FERDINAND-BRAUN-INSTITUT GGMBH LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Zou, Dian
Schiemangk, Max
Tyborski, Christoph
Hariharan, Sriram
Müller, Norbert
Wicht, Andreas
Abrégé
The present invention relates to a device for arranging optical components in a thermally decoupled housing (LH), in particular an optical bench (OB) which is suspended with low tension, is thermally decoupled from a laser housing, and is suitable for mobile and satellite-based applications for example in quantum information technology. A device according to the invention for arranging optical components in a housing (LH) comprises a housing; an optical bench (OB) formed monolithically from a rigid material with high thermal conductivity and yield strength; at least two spring elements (SE), acting in the plane of the optical bench (OB), at the outer edges of the optical bench (OB), wherein the optical bench (OB) is fastened to pedestal elements (PE) of the housing (LH) only via the spring elements (SE) and the optical bench (OB) is retained in the housing (LH) in a self-supporting manner via the pedestal elements (PE); clamping bars (CB) beneath the spring elements (SE); thermal insulators (TI) beneath the clamping bars (CB), wherein the clamping bars (CB) rest at least in part on the thermal insulators (TI) and the clamping bars (CB) can be supported stably thereby with respect to the pedestal elements (PE) of the housing (LH); and a thermally conductive strip (TS), wherein a first end of the thermally conductive strip (TS) is fastened in a self-supporting region of the optical bench (OB) and a second end of the thermally conductive strip (TS) is fastened between a pedestal element (PE) and a clamping bar (CB) next to a thermal insulator (TI).
FERDINAND-BRAUN-INSTITUT GGMBH LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Karow, Mathias M.
Crump, Paul
Miah, Mohammad Jarez
Abrégé
The present invention relates to a laser bar with reduced lateral far-field divergence and, more particularly, to a laser bar with a uniform temperature profile in the lateral direction to reduce lateral far-field divergence.
The present invention relates to a laser bar with reduced lateral far-field divergence and, more particularly, to a laser bar with a uniform temperature profile in the lateral direction to reduce lateral far-field divergence.
A laser bar (1) according to the invention comprises a plurality of emitter structures arranged in parallel next to one another in the lateral direction, wherein, for the variation of the temperature profile in lateral direction, an adjustment of the dissipated thermal power of the outer emitter structures is made with respect to the inner emitter structures enclosed by the outer emitter structures.
FERDINAND-BRAUN-INSTITUT GGMBH LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Arar, Bassem
Brox, Olaf
Nechayev, Sergey
Wenzel, Hans
Wenzel, Sten
Wicht, Andreas
Della Casa, Pietro
Abrégé
Extended cavity diode laser devices and methods of fabrication are provided, wherein the diode laser devices comprise, in the longitudinal direction, an amplifier section, a passive propagation section, and a Bragg section. The amplifier section, the propagation section, and the Bragg section are arranged between a front facet and a rear facet, wherein an active layer is formed in of the amplifier section over the entire length of the amplifier section and, in the Bragg section, a surface grating extends over the entire length of the Bragg section, and the surface grating is formed by a plurality of grooves spaced apart from each other in the longitudinal direction.
H01S 5/0625 - Dispositions pour commander les paramètres de sortie du laser, p. ex. en agissant sur le milieu actif en faisant varier le potentiel des électrodes dans des lasers à plusieurs sections
H01S 5/026 - Composants intégrés monolithiques, p. ex. guides d'ondes, photodétecteurs de surveillance ou dispositifs d'attaque
H01S 5/10 - Structure ou forme du résonateur optique
H01S 5/12 - Structure ou forme du résonateur optique le résonateur ayant une structure périodique, p. ex. dans des lasers à rétroaction répartie [lasers DFB]
H01S 5/125 - Lasers à réflecteurs de Bragg répartis [lasers DBR]
G01J 3/44 - Spectrométrie RamanSpectrométrie par diffusion
G01N 21/39 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant des lasers à longueur d'onde réglable
G01J 3/10 - Aménagements de sources lumineuses spécialement adaptées à la spectrométrie ou à la colorimétrie
6.
DEVICE AND METHOD FOR STABILIZING OR FOR MEASURING THE FREQUENCY OF A LASER
FERDINAND-BRAUN-INSTITUT GGMBH LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Hirsch, Janpeter
Schiemangk, Max
Wicht, Andreas
Abrégé
The invention relates to a device and a method for stabilizing the frequency of a laser, in particular a device and a method for stabilizing the frequency of a laser on the basis of the spectroscopy of a temperature-stabilized volume Bragg grating (VBG). A device for stabilizing the frequency of a laser (D1, D2) comprises a beam path for the incoupling of laser radiation emitted by the laser (D1, D2) to a frequency-selective element, wherein the frequency-selective element is temperature-regulated, wherein the frequency-selective element is a volume Bragg grating, VBG, (G1) having a plurality of grating structures (E) and before incoupling of the laser radiation into the VBG (G1) via an entrance facet a portion of the laser radiation is split off into a reference beam and the portion of the laser radiation that is incoupled into the VBG (G1) forms a measurement beam.
H01S 5/02325 - Composants intégrés mécaniquement aux éléments de montage ou aux micro-bancs optiques
H01S 3/137 - Stabilisation de paramètres de sortie de laser, p. ex. fréquence ou amplitude par commande de dispositifs placés dans la cavité pour la stabilisation de la fréquence
H01S 3/1055 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation par commande de la position relative ou des propriétés réfléchissantes des réflecteurs de la cavité un des réflecteurs étant constitué par un réseau de diffraction
H01S 3/131 - Stabilisation de paramètres de sortie de laser, p. ex. fréquence ou amplitude par commande du milieu actif, p. ex. par commande des procédés ou des appareils pour l'excitation
7.
METHOD FOR PRODUCING A TRANSISTOR WITH A HIGH DEGREE OF ELECTRON MOBILITY, AND PRODUCED TRANSISTOR
FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V. (Allemagne)
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Meissner, Elke
Würfl, Hans-Joachim
Abrégé
The invention relates to a method for producing a transistor with a high degree of electron mobility and to a transistor with a high degree of electron mobility. The method is characterized in that an epitaxial layer is first grown on a flat substrate, and the flat substrate is then completely removed from the bottom of the epitaxial layer, wherein a thermally conductive layer is applied onto the bottom of the epitaxial layer such that the thermally conductive layer contacts at least 80%, preferably at least 90%, particularly preferably at least 95%, in particular 100%, of the bottom of the epitaxial layer. The method is simple and inexpensive to carry out and provides a transistor which has a high degree of electron mobility, an improved electric output without backgating, and an improved heat dissipation. The method additionally allows a transistor to be provided with a vertical transistor structure.
H01L 29/66 - Types de dispositifs semi-conducteurs
H01L 29/778 - Transistors à effet de champ avec un canal à gaz de porteurs de charge à deux dimensions, p.ex. transistors à effet de champ à haute mobilité électronique HEMT
H01L 29/78 - Transistors à effet de champ l'effet de champ étant produit par une porte isolée
H01L 23/373 - Refroidissement facilité par l'emploi de matériaux particuliers pour le dispositif
8.
BROAD-AREA DIODE LASER WITH INTEGRATED P-N TUNNEL JUNCTION
FERDINAND-BRAUN-INSTITUT GGMBH LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Crump, Paul
Wenzel, Hans
Elattar, Mohamed
Maassdorf, Andre
Martin, Dominik
Brox, Olaf
Abrégé
The present invention relates to a broad-area diode laser, BAL, with an integrated p-n tunnel junction. More particularly, the present invention relates to a high-performance broad-area diode laser in which, in order to improve the beam quality and to reduce thermal resistance, a p-n tunnel junction, preloaded in the reverse direction, is integrated in the layer system of the diode laser. A laser diode according to the invention comprises an active layer (20) formed between an n-doped semiconductor material (10, 12, 14) and a p-doped semiconductor material (30, 32, 34), wherein the active layer (20) forms, along a longitudinal axis, an active zone for generating electromagnetic radiation; wherein at least one n-doped intermediate layer (50, 54) is arranged between a overlying p-side metal contact (52) and the p-doped semiconductor material (30, 32, 34), wherein in the at least one n-doped intermediate layer (50, 54) in the region above the active zone, a p-n tunnel junction (40) is formed which is directly adjacent to the p-doped semiconductor material (30, 32, 34).
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Della Casa, Pietro
Crump, Paul
Elattar, Mohamed
Karow, Matthias M.
Abrégé
The present invention relates to a diode laser with an integrated thermal aperture. A laser diode (10) according to the invention comprises an active layer (14) formed between an n-doped semiconductor material (12) and a p-doped semiconductor material (16), wherein the active layer (14) forms an active zone (40) with a width w along a longitudinal axis for generating electromagnetic radiation; wherein in the p-doped semiconductor material (16) and/or in the n-doped semiconductor material (12) a thermal aperture (18) formed in a layer shape with a thermal conductivity coefficient kblock smaller than a thermal conductivity coefficient kbulk of the corresponding semiconductor material (16, 12) is formed for a spatially selective heat transport from the active zone (40) to a side of the corresponding semiconductor material (16, 12) opposite to the active layer (14).
FERDINAND-BRAUN-INSTITUT GGMBH LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Krause, Sascha
Abrégé
A circuit arrangement for limiting the gate current at a field effect transistor, FET, comprises a first FET and a DC supply network connected to a gate terminal of the first FET; ¬wherein the supply network provides a voltage Vgg to the gate terminal of the first FET via a first connection comprising a high impedance resistor R1 and a second FET connected in series therewith and having a gate terminal; the second FET having an ON state at a gate-source voltage of 0 V and having its gate terminal also connected to the gate terminal of the first FET via a second connection in parallel with the resistor R1; wherein a voltage drop occurring across the resistor R1 results in increasing blocking of the second FET.
H03K 17/0812 - Modifications pour protéger le circuit de commutation contre la surintensité ou la surtension sans réaction du circuit de sortie vers le circuit de commande par des dispositions prises dans le circuit de commande
H03F 3/193 - Amplificateurs à haute fréquence, p. ex. amplificateurs radiofréquence comportant uniquement des dispositifs à semi-conducteurs comportant des dispositifs à effet de champ
FERDINAND-BRAUN-INSTITUT GGMBH LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Della Casa, Pietro
Elattar, Mohamed
Crump, Paul
Wenzel, Hans
Abrégé
The present invention relates to a diode laser with a current block and, in particular, to a diode laser with a modified “p-n-p” or “n-p-n” structure as a current block for reducing the tunneling probability. A diode laser according to the invention comprises an active layer and a layered current block formed outside the active layer, wherein the current block is made of a material doped in opposition to its surroundings for a spatially selective current injection of the active layer between an n-substrate and a p-contact; wherein the current block is separated from adjacent layers via an intrinsic outer layer.
FERDINAND-BRAUN-INSTITUT GGMBH LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Karow, Mathias M.
Crump, Paul
Miah, Mohammad Jarez
Abrégé
The invention relates to a laser bar with a reduced lateral far-field divergence, in particular a laser bar with a consistent temperature profile in the lateral direction in order to reduce the lateral far-field divergence. A laser bar (1) according to the invention comprises a plurality of emitter structures which are arranged next to one another in parallel in the lateral direction, wherein, in order to vary the temperature profile in the lateral direction, the dissipated thermal output of the outer emitter structures is adapted to the inner emitter structures surrounded by the outer emitter structures.
H01S 5/024 - Dispositions pour la gestion thermique
H01S 5/12 - Structure ou forme du résonateur optique le résonateur ayant une structure périodique, p. ex. dans des lasers à rétroaction répartie [lasers DFB]
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Meinke, Martina
Lademann, Jürgen
Kramer, Axel
Kneissl, Michael
Wernicke, Tim
Winterwerber, Ulrike
Einfeldt, Sven
Abrégé
Staphylococcus epidermidis (MRSE). The device comprises a light emitting diode chip, LED chip, configured to emit radiation in the UVC spectral range, wherein the LED chip forms a light emitting diode, LED, with a package; a spectral filter element set up to limit the radiation emitted by the LED chip substantially to wavelengths below 235 nm; and an optical element for directional emission of the radiation emitted by the LED.
FERDINAND-BRAUN-INSTITUT GGMBH LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Arar, Bassem
Brox, Olaf
Nechayev, Sergey
Wenzel, Hans
Wenzel, Sten
Wicht, Andreas
Della Casa, Pietro
Abrégé
The present invention relates to an extended-cavity diode laser component, in particular to a monolithically integrated ECDL (mECDL) having a Bragg section comprising a surface grating, and to a corresponding method for production. A diode laser component according to the invention comprises, in the longitudinal direction (Z), an amplifier section (VS), a passive propagation section (PS) and a Bragg section (BS), wherein: the amplifier section (VS), the propagation section (PS) and the Bragg section (BS) are arranged between a front facet (22) and a rear facet (24); an active layer (15) in the amplifier section (VS) is formed over the entire length of the amplifier section (VS); in the Bragg section (BS), a surface grating (30) extends over the entire length of the Bragg section (BS); and the surface grating (30) is formed by a multiplicity of grooves (32) which are mutually spaced in the longitudinal direction (Z).
H01S 5/0625 - Dispositions pour commander les paramètres de sortie du laser, p. ex. en agissant sur le milieu actif en faisant varier le potentiel des électrodes dans des lasers à plusieurs sections
H01S 5/10 - Structure ou forme du résonateur optique
H01S 5/12 - Structure ou forme du résonateur optique le résonateur ayant une structure périodique, p. ex. dans des lasers à rétroaction répartie [lasers DFB]
H01S 5/026 - Composants intégrés monolithiques, p. ex. guides d'ondes, photodétecteurs de surveillance ou dispositifs d'attaque
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Eebert, Gotz
Wenzel, Hans
Knigge, Steffen
Martin, Christian Dominik
Maasdorff, Andre
Della Casa, Pietro
Knigge, Andrea
Crump, Paul
Abrégé
The present invention relates to a device for generating laser radiation.
The present invention relates to a device for generating laser radiation.
An object of the present invention is to indicate a laser diode which simultaneously has a high degree of efficiency and a low degree of far field divergence.
The present invention relates to a device for generating laser radiation.
An object of the present invention is to indicate a laser diode which simultaneously has a high degree of efficiency and a low degree of far field divergence.
The diode laser according to the invention comprises a current barrier (5), characterized in that the current barrier (5) extends along a third axis (X), wherein the current barrier (5) has at least one opening, and a first width (W1) of the opening of the current barrier (5) along the third axis (X) is smaller than a second width (W2) of the metal p-contact (8) along the third axis (X).
FERDINAND-BRAUN-INSTITUT GGMBH LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Della Casa, Pietro
Elattar, Mohamed
Crump, Paul
Wenzel, Hans
Abrégé
The invention relates to a diode laser comprising a current shield and, in particular, a diode laser comprising an adapted PNP or NPN structure as a current shield for reducing tunneling probability. The diode laser according to the invention comprises an active layer (16) and a current shield (3) formed in layers outside the active layer (16) and made of a material that is doped against the environment for a spatially selective energisation of the active layer (16) between an n-substrate (10) and a p-contact (24), wherein the current shield (30) is separated from adjacent layers by an intrinsic outer layer (32, 38).
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Lasers, not for medical purposes; optical apparatus and
instruments. Research and development of new products for others;
technological research; scientific research.
18.
High-frequency power transistor and high-frequency power amplifier
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Bengtsson, Olof
Paul, Sophie
Kuremyr, Tobias
Abrégé
A high-frequency power transistor comprises a transistor, at least one capacitor and a housing, which at least partially encloses the transistor and the capacitor. A first port for a high-frequency input and a gate DC voltage supply are connected to a gate contact of the transistor. A second port is connected to a drain contact of the transistor for a high-frequency output and drain DC voltage supply. A third port and fourth port are connected to a source contact of the transistor. All ports lead out of the same housing. The third port is connected via the capacitor to the source contact, and the fourth port is connected via at least one inductive element to the source contact, so that the third port provides a high-frequency ground, and the fourth port provides a floating low-frequency ground and source DC voltage supply.
H03F 3/14 - Amplificateurs comportant comme éléments d'amplification uniquement des tubes à décharge ou uniquement des dispositifs à semi-conducteurs comportant uniquement des dispositifs à semi-conducteurs avec des dispositifs amplificateurs comportant plus de trois électrodes ou plus de deux jonctions PN
H03F 1/02 - Modifications des amplificateurs pour augmenter leur rendement, p. ex. étages classe A à pente glissante, utilisation d'une oscillation auxiliaire
H03F 3/195 - Amplificateurs à haute fréquence, p. ex. amplificateurs radiofréquence comportant uniquement des dispositifs à semi-conducteurs dans des circuits intégrés
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Werner, Nils
Hofmann, Julian
Bege, Roland
Sahm, Alexander
Paschke, Katrin
Abrégé
The present invention relates to a device for generating laser radiation.
The present invention relates to a device for generating laser radiation.
A problem addressed by the present invention is that of specifying a device for generating laser radiation using a nonlinear crystal, which device has a simple construction and low optical losses.
The present invention relates to a device for generating laser radiation.
A problem addressed by the present invention is that of specifying a device for generating laser radiation using a nonlinear crystal, which device has a simple construction and low optical losses.
The device according to the invention comprises an optical amplifier having an active zone, wherein the optical amplifier has a front facet and a rear facet, between which the active zone extends; and a resonator having a first resonator element and a second resonator element, between which the optical amplifier extends, wherein the first resonator element is arranged on a side of the active zone facing away from the front facet and the second resonator element is arranged on a side of the active zone facing the front facet, and wherein the second resonator element comprises a nonlinear crystal having periodic poling.
H01S 3/109 - Multiplication de la fréquence, p. ex. génération d'harmoniques
H01S 3/10 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation
H01S 3/063 - Lasers à guide d'ondes, p. ex. amplificateurs laser
H01S 3/08 - Structure ou forme des résonateurs optiques ou de leurs composants
G02F 1/355 - Optique non linéaire caractérisée par les matériaux utilisés
G02F 1/377 - Optique non linéaire pour la génération de l'harmonique deux dans une structure de guide d'ondes optique
09 - Appareils et instruments scientifiques et électriques
Produits et services
Lasers, not for medical purposes; optical apparatus and instruments used for precision spectroscopy, namely, optical atomic clocks, quantum computers, inertial sensors for navigation based on atom interferometry; optical apparatus and instruments used for laser communication, namely, coherent free space and satellite communication
21.
CIRCUIT ASSEMBLY FOR LIMITING THE GATE CURRENT AT A FIELD-EFFECT TRANSISTOR
H03K 17/0812 - Modifications pour protéger le circuit de commutation contre la surintensité ou la surtension sans réaction du circuit de sortie vers le circuit de commande par des dispositions prises dans le circuit de commande
H03F 3/00 - Amplificateurs comportant comme éléments d'amplification uniquement des tubes à décharge ou uniquement des dispositifs à semi-conducteurs
H03F 3/193 - Amplificateurs à haute fréquence, p. ex. amplificateurs radiofréquence comportant uniquement des dispositifs à semi-conducteurs comportant des dispositifs à effet de champ
The present invention relates to a diode laser having reduced beam divergence. The idea of the present invention is to reduce a beam divergence in the far field by means of a deliberate modulation of the real refractive index of the diode laser. To this end, an area of the diode laser, referred to as the injection zone, is structured with different materials having different refractive indices. The selection of the material can influence the effective refractive index at the respective longitudinal- lateral position.
H01S 5/22 - Structure ou forme du corps semi-conducteur pour guider l'onde optique ayant une structure à nervures ou à bandes
H01S 5/32 - Structure ou forme de la région activeMatériaux pour la région active comprenant des jonctions PN, p. ex. hétérostructures ou doubles hétérostructures
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Zeghuzi, Anissa
Koester, Jan-Philipp
Wenzel, Hans
Christopher, Heike
Knigge, Andrea
Abrégé
The present disclosure relates to a diode laser having reduced beam divergence. Some implementations reduce a beam divergence in the far field by means of a deliberate modulation of the real refractive index of the diode laser. An area of the diode laser (e.g., the injection zone), may be structured with different materials having different refractive indices. In some implementations, the modulation of the refractive index makes it possible to excite a supermode, the field of which has the same phase (in-phase mode) under the contacts. Light, which propagates under the areas of a lower refractive index, obtains a phase shift of π after passing through the index-guiding trenches. Consequently, the in-phase mode is supported and the formation of the out-of-phase mode is prevented. Consequently, the laser field can, in this way, be stabilized even at high powers such that only a central beam lobe remains in the far field.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Wolf, Denis
Abrégé
The invention relates to a resonator for generating an atmospheric microwave plasma, a power oscillator for feeding microwaves into a resonator, and a plasma source constructed from these components. The invention also relates to the use of a plasma source of this type for treating surfaces. In particular, a plasma source according to the invention can be an integrated construction consisting of a resonator (100) and a power oscillator (20) in a common housing in order to produce a particularly compact device. In this way, it can be integrated in the smallest possible industrial systems and equipment, or can be used as an independent hand tool. The power oscillator (200) according to the invention comprises an active element (220), a matching network (210) and a controllable feedback network (230).
The invention relates to a device and a method for UV antisepsis, in particular for intracorporeal in vivo UV antisepsis on the human and animal body in the event of colonization with multiresistant pathogens (MRPs) such as methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE).A device (100) according to the invention for UV antisepsis comprises a light emitting diode chip, LED chip (12), configured to emit radiation in the UVC spectral range, wherein the LED chip (12) forms a light emitting diode, LED (10), with a package (16); a spectral filter element (14) set up to limit the radiation emitted by the LED chip (12) substantially to wavelengths below 235 nm; and an optical element (18) for directional emission of the radiation emitted by the LED (10). A method according to the invention for UV antisepsis comprises irradiating a surface (O) to be decolonized using a device (100) according to the invention.
A61N 5/06 - Thérapie par radiations utilisant un rayonnement lumineux
26.
Transistor and method of fabrication of the same including a gate contact formed in a recess through the passivation dielectric layer in contact with the active layer
The present invention relates to a gate structure and a method for its production. In particular, the present invention relates to agate structuring of a field effect transistor (FET), wherein the field effect transistor with the same active layer can be constructed as a depletion type, or D-type, as an enhancement type, or E-type, and as a low noise type, or LN-type, on a shared substrate base using a uniform method.
The gate structure according to the invention comprises a substrate; a piezoelectric active layer (112, 212) disposed on the substrate (110, 210); a passivation layer (120, 220) disposed on the active layer (112, 212), wherein the passivation layer (120, 220) has a recess (122, 222) that extends through the entire passivation layer (120, 220) in the direction of the active layer (112, 212); a contact element (140, 240) disposed within the recess (122, 222), wherein the contact element (140, 240) extends from the active layer (112, 212) to above the passivation layer (120, 220); and a cover layer (150, 250) that covers the contact element (140, 240) above the passivation layer (120, 220); wherein at least one layer disposed above the active layer is tensile stressed or compressively stressed in the area around the contact element, with a normal tension of |σ|>200 MPa, wherein via the individual stresses in the area around the contact element, a resulting force on the boundary area between the passivation layer and the active layer is set, which influences via the piezoelectric effect the electron density in the active layer in the area below the contact element.
H10N 30/87 - Électrodes ou interconnexions, p. ex. connexions électriques ou bornes
H10N 30/063 - Formation d’interconnexions, p. ex. d’électrodes de connexion de parties piézo-électriques ou électrostrictives multicouches
H10N 30/85 - Matériaux actifs piézo-électriques ou électrostrictifs
H10N 39/00 - Dispositifs intégrés, ou ensembles de plusieurs dispositifs, comportant au moins un élément piézo-électrique, électrostrictif ou magnétostrictif couvert par les groupes
The invention relates to a device for generating a laser beam. The aim of the invention is to provide a laser diode which simultaneously has a high degree of efficiency and a low degree of far field divergence. The diode laser according to the invention comprises a current barrier (5) which is characterized in that the current barrier (5) extends along a third axis (X), wherein the current barrier (5) has at least one opening, and a first width (W1) of the opening of the current barrier (5) along the third axis (X) is smaller than a second width (W2) of the metal p-contact (8) along the third axis (X).
The invention relates to a high-frequency power transistor (1) comprising a transistor (2), at least one capacitor (3) and a housing, which at least partially surrounds the transistor (2) and the capacitor (3). A first connection (4) for a high-frequency input and a gate DC supply is connected to a gate contact (5) of the transistor (2). The problem addressed by the present invention is that of providing a high-frequency power transistor having a behaviour that can be better defined. According to the invention, this problem is solved by virtue of the fact that a second connection (6) is connected to a drain contact (7) of the transistor (2) for a high-frequency output and drain DC supply. A third connection (9) and a fourth connection (10) are connected to a source contact (8) of the transistor (2). The first, second, third and fourth connections (4, 6, 9, 10) all lead out of the housing. The third connection (9) is connected to the source contact (8) via the capacitor (3) and the fourth connection (10) is connected to the source contact (8) via at least one inductive element (36, 11) in such a manner that the third connection (9) provides a high-frequency earth and the fourth connection (10) provides a potential-free low-frequency earth and source DC supply.
H03F 1/02 - Modifications des amplificateurs pour augmenter leur rendement, p. ex. étages classe A à pente glissante, utilisation d'une oscillation auxiliaire
H03F 1/56 - Modifications des impédances d'entrée ou de sortie, non prévues ailleurs
H03F 3/195 - Amplificateurs à haute fréquence, p. ex. amplificateurs radiofréquence comportant uniquement des dispositifs à semi-conducteurs dans des circuits intégrés
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Osipov, Konstantin
Lossy, Richard
Würfl, Hans-Joachim
Abrégé
This invention concerns a gate structure and a process for its manufacturing. In particular, the present invention concerns the gate structuring of a field effect transistor with reduced thermo-mechanical stress and increased reliability (lower electromigration or diffusion of the gate metal). The gate structure according to the invention comprises a substrate; an active layer disposed on the substrate; an intermediate layer disposed on the active layer, the intermediate layer-having a recess extending through the entire intermediate layer towards the active layer; and a contact element which is arranged within the recess, the contact element completely filling the recess and extending to above the intermediate layer, the contact element resting at least in sections directly on the intermediate layer; the contact element being made of a Schottky metal and the contact element having an interior cavity completely enclosed by the Schottky metal.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Hoffmann, Thomas
Abrégé
A device (100) for driving a self-conducting n-channel output stage field effect transistor (V1) comprising a control signal input (110), a control signal output (120) for connection to a gate electrode (V1G) of the output stage field effect transistor (V1), a first node (N1) connected to the control signal output (120), a second node (N2), and a first transistor (V4). A source electrode (V4S) of the first transistor (V4) is connected to the first node (N1), a gate electrode (V4G) of the first transistor (V4) is connected to the second node (N2) and a drain electrode (V4D) of the first transistor (V4) is either connected to the source electrode of the output field effect transistor (V1) or connected to a supply voltage (+Vdd). A resistor (R1) is connected with one end to the second node (N2). The device (100) is characterized in that the resistor (R1) is connected at the other end to the first node (N1).
The first transistor (V4) can be used to cause the supply voltage (Vdd) to be applied to the control signal output when a low-level signal is applied to the control signal input (110).
H03F 3/217 - Amplificateurs de puissance de classe DAmplificateurs à commutation
H03F 1/02 - Modifications des amplificateurs pour augmenter leur rendement, p. ex. étages classe A à pente glissante, utilisation d'une oscillation auxiliaire
H03K 17/06 - Modifications pour assurer un état complètement conducteur
H03F 3/20 - Amplificateurs de puissance, p. ex. amplificateurs de classe B, amplificateur de classe C
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Kaul, Thorben
Erbert, Götz
Crump, Paul
Abrégé
A diode laser comprises an n-type first cladding layer, an n-type first waveguide layer arranged on the first cladding layer, an active layer suitable for radiation generation and arranged on the first waveguide layer, a p-type second waveguide layer arranged on the active layer, a p-type second cladding layer which is arranged on the second waveguide layer, an n-type first intermediate layer being formed as a transition region between the first waveguide layer and the active layer, and a p-type second intermediate layer being formed as a transition region between the second waveguide layer and the active layer. The diode laser according to the invention is characterized in that the asymmetry ratio of the thickness of the first intermediate layer to the sum of the thickness of the first intermediate layer and the thickness of the second intermediate layer is less than or greater than 0.5.
H01S 5/20 - Structure ou forme du corps semi-conducteur pour guider l'onde optique
H01S 5/343 - Structure ou forme de la région activeMatériaux pour la région active comprenant des structures à puits quantiques ou à superréseaux, p. ex. lasers à puits quantique unique [SQW], lasers à plusieurs puits quantiques [MQW] ou lasers à hétérostructure de confinement séparée ayant un indice progressif [GRINSCH] dans des composés AIIIBV, p. ex. laser AlGaAs
32.
Optical pulse generator and method for operating an optical pulse generator
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Liero, Armin
Klehr, Andreas
Hoffmann, Thomas
Abrégé
The invention relates to an optical pulse generator comprising an active optical component adapted to emit optical radiation and electronic components of a means for electronically driving the optical component to excite the optical component to a pulsed emission of optical radiation, wherein the electronic components are arranged on a first side of a first submount, contact surfaces of the means for electronically driving are arranged on an opposite second side of the first submount, and the electronic components are connected to the contact surfaces of the means for electronically driving using electrically conductive vias in the first submount.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Rämer, Adam
Shevchenko, Sergey
Abrégé
A radiation detector comprises an antenna structure; and a field effect transistor structure having a source region, a gate region, and a drain region, arranged on a substrate and forming mutually independent electrically conductive electrode structures through metallization, wherein the gate electrode structure completely encloses the source electrode structure or the drain electrode structure in a first plane; the enclosed electrode structure extends up to above the gate electrode structure and there overlaps the enclosure in a second plane above the first plane at least in sections in a planar manner; wherein an electrically insulating region for forming a capacitor with a metal-insulator-metal structure is arranged between the regions of the gate electrode structure overlapped by the enclosed electrode structure.
H01L 31/113 - Dispositifs sensibles au rayonnement infrarouge, visible ou ultraviolet caractérisés par un fonctionnement par effet de champ, p.ex. phototransistor à effet de champ à jonction du type conducteur-isolant-semi-conducteur, p.ex. transistor à effet de champ métal-isolant-semi-conducteur
H01L 31/112 - Dispositifs sensibles au rayonnement infrarouge, visible ou ultraviolet caractérisés par un fonctionnement par effet de champ, p.ex. phototransistor à effet de champ à jonction
G01J 5/00 - Pyrométrie des radiations, p. ex. thermométrie infrarouge ou optique
H01L 29/778 - Transistors à effet de champ avec un canal à gaz de porteurs de charge à deux dimensions, p.ex. transistors à effet de champ à haute mobilité électronique HEMT
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Sumpf, Bernd
Maiwald, Martin
Abrégé
Raman spectroscopy methods and devices are disclosed.
The method includes irradiation of excitation radiation onto a sample to be examined. The sample is irradiated with a first excitation radiation of a first excitation wavelength and a different second excitation radiation of a second excitation wavelength. The first excitation radiation scattered by the sample is wavelength-selective filtered by means of a passive filter element. A transmitted filter wavelength of the filter element differs from at least the first excitation wavelength and the second excitation wavelength. A first intensity is determined through a single-channel detector assigned to the filter wavelength from the first excitation radiation scattered and filtered by the sample. Additionally, the filter element wavelength-selective filters the second excitation radiation scattered by the sample. A second intensity is determined through the single-channel detector assigned to the filter wavelength from the second excitation radiation scattered and filtered by the sample.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Erbert, Götz
Fricke, Jörg
Müller, Andre
Wenzel, Hans
Sumpf, Bernd
Paschke, Katrin
Abrégé
The inventive waveguide structure comprises a first waveguide region having a constant first width adapted to guide electromagnetic waves mode sustainably along its longitudinal axis; a second waveguide region adapted to guide electromagnetic waves mode sustainably along its longitudinal axis, wherein the longitudinal axis of the first waveguide region and the longitudinal axis of the second waveguide region form a common longitudinal axis of the waveguide structure, wherein a first end face of the first waveguide region and a first end face of the second waveguide region are aligned with each other, the width of the first end face of the second waveguide region corresponding to the first width, and the width of the second waveguide region along its longitudinal axis widens from the first end face to a second end face to a second width greater than the first width.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Hühn, Florian
Abrégé
The present disclosure relates to a modulator for a digital amplifier and a device comprising such a modulator and a digital amplifier.
The modulator includes a pulse shaper and a control unit for controlling the pulse shaper to convert an input signal into a bit stream configured for a digital amplifier which encodes an amplitude value per clock of a carrier signal. The pulse shaper can represent a respective amplitude value of the input signal with different bit patterns. The control unit includes an assignment of the control commands to associated amplitude values resulting from amplification of the associated bit patterns with the digital amplifier is stored or at least is provided in that the control unit selects a control command per clock by means of the assignment and the amplitude value of the input signal and drives the pulse shaper accordingly.
H03M 3/00 - Conversion de valeurs analogiques en, ou à partir d'une modulation différentielle
H03F 3/189 - Amplificateurs à haute fréquence, p. ex. amplificateurs radiofréquence
H03F 3/217 - Amplificateurs de puissance de classe DAmplificateurs à commutation
H03F 3/38 - Amplificateurs de courant continu, comportant un modulateur à l'entrée et un démodulateur à la sortieModulateurs ou démodulateurs spécialement conçus pour être utilisés dans de tels amplificateurs
H03F 3/387 - Amplificateurs de courant continu, comportant un modulateur à l'entrée et un démodulateur à la sortieModulateurs ou démodulateurs spécialement conçus pour être utilisés dans de tels amplificateurs comportant uniquement des dispositifs à semi-conducteurs
H04L 27/20 - Circuits de modulationCircuits émetteurs
37.
Laser diode with distributed feedback and method for producing
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Fricke, Jörg
Erbert, Götz
Crump, Paul
Decker, Jonathan
Abrégé
res is a distance of the trench to the active layer, w is a width of the trench and Δn is the refractive index difference between a refractive index of the trench and a refractive index of a material surrounding the trench.
H01S 5/12 - Structure ou forme du résonateur optique le résonateur ayant une structure périodique, p. ex. dans des lasers à rétroaction répartie [lasers DFB]
H01S 5/20 - Structure ou forme du corps semi-conducteur pour guider l'onde optique
H01S 5/026 - Composants intégrés monolithiques, p. ex. guides d'ondes, photodétecteurs de surveillance ou dispositifs d'attaque
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Sumpf, Bernd
Maiwald, Martin
Abrégé
Optical systems and methods for spectroscopy are described. The optical system may be particularly suitable for Raman spectroscopy and includes a multispectral excitation source, designed to emit monochromatic excitation radiation successively at at least two different excitation wavelengths along a common beam axis; an elongated flow volume with a longitudinal axis, designed to direct a particle flow along the longitudinal axis; an excitation beam path, designed to irradiate the monochromatic excitation radiation into the flow volume at a first position and the second position that are located in the flow volume and the first position is spaced apart from the second position; and a detection device, designed to wavelength-selectively filter and detect a portion of a radiation scattered from the first position at a first filter wavelength and to wavelength-selectively filter and detect a portion of a radiation scattered from the second position at a second filter wavelength.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Fricke, Joerg
Decker, Jonathan
Crump, Paul
Erbert, Goetz
Abrégé
The invention relates to a laser diode (10) which has at least one active layer (12) which is arranged within a resonator (14) and is operatively connected to a outcoupling element (16), and further at least one contact layer (18) for coupling charge carriers into the active layer (12), wherein the resonator (14) comprises at least a first section (20) and a second section (22), wherein the second section (22) comprises a plurality of separate resistor elements (24) having a specific electrical resistivity greater than the specific electrical resistivity of the regions (26) between adjacent resistor elements (24), wherein a width (W3) of the resistor elements (24) along a longitudinal axis (X1) of the active layer (12) is less than 20 μm, and a projection of the resistor elements (24) on the active layer (12) along the first axis (Z1) overlap with at least 10% of the active layer (12).
H01S 5/20 - Structure ou forme du corps semi-conducteur pour guider l'onde optique
H01S 5/22 - Structure ou forme du corps semi-conducteur pour guider l'onde optique ayant une structure à nervures ou à bandes
H01S 5/12 - Structure ou forme du résonateur optique le résonateur ayant une structure périodique, p. ex. dans des lasers à rétroaction répartie [lasers DFB]
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Bawamia, Ahmad Ibrahim
Kuerbis, Christian
Wicht, Andreas
Abrégé
The present invention relates to an to an optical device comprising a micro-optical system and a retainer, and to a method for producing an optical device. In the case of the device according to the invention, the micro-optical system (10) is fastened in such a way that the micro-optical system is oriented in relation to a surface (50) of the retainer (60). The device is characterized in that the retainer (60) has a round, tapered recess (40) and the micro-optical system (10) is fastened on a spherical cap (20) and the spherical cap (20) is fastened to the retainer (60), wherein the spherical cap (20) at least partially protrudes into the recess (40) and lies against a partial surface (30) of the recess (40) or an edge (41) in the recess (40), wherein the spherical cap (20) is fastened to the retainer (60) in the recess (40), but is not fastened where the spherical cap lies in contact. Because the spherical cap lies in contact, shrinking of a fasting means cannot cause a shift or rotation of the spherical cap and thus cannot cause a misadjustment.
G01B 7/02 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour mesurer la longueur, la largeur ou l'épaisseur
G02B 7/02 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour lentilles
B29C 65/48 - Assemblage d'éléments préformésAppareils à cet effet en utilisant des adhésifs
B29L 11/00 - Éléments optiques, p. ex. lentilles, prismes
41.
Light-conducting device, device having a light-conducting device, and means for emitting linear parallel light beams
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Eppich, Bernd
Abrégé
The disclosure relates to a light-conducting device.
The light-conducting device includes k>1 first deflection devices that are parallel to one another and arranged along a first direction (X), and k second deflection devices that are parallel to one another and arranged along a second direction (Y) perpendicular to the first direction. A third direction (Z) is perpendicular to the first and second direction (X, Y). Each of the second deflection devices is arranged in a same fourth direction (P) with respect to one of the first deflection devices. The first deflection devices comprise optical axes directed in a fifth direction, and the second deflection devices comprise optical axes directed opposite to the fifth direction. The fifth direction is an angle bisector of an angle between the third and the fourth direction.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Einfeldt, Sven
Redaelli, Luca
Kneissl, Michael
Abrégé
A method is described for forming at least one metal contact on a surface of a semiconductor and a device with at least one metal contact. The method is used for forming at least one metal contact (60) on a surface (11) of a semiconductor (10) and has the steps of: applying a metal layer (20) of palladium onto the semiconductor surface (11), applying a mask (40, 50) onto the metal layer (20), and structuring the palladium of the metal layer (20) using the mask (40, 50), wherein lateral deposits (21) of the metal are formed on sidewalls of the mask by the structuring so that the mask is embedded between the deposits (21) and the structured metal layer (20′) after the structuring. Since the mask is conductive, it can remain embedded in the metal. The deposits and the mask form a part of the contact.
H01S 5/22 - Structure ou forme du corps semi-conducteur pour guider l'onde optique ayant une structure à nervures ou à bandes
H01L 33/36 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les électrodes
H01S 5/323 - Structure ou forme de la région activeMatériaux pour la région active comprenant des jonctions PN, p. ex. hétérostructures ou doubles hétérostructures dans des composés AIIIBV, p. ex. laser AlGaAs
H01L 33/32 - Matériaux de la région électroluminescente contenant uniquement des éléments du groupe III et du groupe V de la classification périodique contenant de l'azote
H01L 33/38 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les électrodes ayant une forme particulière
H01L 33/58 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les éléments du boîtier des corps semi-conducteurs Éléments de mise en forme du champ optique
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Maiwald, Martin
Sumpf, Bernd
Abrégé
A device (122) is described having an arrangement of optical elements comprising excitation light sources (101, 115) for generating individual light beams (102, 116) having different wavelengths for exciting a sample in such a way that light scattered back from the sample as a result of the excitation is made available to a Raman spectroscopic analysis. The device (122) has deflection devices (103, 117) associated with the individual light beams (102, 116) for deflecting the individual light beams (102, 116) onto a common light path, wherein the common light path has a same optical system (109) for focusing the light beams (102, 116).
G02B 27/14 - Systèmes divisant ou combinant des faisceaux fonctionnant uniquement par réflexion
G01J 3/427 - Spectrométrie à double longueur d'onde
G02B 27/09 - Mise en forme du faisceau, p. ex. changement de la section transversale, non prévue ailleurs
G01N 21/39 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique en utilisant des lasers à longueur d'onde réglable
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Hoffmann, Thomas
Liero, Armin
Klehr, Andreas
Schwertfeger, Sven
Abrégé
The invention discloses a device for selecting pulses comprising an optical waveguide for guiding the optical radiation along an axis; comprising a first electro-optical modulator designed to modulate the optical transparency of the waveguide; comprising a second electro-optical modulator designed to modulate the optical transparency of the waveguide, wherein the first modulator and the second modulator are arranged one after the other on the axis of the waveguide, and further comprising at least one control circuit designed to actuate the first modulator and the second modulator at offset times, and characterized in that a substrate of a semiconductive material is provided, the waveguide and the at least one control circuit are arranged on the substrate.
G02F 1/025 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur basés sur des éléments à semi-conducteurs ayant des barrières de potentiel, p. ex. une jonction PN ou PIN dans une structure de guide d'ondes optique
G02F 1/01 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Götz, Erbert
Wenzel, Hans
Crump, Paul
Abrégé
A laser diode has a first n-conducting cladding layer, a first n-conducting waveguide layer arranged therein, an active layer is suitable for generating radiation arranged on the first waveguide layer, a second p-conducting waveguide layer, arranged on the active layer, and a second p-conducting cladding layer, arranged on the second waveguide layer the sum of the layer thickness of the first waveguide layer, the layer thickness of the active layer and the layer thickness of the second waveguide layer is greater than 1 μm and the layer thickness of the second waveguide layer is less than 150 nm. The maximum mode intensity of the fundamental mode is in a region outside the active layer, and the difference between the refractive index of the first waveguide layer and the refractive index of the first cladding layer is between 0.04 and 0.01.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Kneissl, Michael
Kolbe, Tim
Abrégé
An ultraviolet (UV) light emitting structure, a UV light emitting device, and a method of making a UV light emitting structure or device, wherein the UV light emitting structure or device has an AlN or AlGaN injection layer with high aluminum content between the light emitting active region and the p-doped layers and wherein the injection layer has a thickness such that holes can tunnel from the p-side of the semiconductor-based ultraviolet light emitting diode structure through the injection layer in the active zone and also reducing leakage electrons out of the active zone.
H01L 29/06 - Corps semi-conducteurs caractérisés par les formes, les dimensions relatives, ou les dispositions des régions semi-conductrices
H01L 33/06 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les corps semi-conducteurs ayant une structure à effet quantique ou un superréseau, p.ex. jonction tunnel au sein de la région électroluminescente, p.ex. structure de confinement quantique ou barrière tunnel
H01L 33/32 - Matériaux de la région électroluminescente contenant uniquement des éléments du groupe III et du groupe V de la classification périodique contenant de l'azote
47.
System for frequency conversion, semiconducting device and method for operating and manufacturing the same
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Weyers, Markus
Erbert, Götz
Abrégé
An edge-emitting semiconductor component, comprising a semiconductor substrate layer and epitaxially on-grown semiconductor layers, is disclosed. According to the invention an active zone of the semiconductor layers is designed to absorb pumped optical radiation of a first wavelength by multi-photon absorption and generate an optical radiation of a second wavelength that is shorter than the first wavelength. A step of multiplying the first wavelength of the pumped optical radiation to a second harmonic using a nonlinear crystal is advantageously made redundant. Furthermore, a system for frequency conversion is disclosed, comprising the semiconductor component, a pump laser diode designed to generate the pumped optical radiation and methods for manufacturing the semiconductor component and operating the system for frequency conversion.
H01S 3/093 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière incohérente produite par une lampe-éclair focalisant ou dirigeant l'énergie d'excitation dans le milieu actif
H01L 33/06 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les corps semi-conducteurs ayant une structure à effet quantique ou un superréseau, p.ex. jonction tunnel au sein de la région électroluminescente, p.ex. structure de confinement quantique ou barrière tunnel
H01S 5/04 - Procédés ou appareils pour l'excitation, p. ex. pompage
H01S 5/12 - Structure ou forme du résonateur optique le résonateur ayant une structure périodique, p. ex. dans des lasers à rétroaction répartie [lasers DFB]
H01S 3/094 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente
48.
Semiconductor device with heat removal structure and related production method
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Krämer, Tomas
Abrégé
According to the invention, a semiconductor device composite structure is provided which comprises an initial substrate with discrete, integrated devices and a heat removal structure. The heat removal structure comprises: a bond layer which is attached to the initial substrate or the devices, a heat removal structure which is attached on the bond layer and which consists of a material with a specific thermal conductivity which is at least double the level of the average specific heat conductivity of the initial substrate or the devices, and one or more metallic thermal bridges which thermally connect the devices with the heat removal structure via the bond layer. The thermal bridges are designed as vertical through connections (vias) through the bond and heat removal structure. The invention furthermore relates to an associated production method.
H01L 23/373 - Refroidissement facilité par l'emploi de matériaux particuliers pour le dispositif
H01L 21/48 - Fabrication ou traitement de parties, p. ex. de conteneurs, avant l'assemblage des dispositifs, en utilisant des procédés non couverts par l'un uniquement des groupes ou
H01L 23/367 - Refroidissement facilité par la forme du dispositif
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Hilt, Oliver
Zhytnytska, Rimma
Würfl, Hans-Joachim
Abrégé
This invention relates to a semiconductor layer structure. The semiconductor layer structure described includes a substrate and a buffer layer deposited onto the substrate. The semiconductor layer structure is characterized in that a drain voltage threshold lower than the breakdown voltage threshold is determined by isolating ions that are selectively implanted in just one region of the substrate into the substrate, wherein charge can dissipate from the one contact through the buffer layer towards a substrate region without isolating ions, if the one potential deviates from the other at least by the drain voltage threshold, and wherein the substrate region without isolating ions is located underneath the one contact. The semiconductor layer structure described allows dissipation of currents induced by induction in blocking active structures without damaging the active structures.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Crump, Paul
Erbert, Goetz
Wenzel, Hans
Abrégé
It is the object of the present invention to specify a light source with high efficiency and high eye safety at the same time.
wL is the sum total of the layer thickness of the first waveguide layer (12), the layer thickness of the active layer (10), and the layer thickness of the second waveguide layer (16) and Δn is a maximum of the refractive index difference between the first cladding layer (14) and the first waveguide layer (12) and the refractive index difference between the second waveguide layer (16) and the second cladding layer (18).
H01S 5/20 - Structure ou forme du corps semi-conducteur pour guider l'onde optique
H01S 5/22 - Structure ou forme du corps semi-conducteur pour guider l'onde optique ayant une structure à nervures ou à bandes
A61B 18/20 - Instruments, dispositifs ou procédés chirurgicaux pour transférer des formes non mécaniques d'énergie vers le corps ou à partir de celui-ci par application de radiations électromagnétiques, p. ex. de micro-ondes en utilisant des lasers
A61B 18/00 - Instruments, dispositifs ou procédés chirurgicaux pour transférer des formes non mécaniques d'énergie vers le corps ou à partir de celui-ci
A61B 19/00 - Instruments, outillage ou accessoires pour la chirurgie ou le diagnostic non couverts par l'un des groupes A61B 1/00-A61B 18/00, p.ex. pour stéréotaxie, opération aseptique, traitement de la luxation, protecteurs des bords des blessures(masques de protection du visage A41D 13/11; blouses de chirurgien ou vêtements pour malades A41D 13/12; dispositifs pour retirer, traiter ou transporter les liquides du corps A61M 1/00)
H01S 5/32 - Structure ou forme de la région activeMatériaux pour la région active comprenant des jonctions PN, p. ex. hétérostructures ou doubles hétérostructures
51.
Diode laser and method for manufacturing a high-efficiency diode laser
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Brox, Olaf
Bugge, Frank
Crump, Paul
Erbert, Goetz
Maassdorf, Andre
Schultz, Christoph M.
Wenzel, Hans
Weyers, Markus
Abrégé
A diode laser having aluminum-containing layers and a Bragg grating for stabilizing the emission wavelength achieves an improved output/efficiency. The growth process is divided into two steps for introducing the Bragg grating, wherein a continuous aluminum-free layer and an aluminum-free mask layer are continuously deposited after the first growth process such that the aluminum-containing layer is completely covered by the continuous aluminum-free layer. Structuring is performed outside the reactor without unwanted oxidation of the aluminum-containing semiconductor layer. Subsequently, the pre-structured semiconductor surface is further etched inside the reactor and the structuring is impressed into the aluminum-containing layer. In this process, so little oxygen is inserted into the semiconductor crystal of the aluminum-containing layers in the environment of the grating that output and efficiency of a diode laser are not reduced as compared to a diode laser without grating layers that was produced in an epitaxy step.
H01L 33/10 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les corps semi-conducteurs ayant une structure réfléchissante, p.ex. réflecteur de Bragg en semi-conducteur
H01S 5/187 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités horizontales, p. ex. lasers à émission de surface à cavité horizontale [HCSEL] à réflexion de Bragg
H01L 33/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails
H01S 5/12 - Structure ou forme du résonateur optique le résonateur ayant une structure périodique, p. ex. dans des lasers à rétroaction répartie [lasers DFB]
H01S 5/323 - Structure ou forme de la région activeMatériaux pour la région active comprenant des jonctions PN, p. ex. hétérostructures ou doubles hétérostructures dans des composés AIIIBV, p. ex. laser AlGaAs
52.
Scalable construction for lateral semiconductor components having high current-carrying capacity
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Hilt, Oliver
Wuerfl, Hans-Joachim
Abrégé
The invention relates to semiconductor components, in particular to a scalable construction for lateral semiconductor components having high current-carrying capacity. A transistor cell according to the invention comprises a control electrode (203), a plurality of source fields (201) and a plurality of drain fields (202). The control electrode completely encloses at least one of the source fields or drain fields. A transistor according to the invention comprises a plurality of transistor cells on a substrate, each of which comprises a source contact field (206) and/or a drain contact field (207). The source contact fields are conductively connected to each other on the other side of the substrate and the drain contact fields are likewise conductively connected to each other on the other side of the substrate. The method according to the invention for producing a transistor comprises the following steps: providing a substrate; forming a plurality of transistor cells on the substrate, each of which comprises a control electrode, a plurality of source fields and a plurality of drain fields; conductively connecting the control electrodes to each other; forming a source contact field and/or a drain contact field in each transistor cell; conductively connecting the source contact fields of each transistor cell to a source contact field; conductively connecting the drain fields of each transistor cell to a drain contact field; forming at least one bump (208) on each of the source contact fields and on each of the drain contact fields; providing a circuit board; conductively connecting the bumps of the source contact fields to each other by means of conductive tracks on the circuit board; and conductively connecting the bumps of the drain contact fields to each other by means of conductive tracks on the circuit board. The arrangement of the bumps and the conductive tracks on the circuit board makes a low semiconductor surface assignment by wiring possible. The arrangement according to the invention of the source fields, drain fields and control electrodes relative to the bumps makes a low heat resistance possible between the active transistor regions and the bumps.
H01L 27/088 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant un corps semi-conducteur comprenant uniquement des composants semi-conducteurs d'un seul type comprenant uniquement des composants à effet de champ les composants étant des transistors à effet de champ à porte isolée
H01L 29/66 - Types de dispositifs semi-conducteurs
H01L 29/423 - Electrodes caractérisées par leur forme, leurs dimensions relatives ou leur disposition relative ne transportant pas le courant à redresser, à amplifier ou à commuter
H01L 23/482 - Dispositions pour conduire le courant électrique vers le ou hors du corps à l'état solide pendant son fonctionnement, p. ex. fils de connexion ou bornes formées de couches conductrices inséparables du corps semi-conducteur sur lequel elles ont été déposées
53.
Broad area diode laser with high efficiency and small far-field divergence
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Crump, Paul
Erbert, Goetz
Wenzel, Hans
Fricke, Joerg
Abrégé
A broad area laser, with high efficiency and small far-field divergence, has an active layer, a first contact and a second contact, each having a width larger than 10 μm. An anti-wave guiding layer, which is positioned laterally with respect to the active region, is enclosed between the first and second contacts, wherein a refractive index of the anti-wave guiding layer is larger than a minimum refractive index of cladding layers. A minimum distance between the anti-wave guiding layer and a projection of one of the contacts on the plane of the anti-wave guiding layer is between 0 and 100 μm.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Eppich, Bernd
Abrégé
A diode laser is provided with wavelength stabilization and vertical collimation of the emitted radiation, which allows a small distance of the volume Bragg grating from the emitting surface, a small vertical diameter of the collimated beam and also compensation for manufacturing tolerances affecting the shape of the grating and the lens. The diode laser comprises an external frequency-selective element for wavelength stabilization of the laser radiation, wherein the external frequency-selective element comprises an entry surface facing the exit facet and an exit surface facing away from the exit facet and is designed as a volume Bragg grating; and wherein the external frequency-selective element is designed in such a manner that the divergence of the radiation emitting from the exit facet is reduced during passage through the external frequency-selective element.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Erbert, Goetz
Spreemann, Martin
Wenzel, Hans
Fricke, Joerg
Abrégé
A diode laser and a laser resonator for a diode laser are provided, which has high lateral beam quality at high power output, requires little adjustment effort and is inexpensive to produce. The laser resonator according to the invention comprises a gain section (GS), a first planar Bragg reflector (DBR1) and a second planar Bragg reflector (DBR2), wherein the gain section (GS) has a trapezoidal design and the first planar Bragg reflector (DBR1) is arranged on a first base side of the trapezoidal gain section (GS) and the second planar Bragg reflector (DBR2) is arranged on the opposing base side of the trapezoidal gain section (GS), wherein the width (D1) of the first planar Bragg reflector (DBR1) differs from the width (D2) of the second planar Bragg reflector (DBR2).
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Schmidt, Heinar
Kaiser, Daniel Pérez
Maiwald, Martin
Abrégé
A method and a device for generating and for detecting a Raman spectrum enables an automated, or automatable, and at the same time quantitative SERD spectroscopy (for example concentration measurement series). To this end, during the SERD spectroscopy, a first spectrum and a second spectrum are standardized in relation to one another in terms of intensity values and a first difference spectrum is subsequently calculated, a second difference spectrum is calculated, the first difference spectrum is converted into a first transformation spectrum, the second difference spectrum is converted into a second transformation spectrum, and the Raman spectrum is calculated by adding the first transformation spectrum and the second transformation spectrum.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Kneissl, Michael
Weyers, Markus
Einfeldt, Sven
Rodriguez, Hernan
Abrégé
The present invention relates to a p-doped contact for use in a light-emitting diode for the ultraviolet spectral range, comprising a p-contact layer having a first surface for contacting a radiation zone and a second surface comprising, on the side facing away from the first surface: a) a coating, which directly contacts 5%-99.99% of the second surface of the p-contact layer and contains or consists of a material having a maximum reflectivity of at least 60% for light with a wavelength of 200 nm to 400 nm; b) a plurality of p-injectors, which are disposed directly on the second surface of the p-contact layer.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Sahm, Alexander
Maiwald, Martin
Fiebig, Christian
Paschke, Katrin
Abrégé
The invention relates to an optical bank (1) comprising a carrier (10) for receiving optical components (60, 70) and a crystal (30) that is mechanically connected to the carrier, for changing the frequency of the light irradiated into the crystal (30) from a light source (50). Two rails (12) are arranged essentially in parallel on the carrier (10). The crystal (30) and the carrier (10) are mechanically connected by a surface of the rails (12), facing away from the carrier (10). A heat conducting element (20) is arranged on the crystal, said heat conducting element being applied to the surfaces of the rails (12), that face away from the carrier (10).
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Klehr, Andreas
Liero, Armin
Abrégé
The present invention relates to a device and a method for selective transmission of an optical signal.
It is an object of the present invention to provide a light modulator and a method for light modulation capable of selecting very short optical pulses of up to the femtosecond range with a low repetition frequency, wherein the repetition frequency can be variable in a range between several Hz up to the GHz range.
To this end, the device has a first optical waveguide (3), a first drive circuit (14), a second optical waveguide (1, 2) and a second drive circuit (15), wherein the spacing between a switching element of the first drive circuit (14) and the first optical waveguide (3) is less than 3 mm, and the distance between a switching element of the second drive circuit (15) and the second optical waveguide (1, 2) is less than 3 mm, and the first optical waveguide (3) has a first absorber section (5), a pulse picker section (4) and a second absorber section (18).
G02F 1/025 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur basés sur des éléments à semi-conducteurs ayant des barrières de potentiel, p. ex. une jonction PN ou PIN dans une structure de guide d'ondes optique
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Tränkle, Günther
Piprek, Joachim
Wenzel, Hans
Erbert, Götz
Weyers, Markus
Knigge, Andrea
Abrégé
A the vertical-cavity surface-emitting laser includes a stripe-shaped active medium (10) having an emission maximum at a first wavelength (λ1), wherein a first reflector (18) is arranged below the stripe-shaped active medium (10) and a second reflector (20) is arranged above the stripe-shaped active medium (10), with the first reflector (18) facing the second reflector (20), wherein the first reflector (18) and a second reflector (20) have a reflectivity maximum in the region of the first wavelength (λ1), wherein a third reflector (12) and a fourth reflector (13) are each arranged on a side above or next to the stripe-shaped active medium (10), wherein the third reflector (12) faces the fourth reflector (13), and wherein the third reflector (12) and the fourth reflector (13) have a reflectivity maximum in the region of a second wavelength (λ2), wherein the first wavelength (λ1) is greater than the second wavelength (λ2).
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Weyers, Markus
Zorn, Martin
Abrégé
The present invention relates to a semiconductor component and an associated production method, said component emitting at least two defined wavelengths with a defined intensity ratio. It is an object of the present invention to specify an optical semiconductor component and an associated production method, said component emitting at least two defined wavelengths with a defined intensity ratio. In this case, the intention is that both the wavelengths and the intensity ratio can be set extremely precisely. The semiconductor component according to the invention has a substrate (8), a first charge carrier barrier layer (7) arranged on the substrate (8), a photoluminescent layer (6) arranged on the first charge carrier barrier layer (7), a second charge carrier barrier layer (5) arranged on the photoluminescent layer (6), and an active electroluminescent layer (4) composed of at least one inorganic semiconductor and arranged on the second charge carrier barrier layer (5), wherein the photoluminescent layer (6) absorbs at least part of the light emitted by the electroluminescent layer (4), and an at least partly transparent contact layer (1) arranged on the active electroluminescent layer (4) is furthermore provided.
H01L 27/15 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des composants semi-conducteurs avec au moins une barrière de potentiel ou une barrière de surface, spécialement adaptés pour l'émission de lumière
H01L 29/26 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, des éléments couverts par plusieurs des groupes , , , ,
H01L 31/12 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails structurellement associés, p.ex. formés dans ou sur un substrat commun, avec une ou plusieurs sources lumineuses électriques, p.ex. avec des sources lumineuses électroluminescentes, et en outre électriquement ou optiquement couplés avec lesdites sour
H01L 33/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails
09 - Appareils et instruments scientifiques et électriques
38 - Services de télécommunications
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Scientific, surveying, optical, weighing, measuring and checking (supervision) apparatus and instruments; communications terminals; data-processing apparatus; computers; microprocessors and microcomputers; memories for data processing equipment; computer operating programs, recorded; computer programs and software; machine-readable data recording carrier; floppy disc, CD and DVD drives, CDs and DVDs for computers; magnetic tape units (for computers); computer peripheral devices; computer software recorded on data carriers and computer data recorded on data carriers; computer software for use in semiconductor design and manufacturing; chips (integrated circuits); connectors (electricity); integrated circuits; integrated circuit components, modules consisting of integrated circuits; electronic components, in particular semiconductor components and printed circuits; high-frequency apparatus; semiconductor components, including transistors, inductors (electricity); apparatus for recording, transmission or reproduction of sound or images; cash registers; telecommunications apparatus, in particular cordless telephones and mobile telephones. Telecommunications, in particular sound, image and data transmission based on optoelectronic and microwave technology processes. Scientific and technological services, and research and design relating thereto, in particular based on optoelectronic and microwave technology processes, and in the field of semiconductor technologies, electronic apparatus, devices and instruments; industrial analysis and research, in particular based on semiconductor materials; design and development of data processing computer programs, for others; design of software; design and development of computer hardware and software; technical consultancy for telecommunications services.
63.
Method for producing through-contacts in semi-conductor wafers via production of through-plated holes
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Krueger, Olaf
Schoene, Gerd
John, Wilfred
Wernicke, Tim
Wuerfl, Joachim
Abrégé
The invention relates to a method for producing vertical through-contacts (micro-vias) in semi-conductor wafers in order to produce semi-conductor components, i.e. contacts on the front side of the wafer through the semi-conductor wafer to the rear side of the wafer. The invention also relates to a method which comprises the following steps: blind holes on the contact connection points are laser drilled from the rear side of the wafer into the semi-conductor substrate, the wafer is cleaned, the semi-conductor substrate is plasma etched in a material selected manner until the active layer stack of the wafer is reached, the active layer stack of the wafer is plasma etched in a material selective manner until the contacts, which are to be connected to the rear side of the wafer, are reached, a plating base is applied to the rear side of the wafer and into the blind holes and gold is applied by electrodeposition onto the metallizied rear side of the wafer and the blind holes.
FERDINAND-BRAUN-INSTITUT GGMBH, LEIBNIZ-INSTITUT FÜR HÖCHSTFREQUENZTECHNIK (Allemagne)
Inventeur(s)
Klehr, Andreas
Sumpf, Bernd
Maiwald, Martin
Schmidt, Heinar
Abrégé
2), and the Raman spectrum (20) of the medium (8) under investigation being determined from the at least two detected Raman spectra (16, 17), the two different excitation conditions for the laser diode (1) being adjusted by means of the electric current supplied to the laser diode (1).