Disclosed is a preparation method for a high-nickel ternary cathode material, including the steps of mixing a LiOH powder with a high-nickel ternary precursor according to a molar ratio of (0.6 to 0.95):1, performing primary sintering in an oxygen atmosphere, adding a metal oxide into a LiOH solution to obtain a mixed solution, mixing the mixed solution with a primary-sintered material in a protective atmosphere, drying and crushing a mixed material, performing secondary sintering on a powder material, spraying an atomized boric acid alcohol solution onto a secondary-sintered material, and then tempering to obtain the high-nickel ternary cathode material.
A carbon emission assessment system for recycling of decommissioned battery includes: an information module configured to obtain operation stages of the recycling of decommissioned battery and an input inventory corresponding to each of the operation stages, an instruction module configured to store a carbon dioxide emission calculation formula and carbon dioxide emission factors of different substances, an accounting module, and an analysis module configured to compare the carbon emission results obtained by the accounting module with a pre-stored standard carbon emission to obtain a comparison result, wherein the accounting module is configured to retrieve the carbon emission calculation formula and the carbon emission factors of different substances in the instruction module, in response to the operation stages and the input inventory in the information module inputted by a user, and to obtain carbon emission results for different operation stages.
A compositely coated ternary precursor, and a preparation method therefor and use thereof are provided. The material includes a ternary precursor and a coating layer attached to a surface of the ternary precursor, wherein the coating layer is obtained from a precipitation reaction of a first metal ion and a first polyanion. The metal ion and the polyanion can undergo a precipitation reaction to form a precipitate, to form a uniformly distributed coating layer on the surface of the ternary precursor. After the coated precursor is sintered into a cathode material, part of the coating can form a protective layer on the surface of the material; and the other part of the coating can permeate into the material to form bulk phase doping.
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
A washing method for a ternary precursor is provided. According to the washing method, by means of multi-stage alcohol leaching, on the premise of ensuring that various properties of a washed material to be dried are identical to those of a material to be dried in a conventional washing process, the moisture contained in the washed material is less, and the washed material is easier to dry. In the washing method for the ternary precursor, a washing procedure in a back-end program of an existing washing procedure is replaced with at least two stages of echelon multistage washing procedures, and the mass fraction of an alcohol solution in a post-washing procedure is higher than that of the alcohol solution in a pre-washing procedure.
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
6.
PRODUCTION LINE AND PRODUCTION METHOD FOR POSITIVE ELECTRODE MATERIAL OF LITHIUM-ION BATTERY
Disclosed is a production line and production method for positive electrode material of a lithium-ion battery. The production line comprises a roller kiln; a gas collecting device communicated with the roller kiln and configured to collect gas inside the roller kiln; and a free lithium-measuring device configured to measure content of free lithium in the gas collected by the gas collecting device.
Production process of a lithium battery cathode material is provided, comprising: (1) temperature difference test: putting, into a saggar, a material to be sintered, placing the saggar into a roller kiln heat preservation area, setting a same sintering temperature t on an upper layer and a lower layer of the roller kiln heat preservation area according to the characteristics of said material, sintering in a specific atmosphere, and measuring a temperature difference Δt between a surface layer and a bottom layer of the material during sintering; and (2) formal sintering: putting said material into the saggar, placing the saggar into the roller kiln heat preservation area, setting the sintering temperature of the upper layer of the roller kiln heat preservation area as t according to the temperature difference Δt measured in step (1), the sintering temperature of the lower layer being (t+Δt), and sintering said material in a specific atmosphere.
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
8.
METHOD AND DEVICE FOR DEFINING CARBON EMISSION ACCOUNTING BOUNDARY OF POWER BATTERY RECYCLING
A method and device for defining a carbon emission accounting boundary for recycling of power batteries are provided. The method includes: setting an overall process flow range for the recycling of a decommissioned power battery; according to the overall process flow range, and in combination with an evaluation need corresponding to the carbon emissions accounting, generating a corresponding boundary; according to the boundary, outputting unit processes and an inventory structure corresponding to the recycling of the retired power battery.
Disclosed in the present invention are an NCA positive electrode material precursor having a core-shell structure, a method for preparing same, and use thereof. The precursor is a spherical or spheroid particle and consists of an outer shell and an inner core. The outer shell has a chemical general formula of NiaCobAlc(OH)2+c, wherein a+b+c=1, 0.45≤a≤0.55, 0.15≤b≤0.25, and 0.25≤c≤0.35; the inner core has a chemical general formula of NixCoyAlz(CO3)1−z(OH)3z, wherein x+y+z=1, 0.85≤x<0.98, 0
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
10.
TEMPLATE GROWTH METHOD FOR PREPARING LITHIUM COBALTATE PRECURSOR AND USE THEREOF
Provided are a template growth method for preparing a lithium cobaltate precursor and use. The method comprises: S1: mixing an aqueous ammonium metavanadate solution with a polyvinylpyrrolidone solution for hydrothermal reaction, and calcining the obtained precipitate under an aerobic atmosphere to obtain a vanadium pentoxide structure-directing agent, wherein the polyvinylpyrrolidone solution is prepared by dissolving polyvinylpyrrolidone in an alcohol; S2: adding the vanadium pentoxide structure-directing agent to a cobalt salt solution to obtain a turbid liquid, adding the turbid liquid, a carbonate solution, and a complexing agent in a parallel flow mode for reaction, and performing aging when the reaction material reaches a target particle size; and S3: performing solid-liquid separation on the aged material, and anaerobically calcining the obtained precipitate before aerobic calcination to obtain a lithium cobaltate precursor. Also provided is use of the method in preparing lithium cobaltate or a lithium ion battery.
The present disclosure discloses a preparation method for a silicon/carbon composite anode material and use of thereof. The preparation method includes the following steps: heating a hypercrosslinked polymer in an inert atmosphere for carbonization to obtain a porous carbide; mixing the porous carbide with a silicon-containing solution to obtain a silicon-containing porous carbide suspension; and adding a complexing agent, a metal salt, and a reducing agent to the silicon-containing porous carbide suspension to allow a reaction, and after the reaction is completed, conducting solid-liquid separation to obtain a solid, and heating the solid in an inert atmosphere to obtain the silicon/carbon composite anode material. In the present disclosure, the metal salt is reduced with the reducing agent under an action of the complexing agent through a metal-embedded-into-silicon treatment, such that a metal layer is formed on a silicon layer adsorbed on the porous carbide.
H01M 4/38 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'éléments simples ou d'alliages
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/587 - Matériau carboné, p. ex. composés au graphite d'intercalation ou CFx pour insérer ou intercaler des métaux légers
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
12.
WASTEWATER ADSORBENT, AND PREPARATION METHOD THEREFOR AND USE THEREOF
Disclosed in the present invention are a wastewater adsorbent, and a preparation method therefor and the use thereof. The method comprises: mixing a carbon black powder and an ammonium salt solution, heating same for a hydrothermal reaction, followed by filtering, and washing the obtained filter residues with acid to obtain an ammonium-salt-modified carbon black; mixing and grinding a nickel-cobalt-manganese mixed salt and a sodium salt to obtain a mixture, mixing the mixture with an organic acid solution, evaporating same to remove water, subjecting same to a heating reaction in an inert atmosphere, and subjecting the reacted material to acid pickling to obtain a nickel-cobalt-manganese-sodium mixed salt; and mixing the nickel-cobalt-manganese-sodium mixed salt, the ammonium-salt-modified carbon black and a binding agent, and compacting, drying and heating same to obtain a multimetal-carbon-based adsorbent.
B01J 20/02 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique
B01J 20/04 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant des composés des métaux alcalins, des métaux alcalino-terreux ou du magnésium
B01J 20/20 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant du carbone libreCompositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant du carbone obtenu par des procédés de carbonisation
B01J 20/30 - Procédés de préparation, de régénération ou de réactivation
C02F 1/28 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par absorption ou adsorption
13.
METHOD FOR RECOVERING WASTE LITHIUM BATTERY MATERIALS
A method for recovering waste lithium battery materials, comprising: (1) performing cell-disassembling on a waste lithium battery to obtain battery powder, ammonia leaching the battery powder to obtain a mixture, and subjecting the mixture to solid-liquid separation to obtain a leached solution and a filter residue; (2) adding a fluorine-phosphorus precipitating agent to the leached solution to obtain a mixture, and subjecting the mixture to solid-liquid separation to obtain a filtrate; (3) subjecting the filtrate to ammonia distillation, subjecting a mixture obtained to solid-liquid separation to obtain a filtrate and a filter residue containing basic copper carbonate and lithium carbonate; (4) washing the filter residue with water, and separating the basic copper carbonate to obtain a washing water; (5) reducing and calcining the filter residue, washing the residue, adding the washing water to the residue to collect lithium by water leaching, and filtering a mixture to obtain a filtrate.
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
C22B 3/00 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés
C22B 3/22 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par des procédés physiques, p. ex. par filtration, par des moyens magnétiques
C22B 3/44 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par des procédés chimiques
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p. ex. des rognures, pour produire des métaux non ferreux ou leurs composés
Disclosed in the present invention is a method for surface modification of a lithium transition metal oxide positive electrode material, including: adding a first additive, a second additive, and a lithium transition metal oxide to water to obtain a first slurry, the first additive being a lithium-containing phosphate, and the second additive being an acidic solution of a Y3+ or Al3+ salt; dropwise adding a third additive to the firs slurry to obtain a second slurry, the third additive being an acidic solution of a TiO2+ or ZrO2+ salt; dropwise adding a fourth additive to the second slurry to obtain a third slurry, the fourth additive being an acidic solution of a AlO2− salt; and performing centrifugation and drying on the third slurry to obtain an intermediate product, mixing the intermediate product with a large-particle positive electrode material, and performing sintering to obtain a surface-modified lithium transition metal oxide material.
The present disclosure discloses a porous and spherical cobalt oxide particle and a preparation method therefor. The preparation method includes the following steps: (1) mixing a cobalt salt solution, thiourea, and urea to obtain a mixed solution; (2) heating the mixed solution obtained in step (1) to allow a reaction in an aerobic atmosphere; (3) conducting solid-liquid separation (SLS) to obtain a solid product, and subjecting the solid product to calcination in an aerobic atmosphere to obtain a calcined material; and (4) washing and drying the calcined material obtained in step (3) to obtain the porous and spherical cobalt oxide particle. The cobalt oxide particle prepared by the preparation method has a larger specific surface area (SSA), which can significantly improve a specific capacity of a battery.
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
A battery conveyor belt includes a base, a plurality of parallel connecting shafts arranged on the base at intervals, and a plurality of conveying wheels arranged on the connecting shafts and each include a stator sleeved on the connecting shaft and fixed thereto, a rotor, a coil sleeved outside the stator, a pusher, a receiver located on the rotor, a control circuit, and a hub; the rotor is sleeved outside the coil, and there is a gap between the rotor and the coil; the hub is sleeved outside the rotor, and a first bearing is connected between the hub and the rotor; the pusher is connected to the hub and the rotor; the rotor drives the hub to rotate through the pusher; the control circuit is electrically connected to the coil and the receiver; and when a battery is placed on the hub, the pusher is pressed against the receiver.
B65G 21/20 - Moyens incorporés ou fixés au châssis ou aux carters pour guider les porte-charges, les éléments de traction ou les charges portées sur les surfaces mobiles
B65G 13/04 - Chemins de roulement comportant des rouleaux entraînés tous les rouleaux étant entraînés
B65G 43/08 - Dispositifs de commande actionnés par l'alimentation, le déplacement ou le déchargement des objets ou matériaux
17.
METHOD FOR RECOVERING LITHIUM BATTERY POSITIVE ELECTRODE PLATE
A method for recovering a positive electrode plate of a lithium battery is provided, including steps of: S1, reacting a material of the positive electrode plate with a metal salt in an aqueous solution, wherein the standard electrode potential of a metal in the metal salt is higher than that of aluminum; S2, dissolving and leaching a solid obtained in step S1 with a mixed solution of an acid and a reducing agent; and S3, defluorinating a leaching solution obtained in step S2, then extracting a transition metal in the defluorinated leaching solution, and precipitating and separating out lithium in a raffinate.
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
C22B 3/00 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés
C22B 3/38 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par extraction liquide-liquide utilisant des composés organiques contenant du phosphore
C22B 3/44 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par des procédés chimiques
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p. ex. des rognures, pour produire des métaux non ferreux ou leurs composés
Disclosed in the present invention are a magnetic aluminum-based adsorbent and a preparation method therefor. The preparation method comprises the following steps: mixing a carbon black slag powder, porous aluminum oxide and a polar solution, calcining same, then mixing the magnetic powder with a cross-linking agent, then injecting same into a forming mold for treatment and formation, then stripping same, and activating same, so as to obtain the magnetic aluminum-based adsorbent. The magnetic aluminum-based adsorbent prepared by the preparation method has a relatively high adsorption property and can adsorb low-concentration metal ions in wastewater generated by wet recovery of waste batteries well.
B01J 20/30 - Procédés de préparation, de régénération ou de réactivation
B01J 20/08 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant des oxydes ou des hydroxydes des métaux non prévus dans le groupe contenant de l'oxyde ou de l'hydroxyde d'aluminiumCompositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant des oxydes ou des hydroxydes des métaux non prévus dans le groupe contenant de la bauxite
B01J 20/20 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant du carbone libreCompositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant du carbone obtenu par des procédés de carbonisation
B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
The present application belongs to the technical field of battery materials, and discloses an aluminum-doped needle-like cobaltosic oxide and a preparation method therefor. The preparation method comprises the following steps: mixing a waste battery powder and an amino acid, adjusting the pH until an alkaline state is reached, and subjecting same to solid-liquid separation to obtain an aluminum-removed battery powder and a first filtrate; adding an acid to the aluminum-removed battery powder, mixing same, and subjecting same to solid-liquid separation to obtain a cobalt-containing acid solution and a copper-containing slag; adding, in a dropwise manner, a templating agent to the cobalt-containing acid solution, then adding an alkali to adjust the pH, centrifuging same, and subjecting same to a heat treatment to obtain an aluminum-doped needle-like cobaltosic oxide.
The present disclosure discloses a silicon-aluminum-iron composite material and a preparation method therefor and use thereof, and belongs to the technical field of wastewater treatment. The silicon-aluminum-iron composite material comprises an inner core and an outer shell wrapping the inner core; the inner core is a silicon-aluminum-based hollow sphere; the outer shell contains iron element; and there are holes on the silicon-aluminum-iron composite material. The silicon-aluminum-iron composite material of the present disclosure improves the specific surface area of the silicon-aluminum-iron composite material through structural adjustment. When it is used to adsorb heavy metal ions, the adsorption sites are correspondingly increased, which finally improves the adsorption capacity for heavy metal ions.
B01J 20/02 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique
B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
The present application discloses a nickel-cobalt-manganese ternary positive electrode material nanorod and the use thereof. The chemical general formula of the nickel-cobalt-manganese ternary positive electrode material nanorod is LiNi1-x-y-zCoxMnyAlzO2, where 0
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
22.
METHOD FOR PREPARING POROUS MICROSPHERE CARBON ANODE MATERIAL AND APPLICATION THEREOF
The present disclosure discloses a method for preparing a porous microsphere carbon negative electrode material and an application thereof, the method comprising steps of: mixing plant fiber with a halogenated lithium salt to obtain a mixed solid, heating the mixed solid and introducing an oxidizing gas to obtain a pre-dissociated product; mixing the pre-dissociated product with a dissociation solution and heating for reaction to obtain a dissociated cellulose solution; and adding a hybrid to the dissociated cellulose solution to obtain a hybrid solution, spray-drying the hybrid solution to obtain a microsphere precursor, and heating the microsphere precursor in an inert atmosphere to obtain the porous microsphere carbon negative electrode material.
The present disclosure discloses a method for recovering active material from waste battery by desorption, comprising steps of: reacting wound cores of cathode and anode current collectors of waste battery with carbon tetrachloride and chlorine to obtain remaining wound cores, a solution of aluminum chloride in carbon tetrachloride and a first desorption powder of cathode; soaking the remaining wound cores and the first desorption powder of cathode in water to obtain soaked wound cores, a lithium salt solution and a second desorption powder of cathode; and reacting the soaked wound cores with nitric acid to obtain a copper nitrate solution and a desorption powder of anode. The waste lithium-ion battery only needs to be discharged and disassembled, and no shredding process is required, which avoids steps of shredding and sorting, reduces equipment investment. In addition, cathode and anode materials can be effectively recovered, and the product has high economic value.
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
B09B 3/40 - Destruction de déchets solides ou transformation de déchets solides en quelque chose d'utile ou d'inoffensif impliquant un traitement thermique, p. ex. évaporation
B09B 3/70 - Traitement chimique, p. ex. ajustement du pH ou oxydation
The present disclosure discloses a prelithiation reagent for a lithium-ion battery (LIB), and a preparation method therefor and use thereof. The prelithiation reagent for the LIB has a chemical formula of Li5FeO4@C; and the prelithiation reagent for the LIB has a structure of secondary particles generated from the agglomeration of Li5FeO4 primary particles, and carbon is coated on a surface of the Li5FeO4 primary particles. In the present disclosure, a carbon source is mixed with a soluble salt of Fe, such that Fe ions are attached to the carbon source; then aqueous ammonia is added, such that a hydroxide with small particles and high dispersibility is generated; and then a solvothermal reaction is conducted to obtain a nano-scale oxide.
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
25.
METHOD FOR PREPARING GRAPHENE-BASED SODIUM ION BATTERY NEGATIVE ELECTRODE MATERIAL
Disclosed is a method for preparing a graphene-based sodium ion battery negative electrode material, including adding graphene oxide into ethanol absolute, carrying out ultrasonic treatment at a certain temperature to obtain a graphene oxide alcohol dispersion, then preparing a sodium hexanitritocobaltate solution, adding the graphene oxide alcohol dispersion into the sodium hexanitritocobaltate solution, carrying out solid-liquid separation to obtain a solid, isolating the solid from oxygen for calcination, and washing and drying to obtain a graphene-based sodium ion battery negative electrode material.
A waste battery module dismantling device, relating to the field of battery recycling. The device comprises a front-end conveying apparatus, a vertical milling center, a roller emergency treatment apparatus, an emergency water tank, and a rear-end conveying apparatus. The front-end conveying apparatus is used for transporting waste battery modules; the vertical milling center is arranged behind the front-end conveying apparatus and is used for dismantling the waste battery modules; the roller emergency treatment apparatus is arranged behind the vertical milling center and is used for discharging a waste battery module on fire; the emergency water tank is arranged below the roller emergency treatment apparatus and is used for receiving the waste battery module on fire; and the rear-end conveying apparatus is arranged behind the roller emergency treatment apparatus and is used for transferring the dismantled waste battery modules. According to the present application, module busbars can be automatically dismantled in batches, the dismantling process is safe and reliable, and the dismantling efficiency is high; in addition, the roller emergency treatment apparatus and the emergency water tank are further provided, thereby protecting the device and property.
A reflux unit and a sewage treatment system are disclosed. The reflux unit includes an input section, a treatment section and an output section which are sequentially communicated. The treatment section is configured for deoxidizing a reflux substance input by the input section. The treatment section is at least partially located above an aeration port of an aeration device or the treatment section is attached to a surface of the aeration device.
The invention discloses a mineralization method of a calcium chloride-type from lithium-containing salt lake brine by evaporation and brine mixing, comprising the following steps of: (1) naturally evaporating the calcium chloride-type from lithium-containing salt lake brine to precipitate sodium salt and potassium-containing mixed salt; and (2) when calcium in the brine is saturated, adding saturated solution of magnesium chloride in a certain proportion for brine mixing operation, and then naturally evaporating to precipitate carnallite, wherein a lithium-containing old brine with low potassium and sodium contents is obtained when magnesium in the brine is saturated. The method has the characteristics of simple process, simple and convenient operation, high potassium yield and easy extraction of lithium from lithium-containing brine, and has practical significance for the development and utilization of potassium and lithium resources in calcium chloride salt lakes.
A ligand-coated doped lithium iron phosphate, wherein, a general formula of the ligand-coated doped lithium iron phosphate is LiFePO4@Mn-T-C/N, wherein T is at least one of zinc, nickel, copper, iron, cobalt, gallium, or chromium.
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
C01B 25/45 - Phosphates contenant plusieurs métaux ou un métal et l'ammonium
30.
DEVICE FOR DISASSEMBLING POWER BATTERY MODULE AND METHOD FOR DISASSEMBLING POWER BATTERY MODULE
The present application provides a device for disassembling a power battery module and a method for disassembling a power battery module. The device for disassembling a power battery module comprises a rack, a feeding and discharging mechanism, a two-side clamping device, a bottom plate tearing down-pressing device, and a grabbing mechanism. The bottom plate tearing down-pressing device, the grabbing mechanism, the two-side clamping device, and the feeding and discharging mechanism are all provided on the rack. The bottom plate tearing down-pressing mechanism and the grabbing mechanism are both located above the feeding and discharging mechanism. When a power battery module to be disassembled enters the feeding and discharging mechanism, the two-side clamping device and the bottom plate tearing down-pressing device fix said power battery module, and the bottom plate tearing down-pressing device clamps and tears a bottom plate of the power battery module, thereby separating the bottom plate of the power battery module from a battery cell.
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
H01M 6/52 - Récupération des parties utiles des éléments ou batteries usagés
B23P 19/04 - Machines effectuant simplement l'assemblage ou la séparation de pièces ou d'objets métalliques entre eux ou des pièces métalliques avec des pièces non métalliques, que cela entraîne ou non une certaine déformationOutils ou dispositifs à cet effet dans la mesure où ils ne sont pas prévus dans d'autres classes pour assembler ou séparer des pièces
31.
Method for preparing copper-based negative electrode material by using waste battery
A method for preparing a copper-based anode material from a waste battery includes the following steps: (1) disassembling a waste battery and taking out an anode plate; (2) using the anode plate in step (1) as an anode and taking a copper foil current collector as a cathode, and placing the anode and the cathode in an electroplating solution for electroplating; (3) after the electroplating is completed, collecting anode powder separated from the anode and soaking the copper foil current collector in an acid solution; (4) washing and drying the soaked copper foil current collector; and (5) calcinating the copper foil current collector to obtain a copper-base anode material.
A method for preparing a zinc manganate anode material is disclosed. The method includes the following steps: (1) preparing a solution A containing a manganese ion and a solution B containing zinc alkali; (2) dispersing an adsorption carrier into the solution B; (3) using an alkali solution as a base solution and adding the solution A, the solution B and an oxidant solution to the base solution while stirring; (4) conducting a solid-liquid separation of the materials after reaction to obtain a solid; and (5) washing, drying and calcining the solid to obtain a zinc manganate anode material.
C01G 45/12 - Oxydes complexes comprenant du manganèse et au moins un autre élément métallique
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 10/054 - Accumulateurs à insertion ou intercalation de métaux autres que le lithium, p. ex. au magnésium ou à l'aluminium
33.
Pickling-free recovery process of battery electrode sheet
Disclosed in the present invention is a recovery process for a waste battery electrode sheet, the method comprising the following steps: subjecting a waste battery electrode sheet to shearing, drying and cold treatment, and then rolling and screening same to obtain a first positive electrode material and a first waste electrode sheet; subjecting the first waste electrode sheet to shearing, drying and cold treatment, and then rolling and screening same to obtain a second positive electrode material and a second waste electrode sheet; and roasting the first positive electrode material and the second positive electrode material to obtain a positive electrode powder. In the present invention, the aluminum content in the positive electrode material is reduced by means of step-by-step shearing, and the adhesion performance of a waste positive electrode plate binder is then reduced by means of vacuum freeze-drying and spraying with a quick-cooling agent. The aluminum foil of the positive electrode material does not easily break when being broken after vacuum freeze-drying, and the morphology and output of the aluminum foil after primary shearing and secondary shearing are basically unchanged.
A fixing assembly includes a connecting sleeve, a spike member, and an elastic member; the spike member is rotatably connected to the connecting sleeve; one end of the elastic member is connected to the connecting sleeve, and the other end of the elastic member is connected to the spike member; the elastic member at least helically surrounds and abuts against the outer peripheral wall of the spike member, and the elastic member is configured to generate elastic deformation when the spike member rotates relative to the connecting sleeve along a direction opposite to the helical surrounding direction of the elastic member; there is an included angle between the direction of elastic deformation and the axial extension direction of the spike member to form a helical convex elastic structure.
The present disclosure discloses a recycling method of a ternary material micropowder, and use thereof. The recycling method includes: washing the ternary material micropowder with water, and adding a coating agent and an promotor; subjecting a resulting mixture to a reaction under heating and pressurization, and filtering to obtain a coated base material; subjecting the coated base material to sintering, adding an extracting agent to a resulting sintered material, and stirring and filtering to obtain a filter residue; and subjecting the filter residue to drying, sieving, and iron removal to obtain a ternary cathode material. In the present disclosure, the coating agent and the promotor are added to achieve high-pressure hydrothermal coating for the micropowder. The coating agent can optimize the storage performance of the material and increase the life of the material.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
36.
Preparation method for and use of lithium silicate-based adsorbent
The present invention discloses a preparation method for and the use of a lithium silicate-based adsorbent. The method comprises: mixing and stirring butyl methacrylate, an acid and an organic solvent to obtain a first solution; adding lithium silicate, an initiator and N,N′-methylenebisacrylamide into the first solution, and heating and stirring same for a reaction to obtain a second solution; subjecting the second solution to low-temperature dehydration, cooling and drying to obtain a lithium silicate-based polymer; mixing the lithium silicate-based polymer with a third solution; and subjecting same to low-temperature carbonization under anoxic conditions, so as to obtain the lithium silicate-based adsorbent, wherein the third solution is obtained by mixing cotton fibers, tartaric acid, carboxymethylcellulose and water.
B01J 20/10 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant de la silice ou un silicate
B01J 20/30 - Procédés de préparation, de régénération ou de réactivation
C02F 1/28 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par absorption ou adsorption
C02F 103/34 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'industrie chimique non prévue dans les groupes
37.
METHOD FOR EFFICIENTLY REMOVING FLUORINE FROM SPENT LITHIUM BATTERY
Disclosed is a method for efficiently removing fluorine from a spent lithium battery. The method comprises: mixing aluminum and a sodium hydroxide solution for reaction to obtain a sodium metaaluminate solution; introducing sulfuric acid into the sodium metaaluminate solution, and stirring to react at a certain temperature to obtain a fluorine removal agent; adding a sodium fluoroaluminate seed crystal and the fluorine removal agent into an impurity-removed battery powder leaching solution, introducing a sodium carbonate solution at the same time, performing reaction at a certain temperature, controlling the pH value of a reaction endpoint, and performing solid-liquid separation after the reaction is finished to obtain a fluorine-removed liquid and filter residues; and adding the sodium hydroxide solution into the filter residues for reaction, and performing solid-liquid separation to obtain a filtrate containing fluorine and aluminum, and insoluble residues. According to the present invention, fluorine removal is induced by adding the sodium fluoroaluminate seed crystal; and during fluorine removal, the seed crystal sodium fluoroaluminate is firstly added into the battery leaching solution, and by means of induction of the seed crystal, combination of fluorine and aluminum in the solution can be accelerated to generate sodium hexafluoroaluminate, the reaction time is shortened, the fluorine removal efficiency is improved, and fluorine in the solution can be removed to be lower than 20 mg/L, thereby achieving the purpose of deep fluorine removal.
C22B 3/22 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par des procédés physiques, p. ex. par filtration, par des moyens magnétiques
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p. ex. des rognures, pour produire des métaux non ferreux ou leurs composés
4—COF-T-D@C—N; and the COF-T-D is a covalent organic framework. Due to an open hollow structure, the nitrogen-doped hollow cobaltosic oxide of the invention has a large specific surface area, thus having a large contact area with an electrolyte, which is convenient for lithium ions to transport therein. The open hollow structure also prevents a volume effect from being generated during charging and discharging, and nitrogen is introduced for doping, so that granules can be gradually activated to increase the specific surface area and active sites, a discharge (cycle) stability of the material is improved, and a rate performance of the material is improved.
Disclosed in the present invention is a method for recovering nickel from iron-aluminum slag obtained by battery powder leaching. The method comprises the following steps: adding a sulfuric acid solution into an iron-aluminum slag to dissolve, so as to obtain a sulfate solution; then adding an oxidizing agent; adding ammonia water and carbonate into the oxidized sulfate solution; adjusting the pH to 1.0-3.2 for reaction; separating ferric hydroxide to precipitate to obtain an iron-removed solution; adding carbonate into the iron-removed solution, adjusting the pH to 3.2-5.5 for reaction; separating aluminum hydroxide to precipitate to obtain an aluminum-removed solution; adding ammonia water to the aluminum-removed solution, adjusting the pH to 7.0-8.8 for reaction; washing and removing impurities to obtain a nickel complex; adding an oxidizing agent to the nickel complex to break the complex, so as to obtain a nickel-containing solution. By means of the present method, efficient separation of iron, aluminum and nickel in the iron-aluminum slag is efficiently achieved, the separation effect of iron, aluminum and nickel is improved, the loss of nickel is reduced, and the recovery rate of nickel is improved.
C22B 3/00 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés
C01F 7/441 - Déshydratation de l’oxyde ou de l'hydroxyde d'aluminium, c.-à-d. toutes les conversions d'une forme en une autre impliquant une perte d’eau par calcination
A metal sulfide negative material of a sodium ion battery and a preparation method thereof. The material has porous nanoparticles with a particle size of 5 nm to 500 nm, and the metal sulfide negative material of the sodium ion battery is at least one of zinc sulfide or copper sulfide. The preparation method includes the steps of preparing a mixed solution of stannous chloride and metal salt, adding polyvinylpyrrolidone into the mixed solution to obtain a solution A, introducing reaction gas into the solution A, aging after the reaction to obtain a precipitate, and soaking the precipitate in a persulfide solution to obtain the metal sulfide sodium ion battery negative material.
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
A disassembling and discharging device for battery recycling includes a crushing assembly, a high pressure tank, at least one pressure relief tank, and a filtering tank. The crushing assembly is provided with a first feed port and a first discharge port communicated with the first feed port; the high pressure tank is provided with a first inner cavity for containing discharging liquid, and the first inner cavity is communicated with the first discharge port; the pressure relief tank is provided with a second inner cavity, and the second inner cavity is communicated with the first inner cavity; and the filtering tank is provided with a third inner cavity, and the third inner cavity is communicated with the second inner cavity.
Disclosed in the present invention is a method for extracting nickel from a high matte nickel leaching residue. The method comprises: firstly, adding a crushed material of a high matte nickel leaching residue to an organic solvent in which sulfur is dissolved, heating same for reaction, and carrying out solid-liquid separation to obtain a first filtrate and a first filter residue; adding the first filter residue to a copper sulfate solution, heating same for reaction, and carrying out solid-liquid separation to obtain a second filtrate and a second filter residue; and evaporating, condensing and concentrating the second filtrate, and filtering same to obtain copper sulfate crystals and a nickel-containing filtrate. Throughout the whole reaction, only a small amount of sulfur and copper sulfate are consumed, and the organic solvent can be recycled.
C22B 3/22 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par des procédés physiques, p. ex. par filtration, par des moyens magnétiques
C22B 3/44 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par des procédés chimiques
43.
Layered sodium ion battery positive electrode material and preparation method therefor
H01M 4/485 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques d'oxydes ou d'hydroxydes mixtes pour insérer ou intercaler des métaux légers, p. ex. LiTi2O4 ou LiTi2OxFy
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
44.
Preparation method for Prussian blue sodium-ion battery positive electrode material
Disclosed is a preparation method for a Prussian blue sodium-ion battery positive electrode material, comprising: adding a first nonionic surfactant and an antioxidant into a sodium ferrocyanide solution to obtain a first solution; adding a second nonionic surfactant into a transition metal salt solution to obtain a second solution; in a protective atmosphere, adding the second solution into the first solution for a precipitation reaction; aging after the reaction has finished; collecting a precipitate, washing same, and carrying out vacuum drying on the washed precipitate; then soaking same in an alcohol solution containing sodium alkoxide; and then filtering same and steam drying to obtain a Prussian blue sodium ion battery positive electrode material. The method may relieve vacuum drying pressure and shorten drying time.
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
The disclosure belongs to the technical field of sodium ion battery materials, and discloses a preparation method of a hard carbon anode material and use thereof. The preparation method includes the following steps of: performing first sintering on starch, crushing, and introducing air and nitrogen for secondary sintering to obtain porous hard block granules; and performing third sintering on the porous hard block granules, and then continuously warming up to perform fourth sintering to obtain the hard carbon anode material. The hard carbon anode material prepared by the disclosure has a reversible capacity of no less than 330 mAh/g, excellent cycle stability and initial coulomb efficiency.
HUNAN BRUNP RECYCLING TECHNOLOGY CO , LTD. (Chine)
HUNAN BRUNP EV RECYCLING CO., LTD. (Chine)
Inventeur(s)
Yu, Haijun
Li, Aixia
Xie, Yinghao
Zhang, Xuemei
Chen, Kang
Li, Changdong
Abrégé
A gas absorption box includes a box body, at least one gas absorption member and an outer housing assembly, the box body has an accommodating cavity; the gas absorption member is elastic and is provided with a first inner cavity, and the first inner cavity is in communication with the outside of the box body; and the outer housing assembly is arranged in the accommodating cavity and is elastically connected to the box body, and the outer housing assembly has a second inner cavity for accommodating a gas absorbent, the second inner cavity being in communication with the first inner cavity, and the gas absorption member being capable of absorbing gas for the second inner cavity. When battery powder or some positive-electrode materials for batteries are transported, hydrogen generated by the battery powder or some positive-electrode materials for batteries gathers towards the upper portion of a ton bag.
B65D 81/32 - Réceptacles, éléments d'emballage ou paquets pour contenus présentant des problèmes particuliers de stockage ou de transport ou adaptés pour servir à d'autres fins que l'emballage après avoir été vidés de leur contenu pour emballer plusieurs matériaux différents qui doivent être maintenus séparés avant d’être mélangés
B65D 90/00 - Parties constitutives, détails ou accessoires des grands réceptacles
47.
Rod-shaped sodium ion positive electrode material, preparation method therefor and application thereof
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
C01B 25/45 - Phosphates contenant plusieurs métaux ou un métal et l'ammonium
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 10/054 - Accumulateurs à insertion ou intercalation de métaux autres que le lithium, p. ex. au magnésium ou à l'aluminium
48.
Method for extracting lithium from waste lithium battery
The present disclosure discloses a method for extracting lithium from waste lithium batteries, which comprises: leaching positive electrode powder of the waste lithium battery in hydrochloric acid, and obtaining leaching solution by filtering; removing copper and iron from the leaching solution, and then introducing hydrogen sulfide gas for reaction, and performing solid-liquid separation to obtain first filter residue and first filtrate; adding potassium permanganate to the first filtrate, and performing solid-liquid separation to obtain second filter residue and second filtrate; performing spray pyrolysis on the second filtrate to obtain solid particles and tail gas, washing the solid particles with water to obtain a lotion, washing and collecting the tail gas and then mixing the tail gas with the lotion to obtain lithium salt solution. In the present disclosure, the positive electrode powder is leached with hydrochloric acid to obtain the hydrochloric acid leaching solution, and hydrogen sulfide is used to precipitate nickel and cobalt after removing the copper and iron impurities in the leaching solution in turn, and potassium permanganate is added to precipitate manganese ions to generate manganese dioxide. Spray pyrolysis converts the aluminum and magnesium in the solution into oxides and lithium salt is separated. The entire reaction process does not require organic solvent extraction and reduces the loss of lithium.
The present invention relates to a method for preparing nickel sulfate using low-nickel ferronickel is disclosed. The method comprises the following steps: (1) grinding ferronickel to obtain ferronickel powder, and then sintering the ferronickel powder with an oxidant to prepare ferronickel oxide powder; (2) adding sulfuric acid to the ferronickel oxide powder prepared in step (1), mixing, heating, and washing with water to prepare a sulfate salt water washing solution; (3) adding a base to the sulfate salt water washing solution prepared in step (2) to adjust the pH value, then adding a fluoride salt to form a precipitate, filtering to remove the precipitate, and drying the filtrate to obtain nickel sulfate. The method provided in the present invention can improve the efficiency of preparing nickel sulfate, reduce the loss of nickel, and prepare nickel sulfate with high purity, the content of Ni potentially reaching 19.73%-21.34%.
Disclosed is a preparation method of porous sodium iron phosphate used as a sodium ion battery cathode material, which includes: mixing ferrous nitrate, silver nitrate and a reducing agent to prepare a mixed solution, adding the mixed solution dropwise to a carbonate solution for reaction to obtain a precipitate, mixing the precipitate with sodium dihydrogen phosphate and sodium iodide and then grinding, sintering the ground material under the condition of air isolation, and soaking the sintered material in an organic solvent to obtain porous sodium iron phosphate used as a sodium ion battery cathode material.
C01B 25/45 - Phosphates contenant plusieurs métaux ou un métal et l'ammonium
H01M 4/1397 - Procédés de fabrication d’électrodes à base de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFy
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
51.
PREPARATION METHOD OF HARD CARBON ANODE MATERIAL AND USE THEREOF
The present disclosure discloses a preparation method of a hard carbon (HC) anode material and use thereof. The preparation method includes the following steps: mixing a substance A, a first alcohol liquid, and an oxidant to obtain a peroxide gel of the substance A, and dissolving a substance B in a second alcohol liquid to obtain an amino-containing solution; mixing the peroxide gel of the substance A with the amino-containing solution to allow a reaction to obtain a post-reaction slurry; and lyophilizing the post-reaction slurry to obtain a dry powder, subjecting the dry powder to calcination in a protective atmosphere to obtain a calcined material, soaking the calcined material in an acid liquid, and water-washing and drying to obtain the HC anode material.
Disclosed are a preparation method of a carbon dioxide capture agent and an application thereof. The method includes: mixing a graphite dispersion, an organic acid solution, a metal salt solution and a silica sol to obtain an organic-inorganic composite gel; standing and aging the organic-inorganic composite gel, drying the same and then carbonizing the same by microwave in a mixed atmosphere of inert gas and sulfur dioxide to obtain an intermediate product; and subjecting the intermediate product to acid washing or alkali washing to obtain a defective carrier, then mixing the defective carrier with an amine substance for ultrasonic treatment and drying to obtain the carbon dioxide capture agent.
B01D 53/22 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par diffusion
B01D 53/02 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse
B01J 20/22 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance organique
The invention belongs to the field of battery material recovery, and discloses a preparation method and application of heterosite phosphate. The method comprises the following steps: mixing lithium iron phosphate with a solvent, adding an acid solution, and adjusting the pH to obtain an acidic lithium iron phosphate liquid; adding a transition metal additive to the acidic lithium iron phosphate liquid, and performing leaching in an intensifying micro-environment, followed by filtrating to obtain heterosite iron phosphate and a lithium-rich solution. The leaching rate of lithium in the leaching solution reaches 90.5-99.9%, and both of the iron and phosphorus content in the leaching solution are less than 0.1 ppm; the recovered heterosite iron phosphate has a purity of 99.9%, and the recovery rate of the heterosite iron phosphate is 99.3%.
A method for preparing a refractory material from waste battery residues. The method comprises the following steps: (1) disassembling waste batteries, then sorting same to obtain positive and negative electrode powders, leaching the positive and negative electrode powders with an acid, filtering same to obtain a graphite slag, and then subjecting the filtrate to copper removal, followed by the addition of an alkali for a precipitation reaction, wherein the resulting precipitate is an iron-aluminum slag; (2) wrapping the graphite slag obtained in step (1) with wet clay to form an inner core material, then mixing wet clay with the iron-aluminum slag, wrapping the inner core material with same, and aging the wrapped inner core material to obtain a blank; (3) pre-sintering, calcining and cooling the blank prepared in step (2) to obtain a fired product; and (4) washing and drying the fired product to obtain the refractory material.
The present invention provides a method for directly preparing nickel sulfate from low nickel matte, a nickel sulfate and an application thereof, the method comprising the following steps: a) pre-treating a low nickel matte to obtain ferronickel powder; b) mixing the ferronickel powder with a sulfuric acid solution, stirring, dissolving, and then evaporating, to obtain a supersaturated sulfate solution; c) cooling the supersaturated sulfate solution to −5° C.-0° C., and performing suction filtration to obtain an insoluble solid; d) washing the insoluble solid with water, and removing impurities from the filtrate to obtain a nickel hydroxide precipitate; impurity removal comprising successively removing iron, and removing calcium and magnesium; e) washing the nickel hydroxide precipitate with water, acid-dissolving and evaporating to obtain nickel sulfate. The present invention increases the amount of nickel recovered, the purity of nickel sulfate being 18.10%-19.24% nickel, and the recovery rate being 94.8%-97.1%.
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
Disclosed in the present invention is a method for extracting valuable metal from low-matte nickel converter slag. The method comprises: mixing low-matte nickel converter slag and quicklime then calcinating, obtaining a calcinated material; grinding and magnetically separating the calcinated material, obtaining silicate and iron-rich slag; adding a strong alkali solution to the iron-rich slag to perform leaching processing, and performing solid-liquid separation, obtaining a filtrate and a residue; mixing the residue with an acid solution, performing oxygen pressure acid leaching, and performing solid-liquid separation, obtaining a leachate and iron oxide; introducing hydrogen sulfide gas into the leachate, adjusting the pH, and performing solid-liquid separation, obtaining a copper sulfide precipitate and a nickel-cobalt-containing filtrate. In the present invention, first, removing silicon dioxide is removed by means of calcination to prepare silicate, then iron oxide is prepared by means of acid leaching, and finally metal separation is performed on the leachate, causing various components of the converter slag to be effectively utilized. The process flow of the present invention is short and effectively utilizes each component of the low-matte nickel converter slag, waste is turned into valuable material, and the loss of valuable metal elements is reduced.
Disclosed are a method for selectively extracting lithium from a retired battery and an application of the method. According to the method, on the basis of an ion exchange effect between a divalent manganese ion and a lithium ion, a positive electrode material and a divalent manganese salt are mixed according to a certain proportion and prepared into a slurry, and the divalent manganese salt and the positive electrode material are fully mixed by means of a ball milling process, such that a lattice structure of the positive electrode material is effectively damaged, thereby reducing activation energy of exchange of the divalent manganese ion and the lithium ion and greatly reducing reaction energy required by a subsequence lithium extraction process. A mixed material after ball milling is roasted at a lower temperature such that the bivalent manganese in the manganese salt occupies a lithium position in a layered structure, and manganese-lithium replacement is directly performed to obtain a pure lithium-containing leaching solution. The present method greatly improves the leaching rate and selectivity of lithium. The present invention uses a mode of first performing ball-mill mixing and then performing roasting, and thus has low power consumption, high safety, good leaching rate and selectivity of lithium, and wide application prospects.
Disclosed are a nickel-iron wet treatment method and an application thereof. The treatment method comprises: in a high-pressure oxygen environment, mixing a crushed nickel-iron material, sulphuric acid and a corrosion aid, performing an acid leaching reaction, then performing solid-liquid separation on slurry subjected to acid leaching, adding an oxidant into the obtained filtrate, performing heating, removing the corrosion aid, adding a precipitating agent into the filtrate, controlling the pH value of the filtrate, and performing solid-liquid separation to obtain a ferric hydroxide precipitate and a nickel-containing filtrate; and performing extraction and back extraction on the nickel-containing filtrate to prepare battery-grade nickel sulphate. According to the present invention, the nickel-iron is subjected to oxidation acid dissolution in cooperation with the corrosion aid under the high-pressure oxygen and acidic conditions; the nickel-iron is extremely prone to oxidation in the high-pressure oxygen environment; and a strong oxidant is added into the filtrate subsequently, so that ferrous ions in the filtrate are completely converted into ferric ions, and the corrosion aid can be oxidized to generate pollution-free carbon dioxide and water, thereby avoiding the impact of the corrosion aid on the subsequent extraction process.
C22B 3/22 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par des procédés physiques, p. ex. par filtration, par des moyens magnétiques
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p. ex. des rognures, pour produire des métaux non ferreux ou leurs composés
59.
Doped sodium vanadium phosphate and preparation method and application thereof
A doped sodium vanadium phosphate and a preparation method and application thereof. Preparation steps of a nitrogen-doped peony-shaped molybdenum oxide in raw materials of the doped sodium vanadium phosphate are as follows: adding a regulator into a molybdenum-containing solution for reaction, concentrating and thermal treatment to obtain a peony-shaped molybdenum oxide; and dissolving the peony-shaped molybdenum oxide in a conditioning agent, and adding an amine source for standing, centrifuging, washing and heat treatment, thus obtaining the nitrogen-doped peony-shaped molybdenum oxide.
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
H01M 10/054 - Accumulateurs à insertion ou intercalation de métaux autres que le lithium, p. ex. au magnésium ou à l'aluminium
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
60.
Preparation method for nano ferric phosphate with low sulfur content
A method for preparing nano iron phosphate with low sulfur content. The method may include: S1: mixing a phosphorus source and an iron source to obtain a raw material solution, then adding alkali and a surfactant, adjusting a pH, and stirring and reacting to obtain an iron phosphate dihydrate slurry, S2: adding phosphoric acid solution into the iron phosphate dihydrate slurry, adjusting the pH, heating and stirring for aging, and filtering to obtain iron phosphate dihydrate, S3: adding water into the iron phosphate dihydrate for slurrying, and grinding to obtain a ground slurry; and S4: adding the ground slurry into a washing solution to wash, carrying out solid-liquid separation, and calcining a solid phase to obtain the nano iron phosphate with low sulfur content.
The present disclosure discloses a preparation method of a Ni-Rich ternary precursor and use thereof. The preparation method includes the following steps: under specified conditions, feeding an alkali liquor and a metal salt solution simultaneously for a precipitation reaction to obtain particles with D50 of 7.0 μm to 15.0 μm; continuously feeding a seed crystal, and after D10 of the particles is adjusted to 2.0 μm to 7.0 μm, stopping feeding the seed crystal; continuously feeding the alkali liquor and the metal salt solution, and collecting an overflow material; and when a particle size grows to D50 of 7.0 μm to 15.0 μm once again, repeating the above operation of adding a seed crystal, and continuously collecting an overflow material; and washing, drying, and sieving the collected materials to obtain the Ni-Rich ternary precursor.
The present disclosure discloses a preparation method of a ternary precursor, including: S1: mixing a first metal salt solution with a soluble nickel salt, a soluble cobalt salt, and a soluble manganese salt, ammonia water, and a sodium hydroxide solution, adjusting a pH, and heating and stirring a resulting mixture to allow a reaction; and aging and filtering a resulting slurry to obtain a precursor seed crystal; S2: adding the precursor seed crystal to a dilute acid solution, and stirring and filtering a resulting mixture to obtain an acidified seed crystal; and S3: mixing a second metal salt solution with a soluble nickel salt, a soluble cobalt salt, and a soluble manganese salt, a sodium hydroxide solution, and the acidified seed crystal, adjusting a pH, and heating and stirring a resulting mixture to allow a reaction; and aging, filtering, and drying a resulting slurry to obtain the ternary precursor.
The present disclosure belongs to the technical field of battery recycling, and discloses a recycling method and use of lithium iron phosphate (LFP) waste. The method includes the following steps: mixing the LFP waste with water to prepare a slurry; adjusting a pH of the slurry to higher than 7.0 with an alkali, and heating to react; filtering a resulting mixture to obtain a filter residue; dissolving the filter residue in an acid, and filtering to obtain a filtrate; adding an oxalate-containing solution to react, and aging and filtering a resulting mixture to obtain a filter cake and a precipitation mother liquor; and subjecting the filter cake to slurrying, washing, and free water removal to obtain ferrous oxalate.
The present disclosure discloses a high-performance lithium-nickel-manganese-cobalt oxide (LNMCO) cathode material for power batteries and a preparation method thereof, and belongs to the technical field of lithium-ion battery (LIB) materials. The preparation method of an LNMCO cathode material of the present disclosure combines a melting and mixing method, a spray drying method, a sol-gel method, and a high-temperature solid-phase method to achieve thorough mixing of various components of a precursor, such that a prepared product has a uniform particle size, excellent electrochemical performance, and high cycling stability. The method has simple operation steps, low raw material cost, small time consumption, and high production efficiency, and can realize industrialized large-scale production. The present disclosure also provides an LNMCO cathode material prepared by the method, which has high specific charge/discharge capacity, thermal stability, and cycling stability.
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
65.
METHOD FOR RECOVERING ALUMINUM RESIDUE WITH CONTROLLED PARTICLE SIZE, AND USE THEREOF
The present disclosure belongs to the technical field of battery recycling, and discloses a method for recovering an aluminum residue with a controlled particle size, and use thereof. The method includes the following steps: crushing and sieving a positive electrode sheet of a waste power battery, then, crushing at −198° C. to −196° C. with addition of liquid nitrogen to obtain a granular material; roasting, cooling, and grinding the granular material, adding water, shaking, settling into layers, and separating the layers to obtain a positive electrode active powder layer, a transition layer, and an aluminum residue particle layer; and shaking the aluminum residue particle layer and the transition layer for a second time, settling into layers, and collecting aluminum residue particles and a positive electrode active powder.
The present disclosure discloses a method for recycling iron phosphate waste and use thereof. The method includes: mixing the iron phosphate waste with an acid liquid for dissolution to obtain an iron-phosphorus solution; taking a small portion of the iron-phosphorus solution to prepare an iron phosphate precipitating agent; adding the iron phosphate precipitating agent to a remaining portion of the iron-phosphorus solution to react to obtain an iron phosphate dihydrate precipitate; and keeping a portion of the iron phosphate dihydrate precipitate as a precipitating agent for a reaction in a subsequent batch, and preparing a remaining portion of the iron phosphate dihydrate precipitate into anhydrous iron phosphate. In the present disclosure, an iron phosphate precipitating agent is prepared and used for the subsequent preparation of iron phosphate, and iron phosphate obtained in each preparation can be used for the next preparation of iron phosphate.
The present disclosure belongs to the technical field of metal oxide materials, and discloses a synthesis method of cobalt hydroxide and cobalt hydroxide. The synthesis method includes: (1) stirring and heating ammonium citrate, introducing a protective gas, adding a cobalt salt and a mixed alkali liquor to allow a reaction, and adjusting a pH to obtain a cobalt hydroxide slurry; and (2) subjecting the cobalt hydroxide slurry to alkali-leaching, filtering, and slurrying a resulting filter residue; and washing a resulting slurry with a detergent, and drying the resulting slurry to obtain the cobalt hydroxide. In the present disclosure, ammonium citrate is used as a base solution, and a cobalt solution and a mixed alkali liquor are added to synthesize a cobalt hydroxide slurry in one step under a protective atmosphere.
The present disclosure discloses a method for preparing nickel sulfate from ferronickel, including: S1: in a high-pressure oxygen environment, mixing crushed ferronickel with sulfuric acid, introducing a carbon monoxide gas to allow a reaction, and conducting solid-liquid separation (SLS) to obtain a filtrate and a filter residue; S2: adding an oxidizing agent and a precipitating agent successively to the filtrate, controlling a pH of the filtrate, and conducting SLS to obtain a nickel-containing filtrate and an iron hydroxide precipitate; and S3: subjecting the nickel-containing filtrate to extraction and back-extraction to obtain a nickel sulfate solution. In the present disclosure, the carbon monoxide gas is introduced under high-pressure acidic conditions to first react with nickel and iron to form nickel tetracarbonyl and iron pentacarbonyl, and the nickel tetracarbonyl and iron pentacarbonyl are oxidized by oxygen and then smoothly react with sulfuric acid to form nickel sulfate and iron sulfate.
The present disclosure discloses a method for preparing a ternary cathode material with a molten salt and use thereof. The method includes: mixing a nickel salt, a cobalt salt, a manganese salt, a metal oxide and an acid liquor to obtain a mixed salt solution; concurrently adding the mixed salt solution, a sodium hydroxide solution and ammonia water to a base solution to allow a reaction to obtain a precursor; and mixing the precursor, a lithium source and a molten salt, and subjecting a resulting mixture to sintering, water-washing and annealing to obtain the ternary cathode material. In the present disclosure, a bismuth/antimony-doped ternary precursor is prepared, which is sintered with a molten salt, during which bismuth/antimony oxide is melted in the molten salt, then a resulting mixture is washed with water, and annealed to form a coating layer on a surface of the material.
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
70.
CATHODE MATERIAL DRYING DEVICE AND CATHODE MATERIAL DRYING PRODUCTION LINE
This application discloses a cathode material drying device and a cathode material drying production line. The cathode material drying device includes: a rotary kiln, where a kiln head and a kiln tail of the rotary kiln each are provided with a sealing structure and the rotary kiln can rotate relative to the sealing structure; and an exhaust system comprising an air inlet pipe, an air outlet pipe, and a first fan, where the air inlet pipe communicates with the kiln tail of the rotary kiln through the sealing structure; the air outlet pipe communicates with the kiln head of the rotary kiln through the sealing structure; and the first fan is arranged on the air inlet pipe and/or the air outlet pipe, so as to make an air flow direction in the rotary kiln opposite to a delivery direction of a cathode material.
The present disclosure discloses a preparation method of a layered carbon-doped sodium iron phosphate cathode material, including: placing a carbonate powder in an inert atmosphere, introducing a gaseous organic matter, and heating to allow a reaction to obtain a MCO3/C layered carbon material; and mixing the MCO3/C layered carbon material, a sodium source, ferrous phosphate, and a dispersing agent in an inert atmosphere, grinding a resulting mixture, washing and drying to remove the dispersing agent, and heating to allow a reaction in an inert atmosphere to obtain the layered carbon-doped sodium iron phosphate cathode material.
The present disclosure belongs to the technical field of battery materials, and discloses a silicon/carbon composite anode material, and a preparation method and use thereof. The preparation method includes the following steps: S1. dissolving a graphite anode powder in an acid solution, and conducting solid-liquid separation (SLS) to obtain a precipitate; and washing and drying the precipitate, adding a reducing agent, and subjecting a resulting mixture to heat treatment to obtain a purified graphite material; and S2. mixing a modified silicon powder with the graphite material, adding a resulting mixture to a polyimide (PI)-containing N,N-dimethylformamide (DMF) solution, and stirring; and subjecting a resulting mixture to distillation and then to carbonization to obtain the silicon/carbon composite anode material.
B09B 3/70 - Traitement chimique, p. ex. ajustement du pH ou oxydation
H01M 4/38 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'éléments simples ou d'alliages
H01M 4/587 - Matériau carboné, p. ex. composés au graphite d'intercalation ou CFx pour insérer ou intercaler des métaux légers
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
Disclosed in the present invention is a recovery method for spent lithium battery materials. The recovery method comprises the following steps: (1) subjecting a battery powder obtained by disassembling cells of spent lithium batteries to ammonia leaching, and performing solid-liquid separation to obtain a leachate and filter residues; (2) adding a fluorine-phosphorus precipitating agent to the leachate obtained in step (1), and performing solid-liquid separation to obtain a filtrate in which fluorine-phosphorus residues are removed; (3) subjecting the filtrate obtained in step (2) to ammonia distillation and solid-liquid separation to obtain a filtrate and filter residues containing basic cupric carbonate and lithium carbonate; (4) washing the filter residues obtained in step (3) with water, and separating the basic cupric carbonate to obtain washing water containing lithium carbonate; and (5) subjecting the filter residues obtained in step (1) to reduction roasting, then washing same, adding the washing water obtained in step (4) thereto, extracting lithium by means of water leaching, and filtering same to obtain a lithium-extracted filtrate. The method can recover valuable metal in spent lithium battery materials without extraction, and thus improves the recovery rate of the valuable metal.
Disclosed in the present invention are a preparation method for and the use of a high-performance hard carbon material. The method comprises: mixing starch, a phosphate and water, impregnating same, and drying the resulting impregnated material to obtain impregnated starch; subjecting the impregnated starch to a heat treatment in an inert atmosphere to obtain starch-based carbon microspheres; and introducing a gas mixture of carbon dioxide and an inert gas into the starch-based carbon microspheres, and subjecting same to a carbonization reaction to obtain a hard carbon material. In the present invention, starch and a phosphate are mixed for a cross-linking reaction, N doping of the material is realized by introducing an amino group, the starch and the phosphate are carbonized after the cross-linking reaction, and the raw materials are all kept in a spherical shape during the whole process, thereby avoiding the problem of reduction in the specific capacity and the initial effect due to an increase in an SEI film caused by the production of foamy carbon blocks by means of direct carbonization.
Disclosed in the present invention are a preparation method for a closely coated cobalt oxide and the use thereof, the preparation method comprising: synthesizing spherical cobalt hydroxide particles by a coprecipitation method; after drying and dehydrating same, uniformly mixing same with zirconium alkyl carboxylate/aluminum alkyl carboxylate and zirconium hydroxide/aluminum hydroxide and coheating the mixture to enable the zirconium alkyl carboxylate/aluminum alkyl carboxylate and zirconium hydroxide/aluminum hydroxide to react with cobalt hydroxide on the surface layers of the particles, so as to tightly attach same to the surfaces of the cobalt hydroxide spherical particles; and finally, performing calcining to remove organic matters so as to form cobalt oxide spherical particles with closely coating layers on the surfaces. By using chemical bonds to connect the coating layers and a base material, the present invention makes the two more closely attached and not prone to pulverization and falling, thus greatly prolonging the service life of the coating layers, and improving cycle performance of the material.
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
Provided in the present invention are a backflow unit and a sewage treatment system. The backflow unit comprises an input section, a treatment section and an output section, which are in communication in sequence, wherein the treatment section is used for carrying out a deoxidation treatment on a backflow substance, which is input by means of the input section; and the treatment section is at least partially located above an aeration port of an aeration apparatus, or the treatment section is arranged on a surface of the aeration apparatus in an attached manner. Since the input section, the treatment section and the output section are in communication in sequence, a backflow substance is input into the treatment section along the input section; the treatment section carries out a deoxidation treatment on the backflow substance, which is input by means of the input section; and the backflow substance, which has been subjected to the deoxidation treatment, flows to the output section, and is output by the output section into an anaerobic tank, such that the backflow substance, which has been subjected to the deoxidation treatment by the treatment section and which enters the anaerobic tank, has a relatively low dissolved oxygen (DO) concentration, thereby avoiding the increase of DO content in the anaerobic tank. Therefore, high DO affecting the release of phosphorus-accumulating bacteria in the anaerobic tank and the denitrification of NOx-N is prevented, and the nitrogen and phosphorus removal effect of the anaerobic tank is improved, such that the treatment effect in the anaerobic tank is relatively good.
Provided in the present application are a waste power battery cell and a disassembling method therefor. The disassembling method for the waste power battery cell comprises: fixing a waste power battery cell; carrying out ring cutting on a metal case of the waste power battery cell so as to form a surface defect area on the metal case of the waste power battery cell, surface defect ring grooves with preset depth being formed in both sides of the surface defect area, and the preset depth being smaller than the thickness of the metal case; cutting one edge of the surface defect area so as to form a warping structure on the surface defect area of the metal case; tearing the warping structure to tear off the surface defect area from the metal case; and taking out tabs and electrode coils of the waste power battery cell. The disassembling method for a waste power battery cell can avoid the problem of short circuit of the internal structure of the waste power battery cell and further avoid the problem of on-fire explosion or waste gas generated by combustion during the disassembling process of the battery, thereby improving safety and environmental protection of battery disassembling.
The invention belongs to the technical field of batteries, and discloses a preparation method and application of a lithium cobalt oxide soft-pack battery. The preparation method comprises the following steps: preparation of a lithium cobalt oxide positive electrode; preparation of a graphite negative electrode; preparation of an aluminum plastic film; screening and tab welding the positive and negative electrode, then winding core and packing, injecting an electrolyte to a resulting pack, perform first sealing, formation, second sealing; followed by capacity grading to obtain the lithium cobalt oxide soft pack battery. The preparation method for the lithium cobalt oxide soft-pack battery in a laboratory environment at room temperature provided by the present invention has simple operation and low environmental requirements, can be used in laboratories without dry room conditions, and reduces research and development cost and laboratory maintenance cost.
H01M 4/1391 - Procédés de fabrication d'électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 10/0587 - Structure ou fabrication d'accumulateurs ayant uniquement des éléments de structure enroulés, c.-à-d. des électrodes positives enroulées, des électrodes négatives enroulées et des séparateurs enroulés
H01M 50/536 - Connexions d’électrodes dans un boîtier de batterie caractérisées par le procédé de fixation des conducteurs aux électrodes, p. ex. soudage
H01M 4/131 - Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
Provided in the present application are a new energy vehicle, and a CTP traction battery pack and an echelon disassembling method therefor. The echelon disassembling method for a CTP traction battery pack comprises: disassembling an upper cover plate assembly of a CTP traction battery pack; placing the CTP traction battery pack at a feeding position of a milling machine; performing a clamping operation on the CTP traction battery pack by means of a clamp; identifying electrode plate welding spots and electrode plate height information of the CTP traction battery pack by means of machine vision; acquiring the model of the CTP traction battery pack according to position information of the electrode plate welding spots and the electrode plate height information; calling a corresponding milling operation program according to the model of the CTP traction battery pack; according to the milling operation program, controlling the milling machine to mill and break electrode plates of the CTP traction battery pack in sequence; and freezing the CTP traction battery pack after the electrode plates are milled. Compared with the traditional manner of manually prying with a crowbar, manual intervention is reduced; moreover, the disassembling efficiency of a traction battery pack is improved, such that the disassembling process of a CTP traction battery pack is safer and more reliable, and the operation is simpler and more convenient.
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
H01M 50/249 - MonturesBoîtiers secondaires ou cadresBâtis, modules ou blocsDispositifs de suspensionAmortisseursDispositifs de transport ou de manutentionSupports spécialement adaptés aux aéronefs ou aux véhicules, p. ex. aux automobiles ou aux trains
80.
PRECURSOR WITH TRANSFORMED CRYSTAL FORM AND PREPARATION METHOD THEREOF
The disclosure discloses a precursor with a transformed crystal form and a preparation method thereof. The preparation method includes: (1) heating a carbonate solution, a cobalt salt to allow a reaction, and spray adding a carbonate solution to allow a reaction to obtain a cobalt carbonate slurry; (2) allowing the slurry to stand, spray adding a cobalt salt and a carbonate solution, and spray adding a cobalt salt using a single spray head at a flow rate of 1 m3/h to 3 m3/h and a carbonate solution using no less than three spray heads each at a flow rate of 0.2 m3/h to 5 m3/h to obtain cobalt carbonate with a transformed crystal form; and (3) further spray adding a cobalt salt and a carbonate solution to the cobalt carbonate with a transformed crystal form, heating to allow a constant-temperature reaction, and washing and calcining a product.
Disclosed in the present invention is a method for preparing nickel sulfate from a nickel-iron-copper alloy. The method comprises: in a high-pressure oxygen environment, mixing a nickel-iron-copper alloy crushed material, aqueous ammonia, ammonium sulphate, and a corrosion assisting agent, leaching, then performing solid-liquid separation on the leached slurry, adding a precipitant into a filtrate, and performing ammonia distillation to obtain a nickel-containing leachate; then adding an extractant into the nickel-containing leachate to extract nickel so as to obtain a nickel-containing extraction organic phase; and then adding sulfuric acid into the nickel-containing extraction organic phase to perform back extraction of nickel so as to obtain a nickel sulfate solution. According to the present invention, the nickel-iron-copper alloy is separated by using different properties of nickel and iron, nickel is dissolved in a hexamine complex of nickel, iron cannot be dissolved and then continues to be remained in a solid, after the filtrate is collected, the precipitant is added and ammonia distillation is performed to remove copper, the aqueous ammonia is recycled, and the copper ions react with the precipitant to generate a copper sulfide precipitate, and thus, copper in the filtrate is removed, and the purity of nickel sulfate is further improved.
The present disclosure discloses a preparation method and use of a high-performance modified lithium-nickel-manganese-cobalt oxide (LNMCO) nickel 55 material. In the preparation method of the present disclosure, a silica template-containing nano-precursor coated with a polymer is prepared by electrospinning, and then the nano-precursor is sintered in the air to effectively provide effective embedding and attachment sites for subsequent nickel plating; and after the nickel plating, the silica template is removed such that distributed mesopores are generated in situ on the precursor. The mesopores provide channels for the subsequent penetration of molten lithium into the interior of the precursor material. A final prepared material has a better ion and electron conduction structure compared with traditional granular materials. The present disclosure also discloses a material prepared by the method. The present disclosure also discloses an LIB including the high-performance modified LNMCO nickel 55 material.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
The present invention discloses a radially-structured nickel-based precursor and a preparation method thereof. An overall shape of the precursor is a secondary sphere formed by agglomeration of primary crystal grains; and the secondary sphere has a loose and porous network core inside and uniform and regular strip primary crystal grains outside, and the strip primary crystal grains grow outward perpendicularly to a surface of the core and are arranged radially and closely. The precursor structure of the present invention is more suitable for high-power battery cathode materials. The internal loose structure is more likely to form a void in the center during a preparation process of a cathode material, which helps to expand a contact area between an active material and an electrolyte.
A method for recovering lithium battery slurry, the method comprising: pretreating lithium battery slurry, and then subjecting the pretreated lithium battery slurry to centrifugal spray drying to separate a solid phase and a solvent. A device for the recovery of lithium battery slurry is a centrifugal spray drying system, and comprises a spray chamber (100), a cyclone separator (200), a condenser (400), a condensate storage tank (500), and a rectification tower (600); the system improves upon original centrifugal spray drying devices, and is designed to combine the processes of centrifugal spray drying and NMP condensation recovery, such that NMP can be directly recovered after separation of positive electrode material and the NMP.
The invention belongs to the technical field of lithium ion battery materials, and discloses a fast ionic conductor coated lithium-transition metal oxide material having a chemical formula of (1−x)Li1+a (Ni(1−m−n)ConMnm) 1−bMbO2·xLicAldTieM′fM″g (PO4)3 and a preparation method thereof. The fast ionic conductor coated lithium-transition metal oxide material of the present invention has lower impedance, excellent cycle performance and safety performance under high voltage, especially when the charging voltage is greater than 4.62V, 4.65V, or higher. The Lithium-transition metal oxide can be obtained by a primary calcination, and the final product of lithium-transition metal oxide material coated with fast ionic conductor can be obtained by a secondary calcination.
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
86.
SINTERING-RESISTANT MATERIAL, AND PREPARATION METHOD AND USE THEREOF
The present disclosure discloses a sintering-resistant material, and a preparation method and use thereof. The sintering-resistant material includes magnesium oxide, an anti-corrosive agent, an antioxidant, and a binder, where the anti-corrosive agent includes a barite powder and a porous graphite powder; the antioxidant includes aluminum carbide and an aluminum powder; the binder includes a metal chloride and a silica sol; and metals in the raw materials are all extracted from a hydrochloric acid leachate of an electric furnace slag. In the present disclosure, the preparation method of the present disclosure improves the resource utilization of the electric furnace slag. Magnesium and aluminum have the largest proportion among metal elements in the electric furnace slag, and thus magnesium oxide is used as the main material. In addition, other chloride salts leached out from the electric furnace slag by hydrochloric acid can be directly or indirectly used.
C04B 35/04 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes à base d'oxyde de magnésium, d'oxyde de calcium ou de mélanges d'oxydes dérivés de la dolomite à base d'oxyde de magnésium
C04B 35/622 - Procédés de mise en formeTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques
C04B 35/63 - Préparation ou traitement des poudres individuellement ou par fournées utilisant des additifs spécialement adaptés à la formation des produits
The present disclosure discloses a preparation method of platy aluminum-doped cobalt carbonate and use thereof. The preparation method includes the following steps: S1: mixing a cobalt salt, an aluminum salt, and a polyhydroxy compound to prepare a mixed solution; S2: mixing the mixed solution with an ammonium bicarbonate solution, adjusting a pH, and heating and stirring to allow a reaction to obtain a seed crystal solution; and S3: adding the mixed solution and an ammonium bicarbonate solution to the seed crystal solution, adjusting a pH, and heating and stirring to allow a reaction, during which a solid content in a slurry is controlled at 20% to 40% until a particle size in the slurry grows to a target value; and separating out, washing, and drying a solid phase to obtain the platy aluminum-doped cobalt carbonate.
The present disclosure discloses a preparation method of tungsten-doped cobalt tetraoxide and use thereof. The preparation method includes the following steps: dissolving a tungsten-containing compound and a molybdenum-containing compound in an alkali liquid to obtain a mixed solution; concurrently feeding the mixed solution, a cobalt salt solution, and a complexing agent into a base solution to allow a reaction to obtain a precipitate; roasting the precipitate in an oxygen-containing atmosphere to obtain a roasted material; and soaking the roasted material in a sodium sulfide solution to obtain the tungsten-doped cobalt tetraoxide. In the present disclosure, tungsten is doped, and tungsten has a large atomic radius, which stabilizes an internal structure of the material, expands the ion channel, and improves the cycling performance of the material; and molybdenum is removed through a soaking process, which provides atomic vacancies to further improve a specific capacity of the material.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
89.
PREPARATION METHOD FOR AND USE OF LITHIUM IRON PHOSPHATE
Disclosed are a preparation method for and a use of lithium iron phosphate. The preparation method comprises: adding a mixed solution of ferrous salt and ammonium dihydrogen phosphate, a citric acid solution and a pH regulator in concurrent flow into a first reactor for reaction, extracting the material in the first reactor into a second reactor, and adding a copper salt solution and a sodium hydroxide solution into the second reactor for reaction, wherein the material in the second reactor flows back into the first reactor; and mixing the solid material obtained by the reaction with a lithium source, and putting the mixture in an ammonia gas flow for calcining to obtain lithium iron phosphate. According to the method, a lithium iron phosphate precursor of a spherical structure can be prepared, so that the electrochemical performance of the subsequently prepared lithium iron phosphate material is improved, and the lithium iron phosphate material has relatively high electrical conductivity.
C01B 25/45 - Phosphates contenant plusieurs métaux ou un métal et l'ammonium
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
A method for recycling lithium from lithium clay, comprising: roasting lithium clay powder for the first time, mixing the primary roasted material with an additive, grinding to obtain a ground material, mixing the ground material with acid, roasting for the second time, and adding a leaching agent into the secondary roasted material for leaching to obtain a leachate. Lithium extraction of the lithium clay is realized on the basis of primary roasting, high-energy grinding and secondary acidification roasting, and the structural hydroxyl in the clay ore is removed by means of one-time roasting, such that the lattice spacing of the clay ore is increased, and the deintercalation and exchange of lithium ions are facilitated; then the structure of the clay ore is further damaged by means of high-energy grinding, such that ion exchange occurs between Na+/K+and Li+ in the clay ore; the separated lithium is converted into soluble lithium salt by means of secondary acidification roasting, and meanwhile, the acid is used for deeply extracting lithium in the clay ore in the roasting process, and the process is suitable for leaching lithium from low-grade lithium clay.
Disclosed in the present invention are a preparation method for high-conductivity lithium iron phosphate and the use thereof. The preparation method comprises the following steps: mixing ammonium bismuth citrate, a phosphorus source, a lithium source, a ferrous source, a reducing agent and water; subjecting the resulting mixed solution to a hydrothermal reaction and solid-liquid separation to obtain a solid material; and calcining the solid material in an inert atmosphere to obtain high-conductivity lithium iron phosphate. In the present invention, ammonium bismuth citrate and a reducing agent are subjected to a redox reaction during the synthesis process to generate elemental bismuth, such that metal bismuth is dispersed into a synthesized lithium iron phosphate precipitate; therefore, the conductivity of the material is improved, and a high-conductivity lithium iron phosphate positive electrode material is obtained.
A method for recovering lithium and silicon from an MVR system slag sample, comprising the following steps: (1) acid-leaching the MVR system slag sample to obtain an acid-leached solution and acid-leaching residues; (2) adding an alkali solution to the acid-leached solution to adjust the pH value, so as to obtain a lithium solution; (3) evaporating and concentrating the lithium solution to obtain a concentrated lithium solution; (4) adding an alkali solution into the acid-leaching residues for alkali dissolution, and preparing a sodium carbonate solution from the obtained alkali-dissolved solution; (5) mixing the concentrated lithium solution with the sodium carbonate solution for high-temperature lithium precipitation reaction to obtain lithium carbonate slurry; (6) filter-pressing and washing the lithium carbonate slurry to obtain crude lithium carbonate, wherein the filtrate is a lithium precipitation mother liquor, and the lithium carbonate wash water is returned to step (3) as a lithium liquid; and (7) filter-pressing the decarburized and pH-adjusted lithium precipitation mother liquor to obtain filter residues and a pH-adjusted filtrate, wherein the filter residues are in the form of silicic acid gel, and the pH-justed filtrate is returned to step (3) as lithium liquid. The method enables effective recovery of lithium and silicon from the slag sample, and avoids resource waste.
Disclosed in the present invention are a management method platform for power battery recycling, and a management platform. The management platform is used for executing the management method. In the present invention, the number of comprehensive utilization standard packets, the number of recycling standard packets and the number of echelon utilization standard packets can be determined according to attribute information of target vehicles within the range of a target region; and the number of expected recycling standard packets of power batteries in the target region is further determined on the basis of the number of comprehensive utilization standard packets, the number of recycling standard packets and the number of echelon utilization standard packets, thereby facilitating efficient capacity prediction for battery recycling in a certain region.
G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"
A ferromagnetic object acquisition device for a lithium battery positive electrode material workshop environment, comprising: a box wall of a collection box (100) is provided with an opening (110); a collection mechanism (200) is installed in the collection box (100), and comprises a magnetic attraction plate set (210) capable of moving relative to the opening (110), and when moving to the opening (110), the magnetic attraction plate set (210) is used for cooperating with the opening (110) to form a cover sealing state; an air suction mechanism (300) comprises a fan (310) and a first air duct plate (320), the first air duct plate (320) is mounted outside the opening (110), an air duct (330) is formed between the first air duct plate (320) and the magnetic attraction plate set (210) in the cover sealing state, and the fan (310) is mounted at one end of the air duct (330); a weighing mechanism (400) is mounted in the collection box (100); and a magnetic attraction mechanism (500) is mounted in the collection box (100). The magnetic attraction plate set (210) is used in cooperation with the air suction mechanism (300) to ingeniously form the air duct (330), thereby increasing the air pressure. The magnetic attraction plate set (210) serves as a part of the air duct (330), and a ferromagnetic object is fully separated from the air under the magnetic attraction effect of the magnetic attraction plate set (210). The overall structure is high in detection precision of the ferromagnetic object in the air.
G01N 5/00 - Analyse des matériaux par pesage, p. ex. pesage des fines particules séparées d'un gaz ou d'un liquide
G01N 1/02 - Dispositifs pour prélever des échantillons
G01G 17/04 - Appareils ou méthodes pour peser un produit ayant une forme ou des propriétés particulières pour peser des fluides, p. ex. des gaz, des produits pâteux
95.
POROUS IRON PHOSPHATE AND PREPARATION METHOD THEREFOR
A porous iron phosphate and a preparation method therefor. The preparation method comprises the following steps: (1) mixing a ferrophosphorus solution and an aluminum alkali solution for a co-precipitation reaction; (2) subjecting the material obtained in step (1) to solid-liquid separation, so as to obtain a precipitate; (3) reacting the precipitate prepared in step (2) with hydrogen phosphide under heating conditions; (4) after the reaction is finished, cooling the precipitate treated in step (3), and then adding the precipitate to a weak acid solution for soaking; and (5) subjecting the material obtained in step (4) to solid-liquid separation, and then performing aerobic calcination to obtain the product.
C01B 25/45 - Phosphates contenant plusieurs métaux ou un métal et l'ammonium
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
96.
CATHODE MATERIAL PRECURSOR AND PREPARATION METHOD AND APPLICATION THEREOF
The invention relates to the field of battery materials, and discloses a cathode material precursor and a preparation method and application thereof. The chemical formula of the cathode material precursor is NixCoyMnz(OH)2, wherein 0.2≤x≤1, 0≤y≤0.5, 0≤z≤0.6, and 0.8≤x+y+z≤1. The cathode material precursor is in a shape of a stack of lamellae, and has a particle size broadening factor K, where K≤0.85. In the invention, the preparation process of the precursor is effectively controlled and adjusted by the controlled crystallization method combined with Lamer nucleation and growth theoretical model. The prepared precursor has morphology characteristics of concentrated particle size distribution and high proportion of {010} active crystal plane family, and has capacity retention up to 91.33% at a rate of 20C.
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
97.
COBALT-FREE NICKEL-MANGANESE CATHODE MATERIAL AND PREPARATION AND APPLICATION THEREOF
The invention relates to the technical field of battery materials and discloses a cobalt-free layered nickel-manganese cathode material and a preparation method and application thereof. The chemical formula of the cobalt-free layered nickel-manganese cathode material is LiaNixMnyMezO2@Mb, and Me is at least one selected from the group consisting of Zr, Al, W, Sr, Ti and Mg; M is at least one selected from the group consisting of Al2O3, CeO2, TiO2, Yb2O3, Nb2O5, La2O3, WO3, titanium sol, aluminum sol, titanium-aluminum sol, aluminum isopropoxide, butyl titanate, aluminum dihydrogen phosphate or lithium tungstate. The present invention achieves a shallow coating through high temperature calcination followed by metal oxide coating, which is beneficial to prevent the material from microcracks expansion caused by the material structure and internal stress change during the charging-discharging cycles.
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
98.
METHOD FOR PREPARING TERNARY CATHODE MATERIAL FROM MOLTEN SALT AND USE THEREOF
Provided are a method for preparing a ternary cathode material from a molten salt and use thereof. The method comprises: mixing a nickel salt, a cobalt salt, a manganese salt, a metal oxide, and an acid solution to obtain a mixed salt solution; adding the mixed salt solution, a sodium hydroxide solution and ammonia water into a base solution in a manner of parallel flow for reaction to obtain a precursor; mixing and roasting the precursor, a lithium source and a molten salt, washing a roasted material with water, and then carrying out an annealing treatment to obtain the ternary cathode material. Firstly, a bismuth/antimony-doped ternary precursor is prepared, and then a molten salt method is utilized for sintering, during which a bismuth/antimony oxide is melted in the molten salt; washing is carried out with water to remove the residual molten salt, and the residual bismuth/antimony oxide is subjected to an annealing reaction to form a cladding layer on the surface of the material, so that the cycling performance of the material is improved.
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/48 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
xy1-x-y22, where 0.5≤x≤0.85, and 0.05≤y≤0.25. The large-particle-size single-crystal ternary positive electrode material is in the form of single-crystal particles, and has a smooth surface, the D50 of the particles is 5.0-10.0 μm, and the specific surface area thereof is 0.3-0.8 cm2/g. In the present invention, a precursor and a lithium source are first subjected to solid-phase sintering to prepare a small-particle single-crystal positive electrode material, and the small-particle single-crystal positive electrode material is then subjected to molten salt sintering for single-crystal growth in the molten salt, so as to obtain a large-particle-size single-crystal positive electrode material, which has a small specific surface area, no sharp corners, a good cycling stability, and good safety.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
100.
Device for cutting connection of multi-piece module electrode
The present disclosure discloses a device for cutting connection of multi-piece module electrode which includes a stand, the stand is provided with a workbench and the workbench is connected with a height adjusting device. The device further includes an angle grinding device, the angle grinding device includes a polishing shaft and an angle grinder, the angle grinder is arranged on the polishing shaft, and the angle grinding device is provided with a saw blade. According to the characteristics of the module electrode, the angle grinding device is matched with the workbench to implement simultaneous electrode disconnecting operation of multiple electrodes of the module, so that the device not only has higher efficiency and better cutting effect, but also is suitable for universal saw blades, saves the cost, and is safer.