacturing.

Classes IPC  ?

  • C22C 30/00 - Alliages contenant moins de 50% en poids de chaque constituant
  • B22F 9/10 - Fabrication des poudres métalliques ou de leurs suspensions; Appareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p.ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation en employant la force centrifuge
  • B23K 26/34 - Soudage au laser pour des finalités autres que l’assemblage
  • B23K 35/30 - Emploi de matériaux spécifiés pour le soudage ou le brasage dont le principal constituant fond à moins de 1550 C
  • B23K 103/04 - Alliages d'acier

5.

HIGH-STRENGTH CORROSION-RESISTANT ANTI-CRACKING STEEL, AND PREPARATION METHOD THEREFOR AND USE THEREOF

      
Numéro d'application CN2023124593
Numéro de publication 2024/139542
Statut Délivré - en vigueur
Date de dépôt 2023-10-13
Date de publication 2024-07-04
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Luo, Zhichao
  • He, Jiazhen
  • Luo, Xing
  • Fan, Kuanyuan
  • Liu, Tianlong
  • Yin, Fuxing
  • Zheng, Kaihong

Abrégé

A high-strength corrosion-resistant anti-cracking steel, and a preparation method therefor and the use thereof, which relate to the technical field of metal materials. The crystal grains of the steel comprise austenite and ferrite, and the crystal grains have a slender fiber shape. The high-strength corrosion-resistant anti-cracking steel comprises the following elements in percentages by weight: C: 0.01-0.1%, Cr: 18-32%, Ni: 3-10%, Mo: 0.2-5.0%, Mn: 0.1-2.0%, Si: 0.2-1.0%, N: 0.1-0.3%, S≤0.03%, P≤0.03%, and the balance of Fe and inevitable impurities. The corrosion resistance of a material is improved by controlling the element composition of the steel, especially the ratio of C, N and Si. The slender fibrous structure grains in the material have good impact toughness, such that the mechanical properties of fatigue fracture performance, etc., of the material can be significantly improved, thereby prolonging the service life of the high-strength corrosion-resistant anti-cracking steel.

Classes IPC  ?

  • C22C 38/44 - Alliages ferreux, p.ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
  • C22C 38/58 - Alliages ferreux, p.ex. aciers alliés contenant du chrome et du nickel et plus de 1,5% en poids de manganèse
  • C22C 38/02 - Alliages ferreux, p.ex. aciers alliés contenant du silicium 
  • C22C 38/04 - Alliages ferreux, p.ex. aciers alliés contenant du manganèse
  • C22C 38/00 - Alliages ferreux, p.ex. aciers alliés
  • C21D 8/06 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de barres ou de fils
  • F16B 35/00 - Boulons filetés; Boulons d'ancrage; Goujons filetés; Vis; Vis de pression

6.

SUPPORTING AND CONNECTING BODY FOR SOLID OXIDE FUEL CELL OR ELECTROLYSIS CELL, AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2023132246
Numéro de publication 2024/125205
Statut Délivré - en vigueur
Date de dépôt 2023-11-17
Date de publication 2024-06-20
Propriétaire INSTITUTE OF NEW MATERIALS GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Song, Chen
  • Liu, Min
  • Dong, Dongdong
  • Liu, Taikai
  • Wen, Kui

Abrégé

A supporting and connecting body (100) for solid oxide fuel cells or electrolysis cells (10), and a preparation method therefor. The method comprises: first, obtaining an integrally formed supporting and connecting body (100) by means of an additive manufacturing technology, and then preparing pass-through holes (101) in the surface thereof by means of laser drilling, electron beam drilling or chemical etching technologies, such that the supporting and connecting body (100) has multiple functions of supporting, mass transferring, and serially connecting solid oxide fuel cells or electrolysis cells (10). A through hole plate on the surface of the integrally formed supporting and connecting body (100) is not prone to deform, and the pass-through holes (101) thereof can be finely controlled, thereby improving the air permeability of the supporting and connecting body (100), enhancing the strength of bonding between the supporting and connecting body (100) and a functional layer (200) and increasing the amount of power generation per unit area, and further obtaining high-performance solid oxide fuel cell or electrolysis cell stacks (20).

Classes IPC  ?

  • H01M 8/023 - Collecteurs; Séparateurs, p.ex. séparateurs bipolaires; Interconnecteurs poreux et caractérisés par le matériau
  • H01M 8/0232 - Métaux ou alliages
  • B33Y 10/00 - Procédés de fabrication additive

7.

MEASUREMENT METHOD FOR POROSITY OF IRREGULAR COLUMNAR STRUCTURE OF THERMAL BARRIER COATING

      
Numéro d'application CN2023128476
Numéro de publication 2024/120071
Statut Délivré - en vigueur
Date de dépôt 2023-10-31
Date de publication 2024-06-13
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Lv, Bowen
  • Zhao, Hongxu
  • Wang, Chao
  • Zhang, Xiaofeng
  • Mao, Jie
  • Deng, Chunming
  • Deng, Changguang
  • Liu, Min

Abrégé

Disclosed in the present invention is a measurement method for the porosity of an irregular columnar structure of a thermal barrier coating. In the method, by using the different volatilization characteristics of sodium chloride on the surface of a coating and inside pores, the porosity inside an irregular columnar structure is quantitatively characterized by means of a thermogravimetric experiment. The method mainly comprises the steps of sodium chloride melt infiltration, thermogravimetric analysis, porosity calculation, etc. The measurement method is simple and easily implemented, is not sensitive to a sample treatment process, and has a relatively universal applicability, and a relatively good repeatability and accuracy. The present invention is applicable to the nondestructive quantitative characterization of the porosity of a thermal barrier coating having an irregular columnar structure of a complex pore structure, and is of great significance for evaluating and predicting the thermal insulation and corrosion resistance performance of the thermal barrier coating having the irregular columnar structure.

Classes IPC  ?

  • G01N 15/08 - Recherche de la perméabilité, du volume des pores ou de l'aire superficielle des matériaux poreux

8.

HIGH-TEMPERATURE SUPER-LUBRICATION SILICON-DOPED DIAMOND-LIKE CARBON FILM, AND PREPARATION METHOD THEREFOR AND USE THEREOF

      
Numéro d'application CN2023124167
Numéro de publication 2024/099027
Statut Délivré - en vigueur
Date de dépôt 2023-10-12
Date de publication 2024-05-16
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Lin, Songsheng
  • Chen, Yanjun
  • Zhang, Cheng
  • Li, Haichao
  • Su, Yifan
  • Tang, Peng
  • Shi, Qian
  • Wei, Chunbei
  • Huang, Shuqi
  • Dai, Mingjiang
  • Zhou, Kesong

Abrégé

The present invention belongs to the technical field of surface treatments, and disclosed are a high-temperature super-lubrication silicon-doped diamond-like carbon film, and a preparation method therefor and the use thereof. The high-temperature super-lubrication silicon-doped diamond-like carbon film comprises a Cr priming layer, a CrxSiyCz gradient transition layer and an Si-DLC functional layer which are sequentially arranged on the surface of a substrate. Further disclosed is a method for improving the friction and wear performance of a matrix. The high-temperature super-lubrication silicon-doped diamond-like carbon film is prepared on the surface of the matrix, such that during friction in a high-temperature atmospheric environment, a compact transfer film composed of amorphous carbon and SiOx is formed in situ at a friction pair.

Classes IPC  ?

  • C23C 14/06 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le matériau de revêtement

9.

ANTI-CARBON-DEPOSITION SELF-SEALING ELECTRICITY-GAS SYMBIOTIC SOLID OXIDE FUEL CELL STRUCTURE

      
Numéro d'application CN2023128976
Numéro de publication 2024/061382
Statut Délivré - en vigueur
Date de dépôt 2023-11-01
Date de publication 2024-03-28
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Wen, Kui
  • Liu, Min
  • Liu, Taikai
  • Song, Chen
  • Dong, Dongdong
  • Mao, Jie
  • Deng, Chunming
  • Deng, Changguang
  • Zhou, Kesong

Abrégé

The present invention relates to the technical field of cells, and provides an anti-carbon-deposition self-sealing electricity-gas symbiotic solid oxide fuel cell structure. The cell structure comprises a connector reforming plate, an anode, an electrolyte, and a cathode, wherein the connector reforming plate comprises a connector body; an upper surface and a lower surface of the connector body are respectively provided with a cell supporting porous area and an oxidizing gas flow channel; a lower surface of the cell supporting porous area is provided with a reformed synthesis gas flow channel; a reforming porous area is provided between the reformed synthesis gas flow channel and the oxidizing gas flow channel, and the reforming porous area is separated from the upper and lower flow channels by leakage-free wall faces; and the anode, the electrolyte and the cathode are sequentially stacked on an upper surface of the cell supporting porous area. The cell structure realizes self-sealing of reformed fuel and reformed synthesis gas, thereby reducing the sealing difficulty for a flat-plate SOFC; and indirect reforming of fuel in the reforming porous area can prevent the problems of cell structure damage and anode carbon deposition caused by excessively high local thermal stress during internal reforming, thereby greatly improving the performance of a cell and prolonging the service life thereof.

Classes IPC  ?

  • H01M 8/0276 - Moyens d’étanchéité caractérisés par leur forme
  • H01M 8/0258 - Collecteurs; Séparateurs, p.ex. séparateurs bipolaires; Interconnecteurs caractérisés par la configuration des canaux, p.ex. par le champ d’écoulement du réactif ou du réfrigérant
  • H01M 8/0297 - Dispositions pour assembler des électrodes, des couches réservoirs, des échangeurs de chaleur ou des séparateurs bipolaires entre eux

10.

ANTI-SINTERING HIGH-ENTROPY CERAMIC THERMAL BARRIER COATING POWDER MATERIAL FOR PLASMA SPRAYING PHYSICAL VAPOR DEPOSITION, AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2023128311
Numéro de publication 2024/032829
Statut Délivré - en vigueur
Date de dépôt 2023-10-31
Date de publication 2024-02-15
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Lv, Bowen
  • Mao, Xiye
  • Wang, Chao
  • Tan, Xi
  • Zhang, Xiaofeng
  • Mao, Jie
  • Deng, Chunming
  • Deng, Changguang
  • Liu, Min

Abrégé

ss of more than 0.5; and the powder material is composed of five rare earth elements of Y, La, Nd, Sm and Eu in an equal molar ratio, and presents uniform element distribution on both the micron and nano scales. The preparation method therefor comprises two steps of solid-phase sintering and spray granulation. The powder material is applicable to plasma spraying physical vapor deposition, has a good sintering resistance under the ultrahigh-temperature conditions of 1500ºC, has a simple preparation process, and is beneficial for batch preparation and engineering applications.

Classes IPC  ?

  • C04B 35/48 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes à base d'oxydes de zirconium ou d'hafnium ou de zirconates ou d'hafnates
  • C04B 35/488 - Composites
  • C04B 35/482 - Réfractaires obtenus à partir de mélanges à granulométrie contrôlée
  • C23C 4/134 - Pulvérisation plasma

11.

METHOD AND DEVICE FOR CLADDING HIGH-REFLECTION MATERIAL USING SHORT WAVELENGTH ULTRA-HIGH SPEED LASER

      
Numéro d'application CN2023122010
Numéro de publication 2024/027852
Statut Délivré - en vigueur
Date de dépôt 2023-09-27
Date de publication 2024-02-08
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Lu, Bingwen
  • Yan, Xingchen
  • Gao, Shuohong
  • Wang, Yueliang
  • Deng, Zhaoyang
  • Deng, Changguang
  • Liu, Min

Abrégé

The present invention relates to the technical field of laser cladding, and a method and device for cladding a high-reflection material using a short wavelength ultra-high speed laser are disclosed. In the above method, a short-wavelength laser is employed to carry out ultra-high-speed laser cladding on the surface of the high-reflection material, a spot of a laser emitted by the short-wavelength laser is a rectangular spot, a nozzle used in a cladding process is a rectangular powder feeding nozzle having a rectangular powder outlet, and long sides of the rectangular spot are parallel to long sides of the rectangular powder outlet. The above device comprises a short-wavelength laser, a rectangular laser cladding processing head, a powder feeding device, and a rectangular powder feeding nozzle. The device and the method employ the short-wavelength laser to carry out a cladding treatment, such that the laser absorption rates of a high-reflection material such as copper, aluminum, etc. can be significantly increased, a stable melting pool is formed, the loss of laser power and cladding defects are reduced, the quality of a formed coating is ensured, damage to an apparatus caused by laser reflection is reduced, and the device and the method have good application prospects in the fields of aerospace, marine apparatuses, iron and steel metallurgy, etc.

Classes IPC  ?

  • C23C 24/10 - Revêtement à partir de poudres inorganiques en utilisant la chaleur ou une pression et la chaleur avec formation d'une phase liquide intermédiaire dans la couche
  • B22F 3/105 - Frittage seul en utilisant un courant électrique, un rayonnement laser ou un plasma

12.

IMPACT-RESISTANT, WEAR-RESISTANT AND CORROSION-RESISTANT HIGH-ENTROPY ALLOY-CERAMIC COMPOSITE COATING, AND PREPARATION METHOD THEREFOR AND USE THEREOF

      
Numéro d'application CN2023122026
Numéro de publication 2024/027853
Statut Délivré - en vigueur
Date de dépôt 2023-09-27
Date de publication 2024-02-08
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Lu, Bingwen
  • Yan, Xingchen
  • Wang, Yueliang
  • Dong, Zhen
  • Gao, Shuohong
  • Deng, Zhaoyang
  • Liu, Min

Abrégé

32233; the particle size of the ceramic particles is 45-85 μm; and the amounts of the ceramic particles contained in the preparation raw materials of the three coatings are 5-15%, 20-30% and 50-60% in sequence. The thickness ratio of the three coatings is 1 : 0.8-0.9 : 0.6-0.7. The composite coating has good impact resistance, abrasion resistance and corrosion resistance at the same time.

Classes IPC  ?

  • C23C 24/10 - Revêtement à partir de poudres inorganiques en utilisant la chaleur ou une pression et la chaleur avec formation d'une phase liquide intermédiaire dans la couche
  • C22C 30/00 - Alliages contenant moins de 50% en poids de chaque constituant
  • C22C 29/06 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures à base de carbures ou de carbonitrures à base de carbures mais ne contenant pas d'autres composés métalliques
  • C22C 29/12 - Alliages à base de carbures, oxydes, borures, nitrures ou siliciures, p.ex. cermets, ou d'autres composés métalliques, p.ex. oxynitrures, sulfures à base d'oxydes

13.

HIGH-ENTROPY CERAMIC THERMAL BARRIER COATING AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2023127499
Numéro de publication 2024/027858
Statut Délivré - en vigueur
Date de dépôt 2023-10-30
Date de publication 2024-02-08
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Lv, Bowen
  • Mao, Xiye
  • Wang, Chao
  • Tan, Xi
  • Zhang, Xiaofeng
  • Mao, Jie
  • Deng, Chunming
  • Deng, Changguang
  • Liu, Min

Abrégé

0.20.20.20.20.22277, wherein the percentage of the mole number of each rare earth element to the total mole number of all the rare earth elements is 18-22%. Elements in the high-entropy ceramic thermal barrier coating are evenly distributed on the coating, and element segregation does not occur. In addition, the high-entropy ceramic thermal barrier coating has a fluorite phase structure, and the cross-section morphology thereof is a feather-type columnar high-strain tolerance structure, wherein the bottom coating is formed by structure ordering of columnar principal crystals and dendritic crystals, and the porosity thereof is large; and the top is formed by loose structure ordering of columnar crystals, and numerous secondary dendritic crystals, which do not grow, constitute a "cauliflower head" area. The coating material has both good high-temperature phase stability and good mechanical properties, and also has a significant meaning in the development and application of an advanced structure ultrahigh-temperature thermal barrier coating technology.

Classes IPC  ?

14.

SYSTEM FOR LASER ADDITIVE MANUFACTURING, AND ADDITIVE MANUFACTURING METHOD

      
Numéro d'application CN2023121951
Numéro de publication 2024/012610
Statut Délivré - en vigueur
Date de dépôt 2023-09-27
Date de publication 2024-01-18
Propriétaire
  • INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
  • KEY & CORE TECHNOLOGY INNOVATION INSTITUTE OF THE GREATER BAY AREA (Chine)
Inventeur(s)
  • Chang, Cheng
  • Yan, Xingchen
  • Lu, Bingwen
  • Gao, Shuohong
  • Dong, Dongdong
  • Liu, Min
  • Yang, Junhong
  • Zheng, Jiangpeng
  • Sun, Tao

Abrégé

A system for laser additive manufacturing, and an additive manufacturing method, which relate to the technical field of additive manufacturing. The system for laser additive manufacturing comprises an infrared-laser generator (001), an infrared-light collimating lens (0031), a blue-laser light generator (005), a blue-light collimating lens (0032), a dichroic mirror (004) and a focusing lens (006), and the other portions of the system are all common matching systems for a laser additive manufacturing system. The idea of performing composite machining by means of multi-wavelength light beams is used, that is, beam combination processing is performed at a focus by using a plurality of beams of low-power pulse-type blue laser, such that an actual machining area and the energy density of laser outputs are increased; and the energy loss rate of the blue laser in an optical fiber is reduced, the laser absorptivity of a highly reflective material is increased, and a molten bath is expanded and maintained by using infrared laser having large light spots, thereby achieving goals such as improving the additive efficiency and reducing the energy consumption.

Classes IPC  ?

  • B22F 12/41 - Moyens de rayonnement caractérisés par le type, p.ex. laser ou faisceau d’électrons
  • B23K 26/34 - Soudage au laser pour des finalités autres que l’assemblage
  • B22F 12/45 - Moyens de rayonnement multiples
  • B22F 10/25 - Dépôt direct de particules métalliques, p.ex. dépôt direct de métal [DMD] ou mise en forme par laser [LENS]
  • B22F 10/28 - Fusion sur lit de poudre, p.ex. fusion sélective par laser [FSL] ou fusion par faisceau d’électrons [EBM]
  • B33Y 30/00 - Appareils pour la fabrication additive; Leurs parties constitutives ou accessoires à cet effet
  • B33Y 10/00 - Procédés de fabrication additive

15.

DIAMOND COATING MICRO DRILL BIT, AND PREPARATION METHOD THEREFOR AND USE THEREOF

      
Numéro d'application CN2023123688
Numéro de publication 2024/012611
Statut Délivré - en vigueur
Date de dépôt 2023-10-10
Date de publication 2024-01-18
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Shi, Qian
  • Zhang, Yuming
  • Su, Yifan
  • Lin, Songsheng
  • Zhang, Cheng
  • Tang, Peng
  • Dai, Mingjiang
  • Huang, Shuqi

Abrégé

A diamond coating micro drill bit, and a preparation method therefor and the use thereof, which belong to the technical field of micro drill bits. The method comprises: before a diamond coating is deposited, subjecting a micro drill bit to chemical pretreatment, wherein the diameter of the micro drill bit is 0.35-0.75 mm, the grain size is 0.3-1.0 μm, and the cobalt content is 4-8 wt%; the chemical pretreatment comprises a first acid etching, an alkali etching and a second acid etching; an acid etching liquid comprises nitric acid, hydrochloric acid and water in a volume ratio of 1 : 2-4 : 10-15; an alkali etching liquid comprises potassium ferricyanide, potassium nitrate and water in a volume ratio of 1 : 1 : 10; and the time taken for the three instances of etching is respectively 10-30 s, 2-6 min and 10-50 s. The method can significantly reduce the influence of the chemical pretreatment on the breaking strength of the micro drill bit and the preparation effect of the diamond coating, the Co removal effect is good, the etching efficiency is high, and the micro drill bit obtained can be used for machining circuit boards.

Classes IPC  ?

  • C23C 16/02 - Pré-traitement du matériau à revêtir
  • C23C 16/27 - Le diamant uniquement
  • C23C 16/44 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c. à d. procédés de dépôt chimique en phase vapeur (CVD) caractérisé par le procédé de revêtement
  • B23B 51/00 - Outils pour machines à percer

16.

TITANIUM PARTICLE REINFORCED MAGNESIUM-BASED COMPOSITE MATERIAL AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2023071263
Numéro de publication 2023/231419
Statut Délivré - en vigueur
Date de dépôt 2023-01-09
Date de publication 2023-12-07
Propriétaire INSTITUTE OF NEW MATERIALS GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Zheng, Kaihong
  • Li, Xintao
  • Xu, Jun
  • Pan, Fusheng

Abrégé

The present disclosure belongs to the technical field of metal-based composite materials, and particularly relates to a titanium particle reinforced magnesium-based composite material and a preparation method therefor. The preparation method comprises: in the presence of protective gas, (1) heating a magnesium alloy until the magnesium alloy is completely melted; (2) directly introducing titanium particles without preheating under a stirring condition, and then carrying out stirring and mixing; and (3) carrying out heating and cast molding. Step (2) and step (3) are carried out under the micro-positive pressure conditions that the pressure in a furnace is higher than the atmospheric pressure outside the furnace and the pressure difference is 0-300 Pa, and in the heating process of step (2) and step (3), the viscosity of a magnesium alloy melt is 1-10 Pa·s by adjusting the temperature and stirring conditions of the magnesium alloy melt, respectively. According to the method of the present disclosure, the viscosity of the magnesium alloy melt is used as a key index, and the melt viscosity is controlled according to the stirring condition and the melt temperature, such that titanium particle sedimentation and agglomeration are effectively avoided, and the uniformly distributed composite material is obtained.

Classes IPC  ?

  • C22C 23/00 - Alliages à base de magnésium
  • C22C 1/02 - Fabrication des alliages non ferreux par fusion
  • G05D 24/02 - Commande de la viscosité caractérisée par l'utilisation de moyens électriques

17.

HIGH-ENTROPY ALLOY COATING, AND PREPARATION METHOD THEREFOR AND USE THEREOF

      
Numéro d'application CN2022123032
Numéro de publication 2023/056890
Statut Délivré - en vigueur
Date de dépôt 2022-09-30
Date de publication 2023-04-13
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Yan, Xingchen
  • Chang, Cheng
  • Lu, Bingwen
  • Deng, Changguang
  • Liu, Min

Abrégé

Disclosed in the present invention are a high-entropy alloy, and a preparation method therefor and the use thereof. The present invention relates to the technical field of high-performance metal powder materials. A high-entropy alloy coating is prepared by means of the laser cladding of a high-entropy alloy powder. The high-entropy alloy is an FeCoCrNiAl0.5Ti0.5 alloy, and the chemical composition of the high-entropy alloy and the atomic percentages thereof are: 10.01-12.30% of Al, 18.1-22.5% of Co, 18.05-20.12% of Cr, 18.77-21.02% of Fe, 19.21-20.99% of Ni, and 8.43-11.5% of Ti. The high-hardness, wear-resistant and high-entropy alloy material provided in the present invention is a high-hardness, wear-resistant and high-entropy alloy material suitable for surface laser cladding for a precision mold, a maritime work part, a drilling oil well rod, etc.

Classes IPC  ?

  • C22C 30/00 - Alliages contenant moins de 50% en poids de chaque constituant
  • B22F 9/10 - Fabrication des poudres métalliques ou de leurs suspensions; Appareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p.ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation en employant la force centrifuge
  • C23C 24/10 - Revêtement à partir de poudres inorganiques en utilisant la chaleur ou une pression et la chaleur avec formation d'une phase liquide intermédiaire dans la couche
  • B22F 10/20 - Frittage ou fusion directs
  • B33Y 10/00 - Procédés de fabrication additive
  • B33Y 70/00 - Matériaux spécialement adaptés à la fabrication additive

18.

Biomedical beta titanium alloy and preparation method thereof

      
Numéro d'application 17874266
Numéro de brevet 12091731
Statut Délivré - en vigueur
Date de dépôt 2022-07-26
Date de la première publication 2023-01-26
Date d'octroi 2024-09-17
Propriétaire Institute of New Materials, Guangdong Academy of Sciences (Chine)
Inventeur(s)
  • Yan, Xingchen
  • Chang, Cheng
  • Chu, Qingkun
  • Deng, Changguang
  • Liu, Min

Abrégé

Disclosed is a biomedical β titanium alloy and a preparation method thereof. Its composition includes: Mo: 9.20-13.50%; Fe: 1.00-3.20%; Zr: 3.50-8.20%; Ta: 0-1.00%; the balance is Ti. The β titanium alloy is suitable for the laser additive manufacturing technology, and the prepared parts have a dense equiaxed grain structure with ultra-low grain size and a small number of columnar grain structures, which produces a fine-grain strengthening effect, and greatly improve the hardness and tribocorrosion performance of the alloy material. Also provided is a method for preparing a non-toxic, low-elasticity, and tribocorrosion resistant biomedical β titanium alloy material. A powder prepared from the above alloy components is subjected to a laser additive manufacturing technology to prepare a corresponding β titanium alloy with high-hardness, good tribocorrosion resistance and extremely low cytotoxicity. Moreover, the prepared material has good weldability and is a special metal alloy powder suitable for laser additive manufacturing.

Classes IPC  ?

  • C22C 14/00 - Alliages à base de titane
  • B22F 1/05 - Poudres métalliques caractérisées par la dimension ou la surface spécifique des particules
  • B22F 1/065 - Particules sphériques
  • B22F 9/14 - Fabrication des poudres métalliques ou de leurs suspensions; Appareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques en utilisant des décharges électriques
  • C22C 1/04 - Fabrication des alliages non ferreux par métallurgie des poudres

19.

Solid oxide fuel cell/electrolytic cell and electric stack prepared based on additive manufacturing

      
Numéro d'application 17637970
Numéro de brevet 11502320
Statut Délivré - en vigueur
Date de dépôt 2020-12-03
Date de la première publication 2022-08-25
Date d'octroi 2022-11-15
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Liu, Min
  • Song, Chen
  • Liu, Taikai
  • Dong, Dongdong
  • Deng, Chunming
  • Zhou, Kesong
  • Zhang, Yapeng
  • Wen, Kui
  • Deng, Changguang
  • Ma, Wenyou

Abrégé

Provided are a solid oxide fuel cell/electrolytic cell and electric stack, which relate to the field of cells. A metal support frame is molded in one step or more steps through the additive manufacturing technology. And then a fuel/electrolytic cell functional layer is formed on the metal support frame by means of thermal spraying, tape casting, screen printing or chemical vapor deposition method, and self-sealing of the solid oxide fuel cell/electrolytic cell is realized through a dense structure of electrolyte.

Classes IPC  ?

  • H01M 8/1213 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Éléments à combustible; Leur fabrication Éléments à combustible avec électrolytes solides fonctionnant à haute température, p.ex. avec un électrolyte en ZrO2 stabilisé caractérisés par la combinaison électrode/électrolyte ou par le matériau de support
  • B22F 10/366 - Paramètres de balayage, p.ex. distance d’éclosion ou stratégie de balayage
  • H01M 8/1286 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Éléments à combustible; Leur fabrication Éléments à combustible avec électrolytes solides fonctionnant à haute température, p.ex. avec un électrolyte en ZrO2 stabilisé Éléments à combustible appliqués sur un support, p.ex. éléments à combustible miniatures déposés sur des supports de silice
  • B22F 12/49 - Appareils de balayage
  • B33Y 10/00 - Procédés de fabrication additive
  • B33Y 80/00 - Produits obtenus par fabrication additive
  • B22F 12/41 - Moyens de rayonnement caractérisés par le type, p.ex. laser ou faisceau d’électrons
  • H01M 8/12 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Éléments à combustible; Leur fabrication Éléments à combustible avec électrolytes solides fonctionnant à haute température, p.ex. avec un électrolyte en ZrO2 stabilisé

20.

ELECTROCHEMICAL REACTION APPARATUS AND MANUFACTURING METHOD THEREFOR

      
Numéro d'application CN2021070769
Numéro de publication 2022/147740
Statut Délivré - en vigueur
Date de dépôt 2021-01-08
Date de publication 2022-07-14
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Liu, Min
  • Liu, Taikai
  • Song, Chen
  • Dong, Dongdong
  • Wen, Kui
  • Deng, Chunming
  • Ma, Wenyou

Abrégé

The present invention relates to the technical field of electrochemical reactions. Disclosed is a manufacturing method for an electrochemical reaction apparatus, the method comprising: first, providing a unit model of a battery unit (110), and then manufacturing a plurality of support units using an additive manufacturing technique and according to the unit model; coating each support unit with a first electrode layer (117), an electrolyte layer (118) and a second electrode layer (119), so as to obtain the battery unit (110); then continuing to apply a first sealant layer around the second electrode layer (119); and afterwards, successively stacking a plurality of battery units (110) to form a stack body (100), and sintering the stack body (100) in one step. Flat-plate-type support units are manufactured by using an additive manufacturing technique, and the support units are formed integrally, such that the procedure is simple, the manufacturing efficiency of an electrochemical reaction apparatus is improved, and the manufacturing efficiency of the support units is 4 to 200 times that of the traditional process. In addition, a plurality of battery units (110) are stacked and are then sintered in one step, and the manufacturing of the electrochemical reaction apparatus can be completed by means of sintering in one step, such that the procedure is simple, and there is no need to repeatedly sinter the individual battery units.

Classes IPC  ?

  • H01M 8/2404 - Procédés ou appareillages pour le groupement d’éléments à combustible
  • H01M 8/2425 - Groupement d'éléments à combustible, p.ex. empilement d'éléments à combustible avec électrolytes solides ou supportés par une matrice Éléments à haute température avec électrolytes solides

21.

SOLID OXIDE FUEL CELL/ELECTROLYZER CELL PREPARED ON THE BASIS OF ADDITIVE MANUFACTURING, AND STACK

      
Numéro d'application CN2020133641
Numéro de publication 2022/077729
Statut Délivré - en vigueur
Date de dépôt 2020-12-03
Date de publication 2022-04-21
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Liu, Min
  • Song, Chen
  • Liu, Taikai
  • Dong, Dongdong
  • Deng, Chunming
  • Zhou, Kesong
  • Zhang, Yapeng
  • Wen, Kui
  • Deng, Changguang
  • Ma, Wenyou

Abrégé

A solid oxide fuel cell/electrolyzer cell (400, 500) and a stack, relating to the field of cells. A metal support frame (300a, 300b) is formed by one-step or multi-step molding by means of an additive manufacturing technology. Then, a cell/electrolyzer cell functional layer (401) is formed on the metal support frame (300a, 300b) by means of thermal spraying, tape casting, screen printing, or a chemical vapor deposition method, and self-sealing of the solid oxide fuel cell/electrolyzer cell (400, 500) is achieved by using a dense structure of an electrolyte. According to the solid oxide fuel cell/electrolyzer cell (400, 500) prepared by means of the manufacturing technology and the stack, conventional processes such as drilling, welding, packaging, powder metallurgy, and high-temperature sintering can be avoided, and structural and functional integration of the solid oxide fuel cell/electrolyzer cell (400, 500) is achieved, and the preparation efficiency is improved. Moreover, the mass energy density, processing accuracy, and reliability of the metal support solid oxide fuel cell/electrolyzer cell (400, 500) can be obviously improved, the preparation costs are reduced, and commercialization of the solid oxide fuel cell/electrolyzer cell (400, 500) is facilitated.

Classes IPC  ?

  • H01M 8/1286 - PROCÉDÉS OU MOYENS POUR LA CONVERSION DIRECTE DE L'ÉNERGIE CHIMIQUE EN ÉNERGIE ÉLECTRIQUE, p.ex. BATTERIES Éléments à combustible; Leur fabrication Éléments à combustible avec électrolytes solides fonctionnant à haute température, p.ex. avec un électrolyte en ZrO2 stabilisé Éléments à combustible appliqués sur un support, p.ex. éléments à combustible miniatures déposés sur des supports de silice
  • C25B 1/04 - Hydrogène ou oxygène par électrolyse de l'eau
  • C25B 9/63 - Supports d'électrodes; Positionnement des électrodes

22.

DIFFUSION-RESISTANT HIGH-ENTROPY ALLOY COATING MATERIAL, HEAT RESISTANT COATING MATERIAL, PREPARATION METHOD THEREFOR, AND APPLICATION THEREOF

      
Numéro d'application CN2020127792
Numéro de publication 2022/062102
Statut Délivré - en vigueur
Date de dépôt 2020-11-10
Date de publication 2022-03-31
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Wang, Wei
  • Xu, Zhongzhan
  • Wang, Lei
  • Hong, Yue
  • Shi, Qian
  • Lin, Songsheng
  • Guo, Chaoqian
  • Tang, Peng
  • Su, Yifan
  • Dai, Mingjiang
  • Wang, Hongli
  • Tang, Chunmei

Abrégé

A diffusion-resistant high-entropy alloy coating material and a heat resistant coating material, comprising a substrate and a diffusion-resistant high-entropy alloy coating. The diffusion-resistant high-entropy alloy coating comprises the elements: Al, Co, Cr, Ni, and Mo. The heat resistant coating material is obtained by forming the aforementioned diffusion-resistant high-entropy alloy coating on the substrate, and then, using same as a base material, forming a heat resistant coating thereon. By utilizing a unique slow diffusion effect of the diffusion-resistant high-entropy alloy coating and good physical and chemical matching thereof with both the substrate and the heat resistant coating, it is possible to effectively inhibit mutual diffusion of alloy components and harmful phase precipitation at the contact surface between the substrate and the coating, and improve the high temperature oxidation resistance capability of the coating. The heat resistant coating material can be applied in the preparation of hot-end parts of aeronautical engines or gas turbines to improve the service life and working reliability of the parts.

Classes IPC  ?

  • C23C 28/02 - Revêtements uniquement de matériaux métalliques
  • C22C 30/00 - Alliages contenant moins de 50% en poids de chaque constituant
  • C23C 14/16 - Matériau métallique, bore ou silicium sur des substrats métalliques, en bore ou en silicium
  • C23C 14/32 - Evaporation sous vide par évaporation suivie d'une ionisation des vapeurs
  • C23C 14/35 - Pulvérisation cathodique par application d'un champ magnétique, p.ex. pulvérisation au moyen d'un magnétron

23.

Gm type cryogenic refrigerator rotary valve

      
Numéro d'application 17253112
Numéro de brevet 12000497
Statut Délivré - en vigueur
Date de dépôt 2018-12-06
Date de la première publication 2021-09-02
Date d'octroi 2024-06-04
Propriétaire Institute of New Materials, Guangdong Academy of Sciences (Chine)
Inventeur(s)
  • Zhang, Jifu
  • Chen, Xingchi
  • Liu, Min
  • Dai, Mingjiang
  • Deng, Chunming
  • Deng, Changguang

Abrégé

Disclosed are a GM type cryogenic refrigerator rotary valve and a preparation method therefor. The GM type cryogenic refrigerator rotary valve comprises an aluminum alloy rotating valve and an alumina ceramic membrane. A valve body of the aluminum alloy rotating valve is provided with a first surface for arranging a working boss and a second surface opposite to the first surface; and a high-pressure hole and a low-pressure groove are both provided in the working boss, and a vent hole is provided in the first surface; the high-pressure hole and the vent hole both penetrate the valve body, and an air chamber is formed on the second surface. The alumina ceramic membrane is plated on surface of the aluminum alloy rotating valve. The preparation method comprises: plating an alumina ceramic membrane on surface of an aluminum alloy rotating valve by means of a micro-arc oxidation process.

Classes IPC  ?

  • F16K 27/00 - Structures des logements; Matériaux utilisés à cet effet
  • C25D 11/02 - Anodisation
  • C25D 11/06 - Anodisation de l'aluminium ou de ses alliages caractérisée par les électrolytes utilisés
  • F16K 3/08 - Robinets-vannes ou tiroirs, c. à d. dispositifs obturateurs dont l'élément de fermeture glisse le long d'un siège pour l'ouverture ou la fermeture à faces d'obturation planes; Garnitures d'étanchéité à cet effet avec éléments de fermeture articulés à pivot en forme de plaques disposées entre l'alimentation et l'évacuation les plaques étant circulaires et pivotant autour de leur centre
  • F25B 9/14 - Machines, installations ou systèmes à compression dans lesquels le fluide frigorigène est l'air ou un autre gaz à point d'ébullition peu élevé caractérisés par le cycle utilisé, p.ex. cycle de Stirling
  • F25B 41/20 - Disposition des soupapes, p.ex. de soupapes marche-arrêt ou de soupapes de régulation de débit

24.

METAL MATERIAL AND MODIFICATION METHOD OF IN SITU DISSOLUTION ON SURFACE THEREFOR

      
Numéro d'application CN2020080643
Numéro de publication 2020/248644
Statut Délivré - en vigueur
Date de dépôt 2020-03-23
Date de publication 2020-12-17
Propriétaire INSTITUTE OF NEW MATERIALS, GUANGDONG ACADEMY OF SCIENCES (Chine)
Inventeur(s)
  • Zhang, Yapeng
  • Liu, Taikai
  • Deng, Chunming
  • Xie, Yingchun
  • Deng, Ziqian
  • Liu, Min

Abrégé

Disclosed is a modification method of in situ dissolution on the surface of a metal material, comprising the following steps: (1) fully mixing a substrate metal and a modified metal powder to obtain a raw material powder; (2) preparing a metal material from the raw material powder obtained in step (1) by means of a preparation means under non-equilibrium conditions; and (3) heat-treating the metal material prepared in step (2) to bring same to an equilibrium state, and then cooling to room temperature, such that the doped phase is dissolved out onto the surface of the metal material, so as to obtain a modified metal material.

Classes IPC  ?

  • C23C 4/134 - Pulvérisation plasma
  • C23C 4/08 - Matériaux métalliques ne contenant que des éléments métalliques
  • C22C 19/03 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel
  • C22C 38/00 - Alliages ferreux, p.ex. aciers alliés
  • C22C 19/07 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de cobalt
  • C23C 14/30 - Evaporation sous vide par énergie éléctromagnétique ou par rayonnement corpusculaire par bombardement d'électrons
  • C23C 14/14 - Matériau métallique, bore ou silicium
  • B01J 23/89 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe du cuivre ou des métaux du groupe du fer combinés à des métaux nobles