Methods for improving the antibacterial characteristics of biomedical implants and related implants manufactured according to such methods. In some implementations, a biomedical implant comprising a silicon nitride ceramic material may be subjected to a surface roughening treatment so as to increase a surface roughness of at least a portion of the biomedical implant to a roughness profile having an arithmetic average of at least about 500 nm Ra. In some implementations, a coating may be applied to a biomedical implant. Such a coating may comprise a silicon nitride ceramic material, and may be applied instead of, or in addition to, the surface roughening treatment process.
A61L 27/44 - Matériaux composites, c.-à-d. en couches ou contenant un matériau dispersé dans une matrice constituée d'un matériau analogue ou différent comportant une matrice macromoléculaire
A61L 27/50 - Matériaux caractérisés par leur fonction ou leurs propriétés physiques
A61L 27/54 - Matériaux biologiquement actifs, p. ex. substances thérapeutiques
C04B 35/58 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures
C04B 35/597 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures à base d'oxynitrures de silicium
C04B 35/599 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures à base d'oxynitrures de silicium à base d'oxynitrures d'aluminium et de silicium [SiAlON]
2.
IMPROVED CERAMIC AND/OR GLASS MATERIALS AND RELATED METHODS
Methods for improving the antibacterial, osteoconductive, and/or osteoinductive characteristics of silicon nitride and/or other ceramic materials, particularly to make them more suitable for use in manufacturing biomedical implants. In some embodiments and implementations, the surface chemistry and/or morphology of a silicon nitride bioceramic may be modulated significantly through thermal, chemical, and/or mechanical treatments to achieve such advantageous results. A portion of the resulting material, such as a glaze or upper layer of the material, may be separately produced as a powder or frit, for example, and used in manufacturing biomedical implants and/or other products, such as by using such portion of the material as a coating or filler. In other embodiments the surface material may be separately manufactured as a silicon oxynitride monolith.
Apparatus, systems, and methods relating to biomedical implants and other devices made up of a composite of materials comprising metal and/or metal alloys and ceramics. In some embodiments, a modular biomedical implant may comprise a first metallic member comprising at least one of a metal and a metal alloy, a second metallic member comprising at least one of a metal and a metal alloy, and a ceramic insert comprising a ceramic material, such as a monolithic ceramic material, positioned in between the first metallic member and the second metallic member so as to at least substantially prevent contact, or in some embodiments fully prevent any direct contact, between the first metallic member and the second metallic member.
Apparatus, methods, and systems relating to spinal implants and instruments for installing such implants. In some embodiments, a spinal implant may comprise an opening configured to receive an installation rod for installing the spinal implant within an intervertebral space of a patient. The opening may be positioned within a wall of the spinal implant, and may comprise a peripheral edge defined by the wall of the spinal implant. An installation rod may be provided that may be configured to be positioned within the opening of the spinal implant, and may comprise an engagement section configured to engage a portion of the spinal implant defining the opening at a location spaced apart from the peripheral edge such that the highest forces applied to the spinal implant in coupling the spinal implant with the installation rod during installation are not applied to the portion of the opening defined by the peripheral edge.
Embodiments of apparatus, systems, and methods relating to spinal implants. In some embodiments, the spinal implant may comprise a first sidewall, a second sidewall opposite from the first sidewall, a pair of opposed frictional surfaces each comprising a plurality of raised structures, a first end wall joining the pair of opposed sidewall surfaces, and a second end wall joining the first sidewall and the second sidewall. The second end wall may comprise a recess formed by a first wall portion and a second wall portion arranged at an angle to one another to form a fish-tailed structure configured to be engaged with an inserter instrument. The interface between the recess and the inserter instrument may be configured to at least substantially eliminate any point or line contacts between the inserter instrument and the spinal implant during a flip maneuver of the spinal implant within an intervertebral space of a patient.
A61B 17/56 - Instruments ou procédés chirurgicaux pour le traitement des os ou des articulationsDispositifs spécialement adaptés à cet effet
A61B 17/70 - Dispositifs de mise en position ou de stabilisation de la colonne vertébrale, p. ex. stabilisateurs comprenant un liquide de remplissage dans un implant
Methods for threading ceramic materials, such as ceramic materials used for spinal implants or other biomedical implants. In some implementations, an expected rate of shrinkage of the block upon undergoing a firing process may be determined. A scaling factor may then be applied using the expected rate of shrinkage to select a tap having a size larger than a desired thread size. A green block may then be tapped with the selected tap to form a threaded opening in the green block. The block may be machined in order to remove cracks caused by the tapping process and/or to form the block into a desired shape/size. The green block may then be fired, which may result in a reduction of a size of the block and a size of the threaded opening.
C04B 35/00 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques
C04B 35/58 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures
A61F 2/44 - Articulations pour l'épine dorsale, p. ex. vertèbres, disques intervertébraux
7.
METHODS FOR ALTERING THE SURFACE CHEMISTRY OF BIOMEDICAL IMPLANTS AND RELATED APPARATUS
Methods for improving the antibacterial characteristics of a biomedical implant. In some implementations, the method may comprise providing a biomedical implant material block. The biomedical implant material block may comprise a silicon nitride ceramic material. The surface chemistry of the biomedical implant material block may be altered to improve the antibacterial characteristics of the biomedical implant material block. In some implementations, the surface chemistry may be altered by firing the biomedical implant material block in a nitrogen-rich environment or otherwise increasing the nitrogen content in the transitional oxide layer of at least a portion of the biomedical implant material block. The surface of the biomedical implant material block may also, or alternatively, be roughened to improve antibacterial characteristics of the implant.
Oral implants and related methods, systems, and apparatus. Some embodiments may comprise a silicon nitride bone anchor configured to be integrated with and affixed to alveolar bone of a patient's oral bone cavity. The bone anchor may comprise a core and an outer layer comprising a silicon nitride ceramic material. The outer layer may have a density less than a density of the core. An anchor abutment may be coupled with the bone anchor, and may be configured to protrude above epithelial tissue of the patient's oral cavity and provide a substrate for positioning and fixation of a dental component, such as a crown or bridge.
Systems and methods for forming an insert, such as a threaded or threadable insert, within a cavity in an implant, such as a spinal spacer. According to various embodiments, a spinal interbody spacer may include a proximal end and a distal end. The interbody spacer may be manufactured using a non-threadable material, or at least a material that is difficult to thread, such as a ceramic, a glass, or a porous material. Some embodiments may comprise a silicon nitride ceramic material. A cavity may be formed in the interbody spacer, such as in the proximal end. A material having desired properties lacking in the spacer, such as a threadable insert within a non-threadable spacer, may be inserted into the cavity. The threadable material may then be threaded in order to form a female-threaded insert within the otherwise non-threadable interbody spacer.
Methods, apparatus, and systems for improving the performance of articulating prostheses. Some embodiments may comprise a first component comprising a first articulating surface and a second component comprising a second articulating surface configured for articulating with the first articulating surface. One or both of the first and second components may comprise a silicon nitride ceramic material. One or both of the first and second articulating surfaces may comprise a coating that is configured to accomplish at least one of increasing the hardness of the first articulating interface surface, reducing the coefficient of friction between the first and second articulating surfaces, decreasing the effects of wearing between the first and second articulating surfaces, and decreasing the intensity of audible noises produced by the endoprosthesis resulting from articulation between the first and second articulating surfaces during use.
In various exemplary embodiments, the present invention provides devices, implants, and methods for distracting and/or stabilizing a facet joint of the spine of a patient or other similar joint or bony structures, optionally including modifying the facet joint and implanting an implant in the facet joint so as to distract the foramen in order to reduce compression on nerve roots.
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Medical and surgical apparatus, namely, reconstructive
orthopedic implants, spinal implants comprised of artificial
materials. Design and development of orthopedic devices.
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Medical and surgical apparatus, namely, reconstructive
orthopedic implants, spinal implants comprised of artificial
materials. Design and development of orthopedic devices.
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Medical and surgical apparatus, namely, reconstructive
orthopedic implants, spinal implants comprised of artificial
materials. Design and development of orthopedic devices.
An improved pedicle screw system is provided with an offset stabilizer rod for the internal fixation of the spine. The pedicle screw system includes at least two multi-angle pedicle screw units adapted for anchored securement to patient bone, and an elongated stabilizer rod extending therebetween. Each pedicle screw unit includes a bone screw associated with an anchor bracket defining a laterally offset and upwardly open channel or trough for receiving and supporting the stabilizer rod. A securement member such as a set screw is fastened to the anchor bracket for compressively retaining the stabilizer rod within the bracket channel or trough. The securement member may also bear against the associated bone screw for compressively retaining the screw in position relative to the anchor bracket.
An improved spinal implant includes vertically offset keels for mechanically interlocking respectively with overlying and underlying vertebral bone structures when implanted therebetween. At least one upper keel projects upwardly for close-fit reception into a prepared slot formed in the overlying vertebral structure, and at least one lower keel projects downwardly for similar close-fit reception into a prepared slot formed in the underlying vertebral structure. The upper and lower keels are misaligned or offset from each other to preclude creation of a common stress line extending therethrough, thereby significantly reducing risk of vertebral fracture.
A spinal implant prosthesis includes a pair of end plates for affixation to adjacent vertebral bone structures and respectively defining inter-engaged convex and concave articulatory surfaces of elliptical profile. These elliptical articulatory surfaces are elongated in an anterior-posterior direction, and are comparatively shorter in a medial-lateral direction. With this configuration, in response to angular displacement and/or axial rotation, the elliptical surfaces displace in a manner increasing the distance between the adjacent vertebral bone structures, thereby tensioning the prosthesis and producing counteracting forces which urge the components back toward a substantially centered or neutral position. In addition, in the preferred form, the anterior-posterior length of the concave articulatory surface in incrementally greater than the anterior-posterior length of the convex articulatory surface to accommodate a limited range of anterior-posterior translation.