10905090105050 ≤ 3.0 3) There is a distribution peak on the large particle size side in the weight-converted particle size distribution of the particle group. 4) Deformed particles are contained in the range of 0.01 number% to 10 number%.
A sponge cobalt catalyst composition contains water, an oxoacid, and a sponge cobalt catalyst. The oxoacid contains W or Mo, and part or all of the oxoacid is adsorbed to the sponge cobalt catalyst.
B01J 37/02 - Imprégnation, revêtement ou précipitation
C07C 209/48 - Préparation de composés contenant des groupes amino liés à un squelette carboné par réduction d'acides carboxyliques ou de leurs esters en présence d'ammoniac ou d'amines ou par réduction de nitriles, d'amides d'acides carboxyliques, d'imines ou d'imino-éthers par réduction de nitriles
C07C 29/141 - Préparation de composés comportant des groupes hydroxyle ou O-métal liés à un atome de carbone ne faisant pas partie d'un cycle aromatique à six chaînons par réduction d'un groupe fonctionnel contenant de l'oxygène de groupes contenant C=O, p. ex. —COOH d'un groupe —CHO avec de l'hydrogène ou des gaz contenant de l'hydrogène
C07C 31/12 - Alcools monohydroxyliques acycliques contenant quatre atomes de carbone
Provided are a silica-alumina having a large Brønsted acid quantity, and a production method for obtaining said silica-alumina. The silica-alumina has a Brønsted acid quantity of more than 10 μmol/g and an isoelectric point of 4.5 to 7.0. The silica-alumina production method includes an alumina slurry preparation step for preparing an alumina slurry, a silica slurry preparation step for preparing a silica slurry, a silica-alumina slurry preparation step for preparing a silica-alumina slurry by mixing the alumina slurry and the silica slurry, and a reaction step for causing a reaction between the silica-alumina slurry and an aluminum compound.
PARTICLES HAVING RUTILE CRYSTAL STRUCTURE, PRODUCTION METHOD THEREFOR, AND PRODUCTION METHOD FOR PARTICLE DISPERSION LIQUID, COATING LIQUID, AND SUBSTRATE WITH FILM
The present invention relates to particles having a rutile-type crystal structure. The particles have a crystallite diameter of 7 nm or more and contains 90% by weight or more of titanium oxide in terms of TiO2 and 0.2 to 10% by weight of tin oxide in terms of SnO2. Such particles are easily dispersed in a solvent and have a high refractive index.
[Problem] To provide a catalyst for hydrotreating a heavy hydrocarbon oil, the catalyst exhibiting excellent demetallization performance, desulfurization performance, and deasphaltene performance and having high strength. [Solution] A hydrotreating catalyst, which is a catalyst for hydrotreating a heavy hydrocarbon oil, the catalyst including an alumina-phosphorus oxide carrier, and a hydrogenation-active metal component supported on the carrier, in which the content of phosphorus in the carrier is 0.4 to 2.0 mass % in terms of P2O5, the carrier has a local maximum value of the differential pore volume distribution in a pore diameter range of 18 to 22 nm measured by mercury intrusion porosimetry, in the carrier, the ratio (ΔPV/PVT) of a volume (ΔPV) of pores having a pore diameter in a range deviating from a range of a pore diameter at the local maximum value±2 nm to the total pore volume (PVT) measured by mercury intrusion porosimetry is 0.50 or less, and the crystalline form of a portion of alumina in the alumina-phosphorus oxide carrier is γ-alumina.
C10G 45/04 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour éliminer des hétéro-atomes sans modifier le squelette de l'hydrocarbure mis en œuvre et sans craquage en hydrocarbures à point d'ébullition inférieurHydrofinissage caractérisé par le catalyseur utilisé
7.
RUTILE TITANIUM OXIDE PARTICLES, DISPERSION, COATING SOLUTION FOR FILM FORMATION, AND SUBSTRATE WITH COATING FILM
Rutile titanium oxide particles, in which Fe and Zr are dissolved to form a solid solution, have an interplanar spacing of a (110) plane obtained by X-ray diffraction measurement of 0.3250 nm or more and an average particle size in a range from 5 nm to 50 nm.
The present invention relates to coated particles in which vegetable wax is provided on the surface of starch particles. The coated particles have an average particle diameter d1 of 0.5 to 20 μm and a maximum particle diameter d2 being less than 30 μm and less than 4.0 times the average particle diameter d1. The vegetable wax is contained in an amount of 0.5 to 10.0 wt % in the coated particles. Accordingly, particles having excellent feel characteristics and water repellency can be achieved with a natural material having excellent biodegradability. A method for producing coated particles includes: a step of preparing a dispersion that contains 1 to 20 wt % of starch particles; a step of adding vegetable wax to the dispersion and heating and cooling the mixture to precipitate the vegetable wax on the surface of the starch particles; and a step of subjecting this dispersion to solid-liquid separation to obtain coated particles as a solid.
JAPAN COOPERATION CENTER FOR PERTOLEUM AND SUSTAINABLE ENERGY (Japon)
Inventeur(s)
Koseoglu, Omer Refa
Alzaid, Ali
Nakajima, Kazuki
Uchida, Koji
Matsumoto, Yusuke
Abrégé
Hydrotreating catalyst material and/or hydrotreating catalyst particles are provided having at least two hydrotreating metal components and a chelating agent carried on a support. The support comprises an inorganic oxide binder and a post-framework modified ultra-stable Y-type (USY) zeolite in which a portion of aluminum atoms constituting a zeolite framework thereof is substituted with zirconium atoms and/or titanium atoms and/or hafnium atoms. The hydrotreating metal components form a metal complex via the chelating agent, and are carried on said support as chelating complex type II active sites.
C10G 45/08 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour éliminer des hétéro-atomes sans modifier le squelette de l'hydrocarbure mis en œuvre et sans craquage en hydrocarbures à point d'ébullition inférieurHydrofinissage caractérisé par le catalyseur utilisé contenant du nickel ou du cobalt, ou leurs composés en combinaison avec du chrome, du molybdène ou du tungstène, ou leurs composés
B01J 29/08 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y
B01J 29/16 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y contenant de l'arsenic, de l'antimoine, du bismuth, du vanadium, du niobium, du tantale, du polonium, du chrome, du molybdène, du tungstène, du manganèse, du technétium ou du rhénium
B01J 37/00 - Procédés de préparation des catalyseurs, en généralProcédés d'activation des catalyseurs, en général
B01J 37/02 - Imprégnation, revêtement ou précipitation
C10G 45/12 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour éliminer des hétéro-atomes sans modifier le squelette de l'hydrocarbure mis en œuvre et sans craquage en hydrocarbures à point d'ébullition inférieurHydrofinissage caractérisé par le catalyseur utilisé contenant des alumino-silicates cristallins, p. ex. des tamis moléculaires
10.
HALOGEN ADSORBING AGENT FOR TREATING HYDROCARBON PROCESS STREAM
B01J 20/12 - Argiles d'origine naturelle ou terres décolorantes
B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
HYDROCRACKING CATALYST FOR HYDROCARBON OIL INCLUDING TITANIA BINDER AND PHOSPHOROUS ACTIVE COMPONENT, METHOD FOR PRODUCING HYDROCRACKING CATALYST, AND METHOD FOR HYDROCRACKING HYDROCARBON OIL
JAPAN COOPERATION CENTER FOR PERTOLEUM AND SUSTAINABLE ENERGY (Japon)
Inventeur(s)
Koseoglu, Omer Refa
Hodgkins, Robert Peter
Matsumoto, Yusuke
Uchida, Koji
Kojima, Naoya
Abrégé
Hydrotreating catalysts are provided having one or more phosphorus components carried on a composite support of a titanium-loaded binder component and post-framework modified ultra-stable Y-type zeolite. The support comprises the titanium-loaded binder component and a post-framework modified ultra-stable Y-type (USY) zeolite in which a portion of aluminum atoms constituting a zeolite framework thereof is substituted with zirconium atoms and/or titanium atoms and/or hafnium atoms. The active components including the phosphorous active component and one or more hydrocracking metals active components loaded on the support.
B01J 29/08 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y
B01J 29/89 - Silicates, aluminosilicates ou borosilicates du titane, du zirconium ou du hafnium
C10G 47/20 - Supports en alumino-silicates cristallins le catalyseur contenant d'autres métaux ou leurs composés
12.
Hydrocracking catalyst for hydrocarbon oil including titania binder and phosphorous active component, method for producing hydrocracking catalyst, and method for hydrocracking hydrocarbon oil
Japan Cooperation Center for Petroleum and Sustainable Energy (Japon)
Inventeur(s)
Koseoglu, Omer Refa
Hodgkins, Robert Peter
Matsumoto, Yusuke
Uchida, Koji
Kojima, Naoya
Abrégé
Hydrotreating catalysts are provided having one or more phosphorus components carried on a composite support of a titanium-loaded binder component and post-framework modified ultra-stable Y-type zeolite. The support comprises the titanium-loaded binder component and a post-framework modified ultra-stable Y-type (USY) zeolite in which a portion of aluminum atoms constituting a zeolite framework thereof is substituted with zirconium atoms and/or titanium atoms and/or hafnium atoms. The active components including the phosphorous active component and one or more hydrocracking metals active components loaded on the support.
B01J 29/16 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y contenant de l'arsenic, de l'antimoine, du bismuth, du vanadium, du niobium, du tantale, du polonium, du chrome, du molybdène, du tungstène, du manganèse, du technétium ou du rhénium
B01J 27/18 - PhosphoreSes composés contenant de l'oxygène avec des métaux
B01J 35/30 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général caractérisés par leurs propriétés physiques
A silica-alumina powder, a method for producing the same, and a fluid catalytic cracking catalyst including this silica-alumina powder are provided. The silica-alumina powder contains SiO2 within a predetermined range, has a specific surface area within a predetermined range, and has a pore volume and an acid amount within predetermined ranges. An alumina raw material includes one of boehmite, pseudo-boehmite, and mainly amorphous alumina gel. The method for producing the silica-alumina powder includes a step of mixing an aqueous solution including alumina hydrate and an aqueous solution containing a silica precursor to prepare an aqueous solution including a silica-alumina precursor; a step of adjusting the pH of the aqueous solution to be within a predetermined range, and then heat-treating the aqueous solution; and a step of cooling the aqueous solution or silica-alumina slurry, then separating and washing a solid, and then drying or further calcining the solid.
B01J 37/10 - Traitement thermique en présence d'eau, p. ex. de vapeur d'eau
C01B 33/193 - Préparation de silice finement divisée ni sous forme de sol ni sous forme de gelPost-traitement de cette silice par traitement acide de silicates de solutions aqueuses de silicates
14.
TITANIUM OXIDE PARTICLES, LIQUID DISPERSION, COATING SOLUTION FOR COATING FILM FORMATION USE, COATING FILM, AND SUBSTRATE WITH COATING FILM
Provided are titanium oxide particles each satisfying all of the requirements (1) to (3) mentioned below. (1) Each of the titanium oxide particles has a rutile-type crystal structure. (2) The unit lattice of the crystal structure satisfies at least one of the requirements (a) and (b) mentioned below. (a) An a axis is 0.4594 nm or more. (b) A c axis is 0.2959 nm or more. (3) The titanium oxide particles have an energy gap of 2.90 eV or less.
The present invention addresses the problem of providing particles having low photocatalytic activity and a high refractive index by forming an amorphous layer that contains Si and Ti on the surface of crystalline titanium oxide. The problem is solved by core-shell particles wherein the core particles are crystalline titanium oxide and the shell is an amorphous layer that contains Si and Ti.
C07C 29/141 - Préparation de composés comportant des groupes hydroxyle ou O-métal liés à un atome de carbone ne faisant pas partie d'un cycle aromatique à six chaînons par réduction d'un groupe fonctionnel contenant de l'oxygène de groupes contenant C=O, p. ex. —COOH d'un groupe —CHO avec de l'hydrogène ou des gaz contenant de l'hydrogène
C07C 31/12 - Alcools monohydroxyliques acycliques contenant quatre atomes de carbone
17.
IRREGULARLY-SHAPED SILICA-BASED FINE PARTICLE DISPERSION, METHOD FOR PRODUCING SAME, PARTICLE-LINKED SILICA FINE PARTICLE DISPERSION, METHOD FOR PRODUCING SAME, AND ABRASIVE GRAIN DISPERSION FOR POLISHING
A method of producing a dispersion of irregularly shaped silica-based fine particles according to the invention includes steps (a) to (f) below: Step (a): obtaining a seed particle precursor dispersion by adjusting an aqueous alkali silicate solution so that ionic strength is 0.4 or more; Step (b): subjecting the seed particle precursor dispersion to heat-aging; Step (c): obtaining a seed particle dispersion by adding an acidic silicic acid solution to the seed particle precursor dispersion subjected to the heat-aging; Step (d): adjusting the seed particle dispersion so that the ionic strength is 0.25 or more; Step (e): subjecting the seed particle dispersion, of which SiO2 concentration and ionic strength are adjusted, to heat-aging: and Step (f): obtaining a dispersion of irregularly shaped silica-based fine particles that contains irregularly shaped silica-based fine particles by adding an acidic silicic acid solution to the seed particle dispersion subjected to the heat-aging.
According to one or more embodiments described herein, a method for cracking a hydrocarbon oil may include contacting the hydrocarbon oil with a fluidized cracking catalyst including an ultra-stable Y-type zeolite in a fluidized catalytic cracking unit to produce light olefins, gasoline fuel, and coke. At least 99 wt.% of the hydrocarbon oil may have a boiling point greater than 350 °C. The ultra-stable Y-type zeolite may be a framework-substituted zeolite in which a part of aluminum atoms constituting a zeolite framework thereof is substituted with 0.1-5 mass % zirconium atoms and 0.1-5 mass % titanium ions on an oxide basis. The fluidized cracking catalyst may include from 3.5 wt.% to 10 wt.% of one or more Group 7 metal oxides.
C10G 11/05 - Alumino-silicates cristallins, p. ex. tamis moléculaires
C10G 11/18 - Craquage catalytique, en l'absence d'hydrogène, des huiles d'hydrocarbures avec catalyseurs solides mobiles préchauffés selon la technique du "lit fluidisé"
B01J 21/06 - Silicium, titane, zirconium ou hafniumLeurs oxydes ou hydroxydes
Provided are: a dispersion of hollow silica particles having a small particle size, a low refractive index, and high dispersibility in a dispersion medium or in a resin; and a method for producing the dispersion. The particles are hollow silica particles having a silicon-containing outer shell and a cavity in the interior thereof. The thickness of the outer shell is 3-7 nm. The average particle size of the particles is 20-55 nm. The refractive index of the particles is 1.12-1.35. The number density of silanol groups on the particle surface, as calculated through Sears measurement of the particles, is 0.5-2.5/nm2. When a dispersion containing these particles is used as a resist material, high developability is achieved during pattern formation.
Provided is a dispersion liquid configured to allow the dispersion of particles having a rutile crystal structure in an organic solvent, even if the amount of the solvent is small. This dispersion liquid includes particles having a rutile crystal structure and a phosphoester-based surfactant, The surfactant includes a long alkyl group. The alkyl group has 6-14 carbon atoms. The HLB value of the surfactant is at least 7. The value obtained by dividing the HLB value by the number of carbon atoms of the alkyl group (HLB value / number of carbon atoms) is at least 0.8.
The present invention provides: porous silica particles which have balanced and adequate disintegratability, while having excellent disintegration uniformity; and a method for producing these porous silica particles. Porous silica particles according to the present invention have a network structure, and are elastically deformed to a breaking point when a compressive force, which increases at a rate of 0.001450 gf/sec, is applied thereto. The ratio f/d of the compressive force f (gf) at the breaking point to the amount of displacement d (µm) is 0.05 to 0.10. The porous silica particles have a pore volume of 0.4 to 1.3 cm3/g; the mode of the pore diameters is 2 to 50 nm; the total pore volume of the pores having a pore diameter that is within ±25% of the mode of the pore diameters is 40% or more of the total pore volume; the average shape factor is 0.90 to 1.00; the content ratio of the particles having a shape factor of less than 0.80 is 3.0% by number or less; and the average compressive strength is not less than 9.8 but less than 29.4 N/mm2.
H01L 21/304 - Traitement mécanique, p. ex. meulage, polissage, coupe
23.
Method for producing dispersion of iron-containing rutile titanium oxide fine particles, iron-containing rutile titanium oxide fine particles, and use thereof
Provided is a resin hydrogenation catalyst that satisfies the demand for a highly active catalyst. The resin hydrogenation catalyst has nickel supported on a carrier comprising a mixture of diatomaceous earth and an inorganic compound. The nickel content is in the range from 10 mass% to 80 mass%. The specific surface area is in the range from 100 m2/g to 200 m2(1-160)(60-160)(60-160)) is in the range from 0.045 mL/g to 0.5 mL/g.
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
Provided are porous silica-alumina particles which contain crystalline boehmite alumina and which include a high proportion of pores having relatively large diameters with respect to the total pore volume. The porous silica-alumina particles include crystalline boehmite alumina, wherein: the specific surface area SA measured by the BET method is in the range from 400 to 600 m2/g; the pore volume PV measured by the BJH method is in the range from 1.0 to 2.2 ml/g; the ratio P10 of the pore volume of pore diameters PD of at least 10 nm, measured by the BJH method, relative to the total pore volume is in a range of at least 60%; and the silica to alumina mass ratio S/A is in the range from 2/98 to 70/30.
C01B 33/18 - Préparation de silice finement divisée ni sous forme de sol ni sous forme de gelPost-traitement de cette silice
C01B 33/12 - SiliceSes hydrates, p. ex. acide silicique lépidoïque
C01F 7/141 - Oxyde ou hydroxyde d'aluminium obtenus à partir d'aluminates de métaux alcalins à partir de solutions aqueuses d'aluminate par neutralisation avec un agent acide
26.
Catalysts with modified active phase dispersion and method to prepare catalysts with modified active phase dispersion
Japan Cooperation Center for Petroleum and Sustainable Energy (Japon)
Inventeur(s)
Koseoglu, Omer Refa
Hodgkins, Robert Peter
Uchida, Koji
Abrégé
Catalyst particles comprising one or more active metal components and methods for manufacturing such catalyst particles are provided. The particles are a composite of a granulating agent or binder material such as an inorganic oxide, and an ultra-stable Y (hereafter “USY”) zeolite in which some of the aluminum atoms in the framework are substituted with zirconium atoms and/or titanium atoms and/or hafnium atoms. The one or more active phase components are incorporated prior to mixing the binder with the post-framework modified USY zeolite, extruding the resulting composite mixture, and forming the catalyst particles. The one or more active phase components are incorporated in the post-framework modified USY zeolite prior to forming the catalyst particles.
Japan Cooperation Center for Petroleum and Sustainable Energy (Japon)
Inventeur(s)
Koseoglu, Omer Refa
Hodgkins, Robert Peter
Uchida, Koji
Abrégé
Catalyst particles comprising one or more active metal components and methods for manufacturing such catalyst particles are provided. The particles are a composite of a granulating agent or binder material such as an inorganic oxide, and an ultra-stable Y (hereafter “USY”) zeolite in which some of the aluminum atoms in the framework are substituted with zirconium atoms and/or titanium atoms and/or hafnium atoms. The one or more active phase components are incorporated prior to mixing the binder with the post-framework modified USY zeolite, extruding the resulting composite mixture, and forming the catalyst particles. The one or more active phase components are incorporated in the binder material prior to forming the catalyst particles.
B01J 29/16 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y contenant de l'arsenic, de l'antimoine, du bismuth, du vanadium, du niobium, du tantale, du polonium, du chrome, du molybdène, du tungstène, du manganèse, du technétium ou du rhénium
B01J 29/89 - Silicates, aluminosilicates ou borosilicates du titane, du zirconium ou du hafnium
2233 of 10 to 100; (b) has pores with diameters of 7 to 200 nm and a specific surface area of 25 m2/g or greater; and (c) has a strong acid percentage of 23% or less, this percentage being the ratio of the amount of acid at 400 to 550°C to the amount of acid at 100 to 550°C when measured by a temperature-programmed ammonia desorption method.
B01J 29/08 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y
29.
LIQUID DISPERSION OF PARTICLES EACH HAVING SHELL CONTAINING FUNCTIONAL GROUP AND SILICON AND VOID IN SAID SHELL, AND METHOD FOR PRODUCING SAID LIQUID DISPERSION
Provided is a liquid dispersion of particles each having a silicon-containing shell and a void formed in the shell, in which an organosilicon compound is precisely carried on the surfaces of the particles and the dispersibility of the particles in a dispersion medium or a resin is high. Each of the particles contains a functional group and silicon. The average value of diameters of primary particles which is determined by the analysis of an image of the particles is 20 to 250 nm, and the carbon content in the particles is 0.5 to 10% by mass. The amount of the organosilicon compound contained in a liquid produced by removing the particles from the liquid dispersion containing the particles is 0.50 part by mass or less in terms of solid content relative to 100 parts by mass of the particles. According to the liquid dispersion, it is possible to produce a coating solution that enables the production of a coating film having a low reflectance, excellent adhesion to a base material, high hardness and high strength.
A faujasite-type zeolite has an IR spectrum in which the IR spectrum has an absorption band 1 including surface silanol groups and having a local maximum in a range from 3730 cm−1 to 3760 cm−1, and an absorption band 2 including acidic hydroxyl groups and having a local maximum in a range from 3550 cm−1 to 3700 cm−1, a ratio (h1/h2) of a peak height (h1) of the absorption band 1 to a peak height (h2) of the absorption band 2 being less than 1.2.
C01B 39/02 - Zéolites aluminosilicates cristallinesLeurs composés isomorphesLeur préparation directeLeur préparation à partir d'un mélange réactionnel contenant une zéolite cristalline d'un autre type, ou à partir de réactants préformésLeur post-traitement
Provided is a method for producing a zirconia-coated titanium oxide fine particle dispersion which includes (1) a step of preparing a dispersion (1) of titanium oxide fine particles, (2) a step of adding, to the dispersion (1), 1 to 50 parts by mass of an aqueous peroxozirconic acid solution in terms of the mass of ZrO2 per 100 parts by mass of the titanium oxide fine particles, and then aging reaction fine particles (2a) obtained as a result of a reaction between the titanium oxide fine particles and the peroxozirconic acid to thereby obtain a dispersion (2) of a zirconia-coated titanium oxide fine particle precursor (2b), and (3) a step of adjusting the dispersion (2) to have a solid concentration of 0.01 to 10 mass % and then hydrothermally treating the resulting dispersion (2).
C09D 163/00 - Compositions de revêtement à base de résines époxyCompositions de revêtement à base de dérivés des résines époxy
32.
Hydrodearylation catalysts for aromatic bottoms oil, method for producing hydrodearylation catalysts, and method for hydrodearylating aromatic bottoms oil with hydrodearylation catalysts
In accordance with one or more embodiments of the present disclosure, a method for hydrodearylating aromatic bottoms oil includes contacting at least one aromatic bottoms oil stream with at least one catalyst composition and hydrogen in a reactor in order to hydrodearylate the aromatic bottoms oil stream. The catalyst composition includes a catalyst support comprising framework-substituted ultra-stable Y-type (USY) zeolite substituted with at least zirconium atoms. The catalyst composition does not include a hydrogenative metal component disposed on the support.
C10G 49/08 - Traitement des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, non prévu dans un seul des groupes , , , ou caractérisé par le catalyseur utilisé contenant des alumino-silicates cristallins, p. ex. des tamis moléculaires
C10G 47/16 - Supports en alumino-silicates cristallins
25TTT) as measured by the mercury intrusion method is 0.50 or less; and, the crystalline form of the alumina portion in the alumina-phosphorus oxide carrier is γ-alumina.
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
C10G 45/08 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour éliminer des hétéro-atomes sans modifier le squelette de l'hydrocarbure mis en œuvre et sans craquage en hydrocarbures à point d'ébullition inférieurHydrofinissage caractérisé par le catalyseur utilisé contenant du nickel ou du cobalt, ou leurs composés en combinaison avec du chrome, du molybdène ou du tungstène, ou leurs composés
34.
SPONGE COBALT CATALYST COMPOSITION AND METHOD FOR PRODUCING SAME
[Problem] To provide a sponge cobalt catalyst that exhibits a high catalytic activity even during long-term use. [Solution] A sponge cobalt catalyst composition comprising water, an oxo acid, and a sponge cobalt catalyst, wherein the oxo acid contains W or Mo and all or a portion of the oxo acid is adsorbed to the sponge cobalt catalyst.
B01J 37/02 - Imprégnation, revêtement ou précipitation
C07C 209/48 - Préparation de composés contenant des groupes amino liés à un squelette carboné par réduction d'acides carboxyliques ou de leurs esters en présence d'ammoniac ou d'amines ou par réduction de nitriles, d'amides d'acides carboxyliques, d'imines ou d'imino-éthers par réduction de nitriles
35.
RUTILE TITANIUM OXIDE PARTICLES, DISPERSION, COATING SOLUTION FOR FILM FORMATION, AND SUBSTRATE WITH COATING FILM
The present invention provides rutile titanium oxide particles, in which Fe and Zr are a solid solution, the spacing between the (110) planes as obtained by X-ray diffraction is 0.3250 nm or greater, and the average particle diameter is within the range of 5-50 nm.
[Problem] To provide, for example, a coating composition for forming a hard coating layer which makes it possible to, without deteriorating the quality of a hard coating layer to be obtained, reduce the heating time required to cure a coating film and form the hard coating layer. [Solution] A coating composition for forming a hard coating layer comprises: surface-coated inorganic oxide microparticles which are obtained by coating the surfaces of inorganic oxide microparticles with quaternary alkoxysilane; a hydrolysate of an organic silicon compound having an epoxy group and/or a condensate thereof; 1,2,3,4-butanetetracarboxylic acid; and a curing agent, wherein the number average molecular weight of the hydrolysate and/or the condensate thereof is 80-500, and the content of the 1,2,3,4-butanetetracarboxylic acid is 8-25 parts by mass with respect to 100 parts by mass of the surface-coated inorganic oxide microparticles.
C09D 5/00 - Compositions de revêtement, p. ex. peintures, vernis ou vernis-laques, caractérisées par leur nature physique ou par les effets produitsApprêts en pâte
The present invention relates to a powder including hollow particles, each having a cavity inside a non-porous outer shell. The powder has an average particle size (D50) of 1.0-10.0 μm, and contains fine particles of a particle size under 1.0 μm in the amount of 10 vol% or less and coarse particles of a particle size over 8.0 μm in the amount of 20 vol% or less. When the powder is suspended in water, the proportions of floating particles, suspended particles, and settled particles are 0.5-15.0 mass%, 0-4.0 mass%, and 81.0-99.5 mass%, respectively.
C01B 33/193 - Préparation de silice finement divisée ni sous forme de sol ni sous forme de gelPost-traitement de cette silice par traitement acide de silicates de solutions aqueuses de silicates
[Problem] To provide a hydrotreatment catalyst for hydrocarbon oils that has improved hydrodesulfurization activity, hydrodemetallization ability, and silicon trap ability. [Solution] A hydrotreatment catalyst for hydrocarbon oils that includes an inorganic oxide carrier and an active metal component supported on the inorganic oxide carrier. The active metal component includes a first metal that is at least one from among molybdenum and tungsten, and a second metal that is at least one from among cobalt and nickel. The following requirements (1) to (3) are satisfied in the log differential pore volume distribution measured by the mercury intrusion technique. Requirement (1): dV/d(logD) is at an absolute maximum in the range of pore diameter 5-30 nm. Requirement (2): dV/d(logD) is at a local maximum in the range of pore diameter 2-50 μm. Requirement (3): The ratio of the pore volume in the range of pore diameter 2-50 μm to the total pore volume is 3% or more.
B01J 27/199 - Vanadium avec du chrome, du molybdène, du tungstène ou du polonium
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
B01J 37/02 - Imprégnation, revêtement ou précipitation
C10G 45/08 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour éliminer des hétéro-atomes sans modifier le squelette de l'hydrocarbure mis en œuvre et sans craquage en hydrocarbures à point d'ébullition inférieurHydrofinissage caractérisé par le catalyseur utilisé contenant du nickel ou du cobalt, ou leurs composés en combinaison avec du chrome, du molybdène ou du tungstène, ou leurs composés
39.
DISPERSION OF CONDUCTIVE PARTICLES, PRODUCTION METHOD FOR SAME, COATING LIQUID FOR CONDUCTIVE FILM FORMATION, AND CONDUCTIVE FILM–COATED SUBSTRATE
H01B 1/22 - Matériau conducteur dispersé dans un matériau organique non conducteur le matériau conducteur comportant des métaux ou des alliages
H01B 5/14 - Conducteurs ou corps conducteurs non isolés caractérisés par la forme comprenant des couches ou pellicules conductrices sur supports isolants
H01B 13/00 - Appareils ou procédés spécialement adaptés à la fabrication de conducteurs ou câbles
B01J 13/00 - Chimie des colloïdes, p. ex. production de substances colloïdales ou de leurs solutions, non prévue ailleursFabrication de microcapsules ou de microbilles
C09D 7/62 - Adjuvants non macromoléculaires inorganiques modifiés par traitement avec d’autres composés
40.
POWDER, PRODUCTION METHOD THEREFOR, AND RESIN COMPOSITION PRODUCTION METHOD
The present invention relates to a powder including hollow particles, each having a cavity inside a non-porous outer shell. The powder has an average particle size (D50) of 2.0-10.0 μm, and contains microparticles of a particle size under 2.0 μm in the amount of 20 vol% or less. When the powder is suspended in water, the proportions of floating particles, suspended particles, and settled particles are 7.0-25.0 mass%, 0-4.0 mass%, and 71.0-93.0 mass%, respectively.
C01B 33/193 - Préparation de silice finement divisée ni sous forme de sol ni sous forme de gelPost-traitement de cette silice par traitement acide de silicates de solutions aqueuses de silicates
C08L 101/00 - Compositions contenant des composés macromoléculaires non spécifiés
41.
PARTICLES HAVING RUTILE CRYSTAL STRUCTURE, PRODUCTION METHOD THEREFOR, AND PRODUCTION METHOD FOR PARTICLE DISPERSION LIQUID, COATING LIQUID, AND SUBSTRATE WITH FILM
C09C 3/06 - Traitement par des composés inorganiques
C09D 4/00 - Compositions de revêtement, p. ex. peintures, vernis ou vernis-laques, à base de composés non macromoléculaires organiques ayant au moins une liaison non saturée carbone-carbone polymérisable
C09D 17/00 - Pigments en pâtes, p. ex. pour pigmenter les peintures
C09D 7/61 - Adjuvants non macromoléculaires inorganiques
42.
SILICA-ALUMINA POWDER, METHOD FOR PRODUCING SILICA-ALUMINA POWDER, FLUID CATALYTIC CRACKING CATALYST AND METHOD FOR PRODUCING SAME
22 within a predetermined range, having a specific surface area within a predetermined range, and having a pore volume and acid content within predetermined ranges, the alumina raw material including any of boehmite, pseudoboehmite, and predominantly amorphous alumina gel. A method for producing a silica-alumina powder including: A. a step for mixing an aqueous solution including an alumina hydrate and a silica precursor-containing aqueous solution and preparing an aqueous solution A including a silica-alumina precursor; B. a step for adjusting the pH of the aqueous solution A obtained in step A to a predetermined range, then conducting heat treatment for a predetermined treatment time range in a predetermined temperature range; and C. a step for cooling the aqueous solution or silica-alumina slurry heat treated in step B, then separating the solid matter, washing, then drying or further firing, and obtaining a silica-alumina powder. A fluid catalytic cracking catalyst including the silica-alumina powder.
C01B 33/12 - SiliceSes hydrates, p. ex. acide silicique lépidoïque
C01B 33/18 - Préparation de silice finement divisée ni sous forme de sol ni sous forme de gelPost-traitement de cette silice
C10G 11/18 - Craquage catalytique, en l'absence d'hydrogène, des huiles d'hydrocarbures avec catalyseurs solides mobiles préchauffés selon la technique du "lit fluidisé"
B01J 37/00 - Procédés de préparation des catalyseurs, en généralProcédés d'activation des catalyseurs, en général
Particles having excellent touch properties are achieved with a water-soluble material having excellent biodegradability. Particles according to the present invention contain a starch having an amylopectin content of 90% by weight or more. The average particle diameter d1 of the panicles is 0.5 to 20 μm, and the maximum particle diameter d2 is less than 30 μm while being within 3.0 times the average particle diameter.
1211. The plant-based wax is contained at a quantity of 0.5-10.0 wt% in the coated particle. Due to this configuration, a particle having excellent touch characteristics and water repellency can be obtained by using natural materials having excellent biodegradability. In addition, a method for producing the coated particle includes: a step for preparing a dispersion liquid containing 1-20 wt% of starch particles; a step for adding a plant-based wax to the dispersion liquid and heating/cooling so as to deposit the plant-based wax at the surface of the starch particles; and a step for subjecting this dispersion liquid to solid-liquid separation and obtaining coated particles as a solid product.
The present invention provides particles, each of which comprises an antibacterial outer shell containing silicon and a cavity inside the outer shell. Each of the particles contains 0.5% to 40% by mass of an antibacterial metal component in terms of oxides, while having a cavity inside an outer shell that contains silicon. The void fraction of the particles is 10% to 90%; and the proportion of the number of particles that have one cavity is 80% or more relative to all particles. A substrate with a transparent coating film using the particles has sufficient hardness, sufficient strength and high antibacterial activity, and is particularly useful for antireflection.
C01B 33/18 - Préparation de silice finement divisée ni sous forme de sol ni sous forme de gelPost-traitement de cette silice
B01J 13/02 - Fabrication de microcapsules ou de microbilles
C01B 33/193 - Préparation de silice finement divisée ni sous forme de sol ni sous forme de gelPost-traitement de cette silice par traitement acide de silicates de solutions aqueuses de silicates
G02B 1/113 - Revêtements antiréfléchissants utilisant des couches comportant uniquement des matériaux inorganiques
G02B 1/14 - Revêtements protecteurs, p. ex. revêtements durs
G02B 1/16 - Revêtements optiques obtenus par application sur les éléments optiques ou par traitement de la surface de ceux-ci ayant un effet antistatique, p. ex. revêtements conducteurs électriques
46.
DISPERSION LIQUID OF CHAIN PARTICLES AND METHOD FOR PRODUCING SAME, COATING MATERIAL FOR FORMING COATING FILM, AND METHOD FOR PRODUCING SUBSTRATE WITH FILM
Provided is a dispersion liquid of chain particles, the dispersion liquid having good dispersion stability even in a low pH region. That is, provided is a dispersion liquid of chain particles which are ATO particles connected to each other, wherein the average particle diameter of the ATO particles is 5-20 nm, the chain particles include silicon oxide, the average number of connected particles of the chain particles is 3-40, and the isoelectric point of the chain particles is less than pH 2.0. This coating material prepared by using such a dispersion liquid of chain particles can form a film which has a low surface resistance value and is excellent in adhesiveness with a substrate even when the content of the particles is low. Furthermore, it is preferable that these chain particles include tin oxide and antimony oxide, and silicon oxide, tin oxide, and antimony oxide are included in amounts of 0.5-10% by weight, 70-95% by weight, and 4.5-29.5% by weight, respectively, relative to the sum of same.
C09D 201/00 - Compositions de revêtement à base de composés macromoléculaires non spécifiés
H01B 1/08 - Conducteurs ou corps conducteurs caractérisés par les matériaux conducteurs utilisésEmploi de matériaux spécifiés comme conducteurs composés principalement d'autres substances non métalliques oxydes
H01B 1/20 - Matériau conducteur dispersé dans un matériau organique non conducteur
H01B 13/00 - Appareils ou procédés spécialement adaptés à la fabrication de conducteurs ou câbles
C09D 7/61 - Adjuvants non macromoléculaires inorganiques
47.
COATING LIQUID, PRODUCTION METHOD THEREFOR, AND METHOD FOR PRODUCING SUBSTRATE WITH FILM
Provided is a coating liquid with which a thick film with a high refractive index can be formed on a substrate. According to the present invention, a coating liquid, which contains a titanium-containing oxide, an organic binder, and an adamantane derivative, is used to form a film on a substrate. In this coating liquid, it is preferable that the content of the titanium-containing oxide in the solid content is 50-75 wt%, the content of the adamantane derivative in the solid content is 10-35 wt%, and the content of the organic binder in the solid content is 10-25 wt%. Moreover, it is preferable to use an organic binder having an alkoxy group.
B05D 3/00 - Traitement préalable des surfaces sur lesquelles des liquides ou d'autres matériaux fluides doivent être appliquésTraitement ultérieur des revêtements appliqués, p. ex. traitement intermédiaire d'un revêtement déjà appliqué, pour préparer les applications ultérieures de liquides ou d'autres matériaux fluides
B05D 7/24 - Procédés, autres que le flocage, spécialement adaptés pour appliquer des liquides ou d'autres matériaux fluides, à des surfaces particulières, ou pour appliquer des liquides ou d'autres matériaux fluides particuliers pour appliquer des liquides ou d'autres matériaux fluides particuliers
C09D 201/00 - Compositions de revêtement à base de composés macromoléculaires non spécifiés
C09D 201/10 - Compositions de revêtement à base de composés macromoléculaires non spécifiés caractérisés par la présence de groupes déterminés contenant des groupes silanes hydrolysables
C09D 7/61 - Adjuvants non macromoléculaires inorganiques
C09D 7/63 - Adjuvants non macromoléculaires organiques
48.
HOLLOW PARTICLE AND METHOD FOR PRODUCING SAME, AND RESIN COMPOSITION
The present invention pertains to hollow particles each having a cavity inside a non-porous outer shell. The hollow particles have a mean particle diameter (D50) of 0.1-10 μm, and, when being suspended in water, the proportions of floating particles, suspended particles, and sedimented particles are 0.5-7.0 mass%, 0-4.0 mass%, and 89.0-99.5 mass%, respectively. An insulation material having such hollow particles blended therein is capable of having a low dielectric constant and a low dielectric loss tangent.
The present disclosure relates to a process for the hydrodealkylation of aromatic rich hydrocarbon streams to produce benzene, toluene and mixed xylenes (BTX), with high selectivity towards high value xylenes. The process uses catalysts containing a framework-substituted zirconium and/or titanium and/or hafnium-modified ultra-stable Y (USY) type zeolite.
C10G 45/64 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales caractérisé par le catalyseur utilisé contenant des alumino-silicates cristallins, p. ex. des tamis moléculaires
B01J 29/26 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type mordénite contenant de l'arsenic, de l'antimoine, du bismuth, du vanadium, du niobium, du tantale, du polonium, du chrome, du molybdène, du tungstène, du manganèse, du technétium ou du rhénium
50.
IRREGULARLY-SHAPED SILICA-BASED FINE PARTICLE DISPERSION, METHOD FOR PRODUCING SAME, PARTICLE-LINKED SILICA FINE PARTICLE DISPERSION, METHOD FOR PRODUCING SAME, AND ABRASIVE GRAIN DISPERSION FOR POLISHING
22 concentration and ionic strength have been adjusted. Step (f): a step for adding an acidic silicic acid solution to the heated, ripened seed particle dispersion to obtain an irregularly-shaped silica-based fine particle dispersion containing irregularly-shaped silica-based fine particles.
The present disclosure relates to a process for the hydrodealkylation of aromatic rich hydrocarbon streams to produce benzene, toluene and mixed xylenes (BTX), with high selectivity towards high value xylenes. The process uses catalysts containing a framework-substituted zirconium and/or titanium and/or hafnium-modified ultra-stable Y (USY) type zeolite.
Provided is a hydrotreating catalyst for a heavy hydrocarbon oil, the catalyst including an inorganic oxide carrier including alumina as a main component and a metal component supported on the inorganic oxide carrier, the catalyst having a specific surface area within a predetermined range, a reduction peak temperature that is lower than 450° C. in temperature-programmed reduction measurement of the catalyst and that is higher than or equal to a predetermined temperature, and an amount of nitrogen monoxide adsorbed on the sulfided catalyst within a predetermined range.
C10G 45/04 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour éliminer des hétéro-atomes sans modifier le squelette de l'hydrocarbure mis en œuvre et sans craquage en hydrocarbures à point d'ébullition inférieurHydrofinissage caractérisé par le catalyseur utilisé
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
B01J 37/02 - Imprégnation, revêtement ou précipitation
C10G 45/08 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour éliminer des hétéro-atomes sans modifier le squelette de l'hydrocarbure mis en œuvre et sans craquage en hydrocarbures à point d'ébullition inférieurHydrofinissage caractérisé par le catalyseur utilisé contenant du nickel ou du cobalt, ou leurs composés en combinaison avec du chrome, du molybdène ou du tungstène, ou leurs composés
53.
MODIFIED LARGE CRYSTALLITE USY ZEOLITE FOR HYDROCRACKING HYDROCARBON OIL
In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and/or zirconium and/or hafnium. The framework-substituted USY zeolite has an average crystallite size from 5 μm to 50 μm. Methods of making and using such a catalyst in a hydrocracking process are also disclosed.
In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and/or zirconium and/or hafnium. The framework-substituted USY zeolite has an average crystallite size from 5 μm to 50 μm. Methods of making and using such a catalyst in a hydrocracking process are also disclosed.
B01J 35/00 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général
B01J 29/08 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y
C10G 47/20 - Supports en alumino-silicates cristallins le catalyseur contenant d'autres métaux ou leurs composés
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
To provide a catalyst capable of hydrotreating a hydrocarbon oil with high desulfurization activity.
2 or less, respectively, as measured by pyridine desorption at 250° C. and a BET single-point method.
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
B01J 35/00 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général
3) being in the range of 1.1-5.0. [3] When waveform separation is performed on a volume-reference particle size distribution, a multi-peak distribution in which three or more peaks are detected.
C01B 33/193 - Préparation de silice finement divisée ni sous forme de sol ni sous forme de gelPost-traitement de cette silice par traitement acide de silicates de solutions aqueuses de silicates
C09G 1/02 - Compositions de produits à polir contenant des abrasifs ou agents de polissage
Methods for cracking a hydrocarbon oil include contacting the hydrocarbon oil with a catalyst system in a fluidized catalytic cracking unit to produce light olefins and gasoline fuel. The catalyst system includes a FCC base catalyst and a catalyst additive. The FCC base catalyst includes a Y-zeolite. The catalyst additive includes a framework-substituted *BEA-type zeolite. The framework-substituted *BEA-type zeolite has a modified *BEA framework. The modified *BEA framework is a *BEA aluminosilicate framework modified by substituting a portion of framework aluminum atoms of the *BEA aluminosilicate framework with beta-zeolite Al-substitution atoms selected from titanium, zirconium, hafnium, and combinations thereof. The FCC base catalyst may include a framework-substituted ultra-stable Y (USY)-zeolite as the Y-zeolite. The framework-substituted USY-zeolite has USY aluminosilicate framework modified by substituting a portion of framework aluminum atoms with titanium, zirconium, hafnium, or combinations thereof.
C10G 11/05 - Alumino-silicates cristallins, p. ex. tamis moléculaires
C10G 11/18 - Craquage catalytique, en l'absence d'hydrogène, des huiles d'hydrocarbures avec catalyseurs solides mobiles préchauffés selon la technique du "lit fluidisé"
B01J 29/00 - Catalyseurs contenant des tamis moléculaires
B01J 29/08 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y
B01J 29/89 - Silicates, aluminosilicates ou borosilicates du titane, du zirconium ou du hafnium
59.
Hydrocracking catalysts containing rare earth containing post-modified USY zeolite, method for preparing hydrocracking catalysts, and methods for hydrocracking hydrocarbon oil with hydrocracking catalysts
In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and zirconium. The framework-substituted USY zeolite comprises at least one rare earth element. Methods of making and using such a catalyst in a hydrocracking process are also disclosed.
B01J 29/08 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y
B01J 29/16 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y contenant de l'arsenic, de l'antimoine, du bismuth, du vanadium, du niobium, du tantale, du polonium, du chrome, du molybdène, du tungstène, du manganèse, du technétium ou du rhénium
C10G 47/18 - Supports en alumino-silicates cristallins le catalyseur contenant des métaux du groupe du platine ou leurs composés
C10G 47/20 - Supports en alumino-silicates cristallins le catalyseur contenant d'autres métaux ou leurs composés
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
B01J 37/00 - Procédés de préparation des catalyseurs, en généralProcédés d'activation des catalyseurs, en général
In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative metal component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and zirconium and at least one beta zeolite also having a framework substituted with titanium and zirconium. A method of using such a catalyst in a hydrocracking process is also disclosed.
B01J 29/08 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y
B01J 29/70 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes de types caractérisés par leur structure spécifique non prévus dans les groupes
C07C 4/00 - Préparations d'hydrocarbures à partir d'hydrocarbures contenant un plus grand nombre d'atomes de carbone
In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and zirconium. The framework-substituted USY zeolite comprises at least one rare earth element. Methods of making and using such a catalyst in a hydrocracking process are also disclosed.
A production method comprises the steps of obtaining a mixed slurry by adding an alumina component and at least one selected from an alumina component and a clay mineral to a binder containing a silicon oxide; obtaining a metal trapping precursor by mixing the mixed slurry with a compound of a first metal component and heating the mixed slurry of metal component; and obtaining a metal trapping by drying and calcining the metal trapping precursor. A metal trapping comprises: a binder mainly containing silicon oxide, one or two selected from an alumina component and a clay mineral, and an oxide of a first metal component; having no peak of silicate of the first metal component detected in X-ray diffraction analysis, having an attrition resistance index CAI within a predetermined range. A fluid catalytic cracking catalyst comprises the metal trapping, a zeolite component, a binder component, and a clay mineral component.
B01J 35/02 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
Methods for processing paraffinic naphtha include contacting a paraffinic naphtha feedstock with a catalyst system in a dehydrogenation reactor. The catalyst system includes a framework-substituted ultra-stable Y (USY)-type zeolite to produce a dehydrogenated product stream. The catalyst system includes a framework-substituted ultra-stable Y (USY)-type zeolite. The framework-substituted USY-type zeolite has a modified USY framework. The modified USY framework includes a USY aluminosilicate framework modified by substituting a portion of framework aluminum atoms of the USY aluminosilicate framework with substitution atoms independently selected from the group consisting of titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof. A dehydrogenation catalyst for dehydrogenating a paraffinic naphtha includes the framework-substituted ultra-stable Y (USY)-type zeolite.
C10G 35/095 - Réformage catalytique caractérisé par le catalyseur utilisé contenant des alumino-silicates cristallins, p. ex. des tamis moléculaires
B01J 29/08 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y
B01J 29/16 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y contenant de l'arsenic, de l'antimoine, du bismuth, du vanadium, du niobium, du tantale, du polonium, du chrome, du molybdène, du tungstène, du manganèse, du technétium ou du rhénium
64.
PROCESSING OF PARAFFINIC NAPHTHA WITH MODIFIED USY-ZEOLITE DEHYDROGENATION CATALYST
Methods for processing paraffinic naphtha include contacting a paraffinic naphtha feedstock with a catalyst system in a dehydrogenation reactor. The catalyst system includes a framework-substituted ultra-stable Y (USY)-type zeolite to produce a dehydrogenated product stream. The catalyst system includes a framework-substituted ultra-stable Y (USY)-type zeolite. The framework-substituted USY-type zeolite has a modified USY framework. The modified USY framework includes a USY aluminosilicate framework modified by substituting a portion of framework aluminum atoms of the USY aluminosilicate framework with substitution atoms independently selected from the group consisting of titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof. A dehydrogenation catalyst for dehydrogenating a paraffinic naphtha includes the framework-substituted ultra-stable Y (USY)-type zeolite.
Methods for interconverting olefins in an olefin-rich hydrocarbon stream include contacting the olefin-rich hydrocarbon stream with a catalyst system in an olefin interconversion unit to produce an interconverted effluent comprising ethylene and propylene. The contacting may be conducted at a reaction temperature from 450° C. to 750° C., a reaction pressure from 1 bar to 5 bar, and a residence time from 0.5 seconds to 1000 seconds. The catalyst system includes a framework-substituted beta zeolite. The framework-substituted beta zeolite has a *BEA aluminosilicate framework that has been modified by substituting a portion of framework aluminum atoms of the *BEA aluminosilicate framework with beta-zeolite Al-substitution atoms independently selected from the group consisting of titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof.
C07C 6/04 - Réactions de métathèse sur une liaison carbone-carbone non saturée sur une double liaison carbone-carbone
B01J 29/70 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes de types caractérisés par leur structure spécifique non prévus dans les groupes
B01J 29/08 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
B01J 29/89 - Silicates, aluminosilicates ou borosilicates du titane, du zirconium ou du hafnium
B01J 29/00 - Catalyseurs contenant des tamis moléculaires
B01J 37/00 - Procédés de préparation des catalyseurs, en généralProcédés d'activation des catalyseurs, en général
C07C 5/02 - Préparation d'hydrocarbures à partir d'hydrocarbures contenant le même nombre d'atomes de carbone par hydrogénation
C07C 5/03 - Préparation d'hydrocarbures à partir d'hydrocarbures contenant le même nombre d'atomes de carbone par hydrogénation de liaisons doubles carbone-carbone non aromatiques
66.
PROCESS FOR INTERCONVERSION OF OLEFINS WITH MODIFIED BETA ZEOLITE
Methods for interconverting olefins in an olefin-rich hydrocarbon stream include contacting the olefin-rich hydrocarbon stream with a catalyst system in an olefin interconversion unit to produce an interconverted effluent comprising ethylene and propylene. The contacting may be conducted at a reaction temperature from 450 °C to 750 °C, a reaction pressure from 1 bar to 5 bar, and a residence time from 0.5 seconds to 1000 seconds. The catalyst system includes a framework-substituted beta zeolite. The framework-substituted beta zeolite has a *BEA aluminosilicate framework that has been modified by substituting a portion of framework aluminum atoms of the *BEA aluminosilicate framework with beta-zeolite Al-substitution atoms independently selected from the group consisting of titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof.
A method for producing a hydrocracking catalyst includes preparing a framework substituted Y-type zeolite, preparing a binder, co-mulling the framework substituted Y-type zeolite, the binder, and one or more hydrogenative metal components to form a catalyst precursor, and calcining the catalyst precursor to generate the hydrocracking catalyst. The framework substituted Y-type zeolite is prepared by calcining a Y-type zeolite at 500? to 700? to form a calcined Y-type zeolite. The framework substituted Y-type zeolite is prepared by forming a suspension containing the calcined Y-type zeolite, the suspension having a liquid to solid mass ratio of 5 to 15, adding acid to adjust the pH of the suspension to less than 2.0, adding and mixing one or more of a zirconium compound, a hafnium compound, or a titanium compound to the suspension, and neutralizing the pH of the suspension to obtain the framework substituted Y-type zeolite.
B01J 29/08 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y
B01J 23/40 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe des métaux nobles des métaux du groupe du platine
A fluid catalytic cracking catalyst composition (FCC catalyst composition) includes a framework-substituted ultra-stable Y-type zeolite (USY zeolite) having one or more transition metals substituted into the framework of a USY zeolite and a FCC zeolite cracking additive. A method for upgrading a hydrocarbon feed includes contacting the hydrocarbon feed with the FCC catalyst composition of the present disclosure at reaction conditions sufficient to upgrade at least a portion of the hydrocarbon feed. A method for upgrading a hydrocarbon feed includes passing the hydrocarbon feed to a fluid catalytic cracking unit, contacting the hydrocarbon feed with a FCC catalyst composition in the fluid catalytic cracking unit under reaction conditions sufficient to cause at least a portion of the hydrocarbon feed to undergo cracking reactions to produce a cracking reaction mixture comprising a used FCC catalyst composition and a cracked effluent comprising one or more olefins.
B01J 29/08 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y
B01J 29/40 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type pentasil, p. ex. types ZSM-5, ZSM-8 ou ZSM-11
C10G 11/05 - Alumino-silicates cristallins, p. ex. tamis moléculaires
C10G 11/18 - Craquage catalytique, en l'absence d'hydrogène, des huiles d'hydrocarbures avec catalyseurs solides mobiles préchauffés selon la technique du "lit fluidisé"
69.
FCC CATALYST COMPOSITIONS FOR FLUID CATALYTIC CRACKING AND METHODS OF USING THE FCC CATALYST COMPOSITIONS
A fluid catalytic cracking catalyst composition (FCC catalyst composition) includes a framework-substituted ultra-stable Y-type zeolite (USY zeolite) having one or more transition metals substituted into the framework of a USY zeolite and a FCC zeolite cracking additive. A method for upgrading a hydrocarbon feed includes contacting the hydrocarbon feed with the FCC catalyst composition of the present disclosure at reaction conditions sufficient to upgrade at least a portion of the hydrocarbon feed. A method for upgrading a hydrocarbon feed includes passing the hydrocarbon feed to a fluid catalytic cracking unit, contacting the hydrocarbon feed with a FCC catalyst composition in the fluid catalytic cracking unit under reaction conditions sufficient to cause at least a portion of the hydrocarbon feed to undergo cracking reactions to produce a cracking reaction mixture comprising a used FCC catalyst composition and a cracked effluent comprising one or more olefins.
In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative metal component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and zirconium and at least one beta zeolite also having a framework substituted with titanium and zirconium. A method of using such a catalyst in a hydrocracking process is also disclosed.
C10G 47/18 - Supports en alumino-silicates cristallins le catalyseur contenant des métaux du groupe du platine ou leurs composés
B01J 29/16 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y contenant de l'arsenic, de l'antimoine, du bismuth, du vanadium, du niobium, du tantale, du polonium, du chrome, du molybdène, du tungstène, du manganèse, du technétium ou du rhénium
C10G 47/20 - Supports en alumino-silicates cristallins le catalyseur contenant d'autres métaux ou leurs composés
B01J 29/72 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes de types caractérisés par leur structure spécifique non prévus dans les groupes contenant des métaux du groupe du fer, des métaux nobles ou du cuivre
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
B01J 35/00 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général
B01J 29/78 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes de types caractérisés par leur structure spécifique non prévus dans les groupes contenant de l'arsenic, de l'antimoine, du bismuth, du vanadium, du niobium, du tantale, du polonium, du chrome, du molybdène, du tungstène, du manganèse, du technétium ou du rhénium
B82Y 30/00 - Nanotechnologie pour matériaux ou science des surfaces, p. ex. nanocomposites
72.
FAUJASITE TYPE ZEOLITE AND METHOD FOR PRODUCING SAME
Faujasite type zeolite having, in the IR spectrum, an absorption band 1 (surface silanol group) having a maximum in the range of 3730 cm-1to 3760 cm-1and an absorption band 2 (acidic hydroxyl group) having a maximum in the range of 3550 cm-1to 3700 cm-1, in which the ratio (h1/h2) of the peak height (h1) of the absorption band 1 to the peak height (h2) of the absorption band 2 is less than 1.2.
A fluid catalytic cracking catalyst for hydrocarbon oil that is a blend of two types of fluid catalytic cracking catalysts each of which has a different hydrogen transfer reaction activity or has a pore distribution within a specific range after being pseudo-equilibrated. One catalyst is a catalyst containing a zeolite and matrix components, and the other catalyst is a catalyst containing a zeolite and matrix components. This catalyst is composed of the one catalyst and the other catalyst blended at a mass ratio within a range of 10:90 to 90:10.
B01J 29/70 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes de types caractérisés par leur structure spécifique non prévus dans les groupes
B01J 29/08 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y
B01J 37/00 - Procédés de préparation des catalyseurs, en généralProcédés d'activation des catalyseurs, en général
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
B01J 35/00 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général
C10G 11/05 - Alumino-silicates cristallins, p. ex. tamis moléculaires
C10G 11/18 - Craquage catalytique, en l'absence d'hydrogène, des huiles d'hydrocarbures avec catalyseurs solides mobiles préchauffés selon la technique du "lit fluidisé"
Methods for cracking a hydrocarbon oil include contacting the hydrocarbon oil with a catalyst system in a fluidized catalytic cracking unit to produce light olefins and gasoline fuel. The catalyst system includes a FCC base catalyst and a catalyst additive. The FCC base catalyst includes a Y-zeolite. The catalyst additive includes a framework-substituted *BEA-type zeolite. The framework-substituted *BEA-type zeolite has a modified *BEA framework. The modified *BEA framework is a *BEA aluminosilicate framework modified by substituting a portion of framework aluminum atoms of the *BEA aluminosilicate framework with beta-zeolite Al-substitution atoms selected from titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof. The FCC base catalyst may include a framework-substituted ultra-stable Y (USY)-zeolite as the Y-zeolite. The framework-substituted USY-zeolite has USY aluminosilicate framework modified by substituting a portion of framework aluminum atoms with titanium atoms, zirconium atoms, hafnium atoms, or combinations thereof.
C10G 11/05 - Alumino-silicates cristallins, p. ex. tamis moléculaires
C10G 11/18 - Craquage catalytique, en l'absence d'hydrogène, des huiles d'hydrocarbures avec catalyseurs solides mobiles préchauffés selon la technique du "lit fluidisé"
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
B01J 29/70 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes de types caractérisés par leur structure spécifique non prévus dans les groupes
C10L 1/06 - Combustibles carbonés liquides à base essentielle de mélanges d'hydrocarbures pour allumage par bougie
75.
METHOD FOR PRODUCING ZIRCONIA-COATED TITANIUM OXIDE MICROPARTICLES, ZIRCONIA-COATED TITANIUM OXIDE MICROPARTICLES AND USE THEREOF
22 per 100 parts by mass of the titanium oxide microparticles, of an aqueous peroxidic zirconic acid solution and then aging reacted microparticles (2a), which have been obtained by the reaction between the titanium oxide microparticles and the peroxidic zirconic acid, to thereby give a dispersion (2) of a zirconia-coated titanium oxide microparticle precursor (2b); and (3) a step for adjusting the solid component concentration of the dispersion (2) to 0.01-10 mass% followed by a hydrothermal treatment.
C09D 17/00 - Pigments en pâtes, p. ex. pour pigmenter les peintures
C09D 201/00 - Compositions de revêtement à base de composés macromoléculaires non spécifiés
C09D 7/62 - Adjuvants non macromoléculaires inorganiques modifiés par traitement avec d’autres composés
76.
CU-CHA ZEOLITE FOR NH3-SCR CATALYST TO BE USED IN DIESEL AUTOMOTIVE EXHAUST GAS PURIFICATION CATALYST SYSTEM, AND DIESEL AUTOMOTIVE EXHAUST GAS PURIFICATION CATALYST SYSTEM COMPRISING SAME
A Cu-CHA zeolite having a silica/alumina ratio (SAR) by mol of less than 15, wherein, in an FT-IR spectrum thereof, when a peak P1 at the wave number of 3,745 cm-1P1P1 and a peak P0 at the wave number of 1,975 cm-1P0P1P033-SCR catalyst that is to be used in a diesel automotive exhaust gas purification catalyst system.
B01D 53/94 - Épuration chimique ou biologique des gaz résiduaires des gaz d'échappement des moteurs à combustion par des procédés catalytiques
C01B 39/04 - Zéolites aluminosilicates cristallinesLeurs composés isomorphesLeur préparation directeLeur préparation à partir d'un mélange réactionnel contenant une zéolite cristalline d'un autre type, ou à partir de réactants préformésLeur post-traitement utilisant au moins un agent structurant organique, p. ex. un composé d'ammonium quaternaire ionique ou un composé aminé
F01N 3/035 - Silencieux ou dispositifs d'échappement comportant des moyens pour purifier, rendre inoffensifs ou traiter les gaz d'échappement pour refroidir ou pour enlever les constituants solides des gaz d'échappement au moyen de filtres en combinaison avec d'autres dispositifs avec des réacteurs catalytiques
F01N 3/08 - Silencieux ou dispositifs d'échappement comportant des moyens pour purifier, rendre inoffensifs ou traiter les gaz d'échappement pour rendre les gaz d'échappement inoffensifs
77.
Porous-cellulose particles and production method thereof, and cosmetic
[Problem] To provide a hydrogenation catalyst for hydrocarbon oils, said catalyst having excellent desulfurization activity, while being suppressed in deterioration and having a long service life. [Solution] A hydrogenation catalyst for hydrocarbon oils, said catalyst comprising an inorganic oxide carrier that is mainly composed of alumina and an active metal component that is supported by the inorganic oxide carrier. With respect to this hydrogenation catalyst for hydrocarbon oils, the active metal component contains a predetermined amount of a first metal that is Mo, a predetermined amount of a second metal that is at least one of Co and Ni, and a predetermined amount of a third metal that is at least one of Cu and Fe; and, based on the diffuse reflection UV-vis-NIR spectrum of the catalyst, the ratio of the Kubelka-Munk function (A) at the wavelength of 700 nm to the maximum value (B) of the Kubelka-Munk function within the wavelength range of from 230 nm to 350 nm, namely A/B is 0.5 or more.
B01J 31/34 - Catalyseurs contenant des hydrures, des complexes de coordination ou des composés organiques contenant en outre des composés métalliques inorganiques non prévus dans les groupes du chrome, du molybdène ou du tungstène
C10G 45/08 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour éliminer des hétéro-atomes sans modifier le squelette de l'hydrocarbure mis en œuvre et sans craquage en hydrocarbures à point d'ébullition inférieurHydrofinissage caractérisé par le catalyseur utilisé contenant du nickel ou du cobalt, ou leurs composés en combinaison avec du chrome, du molybdène ou du tungstène, ou leurs composés
79.
MODIFIED ULTRA-STABLE Y (USY) ZEOLITE CATALYST FOR IMPROVING COLD FLOW PROPERTIES OF DISTILLATES
A process is provided for improving cold flow properties of distillates, the process comprises the step of contacting a hydrocarbon feedstock with a framework-substituted ultra-stable Y (USY)-type zeolite in which a portion of aluminum atoms constituting a zeolite framework thereof is substituted with zirconium atoms and/or titanium and/or hafnium atoms, thereby producing a dewaxed distillate product.
C10G 45/64 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales caractérisé par le catalyseur utilisé contenant des alumino-silicates cristallins, p. ex. des tamis moléculaires
C10G 65/04 - Traitement des huiles d'hydrocarbures, uniquement par plusieurs procédés d'hydrotraitement uniquement par plusieurs étapes en série ne comprenant que des étapes de raffinage
80.
MODIFIED ULTRA-STABLE Y (USY) ZEOLITE CATALYST FOR DEOLEFINIZATION OF HYDROCARBON STREAMS
The present disclosure relates to a process for the deolefinization of hydrocarbon streams through an aromatic alkylation reaction by olefins, using a catalyst containing a framework-substituted zirconium and/or titanium and/or hafnium-modified ultra-stable Y (USY) type zeolite.
−1 is 0.005 or less. A contact angle of the porous particles with water is greater than 90°, and the contact angle of the porous particles with the insect repellent component is 1° to 90°. It is preferred that 2 to 5 ml of the insect repellent component is contained based on 1 gram of the porous particles.
A01N 37/18 - Biocides, produits repoussant ou attirant les animaux nuisibles, ou régulateurs de croissance des végétaux, contenant des composés organiques comportant un atome de carbone possédant trois liaisons à des hétéro-atomes, avec au plus deux liaisons à un halogène, p. ex. acides carboxyliques contenant le groupe —CO—N, p. ex. amides ou imides d'acide carboxyliqueLeurs thio-analogues
82.
Adsorbent for removing carbonyl sulfide contained in a stream containing an olefin
B01J 20/08 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant des oxydes ou des hydroxydes des métaux non prévus dans le groupe contenant de l'oxyde ou de l'hydroxyde d'aluminiumCompositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant des oxydes ou des hydroxydes des métaux non prévus dans le groupe contenant de la bauxite
B01J 20/30 - Procédés de préparation, de régénération ou de réactivation
2; and in the inorganic oxide carrier, the absorption edge wavelength of an absorption peak from Ti is 364 nm or shorter as measured by ultraviolet spectroscopy.
B01J 21/06 - Silicium, titane, zirconium ou hafniumLeurs oxydes ou hydroxydes
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
B01J 35/00 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général
C10G 45/08 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour éliminer des hétéro-atomes sans modifier le squelette de l'hydrocarbure mis en œuvre et sans craquage en hydrocarbures à point d'ébullition inférieurHydrofinissage caractérisé par le catalyseur utilisé contenant du nickel ou du cobalt, ou leurs composés en combinaison avec du chrome, du molybdène ou du tungstène, ou leurs composés
The invention relates to methods for hydrocracking or hydrotreating hydrocarbon containing feedstocks. This is accomplished via the use of a catalyst which comprises a β zeolite of *BEA framework, where a portion of aluminum atoms in the *BEA framework have been substituted by from 0.1 - 5.0 wt% of each of Ti and Zr, calculated on an oxide basis.
C10G 47/16 - Supports en alumino-silicates cristallins
B01J 29/70 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes de types caractérisés par leur structure spécifique non prévus dans les groupes
B01J 29/89 - Silicates, aluminosilicates ou borosilicates du titane, du zirconium ou du hafnium
C10G 47/18 - Supports en alumino-silicates cristallins le catalyseur contenant des métaux du groupe du platine ou leurs composés
C10G 47/20 - Supports en alumino-silicates cristallins le catalyseur contenant d'autres métaux ou leurs composés
85.
BARIUM TITANATE PARTICLES, METHOD FOR PRODUCING SAME, AND DISPERSION OF BARIUM TITANATE PARTICLES
Provided are barium titanate particles that exhibit a high sintering delay effect, and a method for producing the same. The perovskite-structured barium titanate particles according to the present invention have a Ba-to-Ti ratio Ba/Ti of 0.95-1.05 and have a crystallite diameter of 5-25 nm.
A silica particle dispersion liquid includes a silica particle that satisfies (i) to (iii) below: (i) an average particle diameter d is 5 to 300 nm; (ii) an occlusion amount of a basic substance per 1 g of the particle is 2 mg or more; and (iii) a Sears number Y exceeds 12.0.
Provided is a production method of a silica particle dispersion liquid which includes, preparing a linked silica particle by adding a liquid A containing alkoxysilane and a liquid B containing an alkali catalyst to a liquid containing water, an organic solvent, and an alkali catalyst in a container. The preparing a linked silica particle includes initially adding an alkali catalyst, the initially adding an alkali catalyst includes decreasing a molar ratio of an alkali catalyst to silica in the liquid in the container to 0.15 to 0.60 by adding the liquid A containing alkoxysilane to the liquid in the container, and increasing the molar ratio by 0.2 or more by adding the liquid B to the liquid having the decreased molar ratio in the container.
A method including subjecting an ultra-stable Y-type zeolite having a low silica-to-alumina molar ratio (SAR), such as in a range of 3 to 6, to acid treatment and heteroatom incorporation contemporaneously to give a framework-modified ultra-stable Y-type zeolite.
B01J 29/08 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y
B01J 29/10 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y contenant des métaux du groupe du fer, des métaux nobles ou du cuivre
B01J 29/16 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes du type faujasite, p. ex. du type X ou Y contenant de l'arsenic, de l'antimoine, du bismuth, du vanadium, du niobium, du tantale, du polonium, du chrome, du molybdène, du tungstène, du manganèse, du technétium ou du rhénium
C10G 47/16 - Supports en alumino-silicates cristallins
C10G 47/20 - Supports en alumino-silicates cristallins le catalyseur contenant d'autres métaux ou leurs composés
B01J 29/89 - Silicates, aluminosilicates ou borosilicates du titane, du zirconium ou du hafnium
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
90.
Hydrocracking catalyst comprising a beta zeolite (*BEA) framework substituted with Ti and Zr and methods for its preparation and use
The invention relates to methods for hydrocracking or hydrotreating hydrocarbon containing feedstocks. This is accomplished via the use of a catalyst which comprises a β zeolite of *BEA framework, where a portion of aluminum atoms in the *BEA framework have been substituted by from 0.1-5.0 wt % of each of Ti and Zr, calculated on an oxide basis.
A polishing composition that can not only achieve high polishing speed, but also can improve the surface smoothness (surface quality) of a polished substrate and reduce defects is provided. That is, provided is a polishing composition comprising silica particles and a water soluble polymer, wherein the contained silica particles satisfy the following requirements (a) to (c): (a) the primary particle diameter based on the specific surface area is 5 to 300 nm; (b) the coefficient of variation in the particle diameter is 10% or less; and (c) the Sears number Y is 10.0 to 12.0.
3, and a sphericity of 0.80 or more. A cosmetic product including the organic-inorganic composite particle having such properties has excellent texture properties.
Provided are a heavy oil hydrogenation processing catalyst combination demonstrating higher performance than prior art catalyst systems and a heavy oil processing method. This heavy oil hydrogenation processing method involves a demetallization part, a transition part, and a desulfurization part and is characterized in that the desulfurization part contains two or more layers of a catalyst A group and a catalyst B group which have been layered and contain a metal from Group 8 of the periodic table at different ratios from one another, the catalyst A group is constituted from one or more species of Co-containing catalysts wherein the metal from Group 8 of the periodic table and Mo are supported as active metal components on a carrier, the catalyst B group is constituted from one or more species of Ni-containing catalysts wherein the metal from Group 8 of the periodic table and Mo are supported as active metal components on a carrier, the catalyst A group and the catalyst B group are filled alternatingly from the upstream side of the desulfurization part, the catalyst A group is used on the upstream side at a volume proportion of 10 to 90% within a hydrodesulfurization part, and the catalyst B group is used on the downstream side at a volume proportion of 10 to 90% within the hydrodesulfurization part.
C10G 45/08 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour éliminer des hétéro-atomes sans modifier le squelette de l'hydrocarbure mis en œuvre et sans craquage en hydrocarbures à point d'ébullition inférieurHydrofinissage caractérisé par le catalyseur utilisé contenant du nickel ou du cobalt, ou leurs composés en combinaison avec du chrome, du molybdène ou du tungstène, ou leurs composés
C10G 65/04 - Traitement des huiles d'hydrocarbures, uniquement par plusieurs procédés d'hydrotraitement uniquement par plusieurs étapes en série ne comprenant que des étapes de raffinage
95.
Dispersion liquid of silica particles and production method therefor
3 or more determined from a specific surface area determined by a BET method using nitrogen adsorption, wherein the dispersion liquid has a pH of less than 8, a silica concentration of 12 to 40% by mass, and a viscosity in terms of a silica concentration of 20% by mass of 40 mPa·s or less. When this silica particle is used as an abrasive, it is possible to realize a sufficient polishing speed and a smooth polished surface on which occurrence of scratches is suppressed.
There is provided a production method of a chain silica particle dispersion. This production method includes a dispersion preparation step of hydrolyzing alkoxysilane in the presence of ammonia to prepare a silica particle dispersion, an ammonia removal step of removing the ammonia from the silica particle dispersion such that an ammonia amount relative to silica contained in the silica particle dispersion is 0.3% by mass or less, and a hydrothermal treatment step of hydrothermally treating the silica particle dispersion having a silica concentration of 12% by mass or more, from which the ammonia has been removed, at a temperature of not lower than 150° C. and lower than 250° C. An abrasive including such chain silica particles is high in polishing rate and excellent in polishing properties.
Provided is a dispersion containing high-purity silica particles and a method for producing the same. A first solution containing a silane alkoxide and a second solution containing fine bubbles having an average bubble diameter of 40 nm to 10 μm are mixed. Thus, the silane alkoxide is hydrolyzed without using an alkaline catalyst in a liquid phase containing the fine bubbles, so that uniform silica particles having an average particle size of 3 to 10 nm are produced. Further, hydrolysis is carried out by adding a hydrolyzable metal compound to the dispersion containing the silica particles in the presence of the fine bubbles and the alkaline catalyst. Thus, the silica particles are grown, so that a uniform silica-based particle dispersion containing particles having an average particle size of more than 10 nm and 300 nm or less is produced.
A method for producing a dispersion liquid of silica particles, by simultaneously adding a liquid A containing silane alkoxide and a liquid B containing an alkali catalyst and water to a liquid I containing silica seed particles to cause the particles to grow, so as to produce silica particles; wherein the variation rate of the mole ratio of the alkali catalyst to silica components in the reaction system during a period from the start to the end of the addition relative to the initial mole ratio is 0.90 to 1.10; and the variation rate of the mole ratio of water to the silica components in the reaction system during a period from the start to the end of the addition relative to the initial mole ratio is 0.90 to 1.10.
The present invention provides a manufacturing method, including: a step for adding at least one material selected from alumina components and clay minerals to a binder containing a silicon oxide, and obtaining a mixed slurry; a step for mixing the mixed slurry and a first metal component compound, heating the metal component mixed slurry, and obtaining a metal scavenger precursor; and a step for drying, and further firing, the metal scavenger precursor to obtain a metal scavenger. The present invention also provides a metal scavenger comprising a binder mainly containing a silicon oxide, one or two materials selected from alumina components and clay minerals, and an oxide of a first metal component, the metal scavenger being such that a peak of a silicate of the first metal component is not detected in X-ray diffraction analysis, and the wear resistance index CAI is within a prescribed range. The present invention also provides a fluid catalytic cracking catalyst containing the metal scavenger, a zeolite component, a binder component, and a clay mineral component.
B01J 20/04 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant des composés des métaux alcalins, des métaux alcalino-terreux ou du magnésium
B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
B01J 20/30 - Procédés de préparation, de régénération ou de réactivation