Cerium oxide-based polishing powder, a preparation method, a polishing solution, and a use. The cerium oxide-based polishing powder comprises porous secondary particles assembled from a plurality of primary grains, the primary grain has a pore diameter of 2-30 nm, a pore volume of 0.10-0.50 cm3/g, and a specific surface area of 10-80 m2/g, the content of surface trivalent cerium accounts for 10%-40% of a total content of surface cerium. Microstructures of the cerium oxide-based polishing powder of the present invention are porous cerium oxide-based particles assembled by nano-primary particles. The self-assembly structure enables the cerium oxide-based polishing powder to have a high specific surface area while having a high content of surface trivalent cerium, so that a high polishing rate is achieved. The sub-micron particle size improves the dispersion of the polishing powder in a polishing slurry. The porous structure reduces the Young's modulus of the polishing powder, so that the polishing powder is not prone to cracking in a polishing process, the surface accuracy of a polished workpiece is improved, and the service life of the polishing powder is prolonged. Therefore, the cerium oxide-based polishing powder provided by the present invention has both an excellent polishing rate and polishing accuracy, and has a long service life.
A surface-modified oxide solid electrolyte powder, a composite solid electrolyte, and a preparation method therefor. A surface of the surface-modified oxide solid electrolyte powder contains a first preset functional group. Oxide solid electrolytes include crystalline electrolytes and composites thereof, and amorphous electrolytes and composites thereof. The composition of the composite solid electrolyte comprises the surface-modified oxide solid electrolyte powder, a lithium salt, and a polymer containing an ether bond, and a surface of the composite solid electrolyte contains a second preset functional group. By modifying the surface of the oxide solid electrolyte powder, a chemical reaction is carried out between the oxide solid electrolyte powder and the polymer, so that the interfacial compatibility of the oxide solid electrolyte powder and the polymer is improved, the transfer uniformity of lithium ions in the composite solid electrolyte is improved, the ionic conductivity, mechanical properties, and thermal stability of the composite solid electrolyte are improved, the growth of lithium dendrites in the composite solid electrolyte is inhibited, and the safety performance is improved.
H01M 10/056 - Accumulateurs à électrolyte non aqueux caractérisés par les matériaux utilisés comme électrolytes, p. ex. électrolytes mixtes inorganiques/organiques
H01M 10/0565 - Matériaux polymères, p. ex. du type gel ou du type solide
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 12/06 - Éléments hybridesLeur fabrication composés d'un demi-élément du type élément à combustible et d'un demi-élément du type élément primaire avec une électrode métallique et une électrode à gaz
3.
GRAIN BOUNDARY AND SURFACE-DOPED RARE EARTH MANGANESE-ZIRCONIUM COMPOSITE COMPOUND AND PREPARATION METHOD AND USE THEREOF
Disclosed are a grain boundary and surface-doped rare earth manganese-zirconium composite compound as well as a preparation method and use thereof. A rare earth manganese oxide with a special structure is formed at grain boundary and surface of a rare earth zirconium-based oxide by a grain boundary doping method so as to increase oxygen defects at the grain boundary and the surface, thereby increasing the amount of active oxygen, improving the catalytic activity of the rare earth manganese-zirconium composite compound, inhibiting high-temperature sintering of the rare earth manganese-zirconium composite compound, and improving the NO catalytic oxidation capability. When the rare earth manganese-zirconium composite compound is applied to a catalyst, the consumption of noble metal can be greatly reduced.
B01J 27/043 - Sulfures avec des métaux du groupe du fer ou avec des métaux du groupe du platine
B01J 27/135 - HalogènesLeurs composés avec du titane, du zirconium, de l'hafnium, du germanium, de l'étain ou du plomb
B01J 27/187 - PhosphoreSes composés avec de l'arsenic, de l'antimoine, du bismuth, du vanadium, du niobium, du tantale, du polonium, du chrome, du molybdène, du tungstène, du manganèse, du technétium ou du rhénium avec du manganèse, du technétium ou du rhénium
Disclosed are a grain boundary and surface-doped rare earth zirconium-based ceramic material and a preparation method and application thereof, and part of doped elements are positioned at the grain boundary and surface of the rare earth zirconium-based ceramic material by a step-by-step doping method. The sintering activity of the rare earth zirconium-based ceramic material can be changed by adjusting the type and content of doping elements at the grain boundary and the surface, thereby enabling the control of the grain size and the grain boundary number and characteristics of the rare earth zirconium-based ceramic material, and finally optimizing the properties, such as electrical and mechanical properties, of the material. The doping method has the advantages of simple process, low cost and high universality, and can meet the requirements of different rare earth zirconium-based ceramics on doping elements, and thus is suitable for large-scale application.
C04B 35/48 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes à base d'oxydes de zirconium ou d'hafnium ou de zirconates ou d'hafnates
C04B 35/626 - Préparation ou traitement des poudres individuellement ou par fournées
5.
POROUS-STRUCTURE RARE EARTH-ALUMINUM INTERMEDIATE ALLOY ADDITIVE AND PREPARATION METHOD THEREFOR
Disclosed in the present invention are a porous-structure rare earth-aluminum intermediate alloy additive and a preparation method therefor. The porous-structure rare earth-aluminum intermediate alloy additive comprises rare earth and aluminum, and the rare earth-aluminum intermediate alloy additive is of a porous structure; the weight percentages of components are: rare earth: 1.0%-97.5%, aluminum: 2.5%-99.0%, O<0.02%, C<0.03%, P<0.01%, and S<0.01%; the density is 2.70 g/cm3-8.84 g/cm3, and the melting point is 547°C-1150°C. By using the porous-structure rare earth-aluminum alloy additive, the contact area between the additive and an aluminum alloy melt can be expanded, the dissolution rate of the additive is increased, the buoyancy and viscous resistance of the additive in the melt are improved, the technical problem that an intermediate alloy additive rapidly sinks to the bottom due to its own high density is solved, and thus rare earth elements are more uniformly distributed in the aluminum alloy melt.
Disclosed in the present invention is a rare earth-containing additive. The additive comprises: rare earth metal and iron, wherein the content of the rare earth metal is 5 wt%-90 wt%, and the content of the iron is 10 wt%-95 wt%. The additive has a density of 6.3 g/cm3-8.4 g/cm3, a melting point of 850°C-1450°C, an oxygen content of ≤150 ppm, a maximum size of inclusions of ≤35 μm, and a total amount of inclusions of ≤0.5 wt%. The density, melting point and shape of the additive containing the rare earth and the iron are regulated, so that an applicable component window for the additive is increased, the speed at which the additive passes through an upper slag layer during addition of the additive to molten steel is increased, the viscous resistance of the molten steel to the additive is effectively reduced, the influence of the slag layer is eliminated, the feeding depth of the rare earth-containing additive is increased, and the addition depth of the additive is effectively increased, thereby improving the rare earth yield and the distribution uniformity.
Disclosed are a grain boundary and surface-loaded noble metal catalyst, a preparation method and an application thereof. The noble metal is dispersed at the grain boundary and surface of alumina and/or a rare earth manganese-zirconium composite oxide to form a multiphase interface, which achieves the following beneficial technical effects: firstly, the multiphase interface has a larger steric hindrance and a stronger anchoring effect, which can inhibit the migration, agglomeration, and growth of the noble metal at high temperatures, increase the high-temperature stability and catalytic performance of the noble metal, and reduce the usage of the noble metal; secondly, the multiphase interface exhibits a synergistic catalytic effect, which can reduce the activation energy of lattice oxygen and increase the quantity of active oxygen, thereby enhancing the NO oxidation and low-temperature catalytic activity.
Disclosed are a grain boundary- and surface-doped lithium-lanthanum-zirconium composite oxide solid electrolyte, a preparation method therefor, and an application thereof. Part of doping elements are step-doped at the grain boundary and the surface of the lithium-lanthanum-zirconium composite oxide solid electrolyte to improve the distribution state of the doping elements at the grain boundaries, reduce the number of grain boundaries, lower the grain boundary resistance of the lithium-lanthanum-zirconium composite oxide, thereby obtaining high ionic conductivity. The doping method has the advantages of being simple and convenient in process, low in cost and high in universality, can meet the requirements of different solid electrolytes on doping elements, and is suitable for large-scale application. The solid electrolyte obtained from the technical solution of the present application can be used in fields such as all-solid-state lithium or lithium ion batteries, semi-solid lithium ion batteries, lithium air batteries and the like.
Disclosed in the present invention is a rare earth-containing additive and a preparation method therefor. The rare earth-containing additive comprises a closed shell and a plurality of intermediate alloys arranged in the shell, wherein the intermediate alloys contain rare earth elements, and the shell is filled with a gas of preset pressure. By means of a gas-solid two-phase structure sealed in the shell of the additive, after liquid steel is added to the additive, as the wall of the shell thins, the gas will break through the shell to push the internal solid additive in every direction, improving the uniformity of rare earth distribution and the rare earth yield in a final product.
The present disclosure provides a cerium-zirconium-based composite oxide with a core-shell structure and a preparation method thereof, a catalyst system using the cerium-zirconium-based composite oxide, a catalytic converter for purifying tail gas by using the catalyst system, and application of the catalyst system or the catalytic converter in motor vehicle exhaust purification, industrial waste gas treatment or catalytic combustion. In the present invention, the cerium-zirconium-based composite oxide with a core-shell structure oxygen storage material is prepared by a step-by-step precipitation method. On the one hand, yttrium and a part of zirconium and cerium are precipitated on a cerium-zirconium surface, where the post-precipitation of yttrium is to segregate yttrium ions (Y3+) on a grain boundary surface, thus reducing lattice surface energy, pinning the grain boundary surface, making the migration of the grain boundary surface difficult, controlling the growth of grains.
The present invention relates to a grain boundary and surface-doped cerium-zirconium composite oxide and a preparation method therefor and an application thereof. Some or all of doping elements of the cerium-zirconium composite oxide are located at the grain boundary and the surface of the cerium-zirconium composite oxide, so that the number of defects and vacancies of the cerium-zirconium composite oxide is increased, an oxygen migration capability is improved, and good high temperature stability is achieved. The cerium-zirconium composite oxide can inhibit the migration, agglomeration and growth of noble metal particles, enhance the high temperature stability of a noble metal catalyst, and reduce the amount of use of noble metal, and can be applied to the fields of motor vehicle exhaust purification, natural gas catalytic combustion, organic waste gas purification, industrial flue gas denitrification treatment, etc.
B01J 23/10 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe des terres rares
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
RARE EARTH FUNCTIONAL MATERIALS (XIONG'AN) INNOVATION CENTER CO., LTD. (Chine)
Inventeur(s)
Hou, Yongke
Huang, Xiaowei
Cui, Meisheng
Zhang, Yongqi
Zhao, Zheng
Zhai, Zhizhe
Chen, Dongming
Abrégé
The present invention relates to a catalyst for loading a noble metal on a grain boundary and a surface, a preparation method therefor, and the use thereof. The catalyst is used to load a noble metal on a grain boundary and a surface of an active coating containing aluminum oxide and/or a cerium-zirconium composite oxide, thereby improving the anchoring effect of the noble metal, avoiding the migration, agglomeration and growth of noble-metal particles, maintaining the catalytic activity and high-temperature stability performance of a noble-metal catalyst, and reducing the amount of noble metal used.
The present invention relates to a grain-boundary- and surface-doped rare-earth zirconium-based ceramic material, a preparation method therefor, and the use thereof. Some doping elements are located at the grain boundary and the surface of a rare-earth zirconium-based ceramic material by means of a step-by-step doping method. The sintering activity of the rare-earth zirconium-based ceramic material can be changed by adjusting the types and contents of the doping elements at the grain boundary and the surface, such that the grain size, the grain boundary number and the properties of the rare-earth zirconium-based ceramic material are adjusted, and the electrical, mechanical and other properties of the material are ultimately optimized. The doping method used has the advantages of having a simple and convenient process, being low cost and having strong universality; can meet the requirements of different rare-earth zirconium-based ceramics for doping elements; and is suitable for large-scale application. The rare-earth zirconium-based ceramic material obtained by using the technical solution of the present invention can be used in different fields such as grinding media, optical fiber connectors, mobile phone backboards, dental materials, biological ceramics, thermal barrier coatings, oxygen sensors or nitrogen-oxygen sensors, and solid oxide fuel cells.
C04B 35/48 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes à base d'oxydes de zirconium ou d'hafnium ou de zirconates ou d'hafnates
C04B 35/50 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de composés de terres rares
C04B 35/622 - Procédés de mise en formeTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques
14.
GRAIN BOUNDARY- AND SURFACE-DOPED LITHIUM-LANTHANUM-ZIRCONIUM COMPOSITE OXIDE ELECTROLYTE, PREPARATION METHOD THEREFOR, AND APPLICATION THEREOF
RARE EARTH FUNCTIONAL MATERIALS (XIONG'AN) INNOVATION CENTER CO., LTD. (Chine)
GRIREM HI-TECH CO., LTD. (Chine)
Inventeur(s)
Huang, Xiaowei
Zhang, Xiaobao
Yang, Juanyu
Wang, Ning
Feng, Zongyu
Xu, Yang
Zhong, Qiang
Xiao, Yiyang
Abrégé
The present invention relates to a grain boundary- and surface-doped lithium-lanthanum-zirconium composite oxide solid electrolyte, a preparation method therefor, and an application thereof. Part of doping elements are step-doped at the grain boundary and the surface of the lithium-lanthanum-zirconium composite oxide solid electrolyte to improve the distribution state of the doping elements at the grain boundaries, reduce the number of grain boundaries, lower the grain boundary resistance of the lithium-lanthanum-zirconium composite oxide, thereby obtaining high ionic conductivity. The doping method has the advantages of being simple and convenient in process, low in cost and high in universality, can meet the requirements of different solid electrolytes on doping elements, and is suitable for large-scale application. The solid electrolyte obtained from the technical solution of the present invention can be used in fields such as all-solid-state lithium or lithium ion batteries, semi-solid lithium ion batteries, lithium-air batteries and the like.
The present invention relates to a grain boundary and surface-supported noble metal catalyst, and a preparation method therefor and application thereof. Noble metals are dispersed at the grain boundary and the surface of an aluminum oxide and/or a rare earth manganese-zirconium composite oxide to form a multiphase interface, and the following beneficial technical effects are achieved: first, the multiphase interface has large steric hindrance and a strong anchoring effect, so that the high-temperature migration, agglomeration and growth of noble metals can be inhibited, the high-temperature stability and catalytic performance of the noble metals can be improved, and the amount of use of the noble metals can be reduced; and second, the multiphase interface has a synergistic catalytic effect, so that the activation energy of lattice oxygen can be reduced, the number of reactive oxygen species can be increased, and the NO oxidation rate and low-temperature catalytic activity can be improved.
The present invention relates to a grain boundary and surface doped rare earth manganese-zirconium composite compound as well as a preparation method therefor and the use thereof. A rare earth manganese oxide having a special structure is formed at a grain boundary and a surface of a rare earth zirconium-based oxide by means of a grain boundary doping method so as to increase oxygen defects at the grain boundary and the surface, thereby increasing the amount of active oxygen, improving the catalytic activity of the rare earth manganese-zirconium composite compound, inhibiting high-temperature sintering and improving the NO catalytic oxidation capability thereof. When the rare earth manganese-zirconium composite compound is applied to a catalyst, the use amount of a precious metal can be greatly reduced.
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
C09K 11/02 - Emploi de substances particulières comme liants, revêtements de particules ou milieux de suspension
H01L 33/50 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les éléments du boîtier des corps semi-conducteurs Éléments de conversion de la longueur d'onde
18.
NEAR-INFRARED LIGHT-EMITTING SUBSTANCE AND LIGHT-EMITTING DEVICE COMPRISING SAME
xyza33. Under excitation of ultraviolet light, purple light, blue light, and red light, the light-emitting material can generate efficient wide-spectrum emission having a peak wavelength of 780-1,000 nm or efficient narrow-band near-infrared light emission having a peak wavelength greater than 1,000 nm. The present invention has a great application prospect in the fields of food testing, security monitoring, standard light sources, healthy illumination, etc.
C09K 11/78 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares contenant de l'oxygène
H01L 33/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails
Rare Earth Functional Materials (Xiong'an) Innovation Center Co., Ltd. (Chine)
GUOKE RE ADVANCED MATERIALS CO., LTD. (Chine)
Inventeur(s)
Yu, Jinqiu
Luo, Liang
Diao, Chengpeng
Cui, Lei
Wu, Hao
He, Huaqiang
Abrégé
0.1. The rare earth halide scintillating material involved in the present invention has excellent scintillation properties of high light output, high energy resolution, and fast decay.
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
C30B 11/02 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger sans solvants
Rare Earth Functional Materials (Xiong'an) Innovation Center Co., Ltd. (Chine)
GRIREM HI-TECH CO., LTD. (Chine)
Inventeur(s)
Huang, Xiaowei
Zhang, Yongqi
Li, Hongwei
Zhai, Zhizhe
Zhong, Qiang
Zhang, He
Cui, Meisheng
Hou, Yongke
Wang, Hao
Feng, Zongyu
Abrégé
2-z, wherein M is one or more non-cerium rare-earth elements, 0.1≤x≤0.9, 0≤y≤0.3, and 0.01≤z≤0.3. The composite compound enhances an oxygen storage capacity of a cerium-zirconium material through an interface effect, thereby increasing a conversion rate of a nitrogen oxide.
B01J 23/02 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe des métaux alcalins ou alcalino-terreux ou du béryllium
B01J 23/10 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe des terres rares
B01J 35/00 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général
B01J 35/30 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général caractérisés par leurs propriétés physiques
F01N 3/10 - Silencieux ou dispositifs d'échappement comportant des moyens pour purifier, rendre inoffensifs ou traiter les gaz d'échappement pour rendre les gaz d'échappement inoffensifs par conversion thermique ou catalytique des composants nocifs des gaz d'échappement
21.
LIGHT-EMITTING MATERIAL AND LIGHT-EMITTING DEVICE INCLUDING SAME
A light-emitting material and a light-emitting device including same. The light-emitting material includes an inorganic compound. The inorganic compound contains an M element, an A element, an E element, and an X element, wherein the M element is selected from at least one of Ca, Sr, Ba, La, Lu, Y, Sc and Gd and the M element cannot be Ca alone, the A element is selected from at least one of Hf, Zr, Ti, Ge, Si, Al, Ga and In, the E element is selected from at least one of O, N and F and must include O, and the X element is selected from at least one of Cr, Nd, Yb, Er, Ce and Eu and must include one of Cr, Nd, Yb and Er. The inorganic compound has a perovskite-type crystal structure. The light-emitting material can be excited by a visible light spectrum to generate near-infrared light emission and has a relatively high light-emission intensity.
C09K 11/78 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares contenant de l'oxygène
22.
CERIUM ZIRCONIUM BASED COMPOSITE OXIDE WITH CORE-SHELL STRUCTURE AND PREPARATION METHOD THEREFOR
The present invention relates to a cerium zirconium based composite oxide with a core-shell structure and a preparation method therefor. According to the present invention, a cerium zirconium based composite oxide oxygen storage material having a core-shell structure is prepared by means of a step-by-step precipitation method. On the one hand, the post-precipitation of yttrium is used for the segregation of yttrium ions (Y3+) on a grain boundary surface, which inhibits the high-temperature sintering phenomenon of the cerium zirconium based composite oxide, so as to improve the thermal stability of the cerium zirconium based composite oxide, and the post-precipitation of part of the zirconium is to enhance the thermal stability; on the other hand, yttrium ions have a smaller ion radius (0.90 Å) and quantity of electric charge, which is more conducive to reducing the oxygen vacancy formation energy, and improving the oxygen storage and release performance, so as to meet the use requirements of catalysts for motor vehicle tail gas purification, industrial waste gas treatment or catalytic combustion, etc.
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
23.
CERIUM-ZIRCONIUM-BASED COMPOSITE OXIDE HAVING GRADIENT ELEMENT DISTRIBUTION AND PREPARATION METHOD THEREFOR
The present invention relates to a cerium-zirconium-based composite oxide having gradient element distribution and a preparation method therefor. According to the present invention, the cerium-zirconium-based composite oxide having gradient element distribution is prepared by a step-by-step precipitation method. First, a zirconium-rich component is precipitated to form a crystal structure and a crystal grain stack structure which have high thermal stability, slow down the segregation of zirconium on a surface after high-temperature treatment, and reduce element migration among crystal grains; second, a cerium-rich component is precipitated to improve the cerium content of the surface layers of the crystal grains, improve the utilization rate of the cerium element, and improve the oxygen storage amount and the oxygen storage rate. The composite oxide prepared by the method has both high thermal stability and high oxygen storage performance, thus satisfying requirements of the long-time use of a catalyst containing a cerium-zirconium-based composite oxide for the thermal stability and oxygen storage performance of the cerium-zirconium-based composite oxide.
B01D 53/94 - Épuration chimique ou biologique des gaz résiduaires des gaz d'échappement des moteurs à combustion par des procédés catalytiques
B01J 23/00 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe
B01J 23/10 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe des terres rares
F23G 7/07 - Procédés ou appareils, p. ex. incinérateurs, spécialement adaptés à la combustion de déchets particuliers ou de combustibles pauvres, p. ex. des produits chimiques de gaz d'évacuation ou de gaz nocifs, p. ex. de gaz d'échappement dans lesquels la combustion a lieu en présence de matériau catalytique
24.
CERIUM-ZIRCONIUM-BASED COMPOSITE OXIDE HAVING GRADIENT ELEMENT DISTRIBUTION AND PREPARATION METHOD THEREFOR
The present invention relates to a cerium-zirconium-based composite oxide having gradient element distribution and a preparation method therefor. According to the present invention, the cerium-zirconium-based composite oxide having gradient element distribution is prepared by a step-by-step precipitation method. First, a zirconium-rich component is precipitated to form a crystal structure and a crystal grain stack structure which have high thermal stability, slow down the segregation of zirconium on a surface after high-temperature treatment, and reduce element migration among crystal grains; second, a cerium-rich component is precipitated to improve the cerium content of the surface layers of the crystal grains, improve the utilization rate of the cerium element, and improve the oxygen storage amount and the oxygen storage rate. The composite oxide prepared by the method has both high thermal stability and high oxygen storage performance, thus satisfying requirements of the long-time use of a catalyst containing a cerium-zirconium-based composite oxide for the thermal stability and oxygen storage performance of the cerium-zirconium-based composite oxide.
B01D 53/94 - Épuration chimique ou biologique des gaz résiduaires des gaz d'échappement des moteurs à combustion par des procédés catalytiques
B01J 23/00 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe
F23G 7/07 - Procédés ou appareils, p. ex. incinérateurs, spécialement adaptés à la combustion de déchets particuliers ou de combustibles pauvres, p. ex. des produits chimiques de gaz d'évacuation ou de gaz nocifs, p. ex. de gaz d'échappement dans lesquels la combustion a lieu en présence de matériau catalytique
25.
R-T-B sintered magnet and preparation method thereof
Rare Earth Functional Materials (Xiong'an) Innovation Center Co., Ltd. (Chine)
Griceon (Rongcheng) Co., Ltd. (Chine)
Inventeur(s)
Luo, Yang
Yu, Dunbo
Zhu, Wei
Bai, Xinyuan
Lin, Xiao
Zhu, Shengjie
Wang, Zilong
Peng, Haijun
Abrégé
14B grain region T3 is 80% or more. In the present invention, by optimizing a preparation process and a microstructure of a traditional rare earth permanent magnet, diffusion efficiency of heavy rare earth in the magnet is improved, such that coercivity of the magnet is greatly improved, and manufacturing cost is reduced.
H01F 1/057 - Alliages caractérisés par leur composition contenant des métaux des terres rares et des métaux de transition magnétiques, p. ex. SmCo5 et des éléments IIIa, p. ex. Nd2Fe14B
H01F 41/02 - Appareils ou procédés spécialement adaptés à la fabrication ou à l'assemblage des aimants, des inductances ou des transformateursAppareils ou procédés spécialement adaptés à la fabrication des matériaux caractérisés par leurs propriétés magnétiques pour la fabrication de noyaux, bobines ou aimants
B22F 3/24 - Traitement ultérieur des pièces ou objets
H01F 1/22 - Aimants ou corps magnétiques, caractérisés par les matériaux magnétiques appropriésEmploi de matériaux spécifiés pour leurs propriétés magnétiques en matériaux inorganiques caractérisés par leur coercivité en matériaux magnétiques doux métaux ou alliages sous forme de particules, p. ex. de poudre comprimées, frittées ou agglomérées
1-xx3+y3+y, wherein 0.001 ≤ x ≤ 1, and 0.0001 ≤ y ≤ 0.1. The rare earth halide scintillating material involved in the present invention has excellent scintillation properties of high light output, high energy resolution, and fast decay.
C09K 11/85 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares contenant des halogènes
3+x3+x, wherein 0.0001≤x≤0.1. The rare earth halide scintillation material has excellent scintillation properties including high light output, high energy resolution, and fast attenuation.
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
C09K 11/61 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant du fluor, du chlore, du brome, de l'iode ou des halogènes non spécifiés
C09K 11/85 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares contenant des halogènes
cabx(1-x-y)y2-zcabx(1-x-y)y2-z2-z, wherein M is one or more non-cerium rare earth elements; 0.1≤x≤0.9; 0≤y≤0.3; 0.01≤z≤0.3. The composite compound improves the oxygen storage capacity of a cerium-zirconium material by means of an interfacial effect so as to improve the conversion rate of a nitrogen oxide.
A rare earth manganese/cerium-zirconium-based composite compound, a preparation method therefor and an application thereof. The composite compound has a core-shell structure, which is as represented by a general formula: ARE cB aO b-(1-A)Ce xZr (1-x-y)M yO 2-z, wherein 0.1=A=0.3, preferably 0.1=A=0.2. The main component of a shell is a rare earth manganese oxide, which is as represented by a general formula: RE cMn aO b, wherein RE is a combination of one or more rare earth elements; B is Mn or a combination of Mn and a transition metal element; 1=a=8; 2=b=18; 0.25=c=4. The main component of a core is a cerium-zirconium composite oxide, which is as represented by a general formula: Ce xZr (1-x-y)M yO 2-z, wherein M is one or more non-cerium rare earth elements; 0.1=x=0.9; 0=y=0.3; 0.01=z=0.3. The composite compound improves the oxygen storage capacity of a cerium-zirconium material by means of an interfacial effect so as to improve the conversion rate of a nitrogen oxide.