A cylindrical side-wall core is acquired from an inner circumferential surface of a well at a predetermined depth from a ground surface. First, second and third measurement cross sections spaced apart in a longitudinal direction of the core are set. In each cross section, the length of the maximum diameter of the cross section where the amount of distortion relative to the diameter of a standard circle is largest and the length of the minimum diameter where the amount of distortion relative to the diameter of the standard circle is smallest are measured. Six independent components among stress tensors for defining three-dimensional stress elements are obtained using an equation representing a difference between maximum and minimum stresses acting on the side-wall core along each cross section and another equation representing the angle between the well excavation direction and the action direction of the maximum stress on each cross section.
E21B 49/02 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits par prélèvements mécaniques d'échantillons du terrain
G01B 11/10 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des diamètres d'objets en mouvement
This recovery method for crude oil includes: a stratum improvement fluid injection step for injecting, through an injection well into a stratum that includes crude oil between the injection well and a production well, a stratum reforming fluid for improving the wettability of the stratum; a first crude oil recovery step for injecting an over-flash fluid into the stratum through the injection well, causing the crude oil included in the stratum to move from the injection well side toward the production well side, and recovering the crude oil from the stratum through the production well; and a second crude oil recovery step for injecting a fluid for forming a foam with a fluid for stabilizing the foam into the stratum through the injection well, causing the crude oil included in the stratum to move from the injection well side toward the production well side, and recovering the crude oil from the stratum through the production well.
C09K 8/58 - Compositions pour les méthodes de récupération assistée pour l'extraction d'hydrocarbures, c.-à-d. pour améliorer la mobilité de l'huile, p. ex. fluides de déplacement
E21B 43/00 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits
E21B 43/16 - Procédés de récupération assistée pour l'extraction d'hydrocarbures
E21B 43/22 - Emploi de produits chimiques ou à activité bactérienne
3.
Method of underground storage of injection gas containing CO2 gas and enhanced oil recovery
A method of underground storage of an injection gas containing CO2 gas and enhanced oil recovery includes: supplying injection water through a water flow path; jetting the injection water as a high-pressure water jet which is increased in velocity by narrowing a fluid flow through a fine bubble-generating device placed at a lower end of the water flow path; suctioning an injection gas through a gas flow path by a negative pressure generated by the Venturi effect downstream of the high-pressure water jet; jetting the injection gas as fine bubbles from the fine bubble-generating device placed at a lower end of the gas flow path; and performing underground storage of the injection gas by allowing a gas-liquid mixed fluid containing fine bubbles generated by mixing the injection water with the fine bubbles in the fine bubble-generating device to penetrate into a permeable formation such as an oil reservoir.
E21B 43/16 - Procédés de récupération assistée pour l'extraction d'hydrocarbures
4.
METHOD OF GEOLOGIC STORAGE OF CARBON DIOXIDE, METHOD OF DEVELOPING CARBON DIOXIDE-CONTAINING NATURAL GAS FIELDS, AND METHOD OF OCEAN WATER STORAGE OF CARBON DIOXIDE
This method of geologic storage of carbon dioxide generates carbon dioxide supersaturated water (4) by the dispersion of nanometer-size microbubbles of a carbon dioxide fluid, and injects the microbubble-containing carbon dioxide supersaturated water into the stratum water (2) in a geologic layer (1). At that time, by adjusting the particle size and dispersion amount of the microbubbles in the carbon dioxide supersaturated water, a sinking current (6) of the microbubble-containing carbon dioxide supersaturated water is formed in the stratum water. In this way, geologic storage of carbon dioxide can be performed regardless of an upper seal (a sealing layer).
The method of the present invention for underground storage of pressurized gas including CO2 gas, and enhanced oil recovery, comprises: a step for injecting pressurized water from a water flow path; a step for jetting the pressurized water as a high-pressure water jet, in which the flow of fluid passes through a fine-bubble generation device installed at the bottom end of the water flow path and is constricted, and the flow speed is increased; a step in which pressurized gas is taken in through a gas flow path by negative pressure generated by the Venturi effect downstream of the high-pressure water jet; a step in which the pressurized gas passes through a fine-bubble generation device placed at the bottom end of the gas flow path and is jetted as fine bubbles; and a step in which a gas-liquid mixed fluid including fine bubbles generated by mixing the pressurized water and the fine bubbles inside the fine-bubble generation devices permeates to a permeable ground layer such as a petroleum storage layer, and underground storage of pressurized gas including CO2 gas, and enhanced oil recovery, are performed.
The method for enhanced oil recovery according to the present invention is provided for enhanced recovery of oil included in an oil reservoir using an injection well configured by two flow channels: a water flow channel and a gas flow channel, the method comprising: a step for injecting injection water from the water flow channel; a step for injecting injection gas from the gas flow channel, and ejecting the injection gas as a fine stream of gas through a microbubble generation device installed at the lower end of the gas flow channel; and a step in which a gas-liquid mixture fluid permeates the oil reservoir, the gas-liquid mixture fluid including microbubbles generated from the injection water and the fine stream of gas mixed in the injection well.
E21B 43/00 - Procédés ou dispositifs pour l'extraction de pétrole, de gaz, d'eau ou de matériaux solubles ou fusibles ou d'une suspension de matières minérales à partir de puits
E21B 43/16 - Procédés de récupération assistée pour l'extraction d'hydrocarbures
Provided is a crustal stress measurement method in which ground located at a predetermined depth from the ground surface is removed from the inner circumferential surface in a well formed by excavating the ground, and a columnar side wall core is collected; at least first, second, and third measurement cross sections spaced apart from each other in the lengthwise direction are set in the side wall core; the shapes of the first, second, and third measurement cross sections are measured and the length of the maximum diameter at which the strain amount of each measurement cross section with respect to a reference circle diameter is largest and the length of the minimum diameter at which the strain amount of each measurement cross section with respect to the reference circle diameter is smallest are collected; and six independent components among stress tensors for establishing three-dimensional stress elements are determined from a formula representing the difference between the maximum stress and the minimum stress acting on the side wall core along each measurement cross section and a formula representing the angle formed by the excavation direction of the well and the direction in which the maximum stress acts in each measurement cross section.
G01L 5/00 - Appareils ou procédés pour la mesure des forces, du travail, de la puissance mécanique ou du couple, spécialement adaptés à des fins spécifiques
E21B 49/02 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits par prélèvements mécaniques d'échantillons du terrain
8.
FLOATING LOW-TEMPERATURE LIQUEFIED GAS FILLING EQUIPMENT AND LOW-TEMPERATURE LIQUEFIED GAS DELIVERY METHOD USING SAME
Provided are a floating low-temperature liquefied gas filling equipment and a low-temperature liquefied gas delivery method using the same, for filling a low-temperature liquefied gas directly and simultaneously into containers disposed on a plurality of freight trucks on the ground, allowing the low-temperature liquefied gas to be delivered readily and efficiently even to a location where there is no low-temperature liquefied gas receiving equipment. The floating low-temperature liquefied gas filling equipment according to the present invention delivers the low-temperature liquefied gas from above the sea to the land. The floating low-temperature liquefied gas filling equipment comprises: a barge tank wherein the low-temperature liquefied gas is temporarily filled and stored; a hose for transferring the low-temperature liquefied gas from liquefied gas supply equipment to the barge tank, and for transferring the low-temperature liquefied gas from the barge tank to the containers on the freight trucks above the ground; a low-temperature liquefied gas distribution unit removably attached to one end of the hose; a crane for holding the hose at a predetermined height during the transfer of the low-temperature liquefied gas; and a filling means for filling the low-temperature liquefied gas into the containers. The low-temperature liquefied gas distribution unit comprises a low-temperature liquefied gas inflow port to be connected to the one end of the hose, a plurality of discharge ports for discharging the low-temperature liquefied gas into a plurality of containers simultaneously, and opening-closing valves for selectively opening and closing the respective discharge ports.
B63B 25/08 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises fluides
B63B 27/24 - Aménagement des équipements de bord pour l'embarquement ou le débarquement des cargaisons ou des passagers des systèmes de canalisations
F17C 9/00 - Procédés ou appareils pour vider les gaz liquéfiés ou solidifiés contenus dans des récipients non sous pression
F17C 13/00 - Détails des récipients ou bien du remplissage ou du vidage des récipients
B67D 9/00 - Appareils ou dispositifs pour transférer des liquides lors du chargement ou du déchargement des navires
9.
Transportation management system for railway transportation of LNG tank containers and transportation management device
A transportation management system for a tank container allowed to be placed on a container freight car, the tank container including a vessel capable of accommodating liquefied natural gas and a frame body which supports the vessel, the transportation management system includes a vessel management device and a transportation management device to communicate with the vessel management device. The vessel management device includes a vessel information detection unit to detect vessel information of the vessel included in the tank container, and a vessel management device-side communication unit to transmit the vessel information detected by the vessel information detection unit to the transportation management device. The transportation management device includes a transportation management device-side communication unit to receive the vessel information from the vessel management device, and an output control unit to output warning information based on the vessel information received from the vessel management device, to an output unit.
An in-situ stress measurement method is provided. The method includes measuring a length of a maximum diameter at which an amount of distortion relative to a diameter of a standard circle of a measurement cross section of a boring core is largest and a length of a minimum diameter at which the amount of distortion relative to the diameter of the standard circle is smallest based on a shape of the measurement cross section of the boring core; measuring a length of a diameter in a vertical direction and a length of a diameter in a horizontal direction of the measurement cross section of a side-wall core acquired by hollowing ground in a well in an excavation direction thereof, based on a shape of the measurement cross section of the side-wall core; and calculating a maximum horizontal stress and a minimum horizontal stress by first and second equations.
G01L 5/00 - Appareils ou procédés pour la mesure des forces, du travail, de la puissance mécanique ou du couple, spécialement adaptés à des fins spécifiques
E21B 49/00 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits
E21B 49/06 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits par prélèvements mécaniques d'échantillons du terrain au moyen d'outils de forage latéral ou de dispositifs de raclage
G01L 1/00 - Mesure des forces ou des contraintes, en général
11.
METHOD AND SYSTEM FOR PRODUCING HYDROCARBON FROM HIGH VISCOSITY HEAVY OIL
JAPAN OIL, GAS AND METALS NATIONAL CORPORATION (Japon)
JAPAN PETROLEUM EXPLORATION CO., LTD. (Japon)
Inventeur(s)
Miyata Kazuaki
Mashiko Yoshinori
Kunishi Yosuke
Abrégé
This method for producing a hydrocarbon comprises: a step for sending water vapor and a low boiling point hydrocarbon into a subterranean oil sand layer (O); a step for recovering a first mixture, in which water vapor (water), the low boiling point hydrocarbon, a heavy oil and water are mixed, from the oil sand layer (O); a step for reforming the heavy oil in the first mixture using a supercritical reformer (40); a step for separating the low boiling point hydrocarbon from a second mixture, which is obtained by the supercritical reformer (40) and is composed of a reformed oil and water; and a step for returning at least some of the low boiling point hydrocarbon, which is separated from the second mixture, to the oil sand layer (O).
C10G 31/06 - Raffinage des huiles d'hydrocarbures, en l'absence d'hydrogène, par des méthodes non prévues ailleurs par chauffage, refroidissement ou traitement par la pression
C10G 31/08 - Raffinage des huiles d'hydrocarbures, en l'absence d'hydrogène, par des méthodes non prévues ailleurs par traitement à l'eau
E21B 43/22 - Emploi de produits chimiques ou à activité bactérienne
E21B 43/24 - Procédés de récupération assistée pour l'extraction d'hydrocarbures utilisant la chaleur, p. ex. injection de vapeur
12.
TRANSPORTATION MANAGEMENT SYSTEM FOR RAILWAY TRANSPORTATION OF LNG TANK CONTAINERS AND TRANSPORTATION MANAGEMENT DEVICE
A transportation management system for a tank container allowed to be placed on a container freight car, the tank container including a vessel capable of accommodating liquefied natural gas and a frame body which supports the vessel, the transportation management system includes a vessel management device and a transportation management device to communicate with the vessel management device. The vessel management device includes a vessel information detection unit to detect vessel information of the vessel included in the tank container, and a vessel management device-side communication unit to transmit the vessel information detected by the vessel information detection unit to the transportation management device. The transportation management device includes a transportation management device-side communication unit to receive the vessel information from the vessel management device, and an output control unit to output warning information based on the vessel information received from the vessel management device, to an output unit.
H04M 11/00 - Systèmes de communication téléphonique spécialement adaptés pour être combinés avec d'autres systèmes électriques
B65G 61/00 - Utilisation d'appareils de prise ou de transfert, ou de manipulateurs, pour empiler ou désempiler des objets, non prévus ailleurs
H04Q 9/00 - Dispositions dans les systèmes de commande à distance ou de télémétrie pour appeler sélectivement une sous-station à partir d'une station principale, sous-station dans laquelle un appareil recherché est choisi pour appliquer un signal de commande ou pour obtenir des valeurs mesurées
13.
TRANSPORTATION MANAGEMENT SYSTEM FOR RAILWAY TRANSPORTATION OF LNG TANK CONTAINERS AND TRANSPORTATION MANAGEMENT DEVICE
Provided is a transportation management system comprising a container management device and a transportation management device for communicating with the container management device, wherein: the container management device is provided with a container information detection unit for detecting, with respect to a tank container which can be loaded on a container freight car and comprises a container capable of storing liquefied natural gas and a frame body for accommodating the container, container information pertaining to the container of the tank container and a container management device-side communication unit for transmitting the container information detected by the container information detection unit to the transportation management device; and the transportation management device comprises a transportation management device-side communication unit for receiving the container information from the container management device-side communication unit and an output control unit for causing an output unit to output warning information corresponding to the container information received from the container management device.
H04M 11/00 - Systèmes de communication téléphonique spécialement adaptés pour être combinés avec d'autres systèmes électriques
B65G 61/00 - Utilisation d'appareils de prise ou de transfert, ou de manipulateurs, pour empiler ou désempiler des objets, non prévus ailleurs
H04Q 9/00 - Dispositions dans les systèmes de commande à distance ou de télémétrie pour appeler sélectivement une sous-station à partir d'une station principale, sous-station dans laquelle un appareil recherché est choisi pour appliquer un signal de commande ou pour obtenir des valeurs mesurées
In the present invention, from the shape of a measurement cross-section, which is set in a direction orthogonal to the longitudinal direction, of a boring core (BC1) acquired by excavating crust or ground in the excavation direction of a well (1), the following are measured: the length of the measurement cross-section diameter (Dmax) where the strain amount with respect to a reference circle diameter is largest; and the length of the diameter (Dmin) where the strain amount with respect to the reference circle diameter is smallest. From the shape of a measurement cross-section, which is set in a direction orthogonal to the longitudinal direction, of a side-wall core (SC1) acquired by excavating ground from the well (1), the following are measured: the length of the vertical-direction diameter (d1|φ=0) of the measurement cross-section; and the length of the horizontal-direction diameter (d1|φ=90). The maximum horizontal stress and the minimum horizontal stress among three-dimensional stress elements are calculated from: a formula representing the differential stress between the maximum horizontal stress and the minimum horizontal stress acting on the ground; and a formula representing the differential stress between horizontal stress orthogonal to the longitudinal direction of the side-wall core (SC1) and vertical stress.
G01L 5/00 - Appareils ou procédés pour la mesure des forces, du travail, de la puissance mécanique ou du couple, spécialement adaptés à des fins spécifiques
E21B 49/02 - Test pour déterminer la nature des parois des trous de forageEssais de couchesProcédés ou appareils pour prélever des échantillons du terrain ou de fluides en provenance des puits, spécialement adaptés au forage du sol ou aux puits par prélèvements mécaniques d'échantillons du terrain
G01L 1/00 - Mesure des forces ou des contraintes, en général
15.
SEISMIC SURVEYING METHOD, SEISMIC SURVEYING DEVICE, AND HYDROPHONE ASSEMBLY
This seismic surveying method includes: a step of excavating a borehole in the ground; a step of disposing a tubular casing in the borehole; a step of filling a gap between the outer peripheral surface of the casing and an inner wall of the borehole with a particulate filler; a step of disposing a hydrophone assembly in the casing; a step of filling the inside of the casing with a particulate filler; and a step of performing a seismic survey using the hydrophone assembly as a geophone.
G01V 1/40 - SéismologieProspection ou détection sismique ou acoustique spécialement adaptées au carottage
E21B 47/0224 - Détermination de l'inclinaison ou de la direction du trou de forage, p. ex. à l'aide de géomagnétisme utilisant des moyens sismiques ou acoustiques
F42D 3/06 - Applications particulières de techniques de sautage à des fins sismologiques
16.
Method of suppressing metal contamination of synthesis gas production apparatus
A synthesis gas production apparatus (reformer) to be used for a synthesis gas production step in a GTL (gas-to-liquid) process is prevented from being contaminated by metal components. A method of suppressing metal contamination of a synthesis gas production apparatus operating for a GTL process that includes a synthesis gas production step of producing synthesis gas by causing natural gas and gas containing steam and/or carbon dioxide to react with each other for reforming in a synthesis gas production apparatus in which, at the time of separating and collecting a carbon dioxide contained in the synthesis gas produced in the synthesis gas production step and recycling the separated and collected carbon dioxide as source gas for the reforming reaction in the synthesis gas production step, a nickel concentration in the recycled carbon dioxide is not higher than 0.05 ppmv.
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
C10G 49/00 - Traitement des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, non prévu dans un seul des groupes , , , ou
C10K 1/00 - Purification des gaz combustibles contenant de l'oxyde de carbone
C01B 3/38 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs
C01B 3/54 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification par contact avec des liquidesRégénération des liquides usés comportant une réaction catalytique
C10G 45/00 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène
17.
Start-up method of hydrocarbon synthesis reaction apparatus
A start-up method for a hydrocarbon synthesis reaction apparatus, comprising: an initial slurry-loading step in which the slurry is loaded into the reactor at the initial stage of the Fischer-Tropsch synthesis reaction at a lower loading rate than that applied to the reactor in a steady-state operation; and a CO conversion ratio-increasing step in which the liquid level of the slurry in the reactor is raised by adding to the slurry the hydrocarbons synthesized at the early stage of the Fischer-Tropsch synthesis reaction so that the CO conversion ratio is increased in proportion to a rise in the liquid level of the slurry in the reactor.
The helium gas separator material includes a base portion and a gas separation portion joined to the base portion. The base portion is composed of a porous α-alumina material which has communication holes with an average diameter of 50 nm to 1,000 nm; the gas separation portion has a porous γ-alumina portion containing a Ni element and a silica membrane portion which is disposed on the inner wall of the communication holes in the porous portion; and the average diameter of pores surrounded and formed by the silica membrane portion is 0.27 nm to 0.60 nm.
B01D 53/22 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par diffusion
B01D 67/00 - Procédés spécialement adaptés à la fabrication de membranes semi-perméables destinées aux procédés ou aux appareils de séparation
C04B 35/10 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes à base d'oxyde d'aluminium
A production method for natural gas according to the invention includes a step of adiabatically compressing a raw natural gas containing helium gas, a step of separating the helium gas from the raw natural gas by passing the adiabatically-compressed raw natural gas through a separation membrane unit, a step of conveying the raw natural gas from which the helium gas has been separated to a terminal through a pipe line, and a step of pressing the helium gas separated from the raw natural gas into an underground storage formation.
B01D 53/22 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par diffusion
F25J 1/02 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux nécessitant l'emploi d'une réfrigération, p. ex. de l'hélium, de l'hydrogène
A start-up method of a bubble column slurry bed reactor for producing hydrocarbons includes: a first step that fills into a reactor a slurry in which a Fischer-Tropsch synthesis reaction catalyst particles are suspended in a slurry preparation oil with a 5% distillation point of 120 to 270° C., a 95% distillation point of 330 to 650° C., and a sulfur component and an aromatic component of 1 mass ppm or less, and a second step that, in a state where synthesis gas that is primarily hydrogen and carbon monoxide is introduced into the slurry filled into the reactor, raises the temperature of the reactor and starts the Fischer-Tropsch synthesis reaction. As the slurry preparation oil, one containing predetermined components in preset amounts is used. In the first step, the slurry is filled into the reactor in an amount in which airborne droplets do not flow out.
C07C 1/04 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir d'oxydes de carbone à partir de monoxyde de carbone avec de l'hydrogène
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
21.
Diesel fuel or diesel fuel base stock and production method thereof
Provided is a hydrotreating step (A) containing a hydroisomerization step (A1) that obtains a hydroisomerized oil (a1) by bringing a FT synthesis oil into contact with a hydroisomerization catalyst and/or a hydrocracking step (A2) that obtains a hydrocracked oil (a2) by bringing it into contact with a hydrocracking catalyst, and a fractionation step (B) that transfers at least a portion of the hydrotreated oil (a) composed of the hydroisomerized oil (a1) and/or the hydrocracked oil (a2) to a fractionator and, at the very least, obtains a middle distillate (b1) with a 5% distillation point of 130 to 170° C. and a 95% distillation point of 240 to 300° C., and a heavy oil (b2) that is heavier than the middle distillate (b1).
C10G 67/00 - Traitement des huiles d'hydrocarbures, uniquement par au moins un procédé d'hydrotraitement et au moins un procédé de raffinage en l'absence d'hydrogène
C10L 1/06 - Combustibles carbonés liquides à base essentielle de mélanges d'hydrocarbures pour allumage par bougie
C10L 10/14 - Utilisation d'additifs à des fins particulières dans les combustibles ou les feux pour améliorer les propriétés à basse température
C10G 65/14 - Traitement des huiles d'hydrocarbures, uniquement par plusieurs procédés d'hydrotraitement uniquement par plusieurs étapes en parallèle
C10L 1/08 - Combustibles carbonés liquides à base essentielle de mélanges d'hydrocarbures pour allumage par compression
C10G 45/58 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales
C10G 47/00 - Craquage des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, pour obtenir des fractions à point d'ébullition inférieur
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
22.
Hydrocarbon production apparatus and hydrocarbon production process
The hydrocarbon production apparatus is provided with a gas-liquid separator for cooling gaseous state hydrocarbons drawn out from a gas phase portion of a reactor for the Fischer-Tropsch synthesis reaction and liquefying a portion of the hydrocarbons. A light liquid hydrocarbon supply line for supplying light hydrocarbons is disposed between a downstream side line which is downstream from the last stage of a gas-liquid separating unit of the gas-liquid separator, and an upstream side line which is upstream from the last stage of the gas-liquid separating unit of the gas-liquid separator, wherein the downstream side line is a liquid hydrocarbon line on the downstream side through which the light hydrocarbons having cloud points lower than the temperature at an outlet of a cooler in the last stage of the gas-liquid separating unit are flowed.
B01J 8/00 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés
B01J 8/08 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés avec des particules mobiles
B01J 19/00 - Procédés chimiques, physiques ou physico-chimiques en généralAppareils appropriés
B01J 19/24 - Réacteurs fixes sans élément interne mobile
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
C07C 1/00 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure
C07C 1/02 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir d'oxydes de carbone
23.
Hydrogenation refining catalyst and method for producing a hydrocarbon oil
The hydrotreating catalyst of the present invention is a hydrotreating catalyst including a catalyst support including an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the hydrotreating catalyst contains a carbonaceous substance including a carbon atom, and the content of the carbonaceous substance in the hydrotreating catalyst is 0.05 to 1% by mass in terms of the carbon atom.
C10G 45/64 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales caractérisé par le catalyseur utilisé contenant des alumino-silicates cristallins, p. ex. des tamis moléculaires
C10G 45/62 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales caractérisé par le catalyseur utilisé contenant des métaux du groupe du platine ou leur composés
C10G 45/60 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales caractérisé par le catalyseur utilisé
C10G 45/70 - Aromatisation de fractions d'huiles d'hydrocarbures avec des catalyseurs contenant des métaux du groupe du platine ou leurs composés
C10G 11/18 - Craquage catalytique, en l'absence d'hydrogène, des huiles d'hydrocarbures avec catalyseurs solides mobiles préchauffés selon la technique du "lit fluidisé"
A process for producing a kerosene base fuel according to the present invention comprises removing paraffins having carbon number of 7 or less from a first fraction having an initial boiling point of 95 to 140° C. and a final boiling point of 240 to 280° C. obtained from a hydrotreated oil of a Fischer-Tropsch synthetic oil to obtain a second fraction having a content of paraffins having carbon number of 7 or less of 0.1 to 0.7% by mass.
This hydrocarbon synthesis apparatus is provided with: a reactor for bringing a syngas which comprises carbon monoxide gas and hydrogen gas as main components into contact with a slurry obtained by suspending a solid catalyst in a liquid hydrocarbon compound, and thus synthesizing liquid hydrocarbon compounds by a Fischer-Tropsch process; a filter which is provided in the reactor and which separates the liquid hydrocarbon compounds from the catalyst; and a pulverized catalyst particles discharging means for discharging pulverized catalyst particles to the outside of the reactor, said pulverized catalyst particles being formed by pulverization of the solid catalyst contained in the slurry.
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
B01J 8/22 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées l'agent fluidisant étant un liquide du gaz étant introduit dans le liquide
B03B 5/28 - Lavage de matériaux en grains, en poudre ou en grumeauxSéparation par voie humide en utilisant des plongeants et flottants
B03B 5/64 - Lavage de matériaux en grains, en poudre ou en grumeauxSéparation par voie humide en utilisant des classificateurs hydrauliques, p. ex. des appareils de concentration à chute en spirale ou en hélice, du type à couloir ou à bassin du genre à sédimentation libre
In the hydrocarbon-producing apparatus of the present invention, a vapor- liquid separation tank of a second vapor-liquid separation unit is provided with a filling material layer. A vapor-liquid separation tank of the first vapor-liquid separation unit is provided with a first return line. The vapor-liquid separation tank of the second vapor-liquid separation unit is provided with a second return line. A light component of light oil discharged from a bottom of the vapor-liquid separation tank is returned to a portion between a top side above a return-location from the second return line within the vapor-liquid separation tank of the second vapor-liquid separation unit, and a line directly connected with a cooler installed on the first vapor-liquid separation unit through the first return line. A heavy component of light oil discharged from a bottom of the vapor-liquid separation tank of the second vapor-liquid separation unit is returned to the filling material layer through the second return line.
This hydrocarbon synthesis apparatus is provided with: a reactor for bringing a syngas which comprises carbon monoxide gas and hydrogen gas as main components into contact with a slurry obtained by suspending a solid catalyst in a liquid hydrocarbon compound, and thus synthesizing liquid hydrocarbon compounds by a Fischer-Tropsch process; a filter which is provided in the reactor and which separates the liquid hydrocarbon compounds from the catalyst; and a pulverized catalyst particles discharging means for discharging pulverized catalyst particles to the outside of the reactor, said pulverized catalyst particles being formed by pulverization of the solid catalyst contained in the slurry.
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
B01J 8/22 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées l'agent fluidisant étant un liquide du gaz étant introduit dans le liquide
B03B 5/28 - Lavage de matériaux en grains, en poudre ou en grumeauxSéparation par voie humide en utilisant des plongeants et flottants
B03B 5/64 - Lavage de matériaux en grains, en poudre ou en grumeauxSéparation par voie humide en utilisant des classificateurs hydrauliques, p. ex. des appareils de concentration à chute en spirale ou en hélice, du type à couloir ou à bassin du genre à sédimentation libre
In a hydrocarbon production apparatus, a filler layer is provided at an intermediate position in a gas/liquid separation vessel of a second gas/liquid separation unit, a first return line is provided in a gas/liquid separation vessel of a first gas/liquid separation unit, and a second return line is provided in the gas/liquid separation vessel of the second gas/liquid separation unit. In the first gas/liquid separation unit, a light fraction of a light oil, which is introduced from the bottom of the gas/liquid separation vessel, is returned, through the first return line, to a part which is located between a position closer to the top part relative to a return part of the second return line in the gas/liquid separation vessel of the second gas/liquid separation unit and a position located on a line right in front of the cooler in the first gas/liquid separation unit. In the second gas/liquid separation unit, a heavy fraction of the light oil, which is introduced from the bottom of the gas/liquid separation vessel of the second gas/liquid separation unit, is returned to the filler layer through the second return line.
There is provided a method for recovering hydrocarbon compounds from a gaseous by-products generated in the Fisher-Tropsch synthesis reaction, the method comprising a pressurizing step in which the gaseous by-products are pressurized, a cooling step in which the pressurized gaseous by-products are pressurized to liquefy hydrocarbon compounds in the gaseous by-products, and a separating step in which the hydrocarbon compounds liquefied in the cooling step are separated from the remaining gaseous by-products.
F25J 3/08 - Séparation des impuretés gazeuses des gaz ou des mélanges gazeux
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
C10G 31/06 - Raffinage des huiles d'hydrocarbures, en l'absence d'hydrogène, par des méthodes non prévues ailleurs par chauffage, refroidissement ou traitement par la pression
A hydrocarbon synthesis reaction apparatus according to the present invention is provided with: a reactor for bringing a synthetic gas into contact with a slurry that is produced by suspending a solid catalyst in a liquid hydrocarbon, thereby synthesizing a hydrocarbon through a Fischer-Tropsch synthesis reaction; a cylindrical inner tube which is arranged in the reactor in such a manner that there is a space between the lower end of the inner tube and the bottom of the reactor; and a sparger which is arranged on the inner lower side of the inner tube and can blow the synthetic gas into the inside of the inner tube. When the slurry is introduced into the reactor until the position of the upper end of the inner tube becomes lower than the liquid level of the slurry, a Fischer-Tropsch synthesis reaction zone is formed in a space between an extended part from the upper end of the inner tube and the inner surface of the reactor, wherein the slurry containing bubbles flows into the Fischer-Tropsch synthesis reaction zone from the inside of the inner tube via the upper end of the inner tube.
The present invention provides a method for producing a hydroprocessing catalyst including a supporting step of allowing a catalyst support having a content of a carbonaceous substance containing carbon atoms of 0.5% by mass or less in terms of carbon atoms to support an active metal component containing at least one active metal element selected from metals belonging to Group 6, Group 8, Group 9 and Group 10 in the periodic table, to obtain a catalyst precursor, and a calcining step of calcining the catalyst precursor obtained in the supporting step to obtain the hydroprocessing catalyst.
B01J 29/10 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y contenant des métaux du groupe du fer, des métaux nobles ou du cuivre
B01J 29/16 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y contenant de l'arsenic, de l'antimoine, du bismuth, du vanadium, du niobium, du tantale, du polonium, du chrome, du molybdène, du tungstène, du manganèse, du technétium ou du rhénium
B01J 37/00 - Procédés de préparation des catalyseurs, en généralProcédés d'activation des catalyseurs, en général
C10G 47/14 - Supports inorganiques le catalyseur contenant des métaux du groupe du platine ou leurs composés
C10G 65/14 - Traitement des huiles d'hydrocarbures, uniquement par plusieurs procédés d'hydrotraitement uniquement par plusieurs étapes en parallèle
C10G 45/10 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour éliminer des hétéro-atomes sans modifier le squelette de l'hydrocarbure mis en œuvre et sans craquage en hydrocarbures à point d'ébullition inférieurHydrofinissage caractérisé par le catalyseur utilisé contenant des métaux du groupe du platine ou leurs composés
C10G 49/06 - Traitement des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, non prévu dans un seul des groupes , , , ou caractérisé par le catalyseur utilisé contenant des métaux du groupe du platine ou leurs composés
The hydrocarbon synthesis reaction apparatus is provided with a synthesis gas supply line in which a synthesis gas is compressed and supplied by a first compressor, a reactor configured to accommodate a catalyst slurry, a gas-liquid separator configured to separate an unreacted synthesis gas and hydrocarbons discharged from the reactor into a gas and a liquid, a first recycle line in which the unreacted synthesis gas after separation into a gas and a liquid is compressed and recycled into the reactor by a second compressor, and a second recycle line configured to recycle a residual unreacted synthesis gas after separation into a gas and a liquid into the inlet side of the first compressor at the time of start-up operation when the synthesis gas is gradually increased in the amount to be introduced.
C07C 1/00 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure
C07C 1/02 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir d'oxydes de carbone
C07C 1/04 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir d'oxydes de carbone à partir de monoxyde de carbone avec de l'hydrogène
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
B01J 8/00 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés
B01J 8/18 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées
B01J 8/20 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées l'agent fluidisant étant un liquide
B01J 8/22 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées l'agent fluidisant étant un liquide du gaz étant introduit dans le liquide
B01J 19/00 - Procédés chimiques, physiques ou physico-chimiques en généralAppareils appropriés
B01J 19/24 - Réacteurs fixes sans élément interne mobile
33.
START UP METHOD FOR HYDROCARBON SYNTHESIS REACTION APPARATUS
This start up method for a hydrocarbon synthesis reaction apparatus is provided with: an initial slurry-filling step in which, during start up, the inside of a reaction vessel is filled with an initial preparation slurry amount which is less than a slurry amount during steady operation; and a CO-conversion-rate increasing step in which hydrocarbons to be synthesized when operation is initiated are added to the slurry to increase the height of the liquid level of the slurry, and the CO conversion rate is increased in accordance with the increase in the height of the liquid level of the slurry.
This start up method for a hydrocarbon synthesis reaction apparatus is provided with: an initial slurry-filling step in which, during start up, the inside of a reaction vessel is filled with an initial preparation slurry amount which is less than a slurry amount during steady operation; and a CO-conversion-rate increasing step in which hydrocarbons to be synthesized when operation is initiated are added to the slurry to increase the height of the liquid level of the slurry, and the CO conversion rate is increased in accordance with the increase in the height of the liquid level of the slurry.
The hydrocracking catalyst of the present invention is a hydrocracking catalyst comprising a catalyst support comprising a zeolite and an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the hydrocracking catalyst contains a carbonaceous substance comprising a carbon atom, and the content of the carbonaceous substance in the hydrocracking catalyst is 0.05 to 1% by mass in terms of the carbon atom.
C10G 47/18 - Supports en alumino-silicates cristallins le catalyseur contenant des métaux du groupe du platine ou leurs composés
C10G 45/60 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales caractérisé par le catalyseur utilisé
C10G 45/70 - Aromatisation de fractions d'huiles d'hydrocarbures avec des catalyseurs contenant des métaux du groupe du platine ou leurs composés
C10G 11/18 - Craquage catalytique, en l'absence d'hydrogène, des huiles d'hydrocarbures avec catalyseurs solides mobiles préchauffés selon la technique du "lit fluidisé"
B01J 35/02 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides
B01J 37/00 - Procédés de préparation des catalyseurs, en généralProcédés d'activation des catalyseurs, en général
C10G 45/62 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales caractérisé par le catalyseur utilisé contenant des métaux du groupe du platine ou leur composés
C10G 45/64 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales caractérisé par le catalyseur utilisé contenant des alumino-silicates cristallins, p. ex. des tamis moléculaires
36.
Method for starting up bubble-column-type slurry-bed reactor, start-up solvent, and method for producing hydrocarbon oil
A method for starting up a bubble column slurry bed reactor of the present invention includes, when restarting operation of a bubble column slurry bed reactor for producing hydrocarbons by the Fischer-Tropsch synthesis reaction, feeding a hydroprocessed oil produced in the bubble column slurry bed reactor and hydroprocessed that contains 40% by mass or more of paraffin hydrocarbons having carbon number of 21 or more and that has a peroxide value of 1 ppm or less, to the bubble column slurry bed reactor.
A method for estimating a particulate content in a slurry of the present invention is a method for estimating a content of particulates having a predetermined particle size or less in a slurry with solid particles dispersed in hydrocarbons including a wax, the method including, based on a correlation between a visible light transmittance and a content of solid particles having the predetermined particle size or less at a temperature at which hydrocarbons including a wax are liquefied when the solid particles having the predetermined particle size or less are dispersed in the hydrocarbons, estimating a content of particulates having the predetermined particle size or less in the slurry from a visible light transmittance of a supernatant part when the slurry is left to stand at the temperature.
G01N 15/06 - Recherche de la concentration des suspensions de particules
C10G 31/00 - Raffinage des huiles d'hydrocarbures, en l'absence d'hydrogène, par des méthodes non prévues ailleurs
G01N 15/02 - Recherche de la dimension ou de la distribution des dimensions des particules
G01N 15/04 - Recherche de la sédimentation des suspensions de particules
B01J 23/46 - Ruthénium, rhodium, osmium ou iridium
G01N 15/00 - Recherche de caractéristiques de particulesRecherche de la perméabilité, du volume des pores ou de l'aire superficielle effective de matériaux poreux
B01J 23/89 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe du cuivre ou des métaux du groupe du fer combinés à des métaux nobles
The present invention provides a method for producing a hydrocarbon oil, including performing a hydrocracking by continuously feeding, to a hydrocracking reactor containing a hydrocracking catalyst, a wax to be processed including: a raw wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360° C; and an uncracked wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360° C, which uncracked wax is separated from a hydrocracking product discharged from the reactor, to thereby yield a hydrocarbon oil including hydrocarbons with a boiling point of 360° C or lower.
C10G 49/02 - Traitement des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, non prévu dans un seul des groupes , , , ou caractérisé par le catalyseur utilisé
C10G 47/02 - Craquage des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, pour obtenir des fractions à point d'ébullition inférieur caractérisé par le catalyseur utilisé
B01J 37/00 - Procédés de préparation des catalyseurs, en généralProcédés d'activation des catalyseurs, en général
39.
Method of suppressing metal contamination of synthesis gas production apparatus
A synthesis gas production apparatus (reformer) to be used for a synthesis gas production step in a GTL (gas-to-liquid) process is prevented from being contaminated by metal components. A method of suppressing metal contamination of a synthesis gas production apparatus operating for a GTL process that includes a synthesis gas production step of producing synthesis gas by causing natural gas and gas containing steam and/or carbon dioxide to react with each other for reforming in a synthesis gas production apparatus in which, at the time of separating and collecting a carbon dioxide contained in the synthesis gas produced in the synthesis gas production step and recycling the separated and collected carbon dioxide as source gas for the reforming reaction in the synthesis gas production step, a nickel concentration in the recycled carbon dioxide is not higher than 0.05 ppmv.
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
C10G 49/00 - Traitement des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, non prévu dans un seul des groupes , , , ou
C10K 1/00 - Purification des gaz combustibles contenant de l'oxyde de carbone
C01B 3/38 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs
C01B 3/54 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification par contact avec des liquidesRégénération des liquides usés comportant une réaction catalytique
C10G 45/00 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène
40.
Activated fischer-tropsch synthesis reaction catalyst and method for producing hydrocarbons
A Fischer-Tropsch synthesis reaction catalyst includes a catalyst support containing a silica and zirconium oxide in an amount of 0.5 to 14% by mass based on the mass of the catalyst support, and cobalt metal and a cobalt oxide supported on the catalyst support in an amount equivalent to 10 to 40% by mass of tricobalt tetroxide based on the mass of the catalyst, wherein the degree of reduction of the cobalt atoms is within a range from 75 to 93%, and the amount of hydrogen gas adsorption per unit mass of the catalyst at 100° C. is within a range from 0.40 to 1.0 ml/g.
B01J 21/00 - Catalyseurs contenant les éléments, les oxydes ou les hydroxydes du magnésium, du bore, de l'aluminium, du carbone, du silicium, du titane, du zirconium ou du hafnium
C07C 27/00 - Procédés impliquant la production simultanée de plusieurs classes de composés contenant de l'oxygène
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
B01J 21/06 - Silicium, titane, zirconium ou hafniumLeurs oxydes ou hydroxydes
B01J 23/00 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe
ABSTRACT The helium gas separator material includes a base portion and a gas separation portion joined to the base portion. The base portion is composed of a porous ct-alumina material which has communication holes with an average diameter of 50 nm to 1,000 nm; the gas separation portion has a porous y-alumina portion containing a Ni element and a silica membrane portion which is disposed on the inner wall of the communication holes in the porous portion; and the average diameter of pores surrounded and formed by the silica membrane portion is 0.27 nm to 0.60 nm. CA 2877621 2019-10-03
B01D 53/22 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par diffusion
B01D 69/10 - Membranes sur supportSupports pour membranes
C04B 35/10 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes à base d'oxyde d'aluminium
C04B 41/85 - Revêtement ou imprégnation avec des substances inorganiques
The method for stopping operation of a reactor is provided with a stop step of stopping supply of a synthesis gas containing a carbon monoxide gas and a hydrogen gas into the reactor; a slurry discharge step of discharging slurry from the reactor; a steam supply step of supplying steam higher in temperature than the decomposition temperatures of metal carbonyls into the reactor, thereby discharging gaseous matters inside the reactor; and a carbon monoxide gas detecting step of detecting an amount of carbon monoxide gas contained in the gaseous matters discharged from the reactor. In the steam supply step, supply of the steam is stopped when an amount of the detected carbon monoxide gas continuously declines to be lower than a predetermined reference value.
A helium separator material comprises a base part and a gas separation part that is joined to the base part. The base part is composed of an α-alumina porous body which has continuous holes having an average diameter of 50 to 1,000 nm. The gas separation part has a γ-alumina porous part containing an Ni element and a silica membrane part formed on the inner walls of continuous holes in the porous part, wherein the average diameter of pores surrounded and formed by the silica membrane part is 0.27 to 0.60 nm.
B01D 53/22 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par diffusion
B01D 69/10 - Membranes sur supportSupports pour membranes
C04B 35/10 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes à base d'oxyde d'aluminium
C04B 41/85 - Revêtement ou imprégnation avec des substances inorganiques
A catalyst recovery system that includes a concentrated slurry production unit that concentrates a slurry extracted from a reactor main unit and continuously produces a concentrated slurry, a first discharge unit that discharges the concentrated slurry from the concentrated slurry production unit, a solidified slurry production unit that cools the concentrated slurry discharged from the concentrated slurry production unit, thereby solidifying the liquid medium within the concentrated slurry and producing a solidified slurry, and a recovery mechanism that recovers the solidified slurry from the solidified slurry production unit.
A production method for natural gas according to the invention includes a step of adiabatically compressing a raw natural gas containing helium gas, a step of separating the helium gas from the raw natural gas by passing the adiabatically- compressed raw natural gas through a separation membrane unit, a step of conveying the raw natural gas from which the helium gas has been separated to a terminal through a pipe line, and a step of pressing the helium gas separated from the raw natural gas into an underground storage formation.
E21B 43/40 - Séparation associée à la réinjection de matériaux séparés
B01D 53/22 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par diffusion
This processing method for natural gas comprises a step in which helium gas is separated from raw natural gas, and a step in which the helium gas is injected into an underground reservoir layer.
E21B 43/40 - Séparation associée à la réinjection de matériaux séparés
B01D 53/22 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par diffusion
This production method for natural gas comprises: a step in which raw natural gas containing helium gas is adiabatically compressed; a step in which the helium gas is separated from the raw natural gas by passing the adiabatically compressed raw natural gas through a separating membrane unit; a step in which the raw natural gas from which the helium gas has been separated is transported through a pipeline to a terminal; and a step in which the helium gas that has been separated from the raw natural gas is injected into an underground reservoir layer.
E21B 43/40 - Séparation associée à la réinjection de matériaux séparés
B01D 53/22 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par diffusion
Provided is a catalyst packing device disposed at a bubble tower-type slurry bed reactor for FT synthesis. The packing device comprises, disposed adjacent to the reactor, a slurry preparation cell for preparing a slurry S from an FT synthesis catalyst and a slurry preparation oil, a top communicating pipe for guiding slurry from the reactor to the slurry preparation cell and a bottom communicating pipe for guiding slurry from the slurry preparation cell to the reactor, and an equalizing pipe for communication between the inside of the reactor and the inside of the slurry preparation cell. The top communicating pipe is inclined down from the reactor toward the slurry preparation cell and the bottom communicating pipe is inclined up from the reactor toward the slurry preparation cell. Inert gas introduction means for introducing inert gas are disposed at the slurry preparation cell.
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
B01J 8/22 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées l'agent fluidisant étant un liquide du gaz étant introduit dans le liquide
49.
METHOD FOR STARTUP OF BUBBLE TOWER-TYPE SLURRY BED REACTOR
Provided is a method for the startup of a bubble tower-type slurry bed reactor for producing hydrocarbons by Fischer-Tropsch synthesis. The method comprises a first step for filling in a reactor a slurry obtained by suspending a Fisher-Tropsch synthesis catalyst in an oil for preparing a slurry having a 5% distillation temperature between 120 and 270ºC, a 95% distillation temperature between 330 and 650ºC, and a sulfur content and aromatic content of 1 ppm or less in terms of mass, and a second step for initiating Fischer-Tropsch synthesis by raising the temperature of the reactor, with synthetic gas that is primarily hydrogen and carbon monoxide already being introduced to the slurry filled in the reactor. The oil for slurry preparation is an oil that contains a predetermined amount of specific components. During the first step, the slurry is filled into the reactor in an amount such that none sprays out from the reactor.
This process for manufacturing a diesel fuel base comprises: (A) a hydrogenation step that includes (A1) a hydroisomerization step of bringing an FT synthetic oil into contact with a hydro- isomerization catalyst to obtain a hydroisomerized oil (a1) and/ or (A2) a hydrocracking step of bringing an FT synthetic oil into contact with a hydrocracking catalyst to obtain a hydrocracked oil (a2); and (B) a rectification step of transferring at least a part of a hydrogenated oil (a) consisting of the hydroisomerized oil (a1) and/or the hydrocracked oil (a2) into a rectifying column to obtain, at least, an intermediate fraction (b1) which has a 5% distillation temperature of 130 to 170°C and a 95% distillation temperature of 240 to 300°C and a heavy oil (b2) which is heavier than the intermediate fraction (b1).
C10G 65/14 - Traitement des huiles d'hydrocarbures, uniquement par plusieurs procédés d'hydrotraitement uniquement par plusieurs étapes en parallèle
C10G 45/62 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales caractérisé par le catalyseur utilisé contenant des métaux du groupe du platine ou leur composés
C10G 47/16 - Supports en alumino-silicates cristallins
C10L 1/08 - Combustibles carbonés liquides à base essentielle de mélanges d'hydrocarbures pour allumage par compression
51.
DIESEL FUEL OR DIESEL FUEL BASE STOCK AND PRODUCTION METHOD THEREOF
Provided is a hydrotreating step (A) containing a hydroisomerization step (A1) that obtains a hydroisomerized oil (a1) by bringing a FT synthesis oil into contact with a hydroisomerization catalyst and/or a hydrocracking step (A2) that obtains a hydrocracked oil (a2) by bringing it into contact with a hydrocracking catalyst, and a fractionation step (B) that transfers at least a portion of the hydrotreated oil (a) composed of the hydroisomerized oil (a1) and/or the hydrocracked oil (a2) to a fractionator and, at the very least, obtains a middle distillate (b1) with a 5% distillation point of 130 to 170°C and a 95% distillation point of 240 to 300°C, and a heavy oil (b2) that is heavier than the middle distillate (b1).
C10G 65/14 - Traitement des huiles d'hydrocarbures, uniquement par plusieurs procédés d'hydrotraitement uniquement par plusieurs étapes en parallèle
C10G 45/62 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales caractérisé par le catalyseur utilisé contenant des métaux du groupe du platine ou leur composés
C10G 47/16 - Supports en alumino-silicates cristallins
C10L 1/08 - Combustibles carbonés liquides à base essentielle de mélanges d'hydrocarbures pour allumage par compression
52.
START-UP METHOD OF BUBBLE COLUMN SLURRY BED REACTOR
Provided is a method for the startup of a bubble tower-type slurry bed reactor for producing hydrocarbons by Fischer-Tropsch synthesis. The method comprises a first step for filling in a reactor a slurry obtained by suspending a Fisher-Tropsch synthesis catalyst in an oil for preparing a slurry having a 5% distillation temperature between 120 and 270ºC, a 95% distillation temperature between 330 and 650ºC, and a sulfur content and aromatic content of 1 ppm or less in terms of mass, and a second step for initiating Fischer-Tropsch synthesis by raising the temperature of the reactor, with synthetic gas that is primarily hydrogen and carbon monoxide already being introduced to the slurry filled in the reactor. The oil for slurry preparation is an oil that contains a predetermined amount of specific components. During the first step, the slurry is filled into the reactor in an amount such that none sprays out from the reactor.
JAPAN OIL, GAS AND METALS NATIONAL CORPORATION (Japon)
INPEX CORPORATION (Japon)
JX NIPPON OIL & ENERGY CORPORATION (Japon)
JAPAN PETROLEUM EXPLORATION CO., LTD. (Japon)
COSMO OIL CO., LTD. (Japon)
NIPPON STEEL ENGINEERING CO., LTD. (Japon)
Inventeur(s)
Tasaka, Kazuhiko
Abrégé
A startup method for a fractionator that is supplied with, and fractionally distills, a hydrocracked product obtained in a wax fraction hydrocracking step by hydrocracking a wax fraction contained within a Fischer-Tropsch synthetic oil, the method including a preheating step of preheating the fractionator using a hydrocarbon oil that includes at least a portion of the hydrocracked product and is liquid at a normal temperature and normal pressure.
C10G 7/00 - Distillation des huiles d'hydrocarbures
C10G 47/00 - Craquage des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, pour obtenir des fractions à point d'ébullition inférieur
C10G 65/14 - Traitement des huiles d'hydrocarbures, uniquement par plusieurs procédés d'hydrotraitement uniquement par plusieurs étapes en parallèle
This cleaning device is for filters used in a reaction system provided with: a reaction tank having a filter; a first transport pipe, one end of which is connected to a filter; a recovery tank connected to the other end of the first transport pipe; and a second transport pipe one end of which is connected to the recovery tank. This cleaning device is provided with: a first return pipe, one end of which is connected to the second transport pipe; a first backwash fluid tank and a second backwash fluid tank connected to the first return pipe; a first flow rate adjusting valve that can adjust filtered fluid supplied to the first backwash fluid tank; a second flow rate adjusting valve that can adjust filtered fluid supplied to the second backwash fluid tank; and a switching unit that switches and transports either of the filtered fluids accommodated in the two backwash fluid tanks.
B01J 8/24 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées selon la technique du "lit fluidisé"
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
This temperature control system collects reaction heat within a reaction apparatus wherein a heat generation reaction occurs, controlling temperature within the reaction apparatus. The temperature control system comprises: a coolant drum wherein vapor and liquid coolants are stored in a vapor-liquid equilibrium state; a heat removal unit which is disposed with the reaction apparatus and which vaporizes some of the liquid coolant which is supplied from the coolant drum with the reaction heat; a return pipe which returns a multiphase fluid of vapor which arises in the heat removal unit and the liquid coolant to the coolant drum; a vapor exhaust pipe which supplies the vapor in the coolant drum externally to the assembly; and a supplement tube which supplies supplemental water to the return pipe at a quantity which is estimated from the quantity of vapor which is discharged externally to the assembly.
F25D 17/00 - Dispositions pour la circulation des fluides de refroidissementDispositions pour la circulation de gaz, p. ex. d'air, dans les enceintes refroidies
B01J 19/00 - Procédés chimiques, physiques ou physico-chimiques en généralAppareils appropriés
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
F22B 29/02 - Chaudières à vapeur du type à circulation forcée du type à circulation fermée
F22D 5/28 - Systèmes automatiques de commande de l'alimentation sensibles à la quantité prélevée de vapeurSystèmes automatiques de commande de l'alimentation sensibles à la pression de vapeur
Japan Oil, Gas and Metals National Corporation (Japon)
Inpex Corporation (Japon)
JX Nippon Oil & Energy Corporation (Japon)
Japan Petroleum Exploration Co., Ltd. (Japon)
Cosmo Oil Co., Ltd. (Japon)
Nippon Steel Engineering Co., Ltd. (Japon)
Inventeur(s)
Tasaka, Kazuhiko
Abrégé
In a process for producing hydrocarbons according to the present invention, estimated production rates for a light hydrocarbon oil and a heavy hydrocarbon oil are respectively determined based on a set reaction temperature used when the hydrocarbons are synthesized by a Fischer-Tropsch synthesis reaction, and the discharge flow rates of the light hydrocarbon oil and the heavy hydrocarbon oil from temporary storage buffer tanks (91, 92) during supply to a fractionator (40) are respectively controlled so as to be equal to the respective estimated production rates.
Japan Oil, Gas and Metals National Corporation (Japon)
Inpex Corporation (Japon)
JX Nippon Oil & Energy Corporation (Japon)
Japan Petroleum Exploration Co., Ltd. (Japon)
Cosmo Oil Co., Ltd. (Japon)
Nippon Steel Engineering Co., Ltd. (Japon)
Chiyoda Corporation (Japon)
Inventeur(s)
Hodoshima, Shinya
Yagi, Fuyuki
Wakamatsu, Shuhei
Kawazuishi, Kenichi
Abrégé
A situation where sulfur compounds originating from a castable are mixed into synthesis gas produced by way of a reforming reaction and the mixed sulfur compounds are separated and collected with carbon dioxide and further fed into a reformer to thereby degrade the reforming catalyst of the reformer by sulfur poisoning is avoided. Purge gas that is steam or steam-containing gas is made to flow into the piping to be used for a synthesis gas production apparatus and dried out to remove the sulfur compounds contained in the castable prior to the start-up of operation of the synthesis gas production apparatus, in order to prevent the sulfur compounds from being released by hot synthesis gas.
F26B 3/06 - Procédés de séchage d'un matériau solide ou d'objets impliquant l'utilisation de chaleur par convection, c.-à-d. la chaleur étant transférée d'une source de chaleur au matériau ou aux objets à sécher par un gaz ou par une vapeur, p. ex. l'air le gaz ou la vapeur s'écoulant à travers le matériau ou les objets à sécher
B01J 19/02 - Appareils caractérisés par le fait qu'ils sont construits avec des matériaux choisis pour leurs propriétés de résistance aux agents chimiques
C01B 3/48 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants suivie par une réaction de la vapeur d'eau avec l'oxyde de carbone
C01B 3/38 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs
JAPAN OIL GAS AND METALS NATIONAL CORPORATION (Japon)
INPEX CORPORATION (Japon)
JX NIPPON OIL & ENERGY CORPORATION (Japon)
JAPAN PETROLEUM EXPLORATION CO., LTD. (Japon)
COSMO OIL CO., LTD. (Japon)
NIPPON STEEL ENGINEERING CO., LTD. (Japon)
CHIYODA CORPORATION (Japon)
Inventeur(s)
Hodoshima, Shinya
Yagi, Fuyuki
Wakamatsu, Shuhei
Kawazuishi, Kenichi
Abrégé
It is avoided that the sulfur compounds originating from the castable is mixed into produced synthesis gas, the mixed sulfur compounds are separated and collected with carbon dioxide, the collected carbon dioxide is recycled as raw material gas and then the sulfur compounds is directly supplied to the reformer to consequently degrade the reforming catalyst in the reformer by sulfur poisoning. The carbon dioxide separated and collected in the carbon dioxide removal step is introduced into the desulfurization apparatus of the desulfurization step or the sulfur compounds adsorption apparatus before being recycled to the reformer to remove the sulfur compounds.
C01B 3/38 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs
C01B 3/48 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants suivie par une réaction de la vapeur d'eau avec l'oxyde de carbone
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
JAPAN OIL, GAS AND METALS NATIONAL CORPORATION (Japon)
INPEX CORPORATION (Japon)
JX NIPPON OIL & ENERGY CORPORATION (Japon)
JAPAN PETROLEUM EXPLORATION CO., LTD. (Japon)
COSMO OIL CO., LTD. (Japon)
NIPPON STEEL ENGINEERING CO., LTD. (Japon)
Inventeur(s)
Iwama, Marie
Abrégé
The present invention provides a method for producing a hydroprocessing catalyst including a supporting step of allowing a catalyst support having a content of a carbonaceous substance containing carbon atoms of 0.5% by mass or less in terms of carbon atoms to support an active metal component containing at least one active metal element selected from metals belonging to Group 6, Group 8, Group 9 and Group 10 in the periodic table, to obtain a catalyst precursor, and a calcining step of calcining the catalyst precursor obtained in the supporting step to obtain the hydroprocessing catalyst.
JAPAN OIL, GAS AND METALS NATIONAL CORPORATION (Japon)
INPEX CORPORATION (Japon)
JX NIPPON OIL & ENERGY CORPORATION (Japon)
JAPAN PETROLEUM EXPLORATION CO., LTD. (Japon)
COSMO OIL CO., LTD. (Japon)
NIPPON STEEL ENGINEERING CO., LTD. (Japon)
Inventeur(s)
Niitsuma, Takuya
Abrégé
A process for producing a kerosene base fuel according to the present invention comprises removing paraffins having carbon number of 7 or less from a first fraction having an initial boiling point of 95 to 140°C and a final boiling point of 240 to 280°C obtained from a hydrotreated oil of a Fischer-Tropsch synthetic oil to obtain a second fraction having a content of paraffins having carbon number of 7 or less of 0.1 to 0.7% by mass.
A method for starting up a bubble column slurry bed reactor of the present invention includes, when restarting operation of a bubble column slurry bed reactor for producing hydrocarbons by the Fischer-Tropsch synthesis reaction, feeding a hydroprocessed oil produced in the bubble column slurry bed reactor and hydroprocessed that contains 40% by mass or more of paraffin hydrocarbons having carbon number of 21 or more and that has a peroxide value of 1 ppm or less, to the bubble column slurry bed reactor.
This hydrocarbon synthesis reaction device comprises: a synthetic gas supply passage for supplying a synthetic gas compressed by a first compressor; a reaction vessel for containing a catalyst slurry; a gas-liquid separator for gas-liquid separating unreacted synthetic gas and hydrocarbon derived from the reaction vessel; a first recirculation passage for recirculating the unreacted synthetic gas after the gas-liquid separation compressed by a second compressor to the reaction vessel; and a second recirculation passage for recirculating the rest of the unreacted synthetic gas after the gas-liquid separation to a suction side of the first compressor at the time of start up operation when the introduction amount of the synthetic gas is gradually increased.
This catalyst for the Fischer-Tropsch synthesis reaction comprises: a carrier containing silica and 0.5-14% by mass of zirconium oxide with respect to the mass of the carrier; and 10-40% by mass of cobalt metal and cobalt oxides in terms of tricobalt tetraoxide with respect to the mass of the catalyst, the cobalt metal and cobalt oxides being supported by the carrier. The degree of reduction of the cobalt atoms is 75-93%, and the hydrogen gas adsorption amount per unit mass of the catalyst at 100°C is 0.40-1.0 ml/g.
This method for producing hydrocarbon comprises: a synthesis step for using a bubble column-type slurry bed reactor to synthesize hydrocarbon by a Fischer-Tropsch synthesis reaction, the reactor having a gas phase part at the top and holding a slurry including catalyst particles and liquid hydrocarbon; an extraction step for causing the slurry to flow through a filter disposed on the interior and/or exterior of the reactor to separate out the heavy liquid hydrocarbon, and extracting the heavy liquid hydrocarbon; a backwashing step for causing the liquid hydrocarbon to flow through the filter in a direction inverse to the direction of flow of the slurry and returning the catalyst particles to the reactor; and a cooling and gas-liquid separation step for cooling the hydrocarbon expelled from the gas phase part and separating out and collecting the condensed light liquid hydrocarbon. The liquid hydrocarbon made to flow in the backwashing step includes the light liquid hydrocarbon obtained in the cooling and gas-liquid separation step.
This temperature control system is provided with a lower heat removal part through the interior of which a liquid refrigerant passes and which is disposed on the bottom part of a reaction container for producing an exothermic reaction in the interior, and an upper heat removal part through the interior of which a liquid refrigerant passes and which is disposed above the lower heat removal part in the reaction container. The temperature control system controls the temperature within the reaction container by absorbing the reaction heat in the reaction container. A liquid refrigerant of which the temperature is adjusted by means of a first temperature adjusting unit is supplied to the lower heat removal part, and a liquid refrigerant of which the temperature is adjusted by means of a second temperature adjusting unit that is different from the first temperature adjusting unit is supplied to the upper heat removal part.
B01J 8/00 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés
B01J 8/22 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées l'agent fluidisant étant un liquide du gaz étant introduit dans le liquide
B01J 19/00 - Procédés chimiques, physiques ou physico-chimiques en généralAppareils appropriés
C07C 1/04 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir d'oxydes de carbone à partir de monoxyde de carbone avec de l'hydrogène
This regenerated hydrogenation refining catalyst is formed by regenerating a used hydrogenation refining catalyst which contains both a carrier containing an amorphous composite metal oxide having solid acidity, and at least one type of active metal selected from the noble metals of group 8 to group 10 of the periodic table and supported on the aforementioned carrier; relative to the total mass of the catalyst, this regenerated hydrogenation refining catalyst contains 0.05-1 mass% of a carbonaceous material in terms of carbon atoms.
C10G 45/10 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour éliminer des hétéro-atomes sans modifier le squelette de l'hydrocarbure mis en œuvre et sans craquage en hydrocarbures à point d'ébullition inférieurHydrofinissage caractérisé par le catalyseur utilisé contenant des métaux du groupe du platine ou leurs composés
67.
METHOD FOR STARTING UP BUBBLE-COLUMN-TYPE SLURRY-BED REACTOR, START-UP SOLVENT, AND METHOD FOR PRODUCING HYDROCARBON OIL
This method for starting up a bubble-column-type slurry-bed reactor is characterized in that, at the time of re-starting a bubble-column-type slurry-bed reactor for producing hydrocarbons by the Fischer-Tropsch synthesis reaction, a hydrotreated oil that has been produced in the bubble-column-type slurry-bed reactor and hydrotreated is supplied to the bubble-column-type slurry-bed reactor, the hydrotreated oil having a peroxide value of 1 ppm or less and containing 40% by mass or more of paraffin hydrocarbons with carbon numbers of 21 or greater.
This kerosene base material production method is characterized in obtaining, by removing paraffin of seven carbons or less from a first distillate with an initial boiling point of 95 - 140°C and an end point of 240 - 280°C that is obtained from a hydrogenated oil of a Fischer-Tropsch synthetic oil, a second distillate wherein the content of paraffin of seven carbons or less is 0.1 - 0.7 mass%.
The present invention prevents mixing in of metal components in an apparatus (reformer) for manufacturing synthetic gas used in a gas-to-liquid (GTL) synthetic gas manufacturing process. The present invention is a method for controlling mixing in of metal in an apparatus for manufacturing synthetic gas in a GTL process that includes a synthetic gas manufacturing process that manufactures synthetic gas by a reforming reaction for natural gas and gas that includes steam and/or carbon dioxide in the apparatus for manufacturing synthetic gas. The method for controlling mixing in of metal in the apparatus for manufacturing synthetic gas is characterized by the carbon dioxide gas in the synthetic gas manufactured by the synthetic gas manufacturing process being separated and recovered and, when the separated and recovered carbon dioxide gas is recycled into the starting material gas for the reforming reaction in the synthetic gas manufacturing process, the nickel concentration in the recycled carbon dioxide gas is 0.05 ppmv or less.
C01B 3/38 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs
C01B 3/52 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification par contact avec des liquidesRégénération des liquides usés
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
70.
HYDROCRACKING CATALYST AND METHOD FOR PRODUCING A HYDROCARBON OIL
JAPAN OIL, GAS AND METALS NATIONAL CORPORATION (Japon)
INPEX CORPORATION (Japon)
JX NIPPON OIL & ENERGY CORPORATION (Japon)
JAPAN PETROLEUM EXPLORATION CO., LTD. (Japon)
COSMO OIL CO., LTD. (Japon)
NIPPON STEEL ENGINEERING CO., LTD. (Japon)
Inventeur(s)
Tanaka, Yuichi
Niitsuma, Takuya
Tasaka, Kazuhiko
Iwama, Marie
Abrégé
The hydrocracking catalyst of the present invention is a hydrocracking catalyst comprising a catalyst support comprising a zeolite and an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the hydrocracking catalyst contains a carbonaceous substance comprising a carbon atom, and the content of the carbonaceous substance in the hydrocracking catalyst is 0.05 to 1% by mass in terms of the carbon atom.
JAPAN OIL, GAS AND METALS NATIONAL CORPORATION (Japon)
INPEX CORPORATION (Japon)
JX NIPPON OIL & ENERGY CORPORATION (Japon)
JAPAN PETROLEUM EXPLORATION CO., LTD. (Japon)
COSMO OIL CO., LTD. (Japon)
NIPPON STEEL ENGINEERING CO., LTD. (Japon)
Inventeur(s)
Hayasaka, Kazuaki
Abrégé
This method for estimating the content of fine particles in a slurry is a method for estimating the content of fine particles having a particle diameter of a given value or less in a slurry that comprises hydrocarbons comprising wax and solid particles dispersed in the hydrocarbons. The method is characterized in that a correlation between the visible-light transmittances of dispersions obtained by dispersing solid particles having a particle diameter of the given value or less in the hydrocarbons comprising wax, the transmittances being measured at a temperature at which the hydrocarbons are liquid, and the contents of the solid particles having a particle diameter of the given value or less is determined, and the content of fine particles having a particle diameter of the given value or less in the slurry is estimated, on the basis of the correlation, from the visible-light transmittance of the supernatant of the slurry that was allowed to stand still at that temperature.
B01J 8/20 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées l'agent fluidisant étant un liquide
B01J 8/22 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées l'agent fluidisant étant un liquide du gaz étant introduit dans le liquide
JAPAN OIL, GAS AND METALS NATIONAL CORPORATION (Japon)
INPEX CORPORATION (Japon)
JX NIPPON OIL & ENERGY CORPORATION (Japon)
JAPAN PETROLEUM EXPLORATION CO., LTD. (Japon)
COSMO OIL CO., LTD. (Japon)
Inventeur(s)
Onishi, Yasuhiro
Tasaka, Kazuhiko
Mikuriya, Tomoyuki
Abrégé
The hydrocarbon synthesis reaction apparatus is provided with a synthesis gas supply line in which a synthesis gas is compressed and supplied by a first compressor, a reactor configured to accommodate a catalyst slurry, a gas-liquid separator configured to separate an unreacted synthesis gas and hydrocarbons discharged from the reactor into a gas and a liquid, a first recycle line in which the unreacted synthesis gas after separation into a gas and a liquid is compressed and recycled into the reactor by a second compressor, and a second recycle line configured to recycle a residual unreacted synthesis gas after separation into a gas and a liquid into the inlet side of the first compressor at the time of start-up operation when the synthesis gas is gradually increased in the amount to be introduced.
This method for stopping the operation of a reaction container involves a stopping step in which the supply of synthesis gas containing carbon monoxide gas and hydrogen gas into a reaction container is stopped, a slurry discharging step in which a slurry is discharged from the reaction container, a steam supplying step in which steam having a temperature equal to or higher than the decomposition temperature of metal carbonyl is supplied into the reaction container and the gas in the reaction container is discharged, and a carbon monoxide gas detecting step in which the amount of carbon monoxide in the gas discharged from the reaction container is detected. In the steam supplying step, the supply of steam is stopped when the detected amount of carbon monoxide gas continuously drops and becomes equal to or less than a predetermined reference value.
This catalyst for the Fischer-Tropsch synthesis reaction comprises: a carrier containing silica and 0.5-14% by mass of zirconium oxide with respect to the mass of the carrier; and 10-40% by mass of cobalt metal and cobalt oxides in terms of tricobalt tetraoxide with respect to the mass of the catalyst, the cobalt metal and cobalt oxides being supported by the carrier. The degree of reduction of the cobalt atoms is 75-93%, and the hydrogen gas adsorption amount per unit mass of the catalyst at 100°C is 0.40-1.0 ml/g.
The hydrotreating catalyst of the present invention is a hydrotreating catalyst including a catalyst support including an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the hydrotreating catalyst contains a carbonaceous substance including a carbon atom, and the content of the carbonaceous substance in the hydrotreating catalyst is 0.05 to 1% by mass in terms of the carbon atom.
C10G 45/62 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales caractérisé par le catalyseur utilisé contenant des métaux du groupe du platine ou leur composés
Heavy hydrocarbons contained in FT off gas of a GTL process are removed by bringing the FT off gas into contact with absorption oil, by introducing the FT off gas into a distillation tower, by cooling the FT off gas or by driving the FT off gas into an adsorbent. A burner tip for heating a reformer tube, using FT off gas as fuel, is prevented from being plugged by the deposition of heavy hydrocarbons contained in the FT off gas.
A synthesis gas production apparatus (reformer) to be used for a synthesis gas production step in a GTL (gas-to-liquid) process is prevented from being contaminated by metal components. A method of suppressing metal contamination of a synthesis gas production apparatus operating for a GTL process that includes a synthesis gas production step of producing synthesis gas by causing natural gas and gas containing steam and/or carbon dioxide to react with each other for reforming in a synthesis gas production apparatus in which, at the time of separating and collecting a carbon dioxide contained in the synthesis gas produced in the synthesis gas production step and recycling the separated and collected carbon dioxide as source gas for the reforming reaction in the synthesis gas production step, a nickel concentration in the recycled carbon dioxide is not higher than 0.05 ppmv.
C01B 3/34 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants
C01B 3/50 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification
C01B 3/52 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification par contact avec des liquidesRégénération des liquides usés
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
78.
METHOD FOR STOPPING OPERATION OF REACTION CONTAINER
This method for stopping the operation of a reaction container involves a stopping step in which the supply of synthesis gas containing carbon monoxide gas and hydrogen gas into a reaction container is stopped, a slurry discharging step in which a slurry is discharged from the reaction container, a steam supplying step in which steam having a temperature equal to or higher than the decomposition temperature of metal carbonyl is supplied into the reaction container and the gas in the reaction container is discharged, and a carbon monoxide gas detecting step in which the amount of carbon monoxide in the gas discharged from the reaction container is detected. In the steam supplying step, the supply of steam is stopped when the detected amount of carbon monoxide gas continuously drops and becomes equal to or less than a predetermined reference value.
This hydrogenation refining catalyst contains both a carrier containing an amorphous composite metal oxide having solid acidity, and at least one type of active metal selected from the noble metals of group 8 to group 10 of the periodic table and supported on the aforementioned carrier. This hydrogenation refining catalyst contains a carbonaceous material containing carbon atoms, and the amount of the carbonaceous material contained in the hydrogenation refining catalyst is 0.05-1 mass% in terms of carbon atoms.
C10G 45/62 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales caractérisé par le catalyseur utilisé contenant des métaux du groupe du platine ou leur composés
80.
HYDROCRACKING CATALYST AND METHOD FOR PRODUCING A HYDROCARBON OIL
This hydrocracking catalyst contains both a carrier containing zeolite and an amorphous composite metal oxide having solid acidity, and at least one type of active metal selected from the noble metals of group 8 to group 10 of the periodic table supported on the aforementioned carrier. This hydrocracking catalyst contains a carbonaceous material containing carbon atoms, and the amount of the carbonaceous material contained in the hydrocracking catalyst is 0.05-1 mass% in terms of carbon atoms.
This regenerated hydrocracking catalyst is formed by regenerating a used hydrocracking catalyst which contains both a carrier containing zeolite and an amorphous composite metal oxide having solid acidity, and at least one type of active metal selected from the noble metals of group 8 to group 10 of the periodic table and supported on the aforementioned carrier; relative to the total mass of the catalyst, this regenerated hydrocracking catalyst contains 0.05-1 mass% of a carbonaceous material in terms of carbon atoms.
This method for producing a hydrocarbon oil uses a Fischer-Tropsch synthesis reaction device provided with a reactor having both a slurry containing catalyst particles and a gas phase portion positioned above said slurry, and obtains a hydrocarbon oil by means of Fischer-Tropsch synthesis reactions. Fischer-Tropsch synthesis reactions are performed after the slurry temperature is adjusted such that the difference T2-T1 is 5-30°C, wherein T1 is the average slurry temperature and T2 is the temperature of the liquid surface contacting the gas phase portion of the slurry.
This method for estimating the content of fine particles in a slurry is a method for estimating the content of fine particles having a particle diameter of a given value or less in a slurry that comprises hydrocarbons comprising wax and solid particles dispersed in the hydrocarbons. The method is characterized in that a correlation between the visible-light transmittances of dispersions obtained by dispersing solid particles having a particle diameter of the given value or less in the hydrocarbons comprising wax, the transmittances being measured at a temperature at which the hydrocarbons are liquid, and the contents of the solid particles having a particle diameter of the given value or less is determined, and the content of fine particles having a particle diameter of the given value or less in the slurry is estimated, on the basis of the correlation, from the visible-light transmittance of the supernatant of the slurry that was allowed to stand still at that temperature.
G01N 15/06 - Recherche de la concentration des suspensions de particules
B01J 8/20 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées l'agent fluidisant étant un liquide
B01J 8/22 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées l'agent fluidisant étant un liquide du gaz étant introduit dans le liquide
A method for producing a hydrogenation catalyst which comprises: a loading step wherein a carrier, which contains a carbonaceous substance containing a carbon atom in an amount of 0.5% by mass or less in terms of carbon atoms, is loaded with an active metal component that contains at least one active metal element selected from among group 6 metals, group 8 metals, group 9 metals and group 10 metals of the periodic table so as to obtain a catalyst precursor; and a firing step wherein the catalyst precursor obtained in the loading step is fired so as to obtain a hydrogenation catalyst.
In the present invention, when an FT off-gas is used as fuel for a tubular reformer in a GTL process, blockage of a heating burner tip by deposition of a heavy hydrocarbon contained in FT off-gas is prevented. The heavy hydrocarbon contained in FT off-gas is removed by being put into contact with absorber oil, introduced into a distillation column, and aerated with a coolant or an absorbent, and the FT off-gas from which the heavy hydrocarbon has been removed is used as fuel for the tubular reformer. With this configuration, prolonged stable operation of the tubular reformer becomes possible and effective use of the FT off-gas as a fuel can be ensured.
The hydrocarbon production apparatus is provided with a gas-liquid separator for cooling gaseous state hydrocarbons drawn out from a gas phase portion of a reactor for the Fischer-Tropsch synthesis reaction and liquefying a portion of the hydrocarbons. A light liquid hydrocarbon supply line for supplying light hydrocarbons is disposed between a downstream side line which is downstream from the last stage of a gas-liquid separating unit of the gas-liquid separator, and an upstream side line which is upstream from the last stage of the gas-liquid separating unit of the gas-liquid separator, wherein the downstream side line is a liquid hydrocarbon line on the downstream side through which the light hydrocarbons having cloud points lower than the temperature at an outlet of a cooler in the last stage of the gas-liquid separating unit are flowed.
This manufacturing device for hydrocarbons is provided with a gas-liquid separation device that cools hydrocarbons in gaseous form extracted from the gaseous phase section of a Fischer-Tropsch synthesis reaction vessel, causes some of the hydrocarbons to liquefy, and separates gas and liquid. Between a line downstream from a final-stage gas-liquid separation unit of the gas-liquid separation device and an upstream line upstream from the final-stage gas-liquid separation unit of the gas-liquid separation device, a light liquid hydrocarbon supply line that supplies light hydrocarbons is provided. This downstream line is a downstream light liquid hydrocarbon line through which flow light hydrocarbons with a cloud point lower than the outlet temperature of a cooling vessel in the final-stage gas-liquid separation unit.
The present invention provides a method for producing a hydrocarbon oil, including performing a hydrocracking by continuously feeding, to a hydrocracking reactor containing a hydrocracking catalyst, a wax to be processed including: a raw wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360°C; and an uncracked wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360°C, which uncracked wax is separated from a hydrocracking product discharged from the reactor, to thereby yield a hydrocarbon oil including hydrocarbons with a boiling point of 360°C or lower, wherein the following periods are alternately provided: a period for performing hydrocracking of the wax to be processed under a condition where a cracking rate defined by the following formula (1) is X1(%) satisfying the following formula (2); and a period for performing hydrocracking of the wax to be processed under a condition where the cracking rate is X2(%) satisfying the following formula (3), Cracking rate (%) = ((content of hydrocarbons with boiling point of higher than 360°C in 1 g of wax to be processed) - (content of hydrocarbons with boiling point of higher than 360°C in 1 g of hydrocracking product)) x 100/(content of hydrocarbons with boiling point of higher than 360°C in 1 g of wax to be processed) ...(1); 30<=X1 <=90 ... (2); and 0.1<=X2/X1<= 0.9 ... (3).
C10G 47/00 - Craquage des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, pour obtenir des fractions à point d'ébullition inférieur
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
This method for producing a hydrocarbon oil obtains a hydrocarbon oil containing a hydrocarbon having a boiling point of no greater than 360°C by means of continuously supplying and hydrocracking a wax that is to be processed. The method is characterized by alternatingly providing: a period for hydrocracking the wax to be processed with the condition that the cracking rate defined by the belowmentioned formula (1) is X1 (%), satisfying the belowmentioned formula (2); and a period for hydrocracking with the condition that the cracking rate is X2 (%), satisfying the belowmentioned formula (3). Cracking rate (%) = [(amount of hydrocarbon having boiling point exceeding 360°C contained in 1g of wax to be processed) - (amount of hydrocarbon having boiling point exceeding 360°C contained in 1g of hydrocracking product)]×100/(amount of hydrocarbon having boiling point exceeding 360°C contained in 1g of wax to be processed) …(1); 30 ≤ X1 ≤ 90 …(2); and 0.1 ≤ X2/X1 ≤ 0.9 …(3).
C10G 47/00 - Craquage des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, pour obtenir des fractions à point d'ébullition inférieur
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
This temperature control system recovers reaction heat generated internally by a heat generating reaction in a reactor and controls the temperature in the reactor. The temperature control system is provided with a refrigerant drum that accommodates a liquid refrigerant in a state of gas-liquid equilibrium, a heat removal part disposed in the reactor with the liquid refrigerant supplied by the refrigerant drum flowing therein, a temperature measurement part that measures the temperature in the reactor, and a pressure control part that controls the pressure in the refrigerant drum. The pressure control part controls the temperature of the liquid refrigerant in the refrigerant drum by controlling the pressure in the refrigerant drum on the basis of the deviation of the actual temperature in the reactor measured by the temperature measurement part and a temperature setting value for the inside of the reactor.
A catalyst recovery system that includes a concentrated slurry production unit that concentrates a slurry extracted from a reactor main unit and continuously produces a concentrated slurry, a first discharge unit that discharges the concentrated slurry from the concentrated slurry production unit, a solidified slurry production unit that cools the concentrated slurry discharged from the concentrated slurry production unit, thereby solidifying the liquid medium within the concentrated slurry and producing a solidified slurry, and a recovery mechanism that recovers the solidified slurry from the solidified slurry production unit.
The catalyst recovery system is provided with: a concentrated slurry-generating unit that concentrates slurry that is extracted from the main reactor and continuously generates concentrated slurry; a first discharging unit that discharges the concentrated slurry from the concentrated slurry-generating unit; a solidified slurry-generating unit that cools the concentrated slurry discharged from the concentrated slurry-generating unit and solidifies the liquid medium in the concentrated slurry to generate a solidified slurry; and a recovery mechanism that recovers the solidified slurry from the solidified slurry-generating unit.
Japan Oil, Gas and Metals National Corporation (Japon)
Inpex Corporation (Japon)
JX Nippon Oil & Energy Corporation (Japon)
Japan Petroleum Exploration Co., Ltd. (Japon)
Cosmo Oil Co., Ltd. (Japon)
Nippon Steel Engineering Co., Ltd. (Japon)
Inventeur(s)
Onishi, Yasuhiro
Kato, Yuzuru
Yamada, Eiichi
Abrégé
A hydrocarbon synthesis reaction apparatus includes a reactor, and a synthesis gas supply line through which a synthesis gas is supplied to the reactor, and syntheses hydrocarbons by contacting the synthesis gas and the catalyst slurry in the reactor. The hydrocarbon synthesis reaction apparatus includes a spare supply line which is connected to the synthesis gas supply line, and supplies inert gas or hydrogen gas to the reactor through the synthesis gas supply line when supply of the synthesis gas to the synthesis gas supply line from the synthesis gas supply device is stopped, and a fluid heating device which heats at least one of a fluid which flows through a flowing line of the synthesis gas supply line located closer to the reactor than a portion connected with the spare supply line, and a fluid which flows through the spare supply line.
B01J 8/18 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
JAPAN OIL, GAS AND METALS NATIONAL CORPORATION (Japon)
INPEX CORPORATION (Japon)
JX NIPPON OIL & ENERGY CORPORATION (Japon)
JAPAN PETROLEUM EXPLORATION CO., LTD. (Japon)
COSMO OIL CO., LTD. (Japon)
NIPPON STEEL ENGINEERING CO., LTD. (Japon)
Inventeur(s)
Onishi, Yasuhiro
Abrégé
A hydrocarbon synthesis reaction apparatus synthesizes hydrocarbons by a Fischer-Tropsch synthesis reaction. The apparatus includes a reactor; a flowing line; a first cooling unit; a second cooling unit; a first separating unit which separates the liquid hydrocarbons condensed by the first cooling unit from the gaseous hydrocarbons; and a second separating unit which separates the liquid hydrocarbons condensed by the second cooling unit from the gaseous hydrocarbons. The first cooling unit cools the hydrocarbons which flow through the flowing line to a temperature range equal to or lower than a condensing point at which a wax fraction condenses, and higher than a freezing point at which the wax fraction solidifies. The second cooling unit cools the hydrocarbons which flow through the flowing line to a temperature range lower than the temperature to which the gaseous hydrocarbons are cooled by the first cooling unit, and higher than a freezing point at which a middle distillate solidifies.
Japan Oil, Gas and Metals National Corporation (Japon)
Inpex Corporation (Japon)
JX Nippon Oil & Energy Corporation (Japon)
Japan Petroleum Exploration Co., Ltd. (Japon)
Cosmo Oil Co., Ltd. (Japon)
Nippon Steel Engineering Co., Ltd. (Japon)
Inventeur(s)
Tasaka, Kazuhiko
Tanaka, Yuichi
Iwama, Marie
Abrégé
A hydrocracking process that includes a wax fraction hydrocracking step of hydrocracking the wax fraction contained within a Fischer-Tropsch synthetic oil to obtain a hydrocracked product, a gas-liquid separation step of using a multi-stage gas-liquid separator to separate the hydrocracked product into a gas component, a heavy oil component and a light oil component, a specific component content estimation step of determining the flow rate ratio between the heavy oil component and the light oil component, and using this flow rate ratio to determine an estimated value for the content of a specific hydrocarbon component contained within the hydrocracked product, and a control step of controlling the operation of the wax fraction hydrocracking step on the basis of this estimated value, so that the content of the specific hydrocarbon component falls within a predetermined range.
C10G 47/02 - Craquage des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, pour obtenir des fractions à point d'ébullition inférieur caractérisé par le catalyseur utilisé
A method for washing a reactor according to the present invention is characterized in that a solvent which contains at least one oil selected from the group consisting of hydrocarbons and plant oils, has a sulfur content of less than 5 ppm and has a liquid form at 15˚C is allowed to pass through a wax fraction hydrocracking device in which a catalyst is filled and the supply of a wax fraction has stopped.
C10G 75/00 - Inhibition de la corrosion ou des salissures dans des appareils de traitement ou de conversion des huiles d'hydrocarbures, en général
B08B 3/08 - Nettoyage impliquant le contact avec un liquide le liquide ayant un effet chimique ou dissolvant
B08B 9/08 - Nettoyage de récipients, p. ex. de réservoirs
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
C10G 47/00 - Craquage des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, pour obtenir des fractions à point d'ébullition inférieur
97.
PROCESS FOR PRODUCING HYDROCARBON OIL AND SYSTEM FOR PRODUCING HYDROCARBON OIL
A process for producing a hydrocarbon oil is provided in which fine catalyst particles derived from a catalyst for FT synthesis reaction can be inhibited from coming into the reaction system of an upgrading step for the FT synthetic oil. This process for hydrocarbon oil production includes: conducting a Fischer-Tropsch synthesis reaction using a slurry-bed reactor (C2) which contains a liquid-hydrocarbon slurry containing a suspended catalyst to thereby obtain a hydrocarbon oil that contains fine catalyst particles derived from the catalyst; fractionating the hydrocarbon oil into a distillate oil and a bottom oil containing the fine catalyst particles by means of a rectifier (C4); transferring at least some of the bottom oil to a storage tank (T2); sedimenting the fine catalyst particles on the bottom of the storage tank (T2) and collecting the sedimented particles; transferring the remainder of the bottom oil from the rectifier (C4) to a hydrocracker (C6) and/or transferring the supernatant of the bottom oil from which the fine catalyst particles have been collected by means of the storage tank (T2), from the storage tank (T2) to the hydrocracker (C6); and hydrocracking the remainder of the bottom oil and/or the supernatant of the bottom oil using the hydrocracker (C6).
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
C10G 47/00 - Craquage des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, pour obtenir des fractions à point d'ébullition inférieur
The method for cleaning a reactor of the present invention comprises passing a solvent through a wax-fraction hydrocracking apparatus which is charged with a catalyst and to which supply of a wax fraction is stopped, wherein the solvent comprising at least one oil selected from a group consisting of hydrocarbon and vegetable oils, and having a sulfur content of less than 5 ppm and being in a liquid state at 15°C.
C10G 75/00 - Inhibition de la corrosion ou des salissures dans des appareils de traitement ou de conversion des huiles d'hydrocarbures, en général
B08B 3/08 - Nettoyage impliquant le contact avec un liquide le liquide ayant un effet chimique ou dissolvant
B08B 9/08 - Nettoyage de récipients, p. ex. de réservoirs
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
C10G 47/00 - Craquage des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, pour obtenir des fractions à point d'ébullition inférieur
99.
METHOD FOR PRODUCING HYDROCARBON OIL AND SYSTEM FOR PRODUCING HYDROCARBON OIL
To provide a method for producing a hydrocarbon oil capable of accurately and quantitatively monitoring inflow of fine powder of a Fischer-Tropsch (FT) synthesis reaction catalyst into an upgrading reaction system and of predicting problems in the reaction system. This method for producing a hydrocarbon oil fractionates a hydrocarbon oil obtained by a FT synthesis reaction using a catalyst in a slurry bed reactor (C2) into a distillate oil and a bottom oil in a rectifying column (C4), circulates a part of the bottom oil through a first transfer line (L12) which connects the bottom of the rectifying column (C4) and a hydrocracker (C6), circulates at least a part of the bottom oil through a second transfer line (L14) which branches from the first transfer line (L12) and connects to the first transfer line (L12) at a downstream branch point, collects catalyst fine powder in the bottom oil that flows through the second transfer line (L14) with a removable filter (2) installed in the second transfer line (L14) and monitors the collected amount, and hydrocracks the bottom oil in the hydrocracker (C6).
C10G 47/00 - Craquage des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, pour obtenir des fractions à point d'ébullition inférieur
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
Japan Oil, Gas and Metals National Corporation (Japon)
Inpex Corporation (Japon)
JX Nippon Oil & Energy Corporation (Japon)
Japan Petroleum Exploration Co., Ltd. (Japon)
Cosmo Oil Co., Ltd. (Japon)
Nippon Steel Engineering Co., Ltd. (Japon)
Inventeur(s)
Onishi, Yasuhiro
Yamada, Eiichi
Abrégé
A catalyst separation system is provided with: a reactor where hydrocarbons are synthesized by a chemical reaction of a synthesis gas including carbon monoxide gas and hydrogen gas as main components, and a catalyst slurry having solid catalyst particles suspended in a liquid; filters which separate the hydrocarbons and the catalyst slurry; and a gas-liquid separator which separates the liquid hydrocarbons flowing out of the filter into gas hydrocarbons and liquid hydrocarbons.
B01J 8/20 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées l'agent fluidisant étant un liquide
B01J 8/22 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées l'agent fluidisant étant un liquide du gaz étant introduit dans le liquide