Inter-University Research Institute Corporation High Energy Accelerator Research Organization

Japon

Retour au propriétaire

1-65 de 65 pour Inter-University Research Institute Corporation High Energy Accelerator Research Organization Trier par
Recheche Texte
Affiner par
Juridiction
        International 47
        États-Unis 14
        Canada 4
Date
Nouveautés (dernières 4 semaines) 1
2025 janvier 2
2024 novembre 1
2025 (AACJ) 2
2024 5
Voir plus
Classe IPC
H05H 13/04 - Synchrotrons 7
H01L 29/786 - Transistors à couche mince 4
H01S 3/06 - Structure ou forme du milieu actif 3
H01S 3/10 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation 3
H05H 7/18 - CavitésRésonateurs 3
Voir plus
Statut
En Instance 2
Enregistré / En vigueur 63
Résultats pour  brevets

1.

POLYMERIZABLE COMPOSITION AND RESIN-IMPREGNATED SUPERCONDUCTING COIL

      
Numéro d'application JP2024022670
Numéro de publication 2025/013577
Statut Délivré - en vigueur
Date de dépôt 2024-06-21
Date de publication 2025-01-16
Propriétaire
  • RIMTEC CORPORATION (Japon)
  • NATIONAL INSTITUTE FOR MATERIALS SCIENCE (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Takeuchi, Masaki
  • Kikuchi, Akihiro
  • Wang, Xudong
  • Nakamoto, Tatsushi

Abrégé

Provided is a polymerizable composition that is for a resin-impregnated superconducting coil and that has excellent impregnation ability and can be used for manufacturing a resin-impregnated superconducting coil having excellent durability in a high-dose environment (in a high-dose environment in which the radiation dose per 100,000 hours is at least 1 MGy). Provided is a polymerizable composition for a resin-impregnated superconducting coil used in a high-dose environment in which the radiation dose per 100,000 hours is at least 1 MGy, the polymerizable composition comprising a norbornene-based monomer, rare-earth element-containing particles, and a metathesis polymerization catalyst.

Classes IPC  ?

  • H01F 6/06 - Bobines, p. ex. dispositions pour l'enroulement, l'isolation, les enveloppes ou les bornes des bobines
  • C08G 61/08 - Composés macromoléculaires contenant uniquement des atomes de carbone dans la chaîne principale de la molécule, p. ex. polyxylylènes uniquement des atomes de carbone aliphatiques préparés par ouverture du cycle des composés carbocycliques des composés carbocycliques contenant une ou plusieurs doubles liaisons carbone-carbone dans le cycle
  • C08L 65/00 - Compositions contenant des composés macromoléculaires obtenus par des réactions créant une liaison carbone-carbone dans la chaîne principaleCompositions contenant des dérivés de tels polymères

2.

UNIPOLAR INDUCTION ACCELERATION CELL, AND INDUCTION ACCELERATOR AND INDUCTION ACCELERATION METHOD FOR CHARGED PARTICLE BEAM USING SAME

      
Numéro d'application JP2024022478
Numéro de publication 2025/004973
Statut Délivré - en vigueur
Date de dépôt 2024-06-20
Date de publication 2025-01-02
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s) Takayama Ken

Abrégé

[Problem] To provide a unipolar induction acceleration induction acceleration cell in which a reset voltage of a magnetic body is not allowed to affect a charged particle beam, and to provide an acceleration device and an acceleration method for a charged particle beam that use the acceleration cell to perform induction-acceleration of a DC charged particle beam existing over one round of a ring of an accelerator. [Solution] The present invention provides a configuration of a unipolar induction acceleration cell which is an induction acceleration cell characterized by further comprising: a first diode group composed of a plurality of first diodes disposed to connect ends of a metallic beam pipe, which is divided by a first insulator provided in a band shape in the circumferential direction of the beam pipe, the plurality of first diodes being disposed in parallel and at equal intervals in the circumferential direction; and a second diode group composed of a plurality of second diodes disposed to connect ends of a metallic outer cylinder of the induction acceleration cell, the outer cylinder being divided by a second insulator disposed in a band shape around the beam pipe, the plurality of second diodes being disposed in parallel and at equal intervals.

Classes IPC  ?

3.

PHOTOCATHODE AND METHOD FOR EVALUATING SAME

      
Numéro d'application JP2024018381
Numéro de publication 2024/242060
Statut Délivré - en vigueur
Date de dépôt 2024-05-17
Date de publication 2024-11-28
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Fukumoto, Keiki
  • Kubo, Atsushi
  • Adachi, Shin-Ichi

Abrégé

This photocathode comprises a substrate, a plurality of structures arranged so as to form a nano-order periodic array structure on the substrate, and a photoelectron emission part disposed on at least one of the plurality of structures, the photoelectron emission part emitting photoelectrons in response to the incidence of excitation light.

Classes IPC  ?

4.

MODEL GENERATION METHOD, DATA PRESENTATION METHOD, DATA GENERATION METHOD, INFERENCE METHOD, MODEL GENERATION DEVICE, DATA PRESENTATION DEVICE, DATA GENERATION DEVICE, AND INFERENCE DEVICE

      
Numéro d'application 18686602
Statut En instance
Date de dépôt 2022-08-17
Date de la première publication 2024-08-01
Propriétaire
  • OMRON Corporation (Japon)
  • Inter-University Research Institute Corporation High Energy Accelerator Research Organization (Japon)
Inventeur(s)
  • Taniai, Tatsunori
  • Ushiku, Yoshitaka
  • Chiba, Naoya
  • Suzuki, Yuta
  • Ono, Kanta

Abrégé

A model generation method according to one aspect of the present invention acquires first data and second data regarding a crystal structure of a material, and performs machine learning for a first encoder and a second encoder by using the first data and the second data. The second data indicates a property of the material with an index different from that of the first data. The first encoder is configured to convert the first data into a first feature vector, and the second encoder is configured to convert the second data into a second feature vector. The dimension of the first feature vector is the same as the dimension of the second feature vector. In machine learning, the first encoder and the second encoder are trained so that the values of the feature vectors of the positive samples are positioned close to each other, and the feature vector of the negative sample is positioned far from the feature vector of the positive sample.

Classes IPC  ?

  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie
  • G16C 20/50 - Conception moléculaire, p. ex. de médicaments

5.

CRYO-ELECTRON MICROSCOPE SAMPLE PREPARATION KIT AND USE OF SAME

      
Numéro d'application JP2023045749
Numéro de publication 2024/135738
Statut Délivré - en vigueur
Date de dépôt 2023-12-20
Date de publication 2024-06-27
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Kawasaki Masato
  • Moriya Toshio

Abrégé

This cryo-electron microscope sample preparation kit is provided with: an amphiphilic protein and a protein crosslinking agent; or an expression vector including a nucleic acid encoding amphipathicity. This cryo-electron microscope sample preparation kit is provided with an ice-thickness controlling molecule having an amphiphilic protein bound thereto. The amphiphilic protein may have an amphiphilic α-helix structure. The amphiphilic protein may be an antifreeze protein or a type-I antifreeze protein.

Classes IPC  ?

  • C12N 15/12 - Gènes codant pour des protéines animales
  • C07K 14/245 - Escherichia (G)
  • C07K 14/435 - Peptides ayant plus de 20 amino-acidesGastrinesSomatostatinesMélanotropinesLeurs dérivés provenant d'animauxPeptides ayant plus de 20 amino-acidesGastrinesSomatostatinesMélanotropinesLeurs dérivés provenant d'humains
  • C07K 19/00 - Peptides hybrides
  • C12M 1/00 - Appareillage pour l'enzymologie ou la microbiologie
  • C12M 3/08 - Appareils pour la désagrégation des tissus
  • C12N 9/00 - Enzymes, p. ex. ligases (6.)ProenzymesCompositions les contenantProcédés pour préparer, activer, inhiber, séparer ou purifier des enzymes
  • C12N 15/63 - Introduction de matériel génétique étranger utilisant des vecteursVecteurs Utilisation d'hôtes pour ceux-ciRégulation de l'expression
  • G01N 1/28 - Préparation d'échantillons pour l'analyse

6.

SUCTION DEVICE

      
Numéro d'application JP2023035395
Numéro de publication 2024/071299
Statut Délivré - en vigueur
Date de dépôt 2023-09-28
Date de publication 2024-04-04
Propriétaire
  • NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Maenaka Katsumi
  • Fukuhara Hideo
  • Sawa Hirofumi
  • Suzuki Yasuhiko
  • Kita Shunsuke
  • Takasu Akira

Abrégé

This suction device is attached to a bottomed cylindrical container. The suction device comprises a suction part, a suction machine, a suction tube, and a filter. The suction part has a suction port and is attached to an opening of the container. The suction machine suctions air. The suction tube is connected to the suction part and the suction machine and communicates with the suction port, and air circulates through the suction tube. The filter is connected to the suction tube.

Classes IPC  ?

  • H01J 37/20 - Moyens de support ou de mise en position de l'objet ou du matériauMoyens de réglage de diaphragmes ou de lentilles associées au support

7.

ACCELERATING CAVITY, AND METHOD FOR MANUFACTURING ACCELERATING CAVITY

      
Numéro d'application JP2023023388
Numéro de publication 2024/034273
Statut Délivré - en vigueur
Date de dépôt 2023-06-23
Date de publication 2024-02-15
Propriétaire
  • MITSUBISHI HEAVY INDUSTRIES MACHINERY SYSTEMS, LTD. (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Kimura, Masashi
  • Shigeoka, Nobuyuki
  • Abe, Tetsuo

Abrégé

This accelerating cavity comprises: a cylindrical electrically conductive housing formed by joining together a plurality of divided members that are divided at planar dividing surfaces along a central axis; a plurality of cell portions that are arranged inside the housing, in a line in an axial direction of the central axis of the housing, and that communicate with one another by way of communicating portions through which charged particles can pass; and projecting portions which are disposed inside the housing in positions surrounding the communicating portions of each cell, project toward an inside of each cell portion in the axial direction, and are formed in a shape that widens in a radial direction relative to the central axis, from a tip end portion side toward a base end portion side in the axial direction.

Classes IPC  ?

8.

OSCILLATION CIRCUIT AND ELECTRONIC DEVICE

      
Numéro d'application JP2022025047
Numéro de publication 2023/248411
Statut Délivré - en vigueur
Date de dépôt 2022-06-23
Date de publication 2023-12-28
Propriétaire
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
  • PIEZO STUDIO INC. (Japon)
Inventeur(s)
  • Nohara, Masaya
  • Ishii, Takehito
  • Kimura, Noritoshi

Abrégé

An oscillation circuit (1) according to this invention comprises a Pierce circuit (2) and a Colpitts circuit (3) that share an oscillator (X1) and the input part of amplifiers (A1, A2). Switches (SW1, SW2) connected between the output parts of the respective amplifiers (A1, A2) of the Pierce circuit (2) and Colpitts circuit and the ground are controlled to output an oscillation signal of the Pierce circuit (2) during oscillation startup and to output an oscillation signal of the Colpitts circuit (3) during steady oscillation. An oscillation circuit that enables both high-speed startup and low current consumption can be provided.

Classes IPC  ?

  • H03B 5/32 - Production d'oscillation au moyen d'un amplificateur comportant un circuit de réaction entre sa sortie et son entrée l'élément déterminant la fréquence étant un résonateur électromécanique un résonateur piézo-électrique

9.

MODEL GENERATION METHOD, DATA PRESENTATION METHOD, DATA GENERATION METHOD, INFERENCE METHOD, MODEL GENERATION DEVICE, DATA PRESENTATION DEVICE, DATA GENERATION DEVICE, AND INFERENCE DEVICE

      
Numéro d'application JP2022031003
Numéro de publication 2023/047843
Statut Délivré - en vigueur
Date de dépôt 2022-08-17
Date de publication 2023-03-30
Propriétaire
  • OMRON CORPORATION (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Taniai, Tatsunori
  • Ushiku, Yoshitaka
  • Chiba, Naoya
  • Suzuki, Yuta
  • Ono, Kanta

Abrégé

A model generation method according to one aspect of the present invention acquires first data and second data which pertain to the crystal structure of a material and uses the first data and the second data to carry out machine learning of a first encoder and of a second encoder. The second data indicates a property of the material with an index that differs from that of the first data. The first encoder converts the first data into a first feature vector, and the second encoder converts the second data into a second feature vector. The dimension of the first feature vector is the same as the dimension of the second feature vector. In the machine learning, the first encoder and the second encoder are trained such that the values of feature vectors of positive samples are positioned close to each other and such that the feature vectors of negative samples are positioned far from the feature vectors of the positive samples.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/08 - Méthodes d'apprentissage

10.

NON-EVAPORABLE-GETTER COATING DEVICE, METHOD FOR MANUFACTURING NON-EVAPORABLE-GETTER-COATED CONTAINER/PIPE, AND NON-EVAPORABLE-GETTER-COATED CONTAINER/PIPE

      
Numéro d'application JP2022020595
Numéro de publication 2022/244788
Statut Délivré - en vigueur
Date de dépôt 2022-05-17
Date de publication 2022-11-24
Propriétaire
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
  • JEOL LTD. (Japon)
Inventeur(s)
  • Tanimoto Yasunori
  • Okano Makoto

Abrégé

The purpose of the present invention is to provide a non-evaporable-getter coating device capable of coating a non-evaporable getter on an inner surface of a vacuum container or a vacuum pipe of various shapes and standards when used by being attached thereto. Provided are: a non-evaporable-getter coating device characterized by including a sputtering target having an internal space, a permanent magnet column disposed in the internal space area of the sputtering target and formed from multiple permanent magnets disposed in series, with the directions of the magnetic fields thereof being alternately arranged, and a flange to which the sputtering target and the permanent magnet column are fixed, wherein the ratio (LM/EDM) of the length LM of the permanent magnet to the external diameter EDM of the permanent magnet is 1.0 to 4.0, and the ratio (EDM/EDN) of the external diameter EDM of the permanent magnet to the external diameter EDN of the sputtering target is 0.3 to 0.8; a method for manufacturing a non-evaporable-getter-coated container and/or a non-evaporable-getter-coated pipe; and the non-evaporable-getter-coated container and/or the non-evaporable-getter-coated pipe.

Classes IPC  ?

  • C23C 14/34 - Pulvérisation cathodique
  • F04B 37/02 - Pompes spécialement adaptées aux fluides compressibles et ayant des caractéristiques pertinentes non prévues dans les groupes ou présentant un intérêt autre que celui visé par ces groupes pour l'évacuation, par absorption ou adsorption
  • F04B 37/16 - Moyens pour éliminer les espaces morts

11.

RADIATION DETECTION SENSOR AND RADIATION IMAGE DETECTOR

      
Numéro d'application JP2021044286
Numéro de publication 2022/138050
Statut Délivré - en vigueur
Date de dépôt 2021-12-02
Date de publication 2022-06-30
Propriétaire
  • NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Kosugi, Ryouji
  • Kishishita, Tetsuichi

Abrégé

In this invention, a semiconductor sensor 1 comprises an n-type semiconductor substrate 2 and an n-type semiconductor layer 3 that is formed on the semiconductor substrate 2, and a plurality of pillars 5 are formed on the semiconductor layer 3. Electrodes 7 are formed on the upper surfaces of each pillar 5, and a rear surface electrode 8 is formed on the rear surface of the semiconductor substrate 2. The electrodes 7 are separated from each other. Each pillar 5 has a p-n junction or Schottky junction on the upper and lateral surfaces thereof.

Classes IPC  ?

  • G01T 1/24 - Mesure de l'intensité de radiation avec des détecteurs à semi-conducteurs
  • H01L 31/10 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails dans lesquels le rayonnement commande le flux de courant à travers le dispositif, p.ex. photo-résistances caractérisés par au moins une barrière de potentiel ou une barrière de surface, p.ex. photo-transistors
  • H01L 27/144 - Dispositifs commandés par rayonnement
  • H01L 27/146 - Structures de capteurs d'images
  • H04N 5/30 - Transformation d'informations lumineuses ou analogues en informations électriques

12.

Accelerating cavity

      
Numéro d'application 17611327
Numéro de brevet 12010789
Statut Délivré - en vigueur
Date de dépôt 2020-05-15
Date de la première publication 2022-06-30
Date d'octroi 2024-06-11
Propriétaire
  • MITSUBISHI HEAVY INDUSTRIES MACHINERY SYSTEMS, LTD. (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Mori, Shingo
  • Yoshida, Mitsuhiro
  • Shigeoka, Nobuyuki

Abrégé

An accelerating cavity includes an electrically conductive cylindrical housing and a plurality of cells that are made of a dielectric material and have openings in respective central portions of the cells through which charged particles are allowed to pass. The cells are arranged inside the housing while being aligned in the axial direction of the central axis of the housing, and sandwiched by the housing in the axial direction of the central axis to be immobilized. The housing has grooves provided on portions thereof that support the respective cells and each having a depth that is one fourth of the wavelength of radio frequency waves for the acceleration mode that propagate through the cells.

Classes IPC  ?

  • H05H 9/04 - Accélérateurs linéaires à ondes stationnaires
  • H05H 7/18 - CavitésRésonateurs
  • H05H 9/00 - Accélérateurs linéaires

13.

OSCILLATOR CIRCUIT, AND ELECTRONIC DEVICE

      
Numéro d'application JP2021017498
Numéro de publication 2022/018930
Statut Délivré - en vigueur
Date de dépôt 2021-05-07
Date de publication 2022-01-27
Propriétaire
  • PIEZO STUDIO INC. (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Nohara, Masaya
  • Kimura, Noritoshi

Abrégé

11211111211113114222) and a ground terminal during oscillating operation. This makes it possible to achieve low power consumption and high-speed oscillation startup of the oscillation circuit.

Classes IPC  ?

  • H03B 5/32 - Production d'oscillation au moyen d'un amplificateur comportant un circuit de réaction entre sa sortie et son entrée l'élément déterminant la fréquence étant un résonateur électromécanique un résonateur piézo-électrique
  • H03B 5/36 - Production d'oscillation au moyen d'un amplificateur comportant un circuit de réaction entre sa sortie et son entrée l'élément déterminant la fréquence étant un résonateur électromécanique un résonateur piézo-électrique l'élément actif de l'amplificateur comportant un dispositif semi-conducteur

14.

ACCELERATION CAVITY

      
Numéro d'application JP2020019533
Numéro de publication 2020/235507
Statut Délivré - en vigueur
Date de dépôt 2020-05-15
Date de publication 2020-11-26
Propriétaire
  • MITSUBISHI HEAVY INDUSTRIES MACHINERY SYSTEMS, LTD. (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Mori, Shingo
  • Yoshida, Mitsuhiro
  • Shigeoka, Nobuyuki

Abrégé

This acceleration cavity comprises: a cylindrical housing having conductivity; and a plurality of cells that are formed of a dielectric material, each have, at a central portion thereof, an opening part through which charged particles can pass, are disposed inside the housing while being arranged in the axial direction of the central axis of the housing, and are each fixed while being sandwiched by the housing in the axial direction of the central axis, wherein the housing has a groove part provided in a portion holding each of the cells and having a depth of a quarter of the wavelength of a high-frequency acceleration mode in which the cells are propagated.

Classes IPC  ?

15.

NON-EVAPORABLE GETTER COATED COMPONENT AND CHAMBER, MANUFACTURING METHOD AND MANUFACTURING APPARATUS

      
Numéro d'application 16464352
Statut En instance
Date de dépôt 2017-11-28
Date de la première publication 2020-05-14
Propriétaire Inter-University Research Institute Corporation High Energy Accelerator Research Organization (Japon)
Inventeur(s)
  • Mase, Kazuhiko
  • Kikuchi, Takashi

Abrégé

Provided are: a non-evaporable getter coated component and chamber including a non-evaporable getter material layer with a total storage capacity of carbon atoms, nitrogen atoms and oxygen atoms of 20 mol % or less and/or a noble metal layer with a total storage capacity of carbon atoms, nitrogen atoms and oxygen atoms of 20 mol % or less; a manufacturing method of a non-evaporable getter coated component and chamber, the method including a step of forming a non-evaporable getter material layer and/or a noble metal layer by coating a non-evaporable getter material and/or a noble metal by a vapor deposition method under low pressure; and a manufacturing apparatus of a NEG coated component and chamber including a NEG material filament and/or a noble metal filament and a current feedthrough.

Classes IPC  ?

  • F04B 37/04 - Emploi de matériaux spécifiés pour l'absorption ou l'adsorption
  • C23C 14/26 - Évaporation sous vide par chauffage de la source par induction ou par résistance
  • C23C 14/16 - Matériau métallique, bore ou silicium sur des substrats métalliques, en bore ou en silicium

16.

Time-resolved photoemission electron microscopy and method for imaging carrier dynamics using the technique

      
Numéro d'application 16489522
Numéro de brevet 10989679
Statut Délivré - en vigueur
Date de dépôt 2018-02-09
Date de la première publication 2020-03-05
Date d'octroi 2021-04-27
Propriétaire
  • TOKYO INSTITUTE OF TECHNOLOGY (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Koshihara, Shinya
  • Fukumoto, Keiki

Abrégé

A time-resolved photoemission electron microscopy including: a laser light source that outputs a pulse having less than or equal to a femtosecond level pulse width and variable repetition frequency; a pump light pulse generator configured to generate pump light pulse that excites photo-carriers of a sample by converting wavelength of light output from the laser light source; and a probe light pulse generator configured to generate probe light pulse that photo-emits photo-carriers excited by the pump light pulse from the sample by photoelectric effect by converting wavelength of light output from the laser light source. The energy of at least one of the pump light pulse and the probe light pulse is configured to continuously vary in a range not less than 0.1 eV and not more than 8 eV.

Classes IPC  ?

  • G01N 23/227 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en mesurant l'émission secondaire de matériaux en mesurant l'effet photo-électrique, p. ex. microscopie d'émission photo-électronique [PEEM]
  • G01N 23/2273 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en mesurant l'émission secondaire de matériaux en mesurant l'effet photo-électrique, p. ex. microscopie d'émission photo-électronique [PEEM] en mesurant le spectre photo-électronique, p. ex. spectroscopie électronique pour l’analyse chimique [ESCA] ou spectroscopie photo-électronique par rayon X [XPS]
  • G02F 1/35 - Optique non linéaire

17.

Cell for X-ray analysis and X-ray analysis apparatus

      
Numéro d'application 16189004
Numéro de brevet 10753889
Statut Délivré - en vigueur
Date de dépôt 2018-11-13
Date de la première publication 2019-05-16
Date d'octroi 2020-08-25
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Kimijima, Ken'Ichi
  • Kimura, Masao
  • Asahara, Daiji
  • Onishi, Yasuhiro

Abrégé

Provided are a cell for X-ray analysis and an X-ray analysis apparatus that enable simultaneous X-ray diffraction and X-ray absorption fine structure measurements of a material (sample) in the same field of view on the sample (same position on the sample). The cell for X-ray analysis of the present invention enables simultaneous X-ray diffraction and X-ray absorption fine structure measurements of a sample in the same field of view on the sample and includes a furnace including a space where the sample is held and a focused heater heating the sample, a first window provided to the furnace and through which X-rays directed at the sample is incident, a second window provided to the furnace and from which X-rays emerging from the sample exit, a third window provided to the furnace, and a holder that positions the sample in the space. The cell for X-ray analysis makes it possible to simultaneously measure X-ray diffraction of the sample at outside of the second window and X-ray absorption fine structure of the sample through the third window.

Classes IPC  ?

  • G01N 23/20033 - Porte-échantillons ou leurs supports pourvus de moyens de commande de la température ou de chauffage
  • G01N 23/2055 - Analyse des diagrammes de diffraction
  • G01N 23/085 - Structure fine d’absorption des rayons X [XAFS], p. ex. XAFS étendue [EXAFS]

18.

Undulator magnet, undulator, and radiation light generating device

      
Numéro d'application 16117586
Numéro de brevet 10312006
Statut Délivré - en vigueur
Date de dépôt 2018-08-30
Date de la première publication 2019-03-14
Date d'octroi 2019-06-04
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HI (Japon)
Inventeur(s)
  • Yamamoto, Shigeru
  • Taniguchi, Jun

Abrégé

3.

Classes IPC  ?

19.

TIME-RESOLVED PHOTOEMISSION ELECTRON MICROSCOPE DEVICE AND METHOD FOR ACQUIRING CARRIER DYNAMICS IMAGE USING SAID DEVICE

      
Numéro d'application JP2018004734
Numéro de publication 2018/159272
Statut Délivré - en vigueur
Date de dépôt 2018-02-09
Date de publication 2018-09-07
Propriétaire
  • TOKYO INSTITUTE OF TECHNOLOGY (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Koshihara, Shinya
  • Fukumoto, Keiki

Abrégé

This time-resolved photoemission electron microscope device has a laser light source (1) for repeated variable frequency output of pulses having a pulse width at the femtosecond level or lower, a pump light generation unit for subjecting the light output from the laser light source to wavelength conversion and thereby generating pump light (8) for exciting photocarriers of a sample, and a probe light generation unit for subjecting the light output from the laser light source to wavelength conversion and thereby generating probe light (7) for causing the photocarriers excited by the pump light to be emitted from the sample through the photoelectric effect. At least one from among the energy of the pump light and probe light is continuously variable.

Classes IPC  ?

  • G01N 23/227 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en mesurant l'émission secondaire de matériaux en mesurant l'effet photo-électrique, p. ex. microscopie d'émission photo-électronique [PEEM]

20.

NON-EVAPORATIVE GETTER-COATED COMPONENT, CONTAINER, MANUFACTURING METHOD, AND APPARATUS

      
Numéro d'application JP2017042682
Numéro de publication 2018/097325
Statut Délivré - en vigueur
Date de dépôt 2017-11-28
Date de publication 2018-05-31
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Mase Kazuhiko
  • Kikuchi Takashi

Abrégé

Provided are a component and a container, which are coated with a non-evaporative getter, the component and the container being characterized by including: a non-evaporative getter material layer containing a total of 20 mole% or less of occluded carbon atoms, nitrogen atoms, and oxygen atoms; and/or a noble metal layer containing a total of 20 mole% or less of occluded carbon atoms, nitrogen atoms, and oxygen atoms. Also provided is a method for manufacturing a non-evaporative getter-coated component and container, the method being characterized by comprising a step for forming a non-evaporative getter material layer and/or a noble metal layer by coating the component and container with a non-evaporative getter material and/or a noble metal by a vapor deposition process under low-pressure conditions. Also provided is an apparatus for manufacturing an NEG-coated component and container, the apparatus being characterized by having an NEG material filament and/or a noble metal filament, as well as a current terminal.

Classes IPC  ?

  • F04B 37/04 - Emploi de matériaux spécifiés pour l'absorption ou l'adsorption
  • F04B 37/02 - Pompes spécialement adaptées aux fluides compressibles et ayant des caractéristiques pertinentes non prévues dans les groupes ou présentant un intérêt autre que celui visé par ces groupes pour l'évacuation, par absorption ou adsorption

21.

FIBER LASER CIRCUIT

      
Numéro d'application JP2017023085
Numéro de publication 2017/222022
Statut Délivré - en vigueur
Date de dépôt 2017-06-22
Date de publication 2017-12-28
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s) Urakawa Junji

Abrégé

Provided is a fiber laser circuit that enables an industrial laser to be generated. This fiber laser circuit includes a circuit A, wherein the circuit A includes, as the basic structure: a pulse stretcher unit 1 that stretches laser pulses from mode-lock laser pulses; a first fiber laser amplification unit 2 that amplifies the intensity of the laser pulses by ten times or more; a first frequency conversion unit 3 that converts the repetition frequency of the laser pulses; and a second fiber laser amplification unit 4 that amplifies the intensity of the laser pulses, of which the repetition frequency has been converted, by ten times or more.

Classes IPC  ?

22.

SPIN-POLARIZED HIGH BRIGHTNESS ELECTRON GENERATING PHOTOCATHODE AND METHOD FOR MANUFACTURING FOR SAME

      
Numéro d'application JP2017013496
Numéro de publication 2017/179440
Statut Délivré - en vigueur
Date de dépôt 2017-03-30
Date de publication 2017-10-19
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Kin Shuko
  • Takeda Yoshikazu
  • Yamamoto Masahiro
  • Kamiya Yukihide

Abrégé

[Problem] The objective of the present invention is to provide a spin-polarized high brightness electron generating photocathode for backside illumination which has a simple construction, and to provide a method for manufacturing the same. [Solution] A thin film of a single-crystal compound semiconductor having negative electron affinity (NEA) is caused to form on a single-crystal substrate having nanometer surface flatness. This spin-polarized high brightness electron generating photocathode can be manufactured by metal-organic vapor phase epitaxy.

Classes IPC  ?

  • H01J 1/34 - Cathodes photo-émissives
  • H01J 9/12 - Fabrication des électrodes ou des systèmes d'électrodes des cathodes photo-émissivesFabrication des électrodes ou des systèmes d'électrodes des électrodes à émission secondaire

23.

RADIATION MEASUREMENT DEVICE

      
Numéro d'application JP2017004639
Numéro de publication 2017/138579
Statut Délivré - en vigueur
Date de dépôt 2017-02-08
Date de publication 2017-08-17
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Tajima Osamu
  • Nagasaki Taketo

Abrégé

[Problem] The purpose of the present invention is to provide a radiation measurement device for measuring the temperature of an object with high precision. [Solution] In the present invention: radiation from an object is separated into polarized light by a polarized-light filter (3); one portion of the polarized light is introduced into a spectrum analyzer (7) via a first optical path, the other portion of the polarized light is introduced into the spectrum analyzer (7) via a second optical path, and the dichroic ratio of the radiation is measured; radiation from a black body (2), which has been placed within a vacuum-cryogenic-temperature vessel (1) in a state of quasi-thermal equilibrium at a vacuum cryogenic temperature, is introduced into the polarized-light filter (3) through a third optical path and separated into polarized light; the resulting polarized light is introduced into the same optical paths as those for the portions of polarized light from the object and then introduced into the spectrum analyzer (7), and the dichroic ratios are measured; and the temperature of the object is determined with high precision from these two dichroic ratios.

Classes IPC  ?

  • G01J 5/00 - Pyrométrie des radiations, p. ex. thermométrie infrarouge ou optique
  • G01J 5/02 - Détails structurels
  • G01J 5/10 - Pyrométrie des radiations, p. ex. thermométrie infrarouge ou optique en utilisant des détecteurs électriques de radiations
  • G01J 5/46 - Pyrométrie des radiations, p. ex. thermométrie infrarouge ou optique en utilisant la pression de radiation ou un effet de radiomètre
  • G01J 5/58 - Pyrométrie des radiations, p. ex. thermométrie infrarouge ou optique en utilisant l’absorptionPyrométrie des radiations, p. ex. thermométrie infrarouge ou optique en utilisant un effet d’extinction
  • G01J 5/60 - Pyrométrie des radiations, p. ex. thermométrie infrarouge ou optique en utilisant la détermination de la température de couleur

24.

Magnetic measurement system and apparatus utilizing X-ray to measure comparatively thick magnetic materials

      
Numéro d'application 15471412
Numéro de brevet 09835569
Statut Délivré - en vigueur
Date de dépôt 2017-03-28
Date de la première publication 2017-07-13
Date d'octroi 2017-12-05
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Yano, Masao
  • Ono, Kanta

Abrégé

A magnetic measurement system includes an X-ray source, a monochromator that converts right- and left-polarization X-ray into right- and left-monochromatic X-ray, an aperture slit that allows the right- and left-monochromatic X-ray to pass through, an analytical section, and piezoelectric scanning devices. The analytical section has a Fresnel zone plate that receives and focuses the right- and left-monochromatic X-ray on a single point being 10 nm or less wide of a magnetic sample, an order-sorting aperture that allows the focused X-ray to selectively pass through, a sample-stage that sets a comparatively thick magnetic sample that is more than 150 nm thick and less than or equal to 1000 nm thick to be irradiated with the X-ray, and an X-ray-detector that detects transmittance of transmission X-ray passing through the comparatively thick sample and that generates X-ray magnetic circular dichroism (XMCD) data by directly measuring the detected transmittance of the transmission X-ray.

Classes IPC  ?

  • G01R 33/12 - Mesure de propriétés magnétiques des articles ou échantillons de solides ou de fluides
  • G01N 23/083 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en transmettant la radiation à travers le matériau et mesurant l'absorption le rayonnement consistant en rayons X

25.

ACCELERATION CAVITY AND ACCELERATOR

      
Numéro d'application JP2016087683
Numéro de publication 2017/110700
Statut Délivré - en vigueur
Date de dépôt 2016-12-16
Date de publication 2017-06-29
Propriétaire
  • MITSUBISHI HEAVY INDUSTRIES MACHINERY SYSTEMS, LTD. (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Yoshida Mitsuhiro
  • Sato Daisuke
  • Shigeoka Nobuyuki
  • Miura Sadao

Abrégé

The objective of the present invention is to provide an acceleration cavity and an accelerator such that the Q value can be increased compared to prior art normal conducting acceleration cavities, and power efficiency can be increased. This high-frequency acceleration cavity (1) comprises: a housing (3) whereof the inner peripheral surface is cylindrical in shape, and electrically conductive at least on the surface thereof; and a plurality of acceleration cells (2) provided inside the housing (3), each being a dielectric having formed in a central portion thereof an opening (5a) wherethrough a charged particle can pass. The housing (3) has a cylinder body (6) having a cylindrical shape, and end plates (7) provided at both ends of the cylinder body (6). A plurality of the acceleration cells (2) are disposed throughout from the end plate (7) at one end side to the end plate (7) at the other end side of the housing (3). Each of the acceleration cells (2) comprises: a cylinder body (4) having a diameter smaller than the internal diameter of the cylinder body (6) from the housing (3); and a disc portion (5) where the opening (5a) is formed, fixed onto the cylinder body (4) on the inner side of the cylinder body (4), and disposed in such a manner that the plate surface thereof is orthogonal to the charged particle passage axis.

Classes IPC  ?

26.

RADIATION-DAMAGE-COMPENSATION-CIRCUIT AND SOI-MOSFET

      
Numéro d'application JP2016079797
Numéro de publication 2017/061544
Statut Délivré - en vigueur
Date de dépôt 2016-10-06
Date de publication 2017-04-13
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Kurachi Ikuo
  • Arai Yasuo
  • Yamada Miho

Abrégé

The present invention provides a radiation-damage-compensation-circuit and a SOI-MOSFET that has high radiation resistance. The SOI-MOSFET has the radiation-damage-compensation-circuit to recover the characteristics of the SOI-MOSFET after X-ray irradiation.

Classes IPC  ?

  • H01L 21/822 - Fabrication ou traitement de dispositifs consistant en une pluralité de composants à l'état solide ou de circuits intégrés formés dans ou sur un substrat commun avec une division ultérieure du substrat en plusieurs dispositifs individuels pour produire des dispositifs, p.ex. des circuits intégrés, consistant chacun en une pluralité de composants le substrat étant un semi-conducteur, en utilisant une technologie au silicium
  • H01L 21/8234 - Technologie MIS
  • H01L 27/04 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant un corps semi-conducteur
  • H01L 27/08 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant un corps semi-conducteur comprenant uniquement des composants semi-conducteurs d'un seul type
  • H01L 27/088 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant un corps semi-conducteur comprenant uniquement des composants semi-conducteurs d'un seul type comprenant uniquement des composants à effet de champ les composants étant des transistors à effet de champ à porte isolée
  • H01L 29/786 - Transistors à couche mince
  • H01L 29/861 - Diodes
  • H01L 29/868 - Diodes PIN

27.

NUCLEAR WASTE DISPOSAL METHOD AND ITS APPARATUS USING MUON-NUCLEAR-ABSORPTION

      
Numéro d'application JP2015057396
Numéro de publication 2016/143144
Statut Délivré - en vigueur
Date de dépôt 2015-03-06
Date de publication 2016-09-15
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s) Nagamine, Kanetada

Abrégé

The present invention provides a new nuclear-waste-disposal method and its apparatus which is different from neutron ADS. The present invention comprises the processes to generate pion through irradiation a target with strong pulse proton, to generate negative muon by decay of said pion and to irradiate nuclear waste with said negative muon, thereby to dispose nuclear waste.

Classes IPC  ?

  • G21F 9/00 - Traitement des matériaux contaminés par la radioactivitéDispositions à cet effet pour la décontamination
  • G21G 1/10 - Dispositions pour la conversion des éléments chimiques par rayonnement électromagnétique, radiations corpusculaires ou bombardement par des particules, p. ex. production d'isotopes radioactifs à l'extérieur des réacteurs nucléaires ou des accélérateurs de particules par bombardement avec des particules électriquement chargées

28.

Semiconductor device having SOI substrate

      
Numéro d'application 15064686
Numéro de brevet 09899448
Statut Délivré - en vigueur
Date de dépôt 2016-03-09
Date de la première publication 2016-06-30
Date d'octroi 2018-02-20
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Arai, Yasuo
  • Okihara, Masao
  • Kasai, Hiroki

Abrégé

There is provided a semiconductor device and a method for manufacturing a semiconductor device. Within the N-type semiconductor layer formed from a high resistance N-type substrate, the P-type well diffusion layer and P-type extraction layer are formed and are fixed to ground potential. Due thereto, a depletion layer spreading on the P-type well diffusion layer side does not reach the interlayer boundary between the P-type well diffusion layer and the buried oxide film. Hence, the potential around the surface of the P-type well diffusion layer is kept at a ground potential. Accordingly, when the voltages are applied to the backside of the N-type semiconductor layer and a cathode electrode, a channel region at the MOS-type semiconductor formed as a P-type semiconductor layer is not activated. Due thereto, leakage current that may occur independently of a control due to the gate electrode of a transistor can be suppressed.

Classes IPC  ?

  • H01L 27/12 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant autre qu'un corps semi-conducteur, p.ex. un corps isolant
  • H01L 27/146 - Structures de capteurs d'images
  • H01L 21/265 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée produisant une implantation d'ions
  • H01L 27/144 - Dispositifs commandés par rayonnement
  • H01L 29/861 - Diodes
  • H01L 21/225 - Diffusion des impuretés, p. ex. des matériaux de dopage, des matériaux pour électrodes, à l'intérieur ou hors du corps semi-conducteur, ou entre les régions semi-conductricesRedistribution des impuretés, p. ex. sans introduction ou sans élimination de matériau dopant supplémentaire en utilisant la diffusion dans ou hors d'un solide, à partir d'une ou en phase solide, p. ex. une couche d'oxyde dopée
  • H01L 21/84 - Fabrication ou traitement de dispositifs consistant en une pluralité de composants à l'état solide ou de circuits intégrés formés dans ou sur un substrat commun avec une division ultérieure du substrat en plusieurs dispositifs individuels pour produire des dispositifs, p.ex. des circuits intégrés, consistant chacun en une pluralité de composants le substrat étant autre chose qu'un corps semi-conducteur, p.ex. étant un corps isolant
  • H01L 29/66 - Types de dispositifs semi-conducteurs
  • H01L 27/06 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant un corps semi-conducteur comprenant une pluralité de composants individuels dans une configuration non répétitive
  • H01L 29/786 - Transistors à couche mince

29.

METHOD OF MANUFACTURING PURE NIOBIUM PLATE END-GROUP COMPONENTS FOR SUPERCONDUCTING HIGH-FREQUENCY ACCELERATOR CAVITY

      
Numéro de document 02952404
Statut Délivré - en vigueur
Date de dépôt 2015-06-15
Date de disponibilité au public 2015-12-23
Date d'octroi 2019-09-24
Propriétaire
  • SHINOHARA PRESS SERVICE CO., LTD. (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Nohara, Kiyohiko
  • Kawabata, Nobuyuki
  • Nakamura, Hideyoshi
  • Miyajima, Kyohei
  • Shinohara, Masayuki
  • Hayano, Hitoshi
  • Yamamoto, Akira
  • Saeki, Takayuki
  • Kato, Shigeki
  • Yamanaka, Masashi

Abrégé

The present invention materializes mass production related to an advanced manufacturing method of end-group components from pure niobium plate material for superconducting high frequency accelerator cavities. It converts the conventional full machining or waterjet cutting followed by the conventional cold forging to the whole press-forming. The method includes: (1) shear-blanking procedure of the pure niobium plate different from the conventional fine blanking, wherein the clearance is set to be a value below 0.5% of pure niobium plate thickness to form a near net shape semi-product; and (2) forging procedure at different temperatures from the conventional hot, warm or cold forging. Press forging is conducted to be free from the occurrence of blue brittleness/necking and to bring about prominent metal-flow, formability, the size accuracy in any portion of a product and the margin of further press-forming by controlling forging temperature to be below 200°C and beyond ambient room temperature.

Classes IPC  ?

  • B21J 5/00 - Méthodes pour forger, marteler ou presserÉquipement ou accessoires particuliers
  • B21D 28/00 - Mise en forme par découpage à la pressePerforation
  • B21D 28/02 - Découpage à l'emporte-pièce ou poinçonnage de flans ou d'objets, avec ou sans production de déchetsEntaillage
  • B21D 28/16 - Moyens pour empêcher la formation d'épaulements ou de barbes
  • B21J 1/06 - Méthodes ou dispositifs de chauffage ou de refroidissement spécialement adaptés aux opérations de forgeage ou de pressage
  • B21J 13/02 - Matrices ou leurs montures
  • B21K 25/00 - Assemblage d'éléments afin qu'ils ne forment plus qu'une seule pièce, p. ex. assemblage de roues et d'arbres de turbines, de crampons et de garnitures, avec ou sans façonnage des éléments constitutifs
  • B30B 15/14 - Commande des presses actionnées mécaniquement

30.

METHOD FOR MANUFACTURING PURE NIOBIUM END GROUP COMPONENTS FOR SUPERCONDUCTING HIGH-FREQUENCY ACCELERATION CAVITY

      
Numéro d'application JP2015067221
Numéro de publication 2015/194517
Statut Délivré - en vigueur
Date de dépôt 2015-06-15
Date de publication 2015-12-23
Propriétaire
  • SHINOHARA PRESS SERVICE CO., LTD. (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Kawabata Nobuyuki
  • Nakamura Hideyoshi
  • Miyajima Kyohei
  • Shinohara Masayuki
  • Hayano Hitoshi
  • Yamamoto Akira
  • Saeki Takayuki
  • Kato Shigeki
  • Yamanaka Masashi

Abrégé

[Problem] To provide a method for manufacturing thick pure niobium end group components for a superconducting high-frequency acceleration cavity wherein conventional cutting processes and water jet processes are converted to pressing processes. [Solution] The method for manufacturing pure niobium end group components for a superconducting high-frequency acceleration cavity used in the acceleration of charged particles is characterized by: comprising (1) a shear cutting process that differs from precision blanking for forming a principal form while constraining thick pure niobium material by a binding jig with a fine clearance of 0.5% or less of the sheet thickness of the thick pure niobium material, and (2) a forging process differing from any of hot rolling, warm rolling, and cold rolling forging for forming a processed product while avoiding blue brittleness by low-temperature region temperature control of the principal form from room temperature to 200°C; and converting a cutting process and a water jet process for thick pure niobium end group components to pressing processes.

Classes IPC  ?

  • B21J 5/00 - Méthodes pour forger, marteler ou presserÉquipement ou accessoires particuliers
  • B21D 28/00 - Mise en forme par découpage à la pressePerforation
  • B21D 28/02 - Découpage à l'emporte-pièce ou poinçonnage de flans ou d'objets, avec ou sans production de déchetsEntaillage
  • B21D 28/16 - Moyens pour empêcher la formation d'épaulements ou de barbes
  • B21J 1/06 - Méthodes ou dispositifs de chauffage ou de refroidissement spécialement adaptés aux opérations de forgeage ou de pressage
  • B21J 13/02 - Matrices ou leurs montures
  • B21K 25/00 - Assemblage d'éléments afin qu'ils ne forment plus qu'une seule pièce, p. ex. assemblage de roues et d'arbres de turbines, de crampons et de garnitures, avec ou sans façonnage des éléments constitutifs
  • B30B 15/14 - Commande des presses actionnées mécaniquement

31.

OPTICAL RESONATOR

      
Numéro d'application JP2014082772
Numéro de publication 2015/087944
Statut Délivré - en vigueur
Date de dépôt 2014-12-04
Date de publication 2015-06-18
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Urakawa, Junji
  • Honda, Yosuke

Abrégé

[Problem to be Solved] The optical resonator as intends to generate coherent X-ray by irradiation of polarized laser interference fringes with electron beam has been unknown. [Solution] The present invention provides an optical resonator that is capable of preparing polarization laser, polarization X-ray and coherent X-ray. The optical resonator is characterized by comprising an optical resonator that is capable of circulating two or more polarization lasers and irradiation of the polarization lasers with electron beam introduced by an electron beam feed port which is inserted in the intersection of laser paths inside the optical resonator.

Classes IPC  ?

  • H01S 4/00 - Dispositifs utilisant l’émission stimulée de rayonnement électromagnétique dans des gammes d’ondes autres que celles couvertes par les groupes , ou , p. ex. masers à phonon, lasers à rayons X ou lasers gamma
  • G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer

32.

Method, system and apparatus for measuring comparatively thick materials

      
Numéro d'application 14496966
Numéro de brevet 09766190
Statut Délivré - en vigueur
Date de dépôt 2014-09-25
Date de la première publication 2015-03-26
Date d'octroi 2017-09-19
Propriétaire
  • TOYOTA JIDOSHA KABUSHIKI KAISHA (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Yano, Masao
  • Ono, Kanta

Abrégé

A method, system and apparatus are provided to measure magnetic characteristics of a comparatively thick magnetic sample in a magnetic field or nonmagnetic field by X-ray magnetic circular dichroism (XMCD). In particular, the method, system and apparatus measure the magnetic characteristics of the thick magnetic sample by irradiating the sample with X-ray, and detecting transmissive X-ray passing through the sample.

Classes IPC  ?

  • G01N 27/72 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant des variables magnétiques
  • G01N 23/06 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en transmettant la radiation à travers le matériau et mesurant l'absorption
  • G01N 23/04 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en transmettant la radiation à travers le matériau et formant des images des matériaux

33.

ELECTRIC WAVE MEASUREMENT DEVICE

      
Numéro d'application JP2014064208
Numéro de publication 2014/196439
Statut Délivré - en vigueur
Date de dépôt 2014-05-29
Date de publication 2014-12-11
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Tajima Osamu
  • Oguri Shugo

Abrégé

[Problem] The present invention provides an electric wave measurement device that enables highly sensitive measurements of electric waves at extremely low temperatures. [Solution] In this electric wave measurement device, a radiation-blocking filter through which targeted electric waves can pass, an electric-wave-transmitting material that reflects non-targeted electromagnetic waves included among the electric waves, and an electric wave detector are placed in a vacuum vessel. Electric waves are passed through the radiation-blocking filter, and non-targeted electromagnetic waves included among the electric waves are reflected toward the radiation-blocking filter by the electric-wave-transmitting material, and said non-targeted electromagnetic waves are collected as heat at the radiation-blocking filter and radiated as heat to outside the system via heat conduction. The electric waves that passed through the electric-wave-transmitting material are measured with high sensitivity by the electric wave detector.

Classes IPC  ?

  • G01R 29/10 - Diagrammes de rayonnement d'antennes
  • G01S 13/00 - Systèmes utilisant la réflexion ou la reradiation d'ondes radio, p. ex. systèmes radarSystèmes analogues utilisant la réflexion ou la reradiation d'ondes dont la nature ou la longueur d'onde sont sans importance ou non spécifiées
  • G02B 23/00 - Télescopes ou lunettes d'approche, p. ex. jumellesPériscopesInstruments pour voir à l'intérieur de corps creuxViseursPointage optique ou appareils de visée

34.

OPTICAL RESONATOR SYSTEM

      
Numéro d'application JP2013075379
Numéro de publication 2014/155776
Statut Délivré - en vigueur
Date de dépôt 2013-09-12
Date de publication 2014-10-02
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Urakawa, Junji
  • Sakaue, Kazuyuki

Abrégé

It has been very difficult to accumulate strong laser in the conventional optical resonator, because firstly it has been very difficult to control a resonator length less than 1 dstrok; in resonation position which is required for the laser amplification more than 1,000 times and secondly, the conventional method has utilized laser strength of amplified laser in the optical resonator as the resonance control signal. The present invention provides an optical resonator system to accumulate strong laser. In the system, unamplified modulation wave or harmonic which are derived from oscillation laser are selectively used to tune a resonator length of the optical resonator.

Classes IPC  ?

  • H01S 3/105 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation par commande de la position relative ou des propriétés réfléchissantes des réflecteurs de la cavité
  • H01S 3/081 - Structure ou forme des résonateurs optiques ou de leurs composants comprenant trois réflecteurs ou plus
  • H05G 2/00 - Appareils ou procédés spécialement adaptés à la production de rayons X, n'utilisant pas de tubes à rayons X, p. ex. utilisant la génération d'un plasma

35.

TWO DIMENSIONAL (2-D)-4-MIRROR OPTICAL RESONATOR

      
Numéro d'application JP2013052958
Numéro de publication 2014/118998
Statut Délivré - en vigueur
Date de dépôt 2013-02-01
Date de publication 2014-08-07
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Urakawa, Junji
  • Shimizu, Hirotaka

Abrégé

The present inventers provide an optical resonator which produces high strength of polarized laser beam so as to conduct laser Compton scattering, comprising: the 2-D-4-mirror optical resonator (A) includes the 2-D-4-mirror optic system which includes a pair of cylindrical concave mirrors (1, 2) and a pair of concave mirrors (3, 4) being arranged in the two-dimensional plane, the oscillation length controller device (10), the laser Compton scattering port (7) to conduct collisions laser beam and electron beam, the laser feed port (5) to guide an incident laser to the 2-D-4-mirror optic system, the electron feed port (6) to guide an incident laser to the laser Compton scattering port, the radiation output port (8) to output resultant laser Compton scattering radiation; the laser source unit (B) including the oscillation matching unit (F); the polarization controller unit (C); and the oscillation controller unit (D); wherein, laser beam supplied by the laser source unit (B) is the most strengthened in the laser Compton scattering port (7) in the 2-D-4-mirror optic system, selectively polarized through the intermediary of the polarization controller unit (C) and the oscillation controller unit (D).

Classes IPC  ?

  • H01S 3/30 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet utilisant des effets de diffusion, p. ex. l'effet Brillouin ou Raman stimulé
  • H01S 3/10 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation
  • H05G 2/00 - Appareils ou procédés spécialement adaptés à la production de rayons X, n'utilisant pas de tubes à rayons X, p. ex. utilisant la génération d'un plasma

36.

BURST-LASER GENERATOR USING AN OPTICAL RESONATOR

      
Numéro d'application JP2013052961
Numéro de publication 2014/118999
Statut Délivré - en vigueur
Date de dépôt 2013-02-01
Date de publication 2014-08-07
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Urakawa, Junji
  • Shimizu, Hirotaka

Abrégé

The present invention provides a burst-laser generator using an optical resonator which produces high pulse-strength of burst-laser in order to conduct laser Compton scattering, comprising: a self-oscillation amplifying optical loop-path and an external optical resonator to burst-amplify laser, wherein, laser supplied by an exciting laser source is self-oscillation amplified with the self-oscillation amplifying optical loop-path and further burst-amplified with the external optical resonator.

Classes IPC  ?

  • H01S 3/10 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation
  • H01S 3/30 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet utilisant des effets de diffusion, p. ex. l'effet Brillouin ou Raman stimulé
  • H05G 2/00 - Appareils ou procédés spécialement adaptés à la production de rayons X, n'utilisant pas de tubes à rayons X, p. ex. utilisant la génération d'un plasma

37.

METHOD FOR SYNTHESIZING RADIOACTIVE TECHNETIUM-99M-CONTAINING SUBSTANCE AND SYNTHESIZING DEVICE

      
Numéro d'application JP2013083161
Numéro de publication 2014/103712
Statut Délivré - en vigueur
Date de dépôt 2013-12-11
Date de publication 2014-07-03
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s) Nagamine, Kanetada

Abrégé

A method for synthesizing a radioactive technetium-99m-containing substance and a synthesizing device are provided. The method for synthesizing a radioactive technetium-99m-containing substance has a step for generating negative muons and a step for irradiating the negative muons onto a ruthenium sample. The ruthenium material preferably includes a metallic ruthenium and/or a ruthenium compound. Also, the ruthenium sample preferably has a plurality of superimposed ruthenium thin plates having a thickness of 4 mm or less.

Classes IPC  ?

  • G21G 4/08 - Sources radioactives autres que les sources de neutrons caractérisées par des aspects de leur structure spécialement adaptées aux applications médicales
  • G21G 1/10 - Dispositions pour la conversion des éléments chimiques par rayonnement électromagnétique, radiations corpusculaires ou bombardement par des particules, p. ex. production d'isotopes radioactifs à l'extérieur des réacteurs nucléaires ou des accélérateurs de particules par bombardement avec des particules électriquement chargées
  • G21K 1/093 - Déviation, concentration ou focalisation du faisceau par des moyens électriques ou magnétiques par des moyens magnétiques

38.

METHOD AND DEVICE FOR MEASURING SCATTERING INTENSITY DISTRIBUTION

      
Numéro d'application JP2013083064
Numéro de publication 2014/092073
Statut Délivré - en vigueur
Date de dépôt 2013-12-10
Date de publication 2014-06-19
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Matsushita, Tadashi
  • Voegeli, Wolfgang
  • Shirasawa, Tetsuro
  • Takahashi, Toshio
  • Arakawa, Etsuo

Abrégé

The present invention provides a method and a device for measuring a scattering intensity distribution capable of rapidly measuring the scattering intensity distribution in a reciprocal lattice space. An X-ray radiated from an X-ray source (101) is reflected using an X-ray optical element (102) so as to be focused in the vicinity of the surface of a specimen (SA). In a state where a correlation exists between the angles formed by a reference surface and each of a plurality of light paths of monochromatic X-rays focused via the light paths, and angles formed by the normal to the reference surface and a surface including a light path positioned in the center of the light paths, the monochromic X-rays are caused to impinge on the specimen at the same time at the glancing angle (ω), which differs depending on the individual light paths. The scattering intensity of the monochromic X-rays scattered from the specimen is detected using a two-dimensional detector (103). The scattering intensity distribution in the reciprocal lattice space is computed on the basis of the scattering intensity distribution detected by the two-dimensional detector and the correlation.

Classes IPC  ?

  • G01N 23/20 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en utilisant la diffraction de la radiation par les matériaux, p. ex. pour rechercher la structure cristallineRecherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en utilisant la diffusion de la radiation par les matériaux, p. ex. pour rechercher les matériaux non cristallinsRecherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en utilisant la réflexion de la radiation par les matériaux

39.

COMBINED-TYPE TARGET, NEUTRON-GENERATING METHOD USING COMBINED-TYPE TARGET, AND NEUTRON-GENERATING DEVICE USING COMBINED-TYPE TARGET

      
Numéro d'application JP2013061046
Numéro de publication 2013/154177
Statut Délivré - en vigueur
Date de dépôt 2013-04-12
Date de publication 2013-10-17
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Matsumoto, Hiroshi
  • Kobayashi, Hitoshi
  • Yoshioka, Masakazu
  • Kurihara, Toshikazu

Abrégé

Provided is a target whereby radioactivation of a member by protons can be reduced. To reduce radioactivation of a member by protons, a novel target composed by combining a beryllium material, a lithium material and a nonmetal material is used.

Classes IPC  ?

  • G21K 5/08 - Supports pour cibles ou pour objets à irradier
  • G21K 5/02 - Dispositifs d'irradiation n'ayant aucun moyen pour former le faisceau
  • H05H 6/00 - Cibles pour la production de réactions nucléaires

40.

METHOD OF MANUFACTURING END-GROUP COMPONENTS WITH PURE NIOBIUM MATERIAL FOR SUPERCONDUCTING ACCELERATOR CAVITY

      
Numéro de document 02863020
Statut Délivré - en vigueur
Date de dépôt 2013-02-04
Date de disponibilité au public 2013-08-08
Date d'octroi 2017-01-31
Propriétaire
  • SHINOHARA PRESS SERVICE CO., LTD. (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Nohara, Kiyohiko
  • Shinohara, Masayuki
  • Kawabata, Nobuyuki
  • Nakamura, Hideyoshi
  • Hayano, Hitoshi
  • Yamamoto, Akira
  • Saeki, Takayuki
  • Kato, Shigeki
  • Yamanaka, Masashi

Abrégé

End-group components for superconducting accelerator cavity used in acceleration of charged particles are manufactured by subjecting pure niobium sheet materials to press forming composed mainly of flat-bottomed cylindrical drawing, preferably by simultaneously conducting control of slide velocity and / or its motion and control of tool die temperature and / or its distribution / gradient in the above press forming, further preferably by dynamically controlling blank holding force in accordance with the variation of flange area, flange thickness and deformed characteristics of niobium sheet materials during the press forming, more preferably by preparing an anisotropically shaped blank instead of a circular blank by use of servo press forming machine, servo-die cushion temperature control equipment, water-soluble solid coating type lubricant, and a tooling die.

Classes IPC  ?

  • B21D 22/20 - Emboutissage
  • B21D 24/00 - Agencement des presses, ou systèmes en relation avec les presses, pour l'emboutissage
  • H05H 7/20 - CavitésRésonateurs avec des parois supraconductrices

41.

METHOD FOR MANUFACTURING PURE NIOBIUM END GROUP COMPONENT OF SUPERCONDUCTING ACCELERATION CAVITY

      
Numéro d'application JP2013052516
Numéro de publication 2013/115401
Statut Délivré - en vigueur
Date de dépôt 2013-02-04
Date de publication 2013-08-08
Propriétaire
  • SHINOHARA PRESS SERVICE CO., LTD. (Japon)
  • Inter-University Research Institute Corporation High Energy Accelerator Research Organization (Japon)
Inventeur(s)
  • Shinohara Masayuki
  • Kawabata Nobuyuki
  • Nakamura Hideyoshi
  • Hayano Hitoshi
  • Yamamoto Akira
  • Saeki Takayuki
  • Kato Shigeki
  • Yamanaka Masashi

Abrégé

A pure niobium end group component of a superconducting acceleration cavity used in the acceleration of charged particles is manufactured from a pure niobium sheet material with a press-processing method primarily involving the contraction of a flat-bottomed cylinder. Preferably, in the pressing process the speed and/or the motion of a slide are controlled simultaneously with the control of the mold temperature and/ or distribution/gradient. More preferably, in the pressing process the fold-pressing load is controlled dynamically in accordance with changes in the flange area, the sheet thickness and the material properties of the niobium sheet material. Still more preferably, blanks of the pure niobium sheet material are made into irregularly shaped blanks.

Classes IPC  ?

  • B21D 22/20 - Emboutissage
  • B21D 24/00 - Agencement des presses, ou systèmes en relation avec les presses, pour l'emboutissage
  • H05H 7/20 - CavitésRésonateurs avec des parois supraconductrices

42.

Semiconductor device and method for manufacturing semiconductor device

      
Numéro d'application 13583409
Numéro de brevet 08963246
Statut Délivré - en vigueur
Date de dépôt 2011-03-09
Date de la première publication 2013-02-21
Date d'octroi 2015-02-24
Propriétaire Inter-University Research Institute Corporation High Energy Accelerator Research Organization (Japon)
Inventeur(s)
  • Arai, Yasuo
  • Okihara, Masao
  • Kasai, Hiroki

Abrégé

There is provided a semiconductor device and a method for manufacturing a semiconductor device. Within the N-type semiconductor layer formed from a high resistance N-type substrate, the P-type well diffusion layer and P-type extraction layer are formed and are fixed to ground potential. Due thereto, a depletion layer spreading on the P-type well diffusion layer side does not reach the interlayer boundary between the P-type well diffusion layer and the buried oxide film. Hence, the potential around the surface of the P-type well diffusion layer is kept at a ground potential. Accordingly, when the voltages are applied to the backside of the N-type semiconductor layer and a cathode electrode, a channel region at the MOS-type semiconductor formed as a P-type semiconductor layer is not activated. Due thereto, leakage current that may occur independently of a control due to the gate electrode of a transistor can be suppressed.

Classes IPC  ?

  • H01L 27/12 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant autre qu'un corps semi-conducteur, p.ex. un corps isolant
  • H01L 21/265 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée produisant une implantation d'ions
  • H01L 27/144 - Dispositifs commandés par rayonnement
  • H01L 29/861 - Diodes
  • H01L 29/786 - Transistors à couche mince

43.

Magnetic shielding material for superconducting magnet

      
Numéro d'application 13458301
Numéro de brevet 09103005
Statut Délivré - en vigueur
Date de dépôt 2012-04-27
Date de la première publication 2012-11-01
Date d'octroi 2015-08-11
Propriétaire
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
  • SUMITOMO CHEMICAL COMPANY, LIMITED (Japon)
Inventeur(s)
  • Tomaru, Takayuki
  • Sasaki, Kenichi
  • Hoshikawa, Hiroaki
  • Tabuchi, Hiroshi

Abrégé

A magnetic shielding material which can decrease the thickness by having excellent conductivity even at low temperatures of, for example, 77 K or lower, in a strong magnetic field of a magnetic flux density of 1 T or more is provide. A magnetic shielding material to be used at low temperatures of 77 K or lower in the magnetic field of a magnetic flux density of 1 T or more, comprises aluminum having a purity of 99.999% by mass or more.

Classes IPC  ?

  • G01R 33/421 - Blindage du champ magnétique principal ou du champ magnétique à gradient
  • C22C 21/00 - Alliages à base d'aluminium
  • H01F 1/047 - Alliages caractérisés par leur composition
  • B23K 35/28 - Emploi de matériaux spécifiés pour le soudage ou le brasage dont le principal constituant fond à moins de 950 C
  • C22C 45/08 - Alliages amorphes avec l'aluminium comme constituant majeur
  • G01R 33/3815 - Systèmes pour produire, homogénéiser ou stabiliser le champ magnétique directeur ou le champ magnétique à gradient utilisant des électro-aimants avec des bobines supraconductrices, p. ex. leurs alimentations

44.

High-frequency accelerator, method for manufacturing high-frequency accelerator, quadrupole accelerator, and method for manufacturing quadrupole accelerator

      
Numéro d'application 13501798
Numéro de brevet 08928216
Statut Délivré - en vigueur
Date de dépôt 2010-10-14
Date de la première publication 2012-08-09
Date d'octroi 2015-01-06
Propriétaire
  • Tokyo Institute of Technology (Japon)
  • Inter-University Research Institute Corporation High Energy Accelerator Research Organization (Japon)
  • Time Corporation (Japon)
Inventeur(s)
  • Hayashizaki, Noriyosu
  • Hattori, Toshiyuki
  • Ishibashi, Takuya
  • Naito, Fujio
  • Takasaki, Eiichi
  • Yamauchi, Hideaki

Abrégé

A method of production of a radio frequency accelerator which has a tubular part 1 which forms an acceleration cavity, including a temporary assembly step of making a plurality of component members 11 to 14 which have shapes obtained by splitting the tubular part 1 mate with each other to temporarily assemble them into the shape of the tubular part 10 and a welding step of welding the plurality of component members 11 to 14 together. The temporary assembly step includes a step of placing, inside of the tubular part 1, support members 21 for contacting the inside surface of the tubular part 1 and supporting the tubular part 1 from the inside, and the welding step includes a step of welding the plurality of component members 11 to 14 along the butt lines 51 by friction stir welding.

Classes IPC  ?

  • F03H 1/00 - Utilisation du plasma pour produire une poussée propulsive par réaction
  • H05H 7/22 - Détails d'accélérateurs linéaires, p. ex. tubes de glissement
  • H05H 9/04 - Accélérateurs linéaires à ondes stationnaires

45.

COMBINED-TYPE TARGET, NEUTRON GENERATING METHOD USING COMBINED-TYPE TARGET, AND NEUTRON GENERATING APPARATUS USING COMBINED-TYPE TARGET

      
Numéro d'application JP2011077557
Numéro de publication 2012/073966
Statut Délivré - en vigueur
Date de dépôt 2011-11-29
Date de publication 2012-06-07
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Matsumoto, Hiroshi
  • Kobayashi, Hitoshi
  • Yoshioka, Masakazu

Abrégé

Provided is a target wherein radioactivation of a member thereof by protons can be reduced. In order to reduce radioactivation of a member by protons, a new target composed by combining beryllium material (or lithium material) and nonmetal material is used.

Classes IPC  ?

  • H05H 6/00 - Cibles pour la production de réactions nucléaires
  • A61N 5/10 - RadiothérapieTraitement aux rayons gammaTraitement par irradiation de particules
  • G21K 5/08 - Supports pour cibles ou pour objets à irradier
  • H05H 3/06 - Production de faisceaux de neutrons
  • H05H 9/00 - Accélérateurs linéaires

46.

PHOTO-CATHODE HIGH-FREQUENCY ELECTRON-GUN CAVITY APPARATUS

      
Numéro d'application JP2011071887
Numéro de publication 2012/043475
Statut Délivré - en vigueur
Date de dépôt 2011-09-26
Date de publication 2012-04-05
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Urakawa, Junji
  • Terunuma, Nobuhiro
  • Takatomi, Toshikazu

Abrégé

A photo-cathode high-frequency electron-gun cavity apparatus of the present invention is provided with a high-frequency acceleration cavity (1), a photo cathode (8/15), a laser entering port (9), a high-frequency-power input coupler-port (10), and a high-frequency resonant tuner (16). The photo-cathode high-frequency electron-gun cavity apparatus is characterized in using an ultra-compact high-frequency acceleration cavity that has formed therein cavity cells that do not have any acute-angled sections on the inner face thereof, and that are formed with just smooth curved surfaces, in order to prevent discharging, make the high-frequency electric field higher in intensity, and improve the resonance stability of the high-frequency wave. Further, the photo cathode was formed at an end section of a half-cell (5) of the high-frequency acceleration cavity to maximize electric field strength at the photo-cathode face, the laser entering port was formed at the back of an electron-beam taking-out port of the high-frequency acceleration cavity, at a position opposing the photo cathode, to secure a perpendicular laser entrance to maximize the quality of short-bunch photoelectrons, and the high-frequency-power input coupler-port (10) was formed at a side section of a cell of the high-frequency acceleration cavity to intensify the electric field of the high-frequency wave. In such a way, a compact photo-cathode high-frequency electron-gun cavity apparatus that is able to generate high-intensity and high-quality electron beams became possible to be provided.

Classes IPC  ?

  • H01J 37/073 - Canons à électrons utilisant des sources d'électrons à émission par effet de champ, à photo-émission ou à émission secondaire
  • G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
  • H05H 7/08 - Dispositions pour placer des particules sur leurs orbites
  • G21K 5/02 - Dispositifs d'irradiation n'ayant aucun moyen pour former le faisceau

47.

LASER OSCILLATION APPARATUS

      
Numéro d'application JP2011067730
Numéro de publication 2012/018034
Statut Délivré - en vigueur
Date de dépôt 2011-08-03
Date de publication 2012-02-09
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Honda, Yosuke
  • Urakawa, Junji

Abrégé

Provided is a laser oscillation apparatus, wherein resonation can be stabilized even when the finesse of an optical resonator is made to be high, and laser beams stronger than those generated by conventional apparatuses can be generated by accumulating laser beams within the optical resonator. The laser oscillation apparatus is provided with: an excitation laser light-source that generates laser beams for excitation; fiber amplifiers that generate, when laser beams generated by the excitation laser light-source is supplied thereto, laser beams with the desired wavelength; an optical resonator; optical isolators that are inserted between the optical resonator and the fiber amplifiers, guide laser beams from the fiber amplifiers to one side of the optical resonator, and shut off laser beams in the opposite direction; and a light circling circuit that takes in laser beams radiated from the other side of the optical resonator, returns the laser beams to the optical resonator via the fiber amplifiers and the optical isolators, and facilitates the resonation; and a modulator that modulates the amplitude of the laser beams in the light circling circuit.

Classes IPC  ?

  • H01S 3/098 - Accrochage de modes; Suppression de modes
  • G02F 1/01 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur
  • H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
  • H01S 3/06 - Structure ou forme du milieu actif
  • H01S 3/083 - Lasers en anneau

48.

SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

      
Numéro d'application JP2011055546
Numéro de publication 2011/111754
Statut Délivré - en vigueur
Date de dépôt 2011-03-09
Date de publication 2011-09-15
Propriétaire
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
  • LAPIS Semiconductor Co., Ltd. (Japon)
Inventeur(s)
  • Arai, Yasuo
  • Okihara, Masao
  • Kasai, Hiroki

Abrégé

Disclosed is a semiconductor device in which a diode and a transistor coexist on the same substrate, and in which leakage current that is generated unrelated to control performed by a gate electrode of the transistor is suppressed, and also provided is a method for manufacturing the semiconductor device. A P-type well diffusion layer and a P-type extraction electrode region are formed in an N-type semiconductor layer, which is formed by a high resistance N-type substrate, and are fixed to ground potential by an electrode. The potential near the surface of the P-type well diffusion layer is held at the ground potential because a depletion layer that spreads toward the P-type well diffusion layer does not reach the boundary surface with an embedded oxide film. When a voltage is applied from a power supply voltage to the rear surface of the N-type semiconductor layer and a cathode electrode, the generation of leakage current unrelated to the control performed by the gate electrode can be suppressed because a channel region on the embedded oxide film side of a MOS-type transistor formed in the P-type semiconductor layer does not act.

Classes IPC  ?

  • H01L 27/08 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant un corps semi-conducteur comprenant uniquement des composants semi-conducteurs d'un seul type
  • G01T 1/24 - Mesure de l'intensité de radiation avec des détecteurs à semi-conducteurs
  • H01L 21/8234 - Technologie MIS
  • H01L 27/088 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant un corps semi-conducteur comprenant uniquement des composants semi-conducteurs d'un seul type comprenant uniquement des composants à effet de champ les composants étant des transistors à effet de champ à porte isolée
  • H01L 29/786 - Transistors à couche mince

49.

MUON MONITORING SYSTEM FOR CHARGED PARTICLE RADIATION THERAPY

      
Numéro d'application JP2011054787
Numéro de publication 2011/108601
Statut Délivré - en vigueur
Date de dépôt 2011-03-02
Date de publication 2011-09-09
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s) Nagamine, Kanetada

Abrégé

Provided is a muon monitoring system that obtains the μSR signal of positive muons produced by a particle beam that is at rest at the Bragg peak of a charged particle beam pulse such as a proton beam, and accurately grasps the radiation effect of a proton beam etc. for particle radiation therapy. Each time 230 MeV protons output from an accelerator are introduced and a proton beam pulse is output from an irradiation device (11) to expose a patient (human body (2)) undergoing therapy, a lead shield (4) uses a delayed signal to positionally and temporally select only delayed positrons, which occur due to the disappearance of the leading muons produced by the same protons at the Bragg peak in the body, and after information regarding the positron generation position and the time of the delay synchronization signal has been measured by the positron counters of a first position-sensitive positron counter plate (9) and by the positron counters of a second position-sensitive positron counter plate (10), and the delayed positrons have been measured, the measurement results are analyzed and the μSR signal, which is segmented at each positron generation location near the Bragg peak of a proton, is displayed on the screen of a display (8).

Classes IPC  ?

  • A61N 5/10 - RadiothérapieTraitement aux rayons gammaTraitement par irradiation de particules

50.

INDUCTION ACCELERATION SECTOR CYCLOTRON

      
Numéro d'application JP2010071210
Numéro de publication 2011/065518
Statut Délivré - en vigueur
Date de dépôt 2010-11-29
Date de publication 2011-06-03
Propriétaire Inter-University Research Institute Corporation High Energy Accelerator Research Organization (Japon)
Inventeur(s) Takayama Ken

Abrégé

Disclosed is an induction acceleration sector cyclotron which accelerates a charged particle beam in a sector cyclotron electromagnet array using an induced voltage. Further disclosed is an acceleration method for charged particle beams which can efficiently and practically accelerate cluster ions in cycles. The induction acceleration cyclotron comprises a sector cyclotron electromagnet array, and induction acceleration cells which are connected to vacuum chambers in the gaps between the sector electromagnets, and which apply an induced voltage to the charged particle beam. The induction acceleration cyclotron is characterized in that a positive induced voltage, which is synchronized with the charged particle beam travelling through the induction acceleration cells and which accelerates in the direction of movement of the charged particle beam, is applied to the charged particle beam. Furthermore, cluster ions can also be accelerated by using the induction acceleration cyclotron to accelerate the charged particle beam.

Classes IPC  ?

  • H05H 13/00 - Accélérateurs à résonance magnétiqueCyclotrons
  • H05H 11/00 - Accélérateurs à induction magnétique, p. ex. bêtatrons

51.

Method of manufacturing superconducting radio-frequency acceleration cavity

      
Numéro d'application 12737651
Numéro de brevet 08324134
Statut Délivré - en vigueur
Date de dépôt 2009-06-24
Date de la première publication 2011-06-02
Date d'octroi 2012-12-04
Propriétaire
  • Inter-University Research Institute Corporation High Energy Accelerator Research Organization (Japon)
  • Tokyo Denkai Co., Ltd. (Japon)
  • TKX Corporation (Japon)
Inventeur(s)
  • Saito, Kenji
  • Takeuchi, Koichi
  • Yamazaki, Hiroshi

Abrégé

To provide a manufacturing method of a superconducting radio-frequency acceleration cavity used in a charged particle accelerator enabling the manufacturing with few waste amounts of the niobium material at low cost in a short time, the manufacturing method has each of the steps of (a) obtaining an ingot made from a disk-shaped niobium material, (b) slicing and cutting the niobium ingot into a plurality of niobium plates each with a predetermined thickness, by vibrating multiple wires back and forth while spraying fine floating abrasive grains with the niobium ingot supported, (c) removing the floating abrasive grains adhered to the sliced niobium plates, and (d) performing deep draw forming on the niobium plates and thereby obtaining a niobium cell of a desired shape.

Classes IPC  ?

  • H01L 39/24 - Procédés ou appareils spécialement adaptés à la fabrication ou au traitement des dispositifs couverts par  ou de leurs parties constitutives

52.

HIGH-FREQUENCY ACCELERATOR, METHOD FOR MANUFACTURING HIGH-FREQUENCY ACCELERATOR, QUADRUPOLE ACCELERATOR, AND METHOD FOR MANUFACTURING QUADRUPOLE ACCELERATOR

      
Numéro d'application JP2010068532
Numéro de publication 2011/046229
Statut Délivré - en vigueur
Date de dépôt 2010-10-14
Date de publication 2011-04-21
Propriétaire
  • Tokyo Institute of Technology (Japon)
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
  • TIME CORPORATION (Japon)
Inventeur(s)
  • Hayashizaki, Noriyosu
  • Hattori, Toshiyuki
  • Ishibashi, Takuya
  • Naito, Fujio
  • Takasaki, Eiichi
  • Yamauchi, Hideaki

Abrégé

A method for manufacturing a high-frequency accelerator having a cylindrical section (1) constituting an acceleration cavity includes a temporary assembling step for temporarily assembling a plurality of constituent members (11 to 14) each having a shape in which the cylindrical section (1) is parted into the shape of the cylindrical section (1) by butting the plurality of constituent members (11 to 14) against one another, and a joining step for joining the plurality of constituent members (11 to 14) to one another. The temporary assembling step includes a step for disposing supporting members (21) which are in contact with the inner surface of the cylindrical section (1) so as to support the cylindrical section (1) from the inner side in the interior of the cylindrical section (1), and the joining step includes a step for joining the plurality of constituent members (11 to 14) by means of friction stir welding along butt lines (51) of the plurality of constituent members (11 to 14).

Classes IPC  ?

53.

LIGHT SOURCE LASER UTILIZING LASER COMPTON SCATTERING

      
Numéro de document 02807113
Statut Délivré - en vigueur
Date de dépôt 2010-07-29
Date de disponibilité au public 2011-02-10
Date d'octroi 2017-07-18
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Honda, Yosuke
  • Urakawa, Junji
  • Sakaue, Kazuyuki

Abrégé

A laser oscillation device stabilizing resonance, even when an optical resonator's finesses are increased, and generating stronger laser light by accumulating laser light in the resonator. The laser oscillation device includes a laser light source for excitation which generates laser light for excitation, a rare-earth fiber which generates laser light having a desired wavelength when laser light generated by the laser light source for excitation is supplied, an optical resonator, including two concave or flat mirrors that accumulate laser light generated with the fiber, an optical isolator, between the resonator and the fiber, that guides laser light from the fiber to one side of the resonator while blocking laser light in the opposite direction, and a circulation optical path that introduces laser light emitted from the other side of the resonator and accelerates resonance by returning the laser light to the resonator via the fiber and the optical isolator.

Classes IPC  ?

  • H01S 3/06 - Structure ou forme du milieu actif
  • H01S 3/082 - Structure ou forme des résonateurs optiques ou de leurs composants comprenant trois réflecteurs ou plus définissant une pluralité de résonateurs, p. ex. pour la sélection ou la suppression de modes

54.

LIGHT-SOURCE LASER UTILIZING LASER COMPTON-SCATTERING

      
Numéro d'application JP2010062750
Numéro de publication 2011/016379
Statut Délivré - en vigueur
Date de dépôt 2010-07-29
Date de publication 2011-02-10
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Honda, Yosuke
  • Urakawa, Junji
  • Sakaue, Kazuyuki

Abrégé

Provided is a laser oscillation device that can stabilize resonation even when the finesse of an optical resonator is made to be high, and which can generate laser rays stronger than conventional devices by accumulating laser rays within the optical resonator. The laser oscillation device is provided with: an excitation laser light-source that generates laser rays for excitation; a rare-earth fiber that generates laser rays having the desired wavelength, when a laser ray generated by the excitation laser light-source is supplied thereto; an optical resonator that is composed of two concave mirrors arranged facing each other, or composed of a group of mirrors including multiple plane mirrors, and that accumulates laser rays generated by the rare-earth fiber; an optical isolator that is inserted between the optical resonator and the rare-earth fiber, guides laser rays coming out from the rare-earth fiber to one end of the optical resonator, and shuts off laser rays going in the opposite direction; and a circling optical path that takes in laser rays eradiated out from the other end of the optical resonator, returns the laser rays to the optical resonator via the rare-earth fiber and the optical isolator, and promotes the resonation.

Classes IPC  ?

  • H01S 3/06 - Structure ou forme du milieu actif
  • H01S 3/082 - Structure ou forme des résonateurs optiques ou de leurs composants comprenant trois réflecteurs ou plus définissant une pluralité de résonateurs, p. ex. pour la sélection ou la suppression de modes
  • H01S 3/098 - Accrochage de modes; Suppression de modes

55.

THREE-DIMENSIONAL OPTICAL RESONANCE DEVICE, POLARIZED LASER OSCILLATION METHOD, AND POLARIZED LASER OSCILLATION SYSTEM

      
Numéro de document 02807120
Statut Délivré - en vigueur
Date de dépôt 2010-07-29
Date de disponibilité au public 2011-02-10
Date d'octroi 2019-02-05
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Urakawa, Junji
  • Honda, Yosuke
  • Shimizu, Hirotaka

Abrégé

Provided is polarized laser oscillation capable of guiding laser to a three-dimensionally-arranged optical resonator to resonate with right polarization or left polarization and easily switching therebetween. The polarized laser oscillation includes guiding laser to an optical resonator 4, circulating the laser with a pair of flat mirrors 21, 22 and a pair of concave mirrors 23, 24 which are three-dimensionally arranged at the optical resonator 4, adjusting an optical path length formed with the flat mirrors 21, 22 and the concave mirrors 23, 24 by deforming a piezoelectric element 25 as applying ramp-like drive voltage to the optical resonator 4, determining whether or not zero-crossing for right polarization or zero-crossing for left polarization occurs at a difference value between a P-polarized component and an S-polarized component of the laser as guiding laser transmitted through the flat mirror 21 to a zero-cross feedback signal generator 6, and causing right polarized laser or left polarized laser to resonate in the optical resonator 4 as fixing a voltage value of the drive voltage applied to the piezoelectric element 25 from the resonance controller 8 based on the determination result.

Classes IPC  ?

  • G02B 26/00 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables
  • H01S 3/10 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation

56.

THREE-DIMENSIONAL OPTICAL RESONANCE DEVICE, POLARIZED LASER OSCILLATION METHOD, AND POLARIZED LASER OSCILLATION SYSTEM

      
Numéro d'application JP2010062749
Numéro de publication 2011/016378
Statut Délivré - en vigueur
Date de dépôt 2010-07-29
Date de publication 2011-02-10
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Urakawa, Junji
  • Honda, Yosuke
  • Shimizu, Hirotaka

Abrégé

Provided is polarized laser oscillation capable of guiding laser light to a three-dimensional optical resonator to resonate right or left, and easily switching polarization between left and right. The polarized laser oscillation comprises: guiding the laser light to an optical resonator (4); revolving the laser light by a pair of flat mirrors (21, 22) and a pair of concave mirrors (23, 24) spatially arranged in the optical resonator (4), and applying a ramp driving voltage to the optical resonator (4) to deform a piezoelectric element (25), thereby adjusting an optical path length formed by the flat mirrors (21, 22) and the concave mirrors (23, 24); guiding the laser light transmitted through the flat mirror (21) to a zero-cross feedback signal generator (6) to determine whether a zero-crossing for right polarization and a zero-crossing for left polarization has been generated by a difference value between a P-polarized component and an S-polarized component of the laser light; and fixing, on the basis of a result of the determination, a voltage value of a driving voltage applied to the piezoelectric element (25) from a resonant controller (8), and causing the right-polarized or left-polarized laser light to resonate in the optical resonator (4).

Classes IPC  ?

  • G02B 26/00 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables
  • H01S 3/10 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation

57.

Nondestructive inspection apparatus and nondestructive inspection method for composite structure

      
Numéro d'application 12735887
Numéro de brevet 08575546
Statut Délivré - en vigueur
Date de dépôt 2009-02-23
Date de la première publication 2011-01-06
Date d'octroi 2013-11-05
Propriétaire Inter-University Research Institute Corporation High Energy Accelerator Research Organization (Japon)
Inventeur(s) Nagamine, Kanetada

Abrégé

The invention provides a nondestructive inspection apparatus and nondestructive inspection method for inspecting the inside of a surface layer of a composite structure using cosmic-ray muons. The nondestructive inspection apparatus is to inspect the inside of the surface layer of a composite structure 11 using cosmic-ray muons 12 incoming substantially in the horizontal direction with being spin polarized by a given amount in the incoming direction, and has positron/electron amount detecting means 13 for detecting a positron/electron amount reflection-emitted having a characteristic time constant in the direction opposite to the incoming direction of the cosmic-ray muons 12 by the decay of the cosmic-ray muons 12 stopping inside the composite structure 11, and radiography data processing means 14, 15, 16 for data-processing a state of the second substance 11-2 different from the first substance 11-1 of the surface layer existing inside the surface layer of the composite structure 11 as radiography to output, from the positron/electron amount detected in the positron/electron detecting means 13.

Classes IPC  ?

  • G01N 23/20 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en utilisant la diffraction de la radiation par les matériaux, p. ex. pour rechercher la structure cristallineRecherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en utilisant la diffusion de la radiation par les matériaux, p. ex. pour rechercher les matériaux non cristallinsRecherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en utilisant la réflexion de la radiation par les matériaux

58.

METHOD FOR PRODUCING SUPERCONDUCTING RADIO-FREQUENCY ACCELERATION CAVITY

      
Numéro d'application JP2009061489
Numéro de publication 2010/016337
Statut Délivré - en vigueur
Date de dépôt 2009-06-24
Date de publication 2010-02-11
Propriétaire
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
  • TOKYO DENKAI CO., LTD. (Japon)
  • TKX Corporation (Japon)
Inventeur(s)
  • Saito, Kenji
  • Takeuchi, Koichi
  • Yamazaki, Hiroshi

Abrégé

Provided is a method for producing a superconducting radio-frequency acceleration cavity for use in a charged particle accelerator which can be produced in a short time at a low cost with a minimum amount of  niobium material to be discarded.  The method for producing a superconducting radio-frequency acceleration cavity comprises (a) a step for obtaining an ingot made of niobium material in the shape of a disk, (b) a step for slicing the niobium ingot into a plurality of niobium plates each having a predetermined thickness by vibrating a multiplex wire back and forth while blowing fine floating abrasive grains in a state where the niobium ingot is supported, (c) a step for removing the floating abrasive grains adhering to the niobium plates thus sliced, and a step (d) for forming a niobium cell of a desired shape by deep drawing the niobium plate.

Classes IPC  ?

  • H05H 7/20 - CavitésRésonateurs avec des parois supraconductrices
  • C22B 9/22 - Refusion des métaux en chauffant par énergie ondulatoire ou par rayonnement corpusculaire
  • C22B 34/24 - Obtention du niobium ou du tantale

59.

DEVICE FOR NONDESTRUCTIVELY EXAMINING COMPOSITE STRUCTURE AND NONDESTRUCTIVE EXAMINATION METHOD

      
Numéro d'application JP2009053140
Numéro de publication 2009/107575
Statut Délivré - en vigueur
Date de dépôt 2009-02-23
Date de publication 2009-09-03
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s) Nagamine, Kanetada

Abrégé

A device for nondestructively examining the inside of the surface layer of a composite structure by using muons of cosmic rays and a nondestructive examination method are disclosed. The device is used for examining the inside of the surface layer of a composite structure (11) by using muons (12) of cosmic rays traveling generally horizontally and having spins polarized by predetermined degrees in the traveling direction. The device includes a positron/electron amount detecting means (13) for detecting the amount of positrons/electrons having characteristic time constants and reflected/emitted in the opposite direction to the direction of application of muons (12) when muons (12) which come to rest inside the composite structure (11) annihilate and radiography data processing means (14, 15, 16) for processing data relating to the state of a second substance (11-2) different from a first substance (11-1) of the surface layer present inside the surface layer of the composite structure (11) according to the detected amount of positrons/electron and outputting the state of the second substance (11-2) as a radiograph.

Classes IPC  ?

  • G01N 23/22 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en mesurant l'émission secondaire de matériaux
  • G01B 15/04 - Dispositions pour la mesure caractérisées par l'utilisation d'ondes électromagnétiques ou de radiations de particules, p. ex. par l'utilisation de micro-ondes, de rayons X, de rayons gamma ou d'électrons pour mesurer des contours ou des courbes
  • G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
  • G01T 1/29 - Mesure effectuée sur des faisceaux de radiations, p. ex. sur la position ou la section du faisceauMesure de la distribution spatiale de radiations
  • G01T 1/203 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant fait de matières plastiques

60.

PROCESS FOR MOLDING AMORPHOUS PERFLUORORESIN AND OPTICAL ELEMENT

      
Numéro d'application JP2008066189
Numéro de publication 2009/034952
Statut Délivré - en vigueur
Date de dépôt 2008-09-08
Date de publication 2009-03-19
Propriétaire
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
  • JAPAN ATOMIC ENERGY AGENCY (Japon)
  • ASAHI GLASS COMPANY, LIMITED (Japon)
Inventeur(s)
  • Ino, Takashi
  • Shinohara, Takenao
  • Sakane, Yoshihiko

Abrégé

This invention provides a process for molding an amorphous perfluororesin and an optical element molded by the process. The process comprises (a) the step of dissolving an amorphous perfluororesin in a solvent, (b) the step of placing a solution of the amorphous perfluororesin in a first mold, (c) the step of heating the vessel containing the solution to volatilize the solvent and thus to form an amorphous perfluororesin in a plate form, and (d) the step of placing the amorphous perfluororesin formed in the plate form in a second mold, and pressing the second mold from one face side to the other face side while heating, whereby the amorphous perfluororesin is molded into a desired shape.

Classes IPC  ?

  • B29C 43/34 - Alimentation en matière à mouler des moules ou des moyens de pressage
  • B29C 33/38 - Moules ou noyauxLeurs détails ou accessoires caractérisés par la matière ou le procédé de fabrication
  • B29C 43/02 - Moulage par pressage, c.-à-d. en appliquant une pression externe pour faire couler la matière à moulerAppareils à cet effet pour la fabrication d'objets de longueur définie, c.-à-d. d'objets séparés
  • B29D 11/00 - Fabrication d'éléments optiques, p. ex. lentilles ou prismes
  • C08F 14/18 - Monomères contenant du fluor
  • G02B 1/04 - Éléments optiques caractérisés par la substance dont ils sont faitsRevêtements optiques pour éléments optiques faits de substances organiques, p. ex. plastiques
  • B29K 27/12 - Utilisation de polyhalogénures de vinyle comme matière de moulage contenant du fluor
  • B29L 11/00 - Éléments optiques, p. ex. lentilles, prismes

61.

GAMMA RAY DETECTOR AND PET DEVICE EMPLOYING THE SAME

      
Numéro d'application JP2008052530
Numéro de publication 2008/099921
Statut Délivré - en vigueur
Date de dépôt 2008-02-15
Date de publication 2008-08-21
Propriétaire
  • Inter-University Research Institute Corporation High Energy Accelerator Research Organization (Japon)
  • National Institute of Radiological Sciences (Japon)
Inventeur(s)
  • Tauchi, Toshiaki
  • Maki, Akihiro
  • Haruyama, Tomiyoshi
  • Kumada, Masayuki
  • Tomitani, Takehiro

Abrégé

A medium region (S) is formed by filling a space between an outer tubular body (1a) and an inner tbular body (1b) with liquid xenon (2), and a pair of anode pads (11, 12) are arranged two-dimensionally at the opposite ends of the medium region (S) intersecting the incident direction of gamma rays. An intermediate electrode (10) is arranged between the pair of anode pads (11, 12) and a plurality of photomultipliers (5) are arranged two-dimensionally on the outer tubular body (1a). A gamma ray reaction point in the liquid region (S) is specified based on the signals outputted from the anode pads (11, 12) and the photomultipliers (5).

Classes IPC  ?

  • G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
  • G01T 1/161 - Applications au domaine de la médecine nucléaire, p. ex. comptage in vivo
  • G01T 1/204 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant un liquide
  • G01T 1/28 - Mesure de l'intensité de radiation avec des détecteurs à émission secondaire

62.

INDUCTION ACCELERATOR AND METHOD OF ACCELERATING ELECTRICALLY-CHARGED PARTICLES

      
Numéro d'application JP2006325129
Numéro de publication 2007/069749
Statut Délivré - en vigueur
Date de dépôt 2006-12-11
Date de publication 2007-06-21
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Takayama, Ken
  • Torikai, Kota
  • Arakida, Yoshio
  • Shimosaki, Yoshito

Abrégé

An induction accelerating cell and an induction accelerator are provided in a synchrotron, wherein the induction accelerating cell controls acceleration of an electrically-charged particle beam and the induction accelerator controls a generation timing of an induction voltage applied by the induction accelerating cell. An induction accelerator in a synchrotron is characterized in that the accelerator comprises an induction accelerating cell to apply an induction voltage, a switching power source to supply a pulse voltage to drive the induction accelerating cell through a transmission line, a DC charger to supply electric power to the switching power source, and an intelligent controller provided with a pattern generator to generate a gate signal pattern for turning-on-and-off control of the switching power source and a digital signal processor to control turning-on-and-off of a gate parent signal on which the gate signal pattern is based.

Classes IPC  ?

63.

SYNCHROTRON OSCILLATION FREQUENCY CONTROL DEVICE AND CONTROL METHOD THEREOF

      
Numéro d'application JP2006313525
Numéro de publication 2007/004711
Statut Délivré - en vigueur
Date de dépôt 2006-06-30
Date de publication 2007-01-11
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Takayama, Ken
  • Torikai, Kota
  • Shimosaki, Yoshito

Abrégé

There are provided a synchrotron oscillation frequency control device (5) for applying barrier voltage (9) in synchronization with rotation of a bunch (3) by an induction acceleration cell (6) and its control method. The synchrotron oscillation frequency control device (5) includes: an induction acceleration cell (6) for applying barrier voltage (9) to the bunch (3) in the synchrotron; and an intelligent control device (8) having a switching power supply (5b) for driving the induction acceleration cell (6), a pattern generator (8b) for generating a gate signal pattern (8a) for controlling ON/OFF of the switching power supply (5b), and a digital signal processing device (8d) for controlling ON/OFF of a gate parent signal (8c) from which the gate signal pattern (8a) derives.

Classes IPC  ?

64.

INDUCTION VOLTAGE CONTROL DEVICE, ITS CONTROL METHOD, CHARGED PARTICLE BEAM ORBIT CONTROL DEVICE, AND ITS CONTROL METHOD

      
Numéro d'application JP2006313518
Numéro de publication 2007/004704
Statut Délivré - en vigueur
Date de dépôt 2006-06-30
Date de publication 2007-01-11
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Takayama, Ken
  • Torikai, Kota
  • Shimosaki, Yoshito
  • Arakida, Yoshio
  • Kishiro, Junichi

Abrégé

⏧PROBLEMS] To provide an induction voltage control device (8) capable of accelerating arbitrary charged particles to an arbitrary energy level in synchronization with any magnetic excitation pattern even for an acceleration voltage (9a) of constant voltage by an induction acceleration cell (6) for acceleration and its control method. ⏧MEANS FOR SOLVING PROBLEMS] An induction voltage control device (8) includes: a digital signal processing device (8d) for controlling a variable delay time according to a necessary variable delay time pattern obtained based on a magnetic excitation pattern, an equivalent acceleration voltage value pattern, and a passing signal (7a) of a bunch (3) from a bunch monitor (7); and a pattern generator (8b) for conversion to a gate signal pattern (8a) of a switching power source (5b). The induction voltage control device (8) controls a pulse density of the induction voltage (9) for acceleration per control unit. A control method of the induction voltage control device is also disclosed.

Classes IPC  ?

65.

ALL-SPECIES ION ACCELERATOR AND CONTROL METHOD THEREOF

      
Numéro d'application JP2006308502
Numéro de publication 2006/118065
Statut Délivré - en vigueur
Date de dépôt 2006-04-18
Date de publication 2006-11-09
Propriétaire INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Japon)
Inventeur(s)
  • Takayama, Ken
  • Shimosaki, Yoshito
  • Torikai, Kota
  • Arakida, Yoshio

Abrégé

An accelerator capable of accelerating all-species ions to an arbitrary energy level on the same accelerator. An all-species ion accelerator which uses the generating timing and applying time of an induction voltage applied, by a confining and accelerating induction acceleration cell used in an induction acceleration synchrotron, to an ion beam injected by a front-end accelerator to generate a confining and accelerating gate signal pattern by a confining and accelerating digital signal processor and a confining and accelerating pattern generator based on an ion beam passing signal, a position signal and an induction voltage signal used to recognized an induction voltage value applied to an ion beam, and feedback-controls the one/off of the confining and accelerating induction acceleration cell by a confining and accelerating intelligent control device.

Classes IPC  ?