In an embodiment, a communication circuit includes a frequency-shifting circuit coupled to a signal path, which is configured to carry, during a first period, an information signal having a first frequency. The frequency-shifting circuit is configured to receive a control signal, to shift the first frequency of the information signal by a second frequency in response to the control signal having a first control value, and to shift a third frequency of an interference signal on the signal path during a second period by a fourth frequency in response to the control signal having a second control value. For example, such a communication signal can be configured to shift the frequencies of an interference signal generated by the signal path out of the passband of an adjacent signal path to reduce the interference superimposed on a signal carried by the adjacent signal path.
H04B 1/525 - Dispositions hybrides, c. à d. dispositions pour la transition d’une transmission bilatérale sur une voie à une transmission unidirectionnelle sur chacune des deux voies ou vice versa avec des moyens de réduction de la fuite du signal de l’émetteur vers le récepteur
2.
Methods and apparatuses for reflection measurements
Techniques are provided to more accurately determine reflected power, reflection coefficient, and/or voltage standing wave to permit prompt protection of components such as power amplifiers and notify communication system operators. This is accomplished by more accurately determining an amplitude and phase of an output reflected signal at an output port of a bidirectional coupler as a function of the following: an amplitude and a phase of a coupled forward signal coupled into a forward coupled port of the bidirectional coupler; an amplitude and a phase of a coupled reverse signal coupled into a reverse coupled port of the bidirectional coupler; an electrical transmission parameter from an input port of the bidirectional coupler to the forward coupled port; an electrical transmission parameter from the input port to the reverse coupled port; and an electrical transmission parameter from an output port of the bidirectional coupler to the reverse coupled port.
H03F 1/56 - Modifications des impédances d'entrée ou de sortie, non prévues ailleurs
G01R 27/06 - Mesure des coefficients de réflexion; Mesure du rapport d'ondes stationnaires
G01R 27/28 - Mesure de l'atténuation, du gain, du déphasage ou des caractéristiques qui en dérivent dans des réseaux électriques quadripoles, c. à d. des réseaux à double entrée; Mesure d'une réponse transitoire
H01P 5/18 - Dispositifs à accès conjugués, c. à d. dispositifs présentant au moins un accès découplé d'un autre accès consistant en deux guides couplés, p.ex. coupleurs directionnels
H02H 1/00 - CIRCUITS DE PROTECTION DE SÉCURITÉ - Détails de circuits de protection de sécurité
H02H 9/00 - Circuits de protection de sécurité pour limiter l'excès de courant ou de tension sans déconnexion
H03F 3/21 - Amplificateurs de puissance, p.ex. amplificateurs de classe B, amplificateur de classe C comportant uniquement des dispositifs à semi-conducteurs
In an embodiment, a communication circuit includes a frequency-shifting circuit coupled to a signal path, which is configured to carry, during a first period, an information signal having a first frequency. The frequency-shifting circuit is configured to receive a control signal, to shift the first frequency of the information signal by a second frequency in response to the control signal having a first control value, and to shift a third frequency of an interference signal on the signal path during a second period by a fourth frequency in response to the control signal having a second control value. For example, such a communication signal can be configured to shift the frequencies of an interference signal generated by the signal path out of the passband of an adjacent signal path to reduce the interference superimposed on a signal carried by the adjacent signal path.
H04B 1/525 - Dispositions hybrides, c. à d. dispositions pour la transition d’une transmission bilatérale sur une voie à une transmission unidirectionnelle sur chacune des deux voies ou vice versa avec des moyens de réduction de la fuite du signal de l’émetteur vers le récepteur
A sequenced transmit muting wideband power amplifier is provided that includes at least one pre-driver stage having at least a first pre-driver and a second pre-driver. A mute switch selectively establishes a communication path between the first and second pre-drivers or couples the second pre-driver to a termination resistor. A pre-driver switch selectively activates/deactivates the first and second pre-drivers. A driver stage is in communication with the pre-driver stage and includes a first driver. A final amplifier stage is in communication with the driver stage and includes at least one second driver. At least one S-NBS switch is configured to selectively activate/deactivate the first driver and second driver. A controller is configured to activate the at least one pre-driver switch, the mute switch, the at least one S-NBS switch to selectively place the amplifier in one of a transmit mode and a mute mode.
H04L 5/14 - Fonctionnement à double voie utilisant le même type de signal, c. à d. duplex
H03F 1/02 - Modifications des amplificateurs pour augmenter leur rendement, p.ex. étages classe A à pente glissante, utilisation d'une oscillation auxiliaire
H03F 3/24 - Amplificateurs de puissance, p.ex. amplificateurs de classe B, amplificateur de classe C d'étages transmetteurs de sortie
H04J 3/08 - Dispositions de stations intermédiaires, p.ex. pour connecter et déconnecter
In an example, a configuration circuit includes a connector and a controller communicatively coupled to the connector via one or more signal lines. The configuration circuit further includes a microcontroller communicatively coupled to the controller via an interface. The configuration circuit further includes a connection detection circuit communicatively coupled to the microcontroller and the one or more signal lines. The connection detection circuit is configured to determine whether communication traffic between the connector and the controller on the one or more signal lines is detected, and output an interrupt signal to the microcontroller in response to detecting communication traffic between the connector and the controller on the one or more signal lines. The microcontroller is configured to instruct the controller to wake from a low-power sleep mode in response to receiving the interrupt signal from the connection detection circuit.
In one example, a system includes a central unit and a plurality of radiating points communicatively coupled to the central unit and located remotely from the central unit. Each respective radiating point includes a detector configured to evaluate uplink signals received from a coverage area of the respective radiating point. The detector is further configured to determine which services of a plurality of services supported by the system are needed and which services of the plurality of services supported by the system are not needed based on the evaluation of the uplink signals. The detector is further configured to send a request, to the central unit, to activate a service determined to be needed.
H04B 7/024 - Utilisation coopérative d’antennes sur plusieurs sites, p.ex. dans les systèmes à plusieurs points coordonnés ou dans les systèmes coopératifs à "plusieurs entrées plusieurs sorties" [MIMO]
In one example, a system includes a central unit and a plurality of radiating points communicatively coupled to the central unit and located remotely from the central unit. Each respective radiating point includes a detector configured to evaluate uplink signals received from a coverage area of the respective radiating point. The detector is further configured to determine which services of a plurality of services supported by the system are needed and which services of the plurality of services supported by the system are not needed based on the evaluation of the uplink signals. The detector is further configured to send a request, to the central unit, to activate a service determined to be needed.
H04B 7/06 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission
Uplink leveling systems and methods for a distribution antenna are provided. An uplink leveling system includes at least one communication path between a base station point of interface and a remote antenna unit. A broadband measurement detector is communicatively coupled to measure signal power in the at least one communication path at the base station point of interface. A signal measurement receiver is communicatively coupled to measure signal power in the at least one communication path. A test signal generator is configured to generate a test signal in the at least one communication path in an uplink. At least one controller is configured to level the communication path in the uplink direction based at least in part on measurements by the broadband measurement detector and the signal measurement receiver in response to the generated test signal by the test signal generator.
H04B 7/06 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission
In one embodiment a system comprises a master unit configured to receive a base station downlink radio frequency signal and transmit a base station uplink radio frequency signal; and a plurality of remote antenna units each communicatively coupled to the master unit using at least one cable, the remote antenna units each configured to radiate a remote downlink radio frequency signal from at least one antenna and to receive a remote uplink radio frequency signal from the at least one antenna. The master unit comprises a channel selective uplink muting circuit. The master unit receives and monitors uplink transport signals from the remote uplink radio frequency signal to identify one or more channels within the uplink transport signals that are not carrying uplink communications traffic; wherein the channel selective uplink muting circuit selectively mutes channels of the uplink transport signals that are not carrying uplink communications traffic.
In one embodiment a system comprises a master unit configured to receive a base station downlink radio frequency signal and transmit a base station uplink radio frequency signal; and a plurality of remote antenna units each communicatively coupled to the master unit using at least one cable, the remote antenna units each configured to radiate a remote downlink radio frequency signal from at least one antenna and to receive a remote uplink radio frequency signal from the at least one antenna. The master unit comprises a channel selective uplink muting circuit. The master unit receives and monitors uplink transport signals from the remote uplink radio frequency signal to identify one or more channels within the uplink transport signals that are not carrying uplink communications traffic; wherein the channel selective uplink muting circuit selectively mutes channels of the uplink transport signals that are not carrying uplink communications traffic.
A local roaming cell system for a mobile communication coverage area is disclosed. The system comprises: a RF head end that communicates with a plurality of base stations via a plurality of wireless RF communication links, wherein the plurality of base stations are outside of the coverage area; a conversion and link aggregation circuit that demodulates and processes downlink base station signals associated with at least two of the plurality of base stations by link aggregation to obtain a downlink signal comprising communications data extracted from the downlink base station signals; a roaming base station that modulates portions of the downlink signal to provide a local communication cell within in the coverage area to a plurality of user terminals. A first of the user terminals communicates via the roaming base station with a different one of the plurality of base stations than a second of user terminals.
In one embodiment, a distributed antenna system comprises at least one master unit; at least one remote antenna unit coupled to the master unit and comprising a power amplifier to radiate a remote downlink radio frequency signal, the remote antenna unit further configured to receive a remote uplink radio frequency signal from at least one antenna, the remote downlink radio frequency signal comprises first and second downlink frequency bands and wherein the remote uplink radio frequency signal comprises first and second uplink frequency bands; a band suppression module comprising: a controller; an uplink band suppression element configured to apply an attenuation to suppress the first uplink frequency band in response to a signal from the controller; and a downlink band suppression element configured to apply an attenuation to suppress the first downlink frequency band in response to the signal from the band suppression controller.
A technique to characterize moisture in a dielectric layer of a printed circuit board is provided. A method comprises applying a test signal to test circuitry comprising a test capacitor that is formed with the dielectric layer of the printed circuit board; measuring at least one characteristic of a least one of signal transmission and signal reflection from the test circuitry; and determining, from the at least one measured characteristic, at least one parameter value indicative of moisture content in the dielectric layer.
G01N 27/22 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant l'impédance en recherchant la capacité
G01N 5/02 - Analyse des matériaux par pesage, p.ex. pesage des fines particules séparées d'un gaz ou d'un liquide en absorbant ou adsorbant les constituants d'un matériau et en déterminant la variation de poids de l'adsorbant, p.ex. en déterminant la teneur en eau
A technique to characterize moisture in a dielectric layer of a printed circuit board is provided. A method comprises applying a test signal to test circuitry comprising a test capacitor that is formed with the dielectric layer of the printed circuit board; measuring at least one characteristic of a least one of signal transmission and signal reflection from the test circuitry; and determining, from the at least one measured characteristic, at least one parameter value indicative of moisture content in the dielectric layer.
H05K 1/16 - Circuits imprimés comprenant des composants électriques imprimés incorporés, p.ex. une résistance, un condensateur, une inductance imprimés
A method of tuning a production module using a reference module with virtual gain correction is provided. The method includes selecting a counterpart reference module created for a select application. The production module is commutatively coupled to the selected counterpart reference module to generate a production module pair. A production module gain curve for the production module pair is measured for each frequency band to be used by the production module. The production module is tuned based at least in part on offset gain values at select number of frequency observation points for each frequency band associated with the counterpart reference module and gain values at the select number of frequency observation points of the measured production module gain curve for each frequency band.
G01M 11/00 - Test des appareils optiques; Test des structures ou des ouvrages par des méthodes optiques, non prévu ailleurs
H04B 10/079 - Dispositions pour la surveillance ou le test de systèmes de transmission; Dispositions pour la mesure des défauts de systèmes de transmission utilisant un signal en service utilisant des mesures du signal de données
H04B 10/2575 - Radio sur fibre, p.ex. signal radio modulé en fréquence sur une porteuse optique
H04B 10/43 - Systèmes de transmission utilisant des ondes électromagnétiques autres que les ondes hertziennes, p.ex. les infrarouges, la lumière visible ou ultraviolette, ou utilisant des radiations corpusculaires, p.ex. les communications quantiques Émetteurs-récepteurs utilisant un seul composant en tant que source lumineuse et récepteur, p.ex. utilisant un photoémetteur comme photorécepteur
A modular filter system includes a front panel, a back panel, and a multiband combiner coupled to the front panel, the combiner including an antenna connector and filter connectors. The modular filter system further includes filter modules separate from the combiner, each filter module including first and second connectors to pass respective frequency bands, and a combiner connector to pass the frequency bands. Each filter module is configured to duplex, combine, or split first signals in the first frequency band and second signals in the second frequency band. The combiner connector of each filter module is coupled to a respective filter connector using a respective cable. The modular filter system further includes a fixing system comprising bars and plates, the bars coupled to the front and back panels using fasteners, wherein the bars and plates are configured to secure the filter modules between the combiner and the back panel.
H01P 1/213 - Sélecteurs de fréquence, p.ex. filtres combinant ou séparant plusieurs fréquences différentes
H01P 11/00 - Appareils ou procédés spécialement adaptés à la fabrication de guides d'ondes, résonateurs, lignes ou autres dispositifs du type guide d'ondes
A modular filter system includes a front panel, a back panel, and a multiband combiner coupled to the front panel, the combiner including an antenna connector and filter connectors. The modular filter system further includes filter modules separate from the combiner, each filter module including first and second connectors to pass respective frequency bands, and a combiner connector to pass the frequency bands. Each filter module is configured to duplex, combine, or split first signals in the first frequency band and second signals in the second frequency band. The combiner connector of each filter module is coupled to a respective filter connector using a respective cable. The modular filter system further includes a fixing system comprising bars and plates, the bars coupled to the front and back panels using fasteners, wherein the bars and plates are configured to secure the filter modules between the combiner and the back panel.
A method of tuning a production module using a reference module with virtual gain correction is provided. The method includes selecting a counterpart reference module created for a select application. The production module is commutatively coupled to the selected counterpart reference module to generate a production module pair. A production module gain curve for the production module pair is measured for each frequency band to be used by the production module. The production module is tuned based at least in part on offset gain values at select number of frequency observation points for each frequency band associated with the counterpart reference module and gain values at the select number of frequency observation points of the measured production module gain curve for each frequency band.
G01R 27/28 - Mesure de l'atténuation, du gain, du déphasage ou des caractéristiques qui en dérivent dans des réseaux électriques quadripoles, c. à d. des réseaux à double entrée; Mesure d'une réponse transitoire
G01R 17/04 - Dispositions dans lesquelles la valeur à mesurer est automatiquement comparée à une valeur de référence dans lesquelles la valeur de référence est l'objet d'un balayage continu ou périodique dans l'intervalle des valeurs à mesurer
G01R 27/30 - Mesure de l'atténuation, du gain, du déphasage ou des caractéristiques qui en dérivent dans des réseaux électriques quadripoles, c. à d. des réseaux à double entrée; Mesure d'une réponse transitoire avec dispositions pour l'enregistrement des caractéristiques, p.ex. par traçage d'un diagramme de Nyquist
19.
Non-duplexer architectures for telecommunications system
A telecommunications system can include analog-to-digital converters in an uplink communication path or a downlink communication path. The analog-to-digital converters can have a high dynamic range and bandwidth to obviate a need for down-conversion of signals using an analog mixer. The uplink communication path and the downlink communication path can be coupled to an antenna using a non-duplexer coupling device. Uplink signals traversing the uplink communication path can be isolated from downlink signals independent of using a duplexer.
H04B 15/02 - Réduction des perturbations parasites dues aux appareils électriques avec des moyens disposés sur ou à proximité de la source de perturbation
H04B 1/525 - Dispositions hybrides, c. à d. dispositions pour la transition d’une transmission bilatérale sur une voie à une transmission unidirectionnelle sur chacune des deux voies ou vice versa avec des moyens de réduction de la fuite du signal de l’émetteur vers le récepteur
H04B 1/48 - Commutation transmission-réception dans des circuits pour connecter l'émetteur et le récepteur à une voie de transmission commune, p.ex. par l'énergie de l'émetteur
H04B 1/00 - TRANSMISSION - Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission
H04B 1/52 - Dispositions hybrides, c. à d. dispositions pour la transition d’une transmission bilatérale sur une voie à une transmission unidirectionnelle sur chacune des deux voies ou vice versa
H04L 5/14 - Fonctionnement à double voie utilisant le même type de signal, c. à d. duplex
A telecommunications system may include a distortion cancellation subsystem for use with a circulator device coupling an antenna to a transmit path and a receive path. The distortion cancellation subsystem may include a correction circuit and a cancellation circuit. In some aspects, the correction circuit may include a processing device or adaptive filter to correct imperfections in transmit signal samples generated by directional couplers. The correction circuit may also include a summing device to remove receive signal components from the transmit signal samples. The cancellation circuit may receive the output signal of the correction circuit via an adaptive filter. The output of the adaptive filter may be summed with a receive signal to minimize distortion of the receive signal.
H04B 1/48 - Commutation transmission-réception dans des circuits pour connecter l'émetteur et le récepteur à une voie de transmission commune, p.ex. par l'énergie de l'émetteur
H04B 1/52 - Dispositions hybrides, c. à d. dispositions pour la transition d’une transmission bilatérale sur une voie à une transmission unidirectionnelle sur chacune des deux voies ou vice versa
21.
Systems and methods for communication link redundancy for distributed antenna systems
In one embodiment, a distributed antenna system comprises: at least one master unit; at least one remote antenna unit communicatively coupled via a switch to the master unit by a primary cable and a secondary cable both coupled to the switch, the remote antenna unit comprising a compensating link check module that outputs a control signal to the switch, wherein the switch selects between the primary and secondary cable in response to the control signal; wherein the compensating link check module controls the switch to momentarily select the secondary cable to perform a link check during which the remote unit measures a quality metric of a downlink signal received via the secondary cable; and upon initiation of the link check, the compensating link check module adjusts an attenuation of the downlink signal received on the secondary cable by loading calibration settings for the secondary cable into a compensation attenuator.
H04B 10/25 - Dispositions spécifiques à la transmission par fibres
H04B 10/079 - Dispositions pour la surveillance ou le test de systèmes de transmission; Dispositions pour la mesure des défauts de systèmes de transmission utilisant un signal en service utilisant des mesures du signal de données
H04B 10/2575 - Radio sur fibre, p.ex. signal radio modulé en fréquence sur une porteuse optique
H04Q 11/00 - Dispositifs de sélection pour systèmes multiplex
Techniques are provided to more accurately determine reflected power, reflection coefficient, and/or voltage standing wave to permit prompt protection of components such as power amplifiers and notify communication system operators. This is accomplished by more accurately determining an amplitude and phase of an output reflected signal at an output port of a bidirectional coupler as a function of the following: an amplitude and a phase of a coupled forward signal coupled into a forward coupled port of the bidirectional coupler; an amplitude and a phase of a coupled reverse signal coupled into a reverse coupled port of the bidirectional coupler; an electrical transmission parameter from an input port of the bidirectional coupler to the forward coupled port; an electrical transmission parameter from the input port to the reverse coupled port; and an electrical transmission parameter from an output port of the bidirectional coupler to the reverse coupled port.
Techniques are provided to more accurately determine reflected power, reflection coefficient, and/or voltage standing wave to permit prompt protection of components such as power amplifiers and notify communication system operators. This is accomplished by more accurately determining an amplitude and phase of an output reflected signal at an output port of a bidirectional coupler as a function of the following: an amplitude and a phase of a coupled forward signal coupled into a forward coupled port of the bidirectional coupler; an amplitude and a phase of a coupled reverse signal coupled into a reverse coupled port of the bidirectional coupler; an electrical transmission parameter from an input port of the bidirectional coupler to the forward coupled port; an electrical transmission parameter from the input port to the reverse coupled port; and an electrical transmission parameter from an output port of the bidirectional coupler to the reverse coupled port.
H03F 1/56 - Modifications des impédances d'entrée ou de sortie, non prévues ailleurs
G01R 27/06 - Mesure des coefficients de réflexion; Mesure du rapport d'ondes stationnaires
G01R 27/28 - Mesure de l'atténuation, du gain, du déphasage ou des caractéristiques qui en dérivent dans des réseaux électriques quadripoles, c. à d. des réseaux à double entrée; Mesure d'une réponse transitoire
H01P 5/18 - Dispositifs à accès conjugués, c. à d. dispositifs présentant au moins un accès découplé d'un autre accès consistant en deux guides couplés, p.ex. coupleurs directionnels
H02H 1/00 - CIRCUITS DE PROTECTION DE SÉCURITÉ - Détails de circuits de protection de sécurité
H02H 9/00 - Circuits de protection de sécurité pour limiter l'excès de courant ou de tension sans déconnexion
H03F 3/21 - Amplificateurs de puissance, p.ex. amplificateurs de classe B, amplificateur de classe C comportant uniquement des dispositifs à semi-conducteurs
A sequenced transmit muting wideband power amplifier is provided that includes at least one pre-driver stage having at least a first pre-driver and a second pre-driver. A mute switch selectively establishes a communication path between the first and second pre-drivers or couples the second pre-driver to a termination resistor. A pre-driver switch selectively activates/deactivates the first and second pre-drivers. A driver stage is in communication with the pre-driver stage and includes a first driver. A final amplifier stage is in communication with the driver stage and includes at least one second driver. At least one S-NBS switch is configured to selectively activate/deactivate the first driver and second driver. A controller is configured to activate the at least one pre-driver switch, the mute switch, the at least one S-NBS switch to selectively place the amplifier in one of a transmit mode and a mute mode.
H04L 5/14 - Fonctionnement à double voie utilisant le même type de signal, c. à d. duplex
H03F 1/02 - Modifications des amplificateurs pour augmenter leur rendement, p.ex. étages classe A à pente glissante, utilisation d'une oscillation auxiliaire
H03F 3/24 - Amplificateurs de puissance, p.ex. amplificateurs de classe B, amplificateur de classe C d'étages transmetteurs de sortie
H04J 3/08 - Dispositions de stations intermédiaires, p.ex. pour connecter et déconnecter
25.
SEQUENCED TRANSMIT MUTING FOR WIDEBAND POWER AMPLIFIERS
A sequenced transmit muting wideband power amplifier is provided that includes at least one pre-driver stage having at least a first pre-driver and a second pre-driver. A mute switch selectively establishes a communication path between the first and second pre-drivers or couples the second pre-driver to a termination resistor. A pre-driver switch selectively activates/deactivates the first and second pre-drivers. A driver stage is in communication with the pre-driver stage and includes a first driver. A final amplifier stage is in communication with the driver stage and includes at least one second driver. At least one S-NBS switch is configured to selectively activate/deactivate the first driver and second driver. A controller is configured to activate the at least one pre-driver switch, the mute switch, the at least one S-NBS switch to selectively place the amplifier in one of a transmit mode and a mute mode.
In an example, a node of a telecommunications system includes a first section having one or more passive components; a second section including one or more power amplifier modules and a power supply, wherein the second section is coupled to the first section using fasteners; a distribution unit including a plate and a circuit board, wherein the second section is coupled to the distribution unit using fasteners; a cooling section; a first plurality of heat pipes extending from the one or more power amplifier modules to the cooling section; a second plurality of heat pipes extending from the first section into the second section; and a housing enclosing the first section and the second section.
H04B 1/03 - TRANSMISSION - Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission Émetteurs - Détails de structure, p.ex. boîtiers, enveloppes
H05K 7/20 - Modifications en vue de faciliter la réfrigération, l'aération ou le chauffage
F28D 15/02 - Appareils échangeurs de chaleur dans lesquels l'agent intermédiaire de transfert de chaleur en tubes fermés passe dans ou à travers les parois des canalisations dans lesquels l'agent se condense et s'évapore, p.ex. tubes caloporteurs
H03F 3/20 - Amplificateurs de puissance, p.ex. amplificateurs de classe B, amplificateur de classe C
In an example, a node of a telecommunications system includes a first section having one or more passive components; a second section including one or more power amplifier modules and a power supply, wherein the second section is coupled to the first section using fasteners; a distribution unit including a plate and a circuit board, wherein the second section is coupled to the distribution unit using fasteners; a cooling section; a first plurality of heat pipes extending from the one or more power amplifier modules to the cooling section; a second plurality of heat pipes extending from the first section into the second section; and a housing enclosing the first section and the second section.
A method (600) comprises: measuring (660) reflected and forward power at a power amplifier output; determining (664) if the reflected power equals to or exceeds a first level; if the reflected power is equal to or exceeds the first level, then reduce (668) a power level of a power amplifier input signal; determining (670) if a standing wave ratio at the power amplifier output equals or exceeds a second level; if the standing wave ratio at the power amplifier output equals or exceeds the second level, then reducing (672) the power level and/ or sending an alarm; determining (674) if the power amplifier output power equals or exceeds a third level; and if the power output from the power amplifier equals or exceeds the third level, then reducing (676) the power level until such power level is less than or equal to the third level and/or sending an alarm.
Systems and methods for unified facility communications systems with device location are provided. One system embodiment comprises: a master unit and a plurality of remote antenna units defining a DAS. The master unit communicates with a base station to receive a base station downlink RF signal and to transmit a base station uplink RF signal. The remote antenna units radiate a remote downlink RF signal into a coverage area and receive a remote uplink RF signal from the coverage area. The master unit comprises uplink and downlink circuitry to transport user device communications, and a facility supervisory module to process facility device traffic associated with wireless facility assets in the coverage area. Facility device traffic is transported via the remote antenna units. Within the master unit, user device communications is routed via the uplink and downlink circuitry and facility device traffic is routed via the facility supervisory module.
H04B 7/06 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission
H04W 64/00 - Localisation d'utilisateurs ou de terminaux pour la gestion du réseau, p.ex. gestion de la mobilité
Systems and methods for unified facility communications systems with device location are provided. One system embodiment comprises: a master unit and a plurality of remote antenna units defining a DAS. The master unit communicates with a base station to receive a base station downlink RF signal and to transmit a base station uplink RF signal. The remote antenna units radiate a remote downlink RF signal into a coverage area and receive a remote uplink RF signal from the coverage area. The master unit comprises uplink and downlink circuitry to transport user device communications, and a facility supervisory module to process facility device traffic associated with wireless facility assets in the coverage area. Facility device traffic is transported via the remote antenna units. Within the master unit, user device communications is routed via the uplink and downlink circuitry and facility device traffic is routed via the facility supervisory module.
H04B 7/26 - Systèmes de transmission radio, c. à d. utilisant un champ de rayonnement pour communication entre plusieurs postes dont au moins un est mobile
H04B 7/024 - Utilisation coopérative d’antennes sur plusieurs sites, p.ex. dans les systèmes à plusieurs points coordonnés ou dans les systèmes coopératifs à "plusieurs entrées plusieurs sorties" [MIMO]
G08B 7/06 - Systèmes de signalisation selon plus d'un des groupes ; Systèmes d'appel de personnes selon plus d'un des groupes utilisant une transmission électrique
A62B 3/00 - Dispositifs ou éléments pour faciliter l'évacuation des bâtiments ou similaires, p.ex. boucliers de protection, écrans de protection; Dispositifs portatifs pour empêcher la fumée de pénétrer dans certaines parties du bâtiment
G01C 21/20 - Instruments pour effectuer des calculs de navigation
31.
USER EQUIPMENT ASSISTED LEVELING AND OPTIMIZATION OF DISTRIBUTED ANTENNA SYSTEMS
In one embodiment, a method for leveling and optimizing a distributed antenna system (DAS) includes determining a position of a test user equipment (UE); identifying one or more remote antenna units (RAUs) of a plurality of RAUs of the DAS in a vicinity of the test UE that contribute to downlink test signals received by the test UE at the position; transmitting downlink test signals from each RAU of the one or more RAUs to the test UE at the position; measuring a signal power of the downlink test signals transmitted from each RAU of the one or more RAUs received by the test UE at the position; and adjusting one or more components of the DAS until a target signal power of the downlink test signals from each RAU of the one or more RAUs for the position is received at the test UE.
One embodiment is directed to a multiple input, multiple output (“MIMO”) telecommunications system comprising a plurality of signal paths. The system further comprises mixers located in the plurality of signal paths, the mixers being coupled to oscillators for producing a plurality of signals occupying non-overlapping frequency bands and representative of wireless signals. The system further comprises a summer coupled to the plurality of signal paths for summing the plurality of signals to form summed signals. The system further comprises a shared analog-to-digital converter for converting the summed signals to digital signals.
H04B 7/04 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées
H04B 1/00 - TRANSMISSION - Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission
H04B 1/26 - Circuits pour récepteurs superhétérodynes
H04B 7/06 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission
In one embodiment, a distributed antenna system comprises: a master unit configured to receive a base station downlink radio frequency signal and to transmit a base station uplink radio frequency signal; and at least one remote antenna unit that is communicatively coupled to the master unit using at least one cable, the remote antenna unit configured to radiate a remote downlink radio frequency signal and to receive a remote uplink radio frequency signal; wherein the master unit comprises: a controller; and a respective interface to couple the controller to a first operator control panel; wherein the at least one remote antenna unit comprises: a controller; and a respective interface to couple the controller to a second operator control panel; wherein the master unit controller and the remote unit controller synchronize at least some information between the first and second operator control panels over the at least one cable.
H01Q 3/00 - Dispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne
H04B 7/024 - Utilisation coopérative d’antennes sur plusieurs sites, p.ex. dans les systèmes à plusieurs points coordonnés ou dans les systèmes coopératifs à "plusieurs entrées plusieurs sorties" [MIMO]
34.
Systems and methods for communication link redundancy for distributed antenna systems
In one embodiment, a distributed antenna system comprises: at least one master unit; at least one remote antenna unit communicatively coupled via a switch to the master unit by a primary cable and a secondary cable both coupled to the switch, the remote antenna unit comprising a compensating link check module that outputs a control signal to the switch, wherein the switch selects between the primary and secondary cable in response to the control signal; wherein the compensating link check module controls the switch to momentarily select the secondary cable to perform a link check during which the remote unit measures a quality metric of a downlink signal received via the secondary cable; and upon initiation of the link check, the compensating link check module adjusts an attenuation of the downlink signal received on the secondary cable by loading calibration settings for the secondary cable into a compensation attenuator.
H04B 10/079 - Dispositions pour la surveillance ou le test de systèmes de transmission; Dispositions pour la mesure des défauts de systèmes de transmission utilisant un signal en service utilisant des mesures du signal de données
H04B 10/2575 - Radio sur fibre, p.ex. signal radio modulé en fréquence sur une porteuse optique
H04Q 11/00 - Dispositifs de sélection pour systèmes multiplex
Certain aspects are directed to a mounting assembly for mounting an antenna unit or other device. The mounting assembly includes at least one bracket and at least one retaining assembly. The bracket can be movably positioned at multiple orientation angles with respect to a surface. The bracket includes a latching edge that defines multiple recesses. Each of the recesses corresponds to one of the orientation angles. The retaining assembly is positioned adjacent to the bracket. The retaining assembly includes at least one protrusion that can engage one of the recesses to form a latching connection between the bracket and the retaining assembly. The latching connection can retain the bracket at an orientation angle corresponding to the engaged recess.
A repeater with redundancy functions for a wireless communication system is provided. The repeater includes downlink repeater circuitry, uplink repeater circuitry, a detection function, at least one memory and a controller. The detection function is configured to detect conditions of communications between the base stations and the repeater. The at least one memory is used to store a primary configuration that sets out parameters for interfacing communications between the repeater and a primary base station of the base stations and at least one secondary configuration that sets out parameters for interfacing communications between the repeater and at least one secondary base station of the base stations and/or a secondary signal line of signal lines between the repeater and the primary base station. The controller is configured to implement the at least one secondary configuration to communicate with an associated secondary base station upon the detection function detecting abnormal communications between the repeater and the primary base station.
A repeater with redundancy functions for a wireless communication system is provided. The repeater includes downlink repeater circuitry, uplink repeater circuitry, a detection function, at least one memory and a controller. The detection function is configured to detect conditions of communications between the base stations and the repeater. The at least one memory is used to store a primary configuration that sets out parameters for interfacing communications between the repeater and a primary base station of the base stations and at least one secondary configuration that sets out parameters for interfacing communications between the repeater and at least one secondary base station of the base stations and/or a secondary signal line of signal lines between the repeater and the primary base station. The controller is configured to implement the at least one secondary configuration to communicate with an associated secondary base station upon the detection function detecting abnormal communications between the repeater and the primary base station.
Certain aspects are directed to a configuration sub-system for telecommunication systems. The configuration sub-system can include a test signal generator, a power measurement device, at least one additional power measurement device, and a controller. The test signal generator can be integrated into components of a telecommunication system. The test signal generator can provide a test signal to a signal path of the telecommunication system. The power measurement device and the additional power measurement device can respectively be integrated into different components of the telecommunication system. The power measurement device and the additional power measurement device can respectively measure the power of the test signal at different measurement points in the signal path. The controller can normalize signals transmitted via the telecommunication system by adjusting a path gain for the signal path based on measurements from the power measurement device and the additional power measurement device.
H04B 1/00 - TRANSMISSION - Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission
H04W 52/24 - Commande de puissance d'émission [TPC Transmission power control] le TPC étant effectué selon des paramètres spécifiques utilisant le rapport signal sur parasite [SIR Signal to Interference Ratio] ou d'autres paramètres de trajet sans fil
A master unit and a remote unit is provided for a multiband transmission system for distributing and combining signals of at least one wireless communication network and at least one digital network. A reference frequency generator is arranged in the master unit, the reference frequency generator being designed to clock a master modem for converting the signals of the at least one digital network. The reference frequency signal emitted by the reference frequency signal is restored via a reference frequency receiver and is used for closing a remote modem that is located there for demodulation.
H04L 7/06 - Commande de vitesse ou de phase au moyen de signaux de synchronisation les signaux de synchronisation différant des signaux d'information en amplitude, polarité ou fréquence
A re-configurable distributed antenna system that includes a plurality of base transceiver stations and a plurality of remote antenna units is provided. The plurality of the remote antenna units are configured and arranged to provide communication services for a plurality of coverage zones. A signal router selectively routes signal communication paths between a plurality of base transceiver stations and the plurality of the remote antenna units. At least one memory is configured to store routing scenarios and distributed antenna system configurations associated with the stored routing scenarios. Moreover, at least one controller dynamically controls the signal router to selectively route the signal communication paths between the plurality of base transceiver stations and the plurality of remote antenna units based at least in part on a then current need of communication service capacity within the plurality of coverage zones and the stored coverage routing scenarios.
A re-configurable distributed antenna system that includes a plurality of base transceiver stations and a plurality of remote antenna units is provided. The plurality of the remote antenna units are configured and arranged to provide communication services for a plurality of coverage zones. A signal router selectively routes signal communication paths between a plurality of base transceiver stations and the plurality of the remote antenna units. At least one memory is configured to store routing scenarios and distributed antenna system configurations associated with the stored routing scenarios. Moreover, at least one controller dynamically controls the signal router to selectively route the signal communication paths between the plurality of base transceiver stations and the plurality of remote antenna units based at least in part on a then current need of communication service capacity within the plurality of coverage zones and the stored coverage routing scenarios.
H01Q 19/12 - Combinaisons d'éléments actifs primaires d'antennes avec des dispositifs secondaires, p.ex. avec des dispositifs quasi optiques, pour donner à une antenne une caractéristique directionnelle désirée utilisant des surfaces réfléchissantes où les surfaces sont concaves
H01Q 1/52 - Moyens pour réduire le couplage entre les antennes; Moyens pour réduire le couplage entre une antenne et une autre structure
H01Q 1/28 - Adaptation pour l'utilisation dans ou sur les avions, les missiles, les satellites ou les ballons
H01Q 3/02 - Dispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne utilisant un mouvement mécanique de l'ensemble d'antenne ou du système d'antenne
H01Q 3/20 - Dispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne utilisant un mouvement mécanique relatif entre des éléments actifs primaires et des dispositifs secondaires des antennes ou systèmes d'antennes pour faire varier la position relative d'un élément primaire actif vis-à-vis d'un dispositif réfléchissant où l'élément primaire actif est fixe et l'élément réfléchissant est mobile
In an embodiment, a signal repeater includes a master unit and a remote unit that are optically coupled to one another by, e.g., an optical fiber. The master unit includes master-unit circuitry configured to receive an input electrical signal from a satellite-signal receive antenna, and to convert the input electrical signal into an optical signal. And the remote unit includes remote-unit circuitry configured to convert the optical signal into an intermediate electrical signal, to amplify the intermediate electrical signal to generate an output electrical signal, and to couple the output electrical signal to a retransmission antenna. Because an optical channel, such as an optical fiber, typically attenuates an optical signal significantly less per unit of distance than a coaxial cable attenuates an electrical signal, such a signal repeater allows a satellite receive antenna to be located at a significant distance from a retransmit antenna.
e.ge.g., an optical fiber. The master unit includes master-unit circuitry configured to receive an input electrical signal from a satellite-signal receive antenna, and to convert the input electrical signal into an optical signal. And the remote unit includes remote-unit circuitry configured to convert the optical signal into an intermediate electrical signal, to amplify the intermediate electrical signal to generate an output electrical signal, and to couple the output electrical signal to a retransmission antenna. Because an optical channel, such as an optical fiber, typically attenuates an optical signal significantly less per unit of distance than a coaxial cable attenuates an electrical signal, such a signal repeater allows a satellite receive antenna to be located at a significant distance from a retransmit antenna.
In one embodiment, a distributed antenna system comprises at least one master unit; at least one remote antenna unit coupled to the master unit and comprising a power amplifier to radiate a remote downlink radio frequency signal, the remote antenna unit further configured to receive a remote uplink radio frequency signal from at least one antenna, the remote downlink radio frequency signal comprises first and second downlink frequency bands and wherein the remote uplink radio frequency signal comprises first and second uplink frequency bands; a band suppression module comprising: a controller; an uplink band suppression element configured to apply an attenuation to suppress the first uplink frequency band in response to a signal from the controller; and a downlink band suppression element configured to apply an attenuation to suppress the first downlink frequency band in response to the signal from the band suppression controller.
In one embodiment, a distributed antenna system comprises: at least one master unit; at least one remote antenna unit communicatively coupled via a switch to the master unit by a primary cable and a secondary cable both coupled to the switch, the remote antenna unit comprising a compensating link check module that outputs a control signal to the switch, wherein the switch selects between the primary and secondary cable in response to the control signal; wherein the compensating link check module controls the switch to momentarily select the secondary cable to perform a link check during which the remote unit measures a quality metric of a downlink signal received via the secondary cable; and upon initiation of the link check, the compensating link check module adjusts an attenuation of the downlink signal received on the secondary cable by loading calibration settings for the secondary cable into a compensation attenuator.
H04B 17/309 - Mesure ou estimation des paramètres de qualité d’un canal
H04B 10/079 - Dispositions pour la surveillance ou le test de systèmes de transmission; Dispositions pour la mesure des défauts de systèmes de transmission utilisant un signal en service utilisant des mesures du signal de données
H04B 10/2575 - Radio sur fibre, p.ex. signal radio modulé en fréquence sur une porteuse optique
H04Q 11/00 - Dispositifs de sélection pour systèmes multiplex
G01M 11/00 - Test des appareils optiques; Test des structures ou des ouvrages par des méthodes optiques, non prévu ailleurs
G01R 31/02 - Essai des appareils, des lignes ou des composants électriques pour y déceler la présence de courts-circuits, de discontinuités, de fuites ou de connexions incorrectes de lignes
In one embodiment, a distributed antenna system comprises at least one master unit; at least one remote antenna unit coupled to the master unit and comprising a power amplifier to radiate a remote downlink radio frequency signal, the remote antenna unit further configured to receive a remote uplink radio frequency signal from at least one antenna, the remote downlink radio frequency signal comprises first and second downlink frequency bands and wherein the remote uplink radio frequency signal comprises first and second uplink frequency bands; a band suppression module comprising: a controller; an uplink band suppression element configured to apply an attenuation to suppress the first uplink frequency band in response to a signal from the controller; and a downlink band suppression element configured to apply an attenuation to suppress the first downlink frequency band in response to the signal from the band suppression controller.
In one embodiment, a distributed antenna system comprises: at least one master unit; at least one remote antenna unit communicatively coupled via a switch to the master unit by a primary cable and a secondary cable both coupled to the switch, the remote antenna unit comprising a compensating link check module that outputs a control signal to the switch, wherein the switch selects between the primary and secondary cable in response to the control signal; wherein the compensating link check module controls the switch to momentarily select the secondary cable to perform a link check during which the remote unit measures a quality metric of a downlink signal received via the secondary cable; and upon initiation of the link check, the compensating link check module adjusts an attenuation of the downlink signal received on the secondary cable by loading calibration settings for the secondary cable into a compensation attenuator.
G01M 11/00 - Test des appareils optiques; Test des structures ou des ouvrages par des méthodes optiques, non prévu ailleurs
G01R 31/02 - Essai des appareils, des lignes ou des composants électriques pour y déceler la présence de courts-circuits, de discontinuités, de fuites ou de connexions incorrectes de lignes
H04B 10/079 - Dispositions pour la surveillance ou le test de systèmes de transmission; Dispositions pour la mesure des défauts de systèmes de transmission utilisant un signal en service utilisant des mesures du signal de données
A method for determining threshold signal power for a switching control module of a TDD switching sub-system includes setting a threshold signal power to a first value, wherein the threshold signal power is compared to a measured signal power of a downlink path signal of a telecommunication system from a measurement receiver; determining a first downlink signal time using the first value; adjusting the threshold signal power to a second value; determining a second downlink signal time using the second value; determining a difference between the first and second downlink signal times; when difference between the first and second downlink signal times does not exceed a predetermined threshold, determining whether the second downlink signal time corresponds to a valid downlink signal time; when second downlink signal time corresponds to a valid downlink signal time, setting a fixed threshold signal power for use during online operation of the switching control module.
H04B 7/26 - Systèmes de transmission radio, c. à d. utilisant un champ de rayonnement pour communication entre plusieurs postes dont au moins un est mobile
H04B 7/06 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission
A self-locking front panel is provided that includes a base plate and first and second retaining members. The first retaining member extends from a back side of the base plate and terminates in a first retaining portion. The first retaining portion has a first rounded portion that bulges out in a direction of a first end edge of the base plate. The second retaining member also extends from the back side of the base plate a select distance from the first retaining member. The second retaining member terminates in a second retaining portion. The second retaining portion has a second rounded portion that bulges out in a direction of a second end edge of the base plate. The first and second retaining members are made of a resilient material that flexes under a load and returns to an original position when the load is removed. Other embodiments are disclosed.
F16B 5/00 - Jonction de feuilles ou de plaques soit entre elles soit à des bandes ou barres parallèles à elles
H05K 5/02 - Enveloppes, coffrets ou tiroirs pour appareils électriques - Détails
F16B 5/12 - Fixation par clips de bandes ou de barres à des feuilles ou plaques, p.ex. bandes de caoutchouc, bandes décoratives pour véhicules à moteur
F16B 5/06 - Jonction de feuilles ou de plaques soit entre elles soit à des bandes ou barres parallèles à elles par brides ou clips
F16B 1/00 - Dispositifs pour assembler des éléments structuraux ou parties de machines ou bien pour empêcher tout mouvement relatif entre eux
A self-locking front panel is provided that includes a base plate and first and second retaining members. The first retaining member extends from a back side of the base plate and terminates in a first retaining portion. The first retaining portion has a first rounded portion that bulges out in a direction of a first end edge of the base plate. The second retaining member also extends from the back side of the base plate a select distance from the first retaining member. The second retaining member terminates in a second retaining portion. The second retaining portion has a second rounded portion that bulges out in a direction of a second end edge of the base plate. The first and second retaining members are made of a resilient material that flexes under a load and returns to an original position when the load is removed. Other embodiments are disclosed.
In one embodiment, a distributed antenna system comprises: a master unit configured to receive a base station downlink radio frequency signal and to transmit a base station uplink radio frequency signal; and at least one remote antenna unit that is communicatively coupled to the master unit using at least one cable, the remote antenna unit configured to radiate a remote downlink radio frequency signal and to receive a remote uplink radio frequency signal; wherein the master unit comprises: a controller; and a respective interface to couple the controller to a first operator control panel; wherein the at least one remote antenna unit comprises: a controller; and a respective interface to couple the controller to a second operator control panel; wherein the master unit controller and the remote unit controller synchronize at least some information between the first and second operator control panels over the at least one cable.
In one example, a repeater system includes a master unit on a movable object configured to couple to antennas for receiving a downlink RF signal from at least one base station external to the movable object and for transmitting an uplink RF signal towards the at least one base station; and a plurality of remote units each configured to couple to the master unit, each positioned on the movable object and associated with different coverage areas, the remote units each configured to couple to a respective antenna system for transmitting the downlink RF signal into respective coverage areas and for receiving the uplink RF signal from the coverage areas, a control unit, wherein, for at least a subgroup of the remote units, a gain for each remote unit is dynamically adjusted in a time-offset fashion by the control unit to trigger handovers between overlapping base-station cells in a time-offset manner.
In one embodiment, a distributed antenna system comprises: a master unit configured to receive a base station downlink radio frequency signal and to transmit a base station uplink radio frequency signal; and at least one remote antenna unit that is communicatively coupled to the master unit using at least one cable, the remote antenna unit configured to radiate a remote downlink radio frequency signal and to receive a remote uplink radio frequency signal; wherein the master unit comprises: a controller; and a respective interface to couple the controller to a first operator control panel; wherein the at least one remote antenna unit comprises: a controller; and a respective interface to couple the controller to a second operator control panel; wherein the master unit controller and the remote unit controller synchronize at least some information between the first and second operator control panels over the at least one cable.
H01Q 3/00 - Dispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne
H04B 7/024 - Utilisation coopérative d’antennes sur plusieurs sites, p.ex. dans les systèmes à plusieurs points coordonnés ou dans les systèmes coopératifs à "plusieurs entrées plusieurs sorties" [MIMO]
54.
Multiple input multiple output distributed antenna system architectures
One embodiment is directed to a multiple input, multiple output (“MIMO”) telecommunications system comprising a plurality of signal paths. The system further comprises mixers located in the plurality of signal paths, the mixers being coupled to oscillators for producing a plurality of signals occupying non-overlapping frequency bands and representative of wireless signals. The system further comprises a summer coupled to the plurality of signal paths for summing the plurality of signals to form summed signals. The system further comprises a shared analog-to-digital converter for converting the summed signals to digital signals.
H04B 7/04 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées
H04B 1/00 - TRANSMISSION - Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission
H04B 1/26 - Circuits pour récepteurs superhétérodynes
H04B 7/06 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission
Repeater systems and methods are disclosed. In one embodiment, a repeater system located within a coverage area comprises: a host configured to combine multiple downlink signals from multiple communication sources located outside the coverage area into a first combined downlink signal; at least one remote coupled to the host and configured to transmit the first combined downlink signal as a second downlink RF communication signal to terminals within the coverage area. The at least one remote is configured to produce a combined uplink signal from multiple uplink signals received through multiple communication links from the terminals, and configured to forward the combined uplink signal to the host. The host produces multiple signals from the combined uplink signal for transmission to the multiple communication sources, wherein a first of the plurality of terminals communicates with a different one of the multiple communication sources than a second of the plurality of terminals.
Uplink leveling systems and methods for a distribution antenna are provided. An uplink leveling system includes at least one communication path between a base station point of interface and a remote antenna unit. A broadband measurement detector is communicatively coupled to measure signal power in the at least one communication path at the base station point of interface. A signal measurement receiver is communicatively coupled to measure signal power in the at least one communication path. A test signal generator is configured to generate a test signal in the at least one communication path in an uplink. At least one controller is configured to level the communication path in the uplink direction based at least in part on measurements by the broadband measurement detector and the signal measurement receiver in response to the generated test signal by the test signal generator.
Uplink leveling systems and methods for a distribution antenna are provided. An uplink leveling system includes at least one communication path between a base station point of interface and a remote antenna unit. A broadband measurement detector is communicatively coupled to measure signal power in the at least one communication path at the base station point of interface. A signal measurement receiver is communicatively coupled to measure signal power in the at least one communication path. A test signal generator is configured to generate a test signal in the at least one communication path in an uplink. At least one controller is configured to level the communication path in the uplink direction based at least in part on measurements by the broadband measurement detector and the signal measurement receiver in response to the generated test signal by the test signal generator.
H04B 7/06 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission
Certain aspects are directed to a capacity optimization sub-system for a distributed antenna system. The capacity optimization sub-system includes a switch matrix and a controller. The switch matrix includes variable attenuators and switches. The switch matrix can receive sectors from base stations. The switch matrix can provide the sectors to coverage zones. The controller can communicate with the switch matrix. The controller can determine that a number of wireless devices in one or more of the coverage zones is outside a specified range of threshold traffic levels. In response to determining that the number of wireless devices is outside the specified range of threshold traffic levels, the controller can configure one or more of the variable attenuators and corresponding switches to redistribute capacity among the coverage zones by, for example, increasing and/or decreasing capacity in one or more of the coverage zones.
A switching control module can optimize time division duplexing operations of a distributed antenna system (“DAS”). The switching control module can include a measurement receiver and a processor. The measurement receiver can measure signal powers of downlink signals in a downlink path of the DAS. The processor can determine start times for downlink sub-frames transmitted via the downlink path based on downlink signal powers measured by the measurement receiver exceeding a threshold signal power. The processor can identify a clock setting that controls a timing of switching signals used for switching the DAS between an uplink mode and a downlink mode. The processor can statistically determine a switching time adjustment for the clock setting based on switching time differentials between the clock setting and the start times. The processor can update the clock setting based on the switching time adjustment.
H04B 7/024 - Utilisation coopérative d’antennes sur plusieurs sites, p.ex. dans les systèmes à plusieurs points coordonnés ou dans les systèmes coopératifs à "plusieurs entrées plusieurs sorties" [MIMO]
H04W 24/02 - Dispositions pour optimiser l'état de fonctionnement
Aspects and features are directed to an uplink integrity detection sub-system. In one aspect, a distributed antenna system is provided that includes at least one master unit; a plurality of remote antenna units each in communication with the at least one master unit; and a system controller configured to: determine a noise figure for an uplink path from at least one of the plurality of remote antenna units; and modify a gain of the uplink path when the noise figure exceeds a desired threshold, wherein the noise figure is determined as a function of a measured signal power of an undesirable signal component in the uplink path from the remote antenna unit.
H04W 52/52 - Commande de puissance d'émission [TPC Transmission power control] utilisant des circuits ou des amplificateurs de commande automatique de gain [AGC Automatic Gain Control]
H03G 3/30 - Commande automatique dans des amplificateurs comportant des dispositifs semi-conducteurs
H04B 17/21 - Surveillance; Tests de récepteurs pour la correction des mesures
H04B 7/024 - Utilisation coopérative d’antennes sur plusieurs sites, p.ex. dans les systèmes à plusieurs points coordonnés ou dans les systèmes coopératifs à "plusieurs entrées plusieurs sorties" [MIMO]
H04W 52/14 - Analyse séparée de la liaison montante ou de la liaison descendante
H04W 52/24 - Commande de puissance d'émission [TPC Transmission power control] le TPC étant effectué selon des paramètres spécifiques utilisant le rapport signal sur parasite [SIR Signal to Interference Ratio] ou d'autres paramètres de trajet sans fil
H04W 52/42 - Commande de puissance d'émission [TPC Transmission power control] le TPC étant effectué dans des situations particulières dans des systèmes à diversité de temps, d'espace, de fréquence ou de polarisation
A distributed antenna system includes a plurality of remote antenna units with a passive element coupled to at least one of the remote antenna units at a connection juncture. An RFID system is associated with the first passive element and has RFID data identifying the first passive element. An interrogator unit is associated with the remote antenna unit and is configured for generating a least one signal for transmission to the passive element to be reflected at the connection juncture and received at the interrogator unit. The interrogator unit is also configured for generating at least one signal for transmission to the RFID system to obtain the RFID data identifying the passive element. Processing circuitry processes the reflected signal and measures a parameter of the first passive element. The processing circuitry correlates the measured parameter with the RFID data for the passive element.
G06K 7/10 - Méthodes ou dispositions pour la lecture de supports d'enregistrement par radiation corpusculaire
G06K 19/07 - Supports d'enregistrement avec des marques conductrices, des circuits imprimés ou des éléments de circuit à semi-conducteurs, p.ex. cartes d'identité ou cartes de crédit avec des puces à circuit intégré
H04W 24/06 - Réalisation de tests en trafic simulé
H04B 17/17 - Détection de contre-performance ou d’exécution défectueuse, p.ex. déviations de réponse
Certain aspects involve an interface device for a distributed antenna system (“DAS”). In some aspects, the interface device can include an interface, a power detector, and a processor. The interface can include one or more ports for communicatively coupling the interface device to a base station and a switch that is switchable between first and second configurations. The first configuration connects a port to a downlink path of the DAS, and the second configuration connects the port to a signal reflection path. The processor can switch the switch between the first and second configurations based on a signal power measured by the power detector at the port. In other aspects, the interface device can include additional ports and termination loads. The processor can cause a signal path to be connected to a termination load instead of a port based on the port being disconnected from a unit of the DAS.
H04B 7/024 - Utilisation coopérative d’antennes sur plusieurs sites, p.ex. dans les systèmes à plusieurs points coordonnés ou dans les systèmes coopératifs à "plusieurs entrées plusieurs sorties" [MIMO]
H04W 24/10 - Planification des comptes-rendus de mesures
H04B 7/06 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission
An optimization system for use in a digital repeater system comprises at least one input port for receiving a carrier signal associated with a communication channel of a telecommunication network, at least one meter unit for obtaining an estimate of the error vector magnitude for the carrier signal, and at least one crest factor reduction unit for dynamically reducing, based on the estimate of the error vector magnitude, the crest factor of the carrier signal.
A repeater system includes a first master unit and a second master unit located on the movable object, such as a train. The master units are each connected to an antenna for receiving a downlink RF signal from at least one base station outside of the movable object and for transmitting an uplink RF signal towards the base station. Remote units are associated with different coverage areas within the movable object and are connected to the master units unit via a transport medium. The remote units are each connected to an antenna system for transmitting the downlink RF signal into the associated coverage area of the movable object and for receiving the uplink RF signal from the coverage area. A control unit can control first gain for the connection with the first master unit and a second gain for the connection with the second master unit.
Certain features relate to a telecommunications system with a modular frequency combiner combining multiple received signals at different frequency bands without using frequency-dependent multiplexers. The frequency combiner can include adjustable tuning elements for adjusting various signal-processing parameters of the frequency combiner while the frequency combiner is in the telecommunications system. For example, adjustable tuning elements can adjust the phases of phase shifters of each RF path so that the RF paths are matched for combining the received signals and outputting them through an output port. The adjustable tuning elements can also adjust the electrical length or physical length of the transmission lines that carry the received signals. The adjustable tuning elements can be adjusted manually or automatically while the frequency combiner is deployed in the field in the telecommunications system.
H04L 1/04 - Dispositions pour détecter ou empêcher les erreurs dans l'information reçue par réception à diversité utilisant la diversité de fréquence
H04L 27/28 - Systèmes utilisant des codes à fréquences multiples à émission simultanée de fréquences différentes, chacune représentant un élément de code
G10L 19/093 - Détermination ou codage de la fonction d'excitation; Détermination ou codage des paramètres de prédiction à long terme utilisant des modèles d’excitation sinusoïdale
66.
TDD repeater for a wireless network and method for operating said repeater
In one embodiment, a TDD repeater system comprises: a master unit comprising separate uplink and downlink signal paths defined therein, and configured to couple in an uplink direction to a base station and in a downlink direction to at least one remote antenna unit, wherein the uplink path communicates uplink communication signals, wherein the downlink path communicates downlink communication signals; a switch configured to change direction of signal transmissions within the master unit between the uplink communication signals and the downlink communication signals; a synchronizing unit is configured to receive via the downlink signal path a clock signal from the downlink communication signals, wherein the synchronizing unit supplies a control signal to the switch corresponding to the clock signal; wherein the switch swaps the direction of signal transmissions within the master unit between the uplink communication signals and the downlink communication signals in response to the control signal.
A method and apparatus for determining placement of a plurality of simulated antennas of a simulated distributed antenna system (DAS) for handling simulated MIMO signals in a simulated environment includes: at a first simulated location, simulating communication of a first simulated MIMO signal by a first remote unit over a first simulated air interface; at a second simulated location, simulating communication of a second simulated MIMO signal by a second remote unit over a second simulated air interface; the first simulated location and the second simulated location arranged within the simulated environment to provide overlapping simulated signal coverage of both the first simulated MIMO signal and the second simulated MIMO signal at a third simulated location; and analyzing at least a first simulated received power of the first simulated MIMO signal and a second simulated received power of the second simulated MIMO signal at the third simulated location.
H04B 7/06 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission
H04B 10/00 - Systèmes de transmission utilisant des ondes électromagnétiques autres que les ondes hertziennes, p.ex. les infrarouges, la lumière visible ou ultraviolette, ou utilisant des radiations corpusculaires, p.ex. les communications quantiques
A telecommunications system is provided that is controllably operable as a sectorized antenna system and as an omnidirectional antenna system without requiring hardware reconfiguration. The telecommunications system includes a phase correlation measurement unit that can be between a sectorized antenna sub-system and a remotely located RF source site. The phase correlation measurement unit can be coupled to the RF source site over at least one feed line. The phase correlation measurement unit can output signals for controlling a phase shifter at the RF source site for phase shifting downlink signals and for causing operation of the sectorized antenna sub-system as an omnidirectional antenna sub-system. In a sectorized operation mode, the phase correlation measurement unit and the phase shifter can be inactivated.
H04M 3/00 - Centraux automatiques ou semi-automatiques
H04W 16/28 - Structures des cellules utilisant l'orientation du faisceau
H04B 7/0491 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées utilisant plusieurs secteurs, c. à d. diversité de secteurs
H01Q 1/24 - Supports; Moyens de montage par association structurale avec d'autres équipements ou objets avec appareil récepteur
H01Q 3/00 - Dispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne
H04W 24/02 - Dispositions pour optimiser l'état de fonctionnement
H04W 88/10 - Dispositifs formant point d'accès adapté au fonctionnement dans des réseaux multiples, p.ex. points d'accès multi-mode
Scalable telecommunications systems and methods are provided. In one embodiment, a node unit for a scalable telecommunications system comprises: a plurality of universal digital RF transceivers each configured to communicatively couple the node unit to external equipment; one or more universal digital transport interfaces each configured to communicatively couple the node unit to a respective transport link; a universal backplane communicatively coupled to the universal digital RF transceivers and universal digital transport interfaces; and a system controller; wherein each of the universal digital RF transceivers is configured to couple to a respective modular power amplifier and a modular duplexer inserted within the node unit. The system controller is configured to detect capabilities of at least one of the universal digital RF transceivers, the universal digital transport interfaces, the universal backplane, the modular power amplifier and modular duplexer, and adjust parameters of the node unit in response to the detected capabilities.
H04B 1/38 - TRANSMISSION - Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission Émetteurs-récepteurs, c. à d. dispositifs dans lesquels l'émetteur et le récepteur forment un ensemble structural et dans lesquels au moins une partie est utilisée pour des fonctions d'émission et de réception
H04L 5/14 - Fonctionnement à double voie utilisant le même type de signal, c. à d. duplex
H04W 52/52 - Commande de puissance d'émission [TPC Transmission power control] utilisant des circuits ou des amplificateurs de commande automatique de gain [AGC Automatic Gain Control]
H04B 1/00 - TRANSMISSION - Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission
H04B 1/403 - Circuits utilisant le même oscillateur pour générer à la fois la fréquence de l’émetteur et la fréquence de l’oscillateur local du récepteur
Duplexing and combining networks are provided. In one embodiment, a duplexing network for combining two signals comprises: a first port; a second port; a third port; a first hybrid coupler coupled to the first port; a second hybrid coupler coupled to the second port; a third hybrid coupler coupled to the third port; wherein the first, second, and third hybrid couplers are each four-port quadrature hybrid couplers; wherein the first hybrid splits a first signal received at the first port between a first diplexer and a second diplexer; wherein the second hybrid splits a second signal received at the first port between the first diplexer and the second diplexer; the third hybrid receives a first composite signal from the first diplexer and a second composite signal from the second diplexer and constructively sums the first composite signal and the second composite signal to produce an output at the third port.
H04B 1/525 - Dispositions hybrides, c. à d. dispositions pour la transition d’une transmission bilatérale sur une voie à une transmission unidirectionnelle sur chacune des deux voies ou vice versa avec des moyens de réduction de la fuite du signal de l’émetteur vers le récepteur
H03H 7/46 - Réseaux pour connecter plusieurs sources ou charges, fonctionnant sur des fréquences ou dans des bandes de fréquence différentes, à une charge ou à une source commune
One embodiment is directed to a system in which an end node and a boundary link optimizer node are communicatively coupled to an ETHERNET network. The end node is communicatively coupled to the ETHERNET network using a boundary link that is connected to an edge of the ETHERNET network. A virtual local area network (VLAN) is established in the ETHERNET network that includes a first end point at the edge of the ETHERNET network and a second end point at the boundary link optimizer node. The boundary link optimizer node is configured to: receive ETHERNET packets that include data for the plurality of streams of digital samples; extract the data for the plurality of streams from the received ETHERNET packets; bundle the data for the streams of digital samples; and communicate, to the end node over the VLAN, the bundled data for the streams of digital samples in ETHERNET packets.
In one embodiment, a signal-processing apparatus for generating an amplified output signal based on an input signal is provided. The apparatus comprises: an amplifier configured to generate the output signal, wherein the amplifier is configured to receive a supply voltage; and a limiter configured to inhibit increases in the input signal power level from being applied to the amplifier, wherein the limiter comprises: a variable attenuator configured to selectively attenuate the input signal before being applied to the amplifier; wherein the limiter integrates over a voltage difference between a current measure of attenuated input signal power level and a limiter threshold level to control a level of attenuation applied by the variable attenuator to the input signal.
H03G 11/08 - Limitation du taux de variation d'amplitude
H03G 11/04 - Niveau de limitation dépendant de l'intensité du signal; Niveau de limitation dépendant de l'intensité de la porteuse sur laquelle le signal est modulé
H03F 1/02 - Modifications des amplificateurs pour augmenter leur rendement, p.ex. étages classe A à pente glissante, utilisation d'une oscillation auxiliaire
73.
Microwave filter having a fine temperature drift tuning mechanism
A microwave filter comprises at least one resonant filter element resonating at a resonant frequency and having a housing, a resonant filter cavity arranged in the housing and a resonator element arranged in the housing. At least two tuning elements are arranged on the housing of the resonant filter element and each extend into the cavity with a shaft portion, wherein the two tuning elements are movable with respect to the housing to adjust the length of the shaft portion extending into the housing and wherein the at least two tuning elements are constituted and designed such that by adjusting the length of the shaft portion of each tuning element extending into the housing a temperature drift of the resonant frequency is adjustable.
A repeater system including bi-directional amplifier circuitry that is configured for repeating signals between at least one device and a first signal source. Receiver circuitry is coupled with the amplifier circuitry provides at least one signal associated with at least one of a device or the first signal source or a second signal source. Controller circuitry is configured for monitoring a parameter of a provided signal that is reflective of a property of a signal source or a device. The monitored parameter is used to make a determination of whether repeated signals associated with the first signal source will desensitize the operation of the second signal source. The controller circuitry is also operable for adjusting the power level of the signals that are repeated by the bi-directional amplifier circuitry based on the determination that repeated signals will desensitize the operation of the second signal source.
One aspect is directed to a node unit for a scalable telecommunications system. The node unit is configured to have inserted therein a respective power amplifier module and duplexing module for each of a plurality universal digital RF transceiver modules. The node unit is configured to communicatively couple an input of each power amplifier module to an output of the respective universal digital RF transceiver module. The node unit is configured to communicatively couple each universal digital RF transceiver module to respective external equipment via a duplexing module. At least one module comprises a module identifier. The system controller is configured to read the at least one module identifier and to configure the operation of at least one of universal digital RF transceiver modules, universal digital transport interface modules, and universal backplane module based on the at least one module identifier.
H04L 5/14 - Fonctionnement à double voie utilisant le même type de signal, c. à d. duplex
H04B 1/00 - TRANSMISSION - Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission
H04B 1/38 - TRANSMISSION - Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission Émetteurs-récepteurs, c. à d. dispositifs dans lesquels l'émetteur et le récepteur forment un ensemble structural et dans lesquels au moins une partie est utilisée pour des fonctions d'émission et de réception
H04W 52/52 - Commande de puissance d'émission [TPC Transmission power control] utilisant des circuits ou des amplificateurs de commande automatique de gain [AGC Automatic Gain Control]
H04B 1/403 - Circuits utilisant le même oscillateur pour générer à la fois la fréquence de l’émetteur et la fréquence de l’oscillateur local du récepteur
One embodiment is directed to a microwave cavity resonator comprises a cavity housing forming a cavity. A resonator element is arranged in the cavity and extends longitudinally along a longitudinal axis, wherein the resonator element comprises, when viewed along the longitudinal axis, a first end connected to a first housing wall and a second end opposite the first end, the second end being arranged at a distance from a second housing wall. The resonator element, at its second end, comprises at least one first capacitor element and the cavity housing comprises at least one second capacitor element reaching into the cavity and arranged at a distance, when viewed along a direction perpendicular to the longitudinal axis, from the at least one first capacitor element such that a gap between the at least one first capacitor element and the at least one second capacitor element is formed.
A distributed antenna system includes a plurality of remote antenna units with a passive element coupled to at least one of the remote antenna units at a connection juncture. An RFID system is associated with the first passive element and has RFID data identifying the first passive element. An interrogator unit is associated with the remote antenna unit and is configured for generating a least one signal for transmission to the passive element to be reflected at the connection juncture and received at the interrogator unit. The interrogator unit is also configured for generating at least one signal for transmission to the RFID system to obtain the RFID data identifying the passive element. Processing circuitry processes the reflected signal and measures a parameter of the first passive element. The processing circuitry correlates the measured parameter with the RFID data for the passive element.
G06K 19/07 - Supports d'enregistrement avec des marques conductrices, des circuits imprimés ou des éléments de circuit à semi-conducteurs, p.ex. cartes d'identité ou cartes de crédit avec des puces à circuit intégré
H04B 17/17 - Détection de contre-performance ou d’exécution défectueuse, p.ex. déviations de réponse
H04W 24/06 - Réalisation de tests en trafic simulé
A distributed antenna system includes a plurality of remote antenna units with a passive element coupled to at least one of the remote antenna units at a connection juncture. An RFID system is associated with the first passive element and has RFID data identifying the first passive element. An interrogator unit is associated with the remote antenna unit and is configured for generating a least one signal for transmission to the passive element to be reflected at the connection juncture and received at the interrogator unit. The interrogator unit is also configured for generating at least one signal for transmission to the RFID system to obtain the RFID data identifying the passive element. Processing circuitry processes the reflected signal and measures a parameter of the first passive element. The processing circuitry correlates the measured parameter with the RFID data for the passive element.
G06K 7/10 - Méthodes ou dispositions pour la lecture de supports d'enregistrement par radiation corpusculaire
G06K 19/07 - Supports d'enregistrement avec des marques conductrices, des circuits imprimés ou des éléments de circuit à semi-conducteurs, p.ex. cartes d'identité ou cartes de crédit avec des puces à circuit intégré
H04W 24/06 - Réalisation de tests en trafic simulé
H04B 17/17 - Détection de contre-performance ou d’exécution défectueuse, p.ex. déviations de réponse
SYSTEM FOR DETERMINING THE LAYOUT AND ABSOLUTE AND RELATIVE POSITIONS OF ELEMENTS IN A DISTRIBUTED ANTENNA SYSTEM AND FOR USE OF THE ELEMENTS FOR MEASUREMENT
A distributed antenna system including a plurality of remote antenna units, a passive element coupled to at least one of the remote antenna units and an RFID system located proximate the passive element. The RFID system includes processing circuitry and measurement circuitry and the processing circuitry is configured for receiving an interrogation signal and processing the interrogation signal and providing a response. The response includes data associated with a measurement made by the measurement circuitry.
G06K 19/077 - Supports d'enregistrement avec des marques conductrices, des circuits imprimés ou des éléments de circuit à semi-conducteurs, p.ex. cartes d'identité ou cartes de crédit avec des puces à circuit intégré - Détails de structure, p.ex. montage de circuits dans le support
H04B 17/17 - Détection de contre-performance ou d’exécution défectueuse, p.ex. déviations de réponse
Examples of distributed base station functionality in a telecommunication system (e.g., a distributed antenna system) are disclosed. In some aspects, the telecommunication system can include an interface with circuitry configured to communicate with one or more base-station entities, base-station components (such as baseband units or remote radio heads), or core-network entities. The telecommunication system can also include radio units that are positioned in an area for providing wireless coverage to terminal devices. The telecommunication system can also include a head-end unit that is communicatively coupled between the interface and the radio units. One or more devices in the telecommunication system can include a low-layer processing module. In some aspects, the low-layer processing module can perform functionality of a secondary e NodeB, such as (but not limited to) radio transport layer processing.In additional or alternative aspects, the low-layer processing module can perform physical layer processing that is split between uplink physical layer processing and downlink physical layer processing and/or split between secondary and primary physical layer processing.
H04B 7/26 - Systèmes de transmission radio, c. à d. utilisant un champ de rayonnement pour communication entre plusieurs postes dont au moins un est mobile
One aspect is directed to a node unit for a scalable telecommunications system. The node unit is configured to have inserted therein a respective power amplifier module and duplexing module for each of a plurality of universal digital RF transceiver modules. The node unit is configured to communicatively couple an input of each power amplifier module to an output of the respective universal digital RF transceiver module. The node unit is configured to communicatively couple each universal digital RF transceiver module to respective external equipment via a duplexing module. At least one module comprises a module identifier. The system controller is configured to read the at least one module identifier and to configure the operation of at least one of universal digital RF transceiver modules, universal digital transport interface modules, and universal backplane module based on the at least one module identifier.
H04B 1/38 - TRANSMISSION - Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission Émetteurs-récepteurs, c. à d. dispositifs dans lesquels l'émetteur et le récepteur forment un ensemble structural et dans lesquels au moins une partie est utilisée pour des fonctions d'émission et de réception
82.
Distributed antenna system for MIMO communications
A method and apparatus for determining placement of a plurality of antennas of a distributed antenna system for handling MIMO signals includes, at a first location, simulating the communication of a first MIMO signal by a first remote unit over an air interface in an environment and, at a second location, simulating the communication of a second MIMO signal by a second remote unit over an air interface in the environment. The first and second locations are arranged within the environment to provide overlapping signal coverage of both the first MIMO signal and the second MIMO signal at a third location in the environment. Analysis is made of at least an imbalance of received power between the first and second MIMO signals within the environment at a third location in order to determine whether a desired capacity for MIMO communications with the system has been achieved at the third location.
H04B 7/06 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission
The present disclosure describes devices, systems, and methods for frame start optimizing in telecommunication systems. Some aspects may involve receiving, by an aggregation device in the telecommunication system, frames from transmitter devices. Some aspects may also involve determining that buffering may be required to sequence the frames for an aggregation operation performed by the aggregation device. The aggregation operation may include a process that combines frames from transmitter devices. In response to determining that the buffering is required, frame adjustment signals may be transmitted to the transmitter devices. The frame adjustment signals may instruct the transmitter devices to transmit subsequent frames such that the buffering is reduced for a subsequent aggregation operation performed by the aggregation device using the subsequent frames.
The present disclosure describes devices, systems, and methods for synchronizing multiple-input/multiple-output ("MIMO") signals or other signals in telecommunication systems. Some aspects may involve transmitting signals between a head-end unit and remote units of a telecommunication system. A first delay of a signal path between the head-end unit and a first remote unit of the remote units may be determined to be greater than each delay of signal paths between the head-end unit and other remote units. Based on the first delay, the telecommunication system may be configured to delay transmission of additional signals such that the additional signals are simultaneously transmitted to another unit by either the head-end unit or the remote units.
Certain aspects are directed to a configuration sub-system for telecommunication systems. The configuration sub-system can include a test signal generator, a power measurement device, at least one additional power measurement device, and a controller. The test signal generator can be integrated into components of a telecommunication system. The test signal generator can provide a test signal to a signal path of the telecommunication system. The power measurement device and the additional power measurement device can respectively be integrated into different components of the telecommunication system. The power measurement device and the additional power measurement device can respectively measure the power of the test signal at different measurement points in the signal path. The controller can normalize signals transmitted via the telecommunication system by adjusting a path gain for the signal path based on measurements from the power measurement device and the additional power measurement device.
H04W 52/24 - Commande de puissance d'émission [TPC Transmission power control] le TPC étant effectué selon des paramètres spécifiques utilisant le rapport signal sur parasite [SIR Signal to Interference Ratio] ou d'autres paramètres de trajet sans fil
H04W 52/14 - Analyse séparée de la liaison montante ou de la liaison descendante
86.
CREST FACTOR OPTIMIZATION IN A DIGITAL REPEATER SYSTEM
An optimization system for use in a digital repeater system comprises at least one input port for receiving a carrier signal associated with a communication channel of a telecommunication network, at least one meter unit for obtaining an estimate of the error vector magnitude for the carrier signal, and at least one crest factor reduction unit for dynamically reducing, based on the estimate of the error vector magnitude, the crest factor of the carrier signal.
A telecommunications system may be configured to improve linearity and blocking. In some aspects, the telecommunications system may include a duplexer for coupling a common port to a receive path and a transmit path. A distributed low- noise amplifier having two or more separate active devices (e.g., amplifiers) may be positioned in the receive path. A filtering element (e.g., a band-pass filter) may be positioned between the two or more separate active devices. A signal may be routed by the duplexer through the distributed low-noise amplifier. The filtering element may attenuate transmit signals in the receive path.
A telecommunications system may be configured to improve linearity and blocking. In some aspects, the telecommunications system may include a duplexer for coupling a common port to a receive path and a transmit path. A distributed low-noise amplifier having two or more separate active devices (e.g., amplifiers) may be positioned in the receive path. A filtering element (e.g., a band-pass filter) may be positioned between the two or more separate active devices. A signal may be routed by the duplexer through the distributed low-noise amplifier. The filtering element may attenuate transmit signals in the receive path.
H04B 7/26 - Systèmes de transmission radio, c. à d. utilisant un champ de rayonnement pour communication entre plusieurs postes dont au moins un est mobile
H04B 1/50 - Circuits utilisant des fréquences différentes pour les deux directions de la communication
A telecommunications system can include analog-to-digital converters in an uplink communication path or a downlink communication path. The analog-to-digital converters can have a high dynamic range and bandwidth to obviate a need for down-conversion of signals using an analog mixer. The uplink communication path and the downlink communication path can be coupled to an antenna using a non- duplexer coupling device. Uplink signals traversing the uplink communication path can be isolated from downlink signals independent of using a duplexer.
H04B 1/48 - Commutation transmission-réception dans des circuits pour connecter l'émetteur et le récepteur à une voie de transmission commune, p.ex. par l'énergie de l'émetteur
H04B 1/52 - Dispositions hybrides, c. à d. dispositions pour la transition d’une transmission bilatérale sur une voie à une transmission unidirectionnelle sur chacune des deux voies ou vice versa
A telecommunications system may include a distortion cancellation subsystem for use with a circulator device coupling an antenna to a transmit path and a receive path. The distortion cancellation subsystem may include a correction circuit and a cancellation circuit. In some aspects, the correction circuit may include a processing device or adaptive filter to correct imperfections in transmit signal samples generated by directional couplers. The correction circuit may also include a summing device to remove receive signal components from the transmit signal samples. The cancellation circuit may receive the output signal of the correction circuit via an adaptive filter. The output of the adaptive filter may be summed with a receive signal to minimize distortion of the receive signal.
H04B 1/48 - Commutation transmission-réception dans des circuits pour connecter l'émetteur et le récepteur à une voie de transmission commune, p.ex. par l'énergie de l'émetteur
H04B 1/52 - Dispositions hybrides, c. à d. dispositions pour la transition d’une transmission bilatérale sur une voie à une transmission unidirectionnelle sur chacune des deux voies ou vice versa
91.
UPLINK SIGNAL COMBINERS FOR MOBILE RADIO SIGNAL DISTRIBUTION SYSTEMS USING ETHERNET DATA NETWORKS
One embodiment is directed to an uplink signal combiner that is configured to receive, via the data network, data packets from the remote antenna units. Each of the data packets includes respective control data and respective user data. The respective control data include data for managing a communication link between a baseband unit and a respective remote antenna unit. The respective user data represents a respective uplink signal received by each of the remote antenna units from one or more mobile stations. The uplink signal combiner is configured to generate additional user data representing a first combined uplink signal by combining the user data extracted from the data packets. The uplink signal combiner is configured to transmit an additional data packet to the baseband unit. The additional data packet includes the additional user data and additional control data derived from the control data from the received data packets.
H04L 12/931 - Architecture de matrice de commutation
H04L 12/721 - Procédures de routage, p.ex. routage par le chemin le plus court, routage par la source, routage à état de lien ou routage par vecteur de distance
H04L 29/06 - Commande de la communication; Traitement de la communication caractérisés par un protocole
A repeater system includes a first master unit and a second master unit located on the movable object, such as a train. The master units are each connected to an antenna for receiving a downlink RF signal from at least one base station outside of the movable object and for transmitting an uplink RF signal towards the base station. Remote units are associated with different coverage areas within the movable object and are connected to the master units unit via a transport medium. The remote units are each connected to an antenna system for transmitting the downlink RF signal into the associated coverage area of the movable object and for receiving the uplink RF signal from the coverage area. A control unit can control first gain for the connection with the first master unit and a second gain for the connection with the second master unit.
A digital repeater system for repeating RF signals can include a receiving section for receiving an RF input signal that includes a frequency band with at least one subband associated with a communication channel of a telecommunications network. The receiving section can digitize the RF input signal to obtain a digital signal. A filter device includes a digital filter with a passband for filtering the digital signal. The digital filter is configurable by setting filter coefficients. A gain control device can set the gain of at least a portion of the digital signal. A transmitting section can transmit an RF output signal and can convert the digital signal to the RF output signal for transmission. A control unit can configure the filter coefficients of the digital filter based on the gain setting of the gain control device.
Certain features relate to a telecommunications system with a modular frequency combiner combining multiple received signals at different frequency bands without using frequency-dependent multiplexers. The frequency combiner can include adjustable tuning elements for adjusting various signal-processing parameters of the frequency combiner while the frequency combiner is in the telecommunications system. For example, adjustable tuning elements can adjust the phases of phase shifters of each RF path so that the RF paths are matched for combining the received signals and outputting them through an output port. The adjustable tuning elements can also adjust the electrical length or physical length of the transmission lines that carry the received signals. The adjustable tuning elements can be adjusted manually or automatically while the frequency combiner is deployed in the field in the telecommunications system.
A telecommunications system can transport information between base transceiver stations and remotely located units for wireless transmission. The system includes an Ethernet switch with circuitry configured for routing information for different zones between the base transceiver stations and the remotely located units.
A distributed antenna system includes at least one master unit communicatively coupled to at least one base station and a plurality of remote units located remotely from the at least one master unit. The plurality of remote units are communicatively coupled to the master unit over at least one transport communication link. The system is configured to distribute uplink and downlink signals between a base station and mobile units. A digital unit generates digital samples indicative of spectrum included in at least one of the uplink and downlink signals. A network interface communicates with an external computer. The digital unit is configured to process the digital samples and communicate information indicative of the spectrum to the external computer via the network interface.
A repeater system is provided, the repeater system comprising a front end section and a back end section for providing communication between communication sources and a coverage area. The front end section combines multiple downlink signals from multiple communication sources into a combined downlink signal and transmits the combined downlink signal to the back end section. The back end section produces, from the combined signal, the downlink RF communication signal for transmission into the coverage area. The back end section also produces, from a received uplink RF communication signal, an uplink combined signal. The front end section produces multiple signals from the uplink combined signal received from the back end section for transmission to the communication sources. By these means a repeater system is provided which may provide an approved coverage in a coverage area with the potential of high data rates for communication links in that coverage area.
A switching control module can optimize time division duplexing operations of a distributed antenna system (“DAS”). The switching control module can include a measurement receiver and a processor. The measurement receiver can measure signal powers of downlink signals in a downlink path of the DAS. The processor can determine start times for downlink sub-frames transmitted via the downlink path based on downlink signal powers measured by the measurement receiver exceeding a threshold signal power. The processor can identify a clock setting that controls a timing of switching signals used for switching the DAS between an uplink mode and a downlink mode. The processor can statistically determine a switching time adjustment for the clock setting based on switching time differentials between the clock setting and the start times. The processor can update the clock setting based on the switching time adjustment.
H04B 7/024 - Utilisation coopérative d’antennes sur plusieurs sites, p.ex. dans les systèmes à plusieurs points coordonnés ou dans les systèmes coopératifs à "plusieurs entrées plusieurs sorties" [MIMO]
H04W 24/02 - Dispositions pour optimiser l'état de fonctionnement
A distributed antenna system includes a multiple-input and multiple-output (MIMO) base station 252 configured to output at least a first signal Ch1 and a second signal Ch2. At least one master unit 260 communicates with the MIMO base station 252. At least one remote unit 262, 264 communicates with the master unit 260. At least one antenna 270 is coupled with the remote unit 262, 264 for receiving signals from the remote unit. A hybrid coupler 274 is coupled between the remote unit 262, 264 and antenna 270 and is configured to receive the first signal Ch1 and the second signal Ch2 from the remote unit 262, 264 on respective first and second ports and to provide an output signal on at least one output port. The output signal includes at least a portion of the first signal Ch1 and at least a portion of the second signal Ch2. The antenna is coupled with the output port.
H04B 7/02 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes
H04B 7/04 - Systèmes de diversité; Systèmes à plusieurs antennes, c. à d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées
H01Q 1/24 - Supports; Moyens de montage par association structurale avec d'autres équipements ou objets avec appareil récepteur
H01Q 13/20 - Antennes constituées par un guide non résonnant à ondes de fuite ou une ligne de transmission; Structures équivalentes produisant un rayonnement le long du trajet de l'onde guidée
H01Q 21/28 - Combinaisons d'unités ou systèmes d'antennes sensiblement indépendants et n’interagissant pas entre eux
A repeater (1) particularly suitable for a time-division duplex transmission of communication signals is provided. The repeater (1) comprises a master unit (2) for communicating with a base station (3) of a wireless network, at least one remote unit (4) for communicating with a network terminal, as well as a waveguide (11) connecting the remote unit (4) with the master unit (2) for transmitting the communication signals in an uplink direction (6) from the remote unit (4) to the master unit (2) and in a downlink direction (5) from the master unit (2) to the remote unit (4). Both the master unit (2) and the remote unit (4) comprise one switch (19, 20) each for changing over the signal transmission between uplink direction (6) and downlink direction (5). Both switches (19, 20) are selected by a synchronizing unit (21) arranged in the master unit (2), the synchronizing unit (21) being designed for determining a clock pulsing from the communication signal fed to the master unit (2)—in particular from the base station (3)—and for supplying a control signal corresponding to this clock pulsing to the switches (19, 20).