Devices, systems, and processes are provided for retorting and extracting hydrocarbons from oil shale. A heat transfer fluid includes at least one liquefied petroleum gas (LPG) component such as, for example, propane or butane. The heat transfer fluid moves through a heat delivery loop to retort oil shale, thereby facilitating the production of recoverable hydrocarbons. While the heat transfer fluid moves through the heat delivery loop, cracking of a portion of the heat transfer fluid may produce various hydrocarbon materials that may be provided to a product stream.
E21B 43/24 - Procédés de récupération assistée pour l'extraction d'hydrocarbures utilisant la chaleur, p. ex. injection de vapeur
C10G 1/02 - Production de mélanges liquides d'hydrocarbures à partir de schiste bitumineux, de sable pétrolifère ou de matières carbonées solides non fusibles ou similaires, p. ex. bois, charbon par distillation
E21B 43/40 - Séparation associée à la réinjection de matériaux séparés
2.
USING LIQUEFIED PETROLEUM GAS IN A HOT CIRCULATING FLUID HEATER FOR IN-SITU OIL SHALE RETORTING
Devices, systems, and processes are provided for retorting and extracting hydrocarbons from oil shale. A heat transfer fluid includes at least one liquefied petroleum gas (LPG) component such as, for example, propane or butane. The heat transfer fluid moves through a heat delivery loop to retort oil shale, thereby facilitating the production of recoverable hydrocarbons. While the heat transfer fluid moves through the heat delivery loop, cracking of a portion of the heat transfer fluid may produce various hydrocarbon materials that may be provided to a product stream.
A heating system for a subterranean mineral formation according to embodiments of the present invention includes a casing positioned in a bore in the subterranean mineral formation, the casing having an outer surface and an inner surface, a heating element positioned within the casing, a surface connection system having a first end coupled to the heating element within the casing and a second end at a top ground surface above the subterranean mineral formation, a heat transfer fluid contained within the casing, the heat transfer fluid configured to transfer heat between the heating element and the inner surface of the casing, wherein at least a portion of the heat transfer fluid is undergoing phase changes between liquid and gas in order to regulate a temperature of the casing. Fins may be included on the outside of the casing to enhance heat transfer.
E21B 43/24 - Procédés de récupération assistée pour l'extraction d'hydrocarbures utilisant la chaleur, p. ex. injection de vapeur
E21B 36/00 - Aménagements pour le chauffage, le refroidissement ou l'isolation dans les trous de forage ou dans les puits, p. ex. pour être utilisés dans les zones de permagel
E21B 36/04 - Aménagements pour le chauffage, le refroidissement ou l'isolation dans les trous de forage ou dans les puits, p. ex. pour être utilisés dans les zones de permagel utilisant des réchauffeurs électriques
E21B 43/12 - Procédés ou appareils pour commander l'écoulement du fluide extrait vers ou dans les puits
4.
Heater and method for recovering hydrocarbons from underground deposits
Heaters are presented to aid in the recovery of hydrocarbon from underground deposits. A heater is provided to a well that has been drilled through an oil-shale deposit. A fuel and an oxidizer are provided to the heater and flue gases are recovered. The heater has a counterflow design and provides a nearly uniform temperature along the heater length. The heater may be designed to operate at different temperatures and depths to pyrolyze or otherwise heat underground hydrocarbon deposits to form a product that is easily recovered and which is useful without substantial further processing. Various counterflow heaters are described including heaters having, down the heater length, distributed reaction zones, distributed catalytic oxidation of the fuel, and discrete or continuous heat generation. The heaters may also utilize inert gases from product recovery or from heater flue gases to control the heater temperature.
A sub-surface hydrocarbon production system comprising an energy delivery well extending from the surface to a location proximate a bottom of the hydrocarbons to be produced. A production well extends from the surface to a location proximate the hydrocarbon and a convection passage extends between the energy delivery well and the production well thereby forming a convection loop. The energy delivery well and the production well intersect at a location proximate the hydrocarbon such that the convection loop is in the form of a triangle. Preferably, the convection passage extends upwardly from a point at which the convection passage intersects the production well. The system also includes a heater, such as an electric heater or down-hole burner, disposed in the energy delivery well.
A heating system for a subterranean mineral formation according to embodiments of the present invention includes a casing positioned in a bore in the subterranean mineral formation, the casing having an outer surface and an inner surface, a heating element positioned within the casing, a surface connection system having a first end coupled to the heating element within the casing and a second end at a top ground surface above the subterranean mineral formation, a heat transfer fluid contained within the casing, the heat transfer fluid configured to transfer heat between the heating element and the inner surface of the casing, wherein at least a portion of the heat transfer fluid is undergoing phase changes between liquid and gas in order to regulate a temperature of the casing. Fins may be included on the outside of the casing to enhance heat transfer.
A sub-surface hydrocarbon production system comprising an energy delivery well extending from the surface to a location proximate a bottom of the hydrocarbons to be produced. A production well extends from the surface to a location proximate the hydrocarbon and a convection passage extends between the energy delivery well and the production well thereby forming a convection loop. The energy delivery well and the production well intersect at a location proximate the hydrocarbon such that the convection loop is in the form of a triangle. Preferably, the convection passage extends upwardly from a point at which the convection passage intersects the production well. The system also includes a heater, such as an electric heater or down-hole burner, disposed in the energy delivery well.
E21B 36/02 - Aménagements pour le chauffage, le refroidissement ou l'isolation dans les trous de forage ou dans les puits, p. ex. pour être utilisés dans les zones de permagel utilisant des brûleurs
E21B 43/24 - Procédés de récupération assistée pour l'extraction d'hydrocarbures utilisant la chaleur, p. ex. injection de vapeur
8.
In situ method and system for extraction of oil from shale
A process for retorting and extracting sub-surface hydrocarbons. The process comprises drilling an energy delivery well extending from the surface to a location proximate a bottom of the hydrocarbons. The hydrocarbons are heated from the bottom to form a retort, the retort extending along a portion of the energy delivery well. A vapor tube is extended to a location proximate the retort, the vapor tube having an entrance corresponding to the region of the retort along the energy delivery well that is nearest the surface exit.
A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.
E21B 36/00 - Aménagements pour le chauffage, le refroidissement ou l'isolation dans les trous de forage ou dans les puits, p. ex. pour être utilisés dans les zones de permagel
E21B 41/00 - Matériel ou accessoires non couverts par les groupes
10.
IN SITU METHOD AND SYSTEM FOR EXTRACTION OF OIL FROM SHALE
A system and process for extracting hydrocarbons from a subterranean body of oil shale within an oil shale deposit located beneath an overburden. The system comprises an energy delivery subsystem to heat the body of oil shale and a hydrocarbon gathering subsystem for gathering hydrocarbons retorted from the body of oil shale. The energy delivery subsystem comprises at least one energy delivery well drilled from the surface of the earth through the overburden to a depth proximate a bottom of the body of oil shale, the energy delivery well extending generally downward from a surface location above a proximal enά of the body of oil shale to be retorted and continuing proximate the bottom of the body of oil shale. The energy delivery well may extend into the body of oil shale at an angle.
E21B 43/24 - Procédés de récupération assistée pour l'extraction d'hydrocarbures utilisant la chaleur, p. ex. injection de vapeur
E21B 36/00 - Aménagements pour le chauffage, le refroidissement ou l'isolation dans les trous de forage ou dans les puits, p. ex. pour être utilisés dans les zones de permagel
11.
In situ method and system for extraction of oil from shale
A system and process for extracting hydrocarbons from a subterranean body of oil shale within an oil shale deposit located beneath an overburden. The system comprises an energy delivery subsystem to heat the body of oil shale and a hydrocarbon gathering subsystem for gathering hydrocarbons retorted from the body of oil shale. The energy delivery subsystem comprises at least one energy delivery well drilled from the surface of the earth through the overburden to a depth proximate a bottom of the body of oil shale, the energy delivery well extending generally downward from a surface location above a proximal end of the body of oil shale to be retorted and continuing proximate the bottom of the body of oil shale. The energy delivery well may extend into the body of oil shale at an angle.
Heater embodiments are presented to aid in the recovery of hydrocarbon from underground deposits. In one embodiment, a heater is provided to a well that has been drilled through an oil-shale deposit. A fuel and an oxidizer are provided to the heater and flue gases are recovered. The heater has a counterflow design and provides a nearly uniform temperature along the heater length. The heater may be designed to operate at different temperatures and depths to pyrolyze or otherwise heat underground hydrocarbon deposits to form a product that is easily recovered and which is useful without substantial further processing. Various embodiments of a counterflow heater are described including heaters having, down the heater length, distributed reaction zones, distributed catalytic oxidation of the fuel, and discrete or continuous heat generation. The heaters may also utilize inert gases from product recovery or from heater flue gases to control the heater temperature.
A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.