Provided is an electrolytic capacitor that has a low ESR and a long life and high reliability, and a negative electrode current collector with which it is possible to realize such a capacitor. The negative electrode current collector comprises an oxide layer that is provided on a surface of the negative electrode current collector and is composed of an oxide of a valve metal, and an organic electrically conductive layer that is provided on the surface of the oxide layer and includes an electrically conductive polymer. The organic electrically conductive layer is composed of a compact layer that is provided on the surface of the oxide layer and a porous layer that is provided on the surface of the compact layer, or the organic electrically conductive layer is composed of a compact layer that is provided on the surface of the oxide layer, the thickness of the organic electrically conductive layer being more than 2 μm but not more than 22 μm. The organic electrically conductive layer of the electrolytic capacitor is provided closely adhering to the surface of the oxide layer, the thickness of the organic electrically conductive layer being more than 2 μm but not more than 22 μm.
The cathode current collector includes: a cathode substrate; an oxide layer being provided on a surface of the cathode substrate; and an organic conductive layer being provided on a surface of the oxide layer, wherein the organic conductive layer consists of a dense layer provided on the surface of the oxide layer and a porous layer provided on a surface of the dense layer, or consists of a dense layer provided on the surface of the oxide layer, and the organic conductive layer has a thickness of more than 2 μm and less than or equal to 22 μm. Also, the organic conductive layer in the electrolytic capacitor is provided in close contact with the surface of the oxide layer, and the thickness of the organic conductive layer is more than 2 μm and less than or equal to 22 μm.
The present invention addresses the problem of providing an electrode material and the like which can be used in a cathode foil for an electrolytic capacitor and the like having all of the advantages in which: the adhesiveness to a solid electrolyte is satisfactory and the contact resistance on a boundary surface is low; a layer (geometric structure and surface modification) for holding a solid electrolyte and an electrolytic solution is provided; the deterioration resistance with respect to a solid electrolyte, an electrolytic solution, and moisture is excellent; the cathode foil does not have a capacitive component or has a low content of a capacitive component, and acts as a low-resistance conductor (a synthetic capacitance is not exhibited or is low); thinning can be achieved; the cost is low; and it is difficult for winding deviation to occur. Provided is an electrode material comprising: an oxide layer provided on a smooth base material; and an inorganic conductive layer provided on the oxide layer, wherein the inorganic conductive layer has a first conductive layer containing a metal and/or a metal compound and a second conductive layer containing carbon, the first conductive layer has an uneven portion on the surface layer side thereof, and the second conductive layer is positioned at the outermost layer of the inorganic conductive layer.
An electrode foil having high capacitance per unit volume is provided. The electrode foil is an electrode foil for an electrolytic capacitor. The electrode foil is an electrode foil extending in a longitudinal direction and having a width direction orthogonal to the longitudinal direction, the electrode foil including an enlarged surface portion on a surface of the electrode foil, wherein a crack is formed in the enlarged surface portion in a direction oblique to the width direction.
The present invention provides an electrode foil with high capacitance per unit volume. Provided is an electrode foil for an electrolytic capacitor. This electrode foil extends in a longitudinal direction and has a width direction that is orthogonal to the longitudinal direction. The electrode foil includes an expanded surface portion on a surface of the electrode foil, and cracks are formed in the expanded surface portion in a direction oblique to the width direction.
The electrolytic capacitor includes a capacitor body, the capacitor body including: a first end surface; a second end surface opposite to the first end surface; a bottom surface adjacent to the first end surface and the second end surface; a capacitor element including an anode line passing therethrough, a dielectric layer, and a cathode layer on the dielectric layer; and a sealing material covering the capacitor element, wherein the anode line has a first end exposed on the first end surface of the capacitor body, the electrolytic capacitor includes an anode external electrode on the first end surface of the capacitor body, the anode external electrode is connected to the first end of the anode line, the cathode layer is electrically led out to the bottom surface of the capacitor body, the electrolytic capacitor includes a cathode external electrode on the bottom surface of the capacitor body, and the cathode external electrode is electrically connected to the cathode layer.
A solid electrolytic capacitor that includes a columnar metal core material having a valve function, the metal core material having a first end surface and a second end surface opposed to the first end surface, at least one of the first end surface and the second end surface having an area larger than that of a cross section of a central portion of the metal core material in a lengthwise direction of the metal core material, and the metal core material having a surface partially provided with a porous layer including an oxide film; a cathode layer including a conductive polymer, the cathode layer being electrically connected to the porous layer, first external terminals electrically connected to the first end surface and the second end surface, respectively; and a second external terminal different in polarity from the first external terminals and electrically connected to the cathode layer.
H01G 9/048 - Électrodes caractérisées par leur structure
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
H01G 9/012 - Bornes spécialement adaptées pour les condensateurs à solides
H01G 9/042 - Électrodes caractérisées par le matériau
A solid electrolytic capacitor that includes a plurality of linear conductors arranged in parallel and made of a valve action metal in which a dielectric layer is formed on a surface of the valve action metal; a conductive polymer layer covering the plurality of linear conductors and shared by linear conductors; a conductor layer covering conductive polymer layer; an anode terminal in contact with end faces of the plurality of linear conductors; and a cathode terminal electrically connected to conductor layer.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
H01G 9/012 - Bornes spécialement adaptées pour les condensateurs à solides
9.
Solid electrolytic capacitor and method of manufacturing the same
A solid electrolytic capacitor that includes at least one capacitor element having a linear-shaped valve metal substrate that extends in an axial direction and includes a porous portion on a surface of a core portion, a dielectric layer on a surface of the porous portion, and a cathode layer on the dielectric layer; a cathode terminal including a recessed portion having an inner wall surface extending in the axial direction, the capacitor element is disposed in the recessed portion, and the cathode layer is electrically connected to the inner wall surface; an anode terminal electrically connected to the core portion of the capacitor element; and a sealing material covering the capacitor element.
H01G 9/10 - Scellement, p. ex. de fils de traversée
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
An electronic component includes a component base body and first and second outer electrodes covering respective end faces of the component base body. The component base body includes an element main body and a magnetic body portion covering the element main body. The element main body includes a linear inner conductor, a dielectric layer covering the periphery of part of the inner conductor, and a conductor layer formed to cover the dielectric layer.
H01G 4/35 - Condensateurs de traversée ou condensateurs antiparasites
B32B 15/08 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique de résine synthétique
H01F 17/00 - Inductances fixes du type pour signaux
H01G 4/40 - Combinaisons structurales de condensateurs fixes avec d'autres éléments électriques non couverts par la présente sous-classe, la structure étant principalement constituée par un condensateur, p. ex. combinaisons RC
H03H 1/00 - Détails de réalisation des réseaux d'impédances dont le mode de fonctionnement électrique n'est pas spécifié ou est applicable à plus d'un type de réseau
11.
Electrolytic capacitor-specific electrode member and electrolytic capacitor
An electrolytic capacitor-specific electrode member is used for an electrolytic capacitor, and formed in a wire shape. The electrolytic capacitor-specific electrode member has an outer surface including at least one or more first cavity portions opened to outside, and at least one or more second cavity portions opened at least to the first cavity portions. The second cavity portions are smaller in opening diameter represented by a circle equivalent diameter than the first cavity portions.
An electrolytic capacitor-specific electrode member is included in an electrolytic capacitor. The electrolytic capacitor-specific electrode member has a wire shape. The electrolytic capacitor-specific electrode member includes a core portion and a porous layer located around the core portion. In a cross section of the electrolytic capacitor-specific electrode member perpendicular to its axial direction, the porous layer includes a plurality of layers arranged concentrically from the core portion toward outside and at least including two layers having different void ratios.
A stereostructure includes a core portion, and a porous portion located around the core portion. The porous portion located inside a position which is inside from an outer edge of the porous portion by 3/20 of a diameter of the stereostructure in an arbitrary cross section of the stereostructure has a void ratio per unit area of less than or equal to 80%.
An equalization circuit system having a system configuration simplified through reduction of the total number of switches is provided. An electricity storage cell voltage equalization circuit is operated with a square wave voltage generated at a switching node in an electricity storage module voltage equalization circuit as an input voltage, thereby achieving an electricity storage cell voltage equalization circuit without a switch. Typically, the electricity storage cell voltage equalization circuit may be a resonance voltage-doubling rectifier circuit, and the electricity storage module voltage equalization circuit may be a switched capacitor, a resonance voltage-doubling rectifier circuit, a buck-boost converter or the like.
H02J 7/00 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries
H02J 7/02 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries pour la charge des batteries par réseaux à courant alternatif au moyen de convertisseurs
H02M 3/07 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des résistances ou des capacités, p. ex. diviseur de tension utilisant des capacités chargées et déchargées alternativement par des dispositifs à semi-conducteurs avec électrode de commande
H02M 3/337 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu avec transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrodes de commande pour produire le courant alternatif intermédiaire utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs en configuration push-pull
H02J 7/34 - Fonctionnement en parallèle, dans des réseaux, de batteries avec d'autres sources à courant continu, p. ex. batterie tampon
H02M 7/483 - Convertisseurs munis de sorties pouvant chacune avoir plus de deux niveaux de tension
H02M 7/5387 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant alternatif sans possibilité de réversibilité par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs, p. ex. onduleurs à impulsions à un seul commutateur dans une configuration en pont
A three-dimensional structure (11) is provided with: a core part (12); and a porous part (13) that is positioned around the core part (12). In an arbitrarily defined cross-section of the three-dimensional structure (11), the porosity per unit area of the porous part (13) inside a position (11a) inward from the outer edge (13a) of the porous part (13) by 3/20 of the diameter of the three-dimensional structure (11) is 80% or less.
This electrode member for an electrolytic capacitor is included in an electrolytic capacitor, and the electrode member for an electrolytic capacitor has a wire shape. The electrode for an electrolytic capacitor includes a core and a porous layer (85) positioned around the core. In a cross section perpendicular to the axial direction of the electrode member for an electrolytic capacitor, the porous layer (85) has a plurality of layers including at least two layers which are arranged side by side in a direction from the core side to the outside and which have different porosities.
This electrode member for an electrolytic capacitor is used for an electrolytic capacitor, and has a wire shape. The outer surface of the electrode member for an electrolytic capacitor includes: at least one first recess (7b) which is open outward; and at least one second recess (8a) which is open at least in the first recess (7b). The opening diameter of the second recess (8a) expressed in terms of an equivalent circle diameter is less than the opening diameter of the first recess (7b) expressed in terms of an equivalent circle diameter.
A solid electrolytic capacitor that includes a capacitor element having a linear through conductor made of a valve function metal, a dielectric layer disposed on the through conductor, and a cathode-side functional layer disposed on the dielectric layer. The through conductor includes a core portion and a porous portion covering a peripheral surface of the core portion. Both end faces of the core portion of the through conductor are in contact with a pair of anode terminals on the pair of end faces of the body, respectively. A cathode terminal is electrically connected to the cathode-side functional layer.
H01G 9/048 - Électrodes caractérisées par leur structure
H01G 9/14 - Combinaisons structurales pour modifier ou compenser les caractéristiques de condensateurs
H01G 9/012 - Bornes spécialement adaptées pour les condensateurs à solides
H01G 9/055 - Électrodes à feuille mince gravée chimiquemennt
H01G 9/26 - Combinaisons structurales de condensateurs électrolytiques, de redresseurs électrolytiques, de détecteurs électrolytiques, de dispositifs de commutation électrolytiques, de dispositifs électrolytiques photosensibles ou sensibles à la température les uns avec les autres
H01G 9/10 - Scellement, p. ex. de fils de traversée
H01G 9/042 - Électrodes caractérisées par le matériau
Provided is an equalization circuit system in which the total number of switches is reduced and the system configuration is simplified. An electricity storage cell voltage equalization circuit is operated using the square wave voltage occurring in a switching node of an electricity storage module voltage equalization circuit as an input voltage, whereby the electricity storage cell voltage equalization circuit is made switchless. As a typical electricity storage cell voltage equalization circuit, a resonance-type double-voltage rectifier circuit can be used, and as the electricity storage module voltage equalization circuit, a switched capacitor, a resonance-type double-voltage rectifier circuit, a step-up/down converter, etc. can be used.
H02J 7/02 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries pour la charge des batteries par réseaux à courant alternatif au moyen de convertisseurs
20.
Method for manufacturing electrodes using three-dimensional substrate for electrochemical applied products
Using the generally used coating method of an active material paste to a metal foil on a 3DF made the electrode properties instable due to residual air inside of the 3DF, and had the risk of causing micro short circuit of the battery due to metal fine powder and the like adhered to the 3DF and the 3DF exposed to the electrode surface. To solve the above-mentioned, the coating of the active material paste to the 3DF was made into a two-step coating process as shown below. Step one removes the air and fills the paste at the same time by applying the paste flow from one side of the 3DF (the first step coating process). Step two coats a new paste onto the surface of the electrode obtained by step one (the second step coating process). This electrode obtained by the two-step coating process hardly has remaining air amount, can uniformly confine metallic power dust or the 3DF itself inside the electrode (the first step coating process), and in addition to this, has the capability of Li ions freely moving between the electrode surface and the depth portion of the electrode through the opening portion formed on the tip portion of the innumerable protrusions of the 3DF, the micro short circuit of the battery due to Li dendrite was prevented even in repeated charge and discharge.
H01M 4/50 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/52 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer
H01M 4/74 - Grillage ou matériau tisséMétal déployé
A cathode foil for a solid electrolytic capacitor is designed to increase capacitance, reduce ESR and leakage current, enhance heat resistance, and reduce production costs, while enhancing a power density, realizing rapid charging-discharging, and improving a life property, in an electric energy storage element such as a secondary battery, an electric double layer capacitor and a hybrid capacitor. A cathode foil or a current collector may include a metal foil, a metal layer, a mixed layer containing carbon and a substance composing the metal layer in a mixed state, and a carbon layer consisting substantially of carbon, each formed on the metal foil. The mixed layer is configured to have a composition changing from a state containing substantially only the substance composing the metal layer to a state containing substantially only carbon, in a direction from the metal layer to the carbon layer.
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/34 - Électrodes caractérisées par leur matériau à base de carbone caractérisées par la carbonisation ou l’activation de carbone
H01G 11/36 - Nanostructures, p. ex. nanofibres, nanotubes ou fullerènes
H01G 11/50 - Électrodes caractérisées par leur matériau spécialement adaptées aux condensateurs lithium-ion, p. ex. pour doper le lithium ou pour intercalation
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
22.
Series-parallel reconfigurable cell voltage equalization circuit designed using MOSFET as switches thereof, and driver circuit thereof
It is an object to provide a circuit for equalizing voltages of energy storage cells, with less number of element and simpler circuit configuration than ever before.
A plurality of field-effect transistors are arranged such that each of a plurality of parallel circuits formed, in one of connection states attained by switching of the switches, by connecting in parallel energy storage cells to perform mutual charging and discharging, includes a field-effect transistor adapted to avoid blocking a current having one of opposite polarities in the each of the plurality of parallel circuits, and a field-effect transistor adapted to avoid blocking a current having the other polarity in the each of the plurality of parallel circuits. This makes it possible to perform a voltage equalization operation using a small number of transistors.
National University Corporation Chiba University (Japon)
Japan Capacitor Industrial Co.,ltd (Japon)
Inventeur(s)
Asanuma Hiroshi
Sato Shun
Abrégé
Provided are a functional laminated composite material and a method for producing the same with which adhesive strength is stronger and better performance can be guaranteed. Therefore, the functional composite material of one embodiment of the invention consists of an aluminium sheet, an oxide film formed to a thickness of between 0.02 µm and 3 µm by oxidizing the surface of the aluminium sheet, and a prepreg sheet fixed to the oxide film. The method for producing the functional composite material of another embodiment of the present invention involves forming an oxide film to a thickness within a range of 0.02 µm and 3 µm on the surface of the aluminium sheet, bringing the oxide film and the prepreg sheet into contact, and hot pressing.
B32B 15/08 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique de résine synthétique
B32B 5/00 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches
24.
ELECTRODE FOIL, CURRENT COLLECTOR, ELECTRODE, AND ELECTRIC ENERGY STORAGE ELEMENT USING SAME
This negative electrode foil for a solid electrolyte capacitor: increases capacitance, reduces ESR and leakage current, improves heat resistance, and reduces manufacturing costs; and improves the power density, achieves rapid charging/discharging, and improves the lifespan characteristics of energy storage elements such as rechargeable batteries, electric double-layer capacitors, and hybrid capacitors. The negative electrode foil or a current collector is used, which: is obtained by forming a metal layer, a mixed layer obtained by mixing a material constituting the metal layer with carbon, and a carbon layer substantially comprising carbon, on a metal foil; and is configured in such a manner as to change as the components of the mixed layer change from a component containing only the material substantially constituting the metal layer to a component substantially containing only carbon, and from the metal layer to the carbon layer.
This negative electrode foil for a solid electrolyte capacitor: increases capacitance, reduces ESR and leakage current, improves heat resistance, and reduces manufacturing costs; and improves the power density, achieves rapid charging/discharging, and improves the lifespan characteristics of energy storage elements such as rechargeable batteries, electric double-layer capacitors, and hybrid capacitors. The negative electrode foil or a current collector is used, which: is obtained by forming a metal layer, a mixed layer obtained by mixing a material constituting the metal layer with carbon, and a carbon layer substantially comprising carbon, on a metal foil; and is configured in such a manner as to change as the components of the mixed layer change from a component containing only the material substantially constituting the metal layer to a component substantially containing only carbon, and from the metal layer to the carbon layer.
An electric energy storage apparatus can generate an AC output in a low-loss and low-noise manner without using a DC-DC converter or an inverter. The electric energy storage apparatus comprises: an electric energy storage module group formed by connecting in series electric energy storage modules each comprising one or more electric energy storage elements; a balancing circuit electrically connected to the electric energy storage module group and configured to adjust a voltage to be applied to each of the electric energy storage modules; a first switch group comprising switches each in a path connecting a first terminal and a terminal of one of the series-connected electric energy storage modules; and a second switch group comprising switches each in a path connecting a second terminal and a terminal of one of the series-connected electric energy storage modules. The electric energy storage apparatus may perform a switch changeover in the switch groups.
An electric energy storage system is designed to equally utilize electric energy storage banks during charging/discharging, and keep fluctuation of an input voltage from a charger or an output voltage to a load, within an arbitrary range, while equally utilizing the electric energy storage banks during charging/discharging. The electric energy storage system comprises an electric energy storage module, a charger, a balancing circuit, a voltage detection section, taps led out, respectively, from one of opposite terminals of the electric energy storage module and/or the other terminal of the electric energy storage module and/or one or more of series-connection points between the electric energy storage units, through respective switches, and a switch control section for switching the switches such that one of the taps is connected to one of opposite terminals of the charger. The switch control section is operable to sequentially switch the switches according to progress of the charging.
H02J 7/34 - Fonctionnement en parallèle, dans des réseaux, de batteries avec d'autres sources à courant continu, p. ex. batterie tampon
28.
Method for manufacturing metal-made three-dimensional substrate for electrodes, metal-made three-dimensional substrate for electrodes and electrochemical applied products using the same
Provided is an electricity-storage system, wherein electricity-storage banks are used uniformly during charging/discharging, and fluctuations in input voltages from a charger or output voltages to a load can be suppressed within an arbitrary range, even while using the electricity-storage banks uniformly during charging/discharging. The electricity-storage system is provided with: an electricity-storage module; a charger; a balancing circuit; a voltage detecting unit; a plurality of taps that are drawn out, via switches, from one of the terminals of the electricity-storage module, and/or the other of the terminals of the electricity-storage module, and/or one or more of the serial-connection points of a plurality of electricity-storage units; and a switching control unit that switches the switches so that one of the plurality of taps is connected to one or the other of the terminals of the charger. The electricity-storage system also switches the switches successively so as to control the number of electricity-storage units to be directly charged by the charger, according to the progress of the charging, and based on the result detected by the voltage detecting unit.
H02J 7/02 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries pour la charge des batteries par réseaux à courant alternatif au moyen de convertisseurs
H02J 7/00 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries
Provided is an electricity-storage device that can output alternating current with low-loss and low-noise, without using a DC-DC converter or an inverter. The electricity-storage device is provided with: a group of electricity-storage modules consisted by having two or more electricity-storage modules, comprising one or more electricity-storage elements, connected serially; a balancing circuit that is connected electrically with the group of electricity-storage modules, and configured so as to adjust the voltages to be applied to each of the electricity-storage modules; a first switch group, comprising two or more switches, installed within a route that connects either one of the terminals of the serially connected electricity-storage modules, and a first terminal; and a second switch group, comprising two or more switches, installed within a route that connects either one of the terminals of the serially connected electricity-storage modules, and a second terminal. The electricity-storage device is also configured so that the magnitude and polarity of the output voltage is selected according to the composition of the electricity-storage elements that exist within a route that connects the first terminal and the second terminal, by conducting switching at the first switch group and at the second switch group.
H02M 3/06 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des résistances ou des capacités, p. ex. diviseur de tension
H02J 7/00 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries
H02M 3/07 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des résistances ou des capacités, p. ex. diviseur de tension utilisant des capacités chargées et déchargées alternativement par des dispositifs à semi-conducteurs avec électrode de commande
31.
Solid electrolytic capacitor and process for fabricating same
The invention provides a solid electrolytic capacitor wherein the anode has a dielectric oxide film of a structure less susceptible to damage due to mechanical stresses and which is diminished in leakage current and less prone to short-circuiting, and a process for fabricating the capacitor. The capacitor of the invention comprises an anode of aluminum having a dielectric oxide film formed over a surface thereof from amorphous alumina, and is characterized in that a plurality of tunnel-shaped etching pits are formed in the anode. The process of the invention for fabricating the solid electrolytic capacitor includes the steps of forming a plurality of tunnel-shaped etching pits in an aluminum material, effecting anodic oxidation by immersing the aluminum material in an electrolytic solution containing oxalic acid or the like, and effecting anodic oxidation by immersing the aluminum material in an electrolytic solution containing boric acid or like inorganic acid or a salt thereof or containing adipic acid or like organic acid or a salt thereof and applying a voltage at least three times the rated voltage of the capacitor.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
32.
Anode element, method of manufacturing the same, and solid electrolytic capacitor
n in chemical formula (2), where M represents a valve metal and n represents an integer or a decimal fraction from 1 to 6, or a composite thereof, a method of manufacturing the anode element, and a solid electrolytic capacitor employing the anode element are provided.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
The invention provides a solid electrolytic capacitor wherein the anode has a dielectric oxide film of a structure less susceptible to damage due to mechanical stresses and which is diminished in leakage current and less prone to short-circuiting, and a process for fabricating the capacitor. The capacitor of the invention comprises an anode of aluminum having a dielectric oxide film formed over a surface thereof from amorphous alumina, and is characterized in that a plurality of tunnel-shaped etching pits are formed in the anode. The process of the invention for fabricating the solid electrolytic capacitor includes the steps of forming a plurality of tunnel-shaped etching pits in an aluminum material, effecting anodic oxidation by immersing the aluminum material in an electrolytic solution containing oxalic acid or the like, and effecting anodic oxidation by immersing the aluminum material in an electrolytic solution containing boric acid or like inorganic acid or a salt thereof or containing adipic acid or like organic acid or a salt thereof and applying a voltage at least three times the rated voltage of the capacitor.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication