A method for manufacturing includes operating a beam system selectively to fuse and melt a powder layer to form each layer of a 3D article. Each layer includes at least one fused solid area that defines a dimensional parameter such as a width. When the dimensional parameter is above a threshold, the beam system is operated with a first operating mode that includes separately fused contour and hatch areas. When the dimensional parameter is below the threshold, the beam system is operated with a second operating mode that includes a zig-zag pattern with no contour. This method of operation can greatly reduce a time required to fuse complex layers having many very small features.
A three-dimensional printing system for manufacturing a three-dimensional article includes a housing, a door, and a door locking system. The housing encloses a process chamber and has a vertical front surface with an opening providing access to the process chamber. The door is coupled to the front surface to be moved between an open position and a closed position. The door locking system includes a plurality of pins, a locking plate, and a lock actuator. The plurality of pins extend along a direction that is perpendicular to the vertical front surface when the door is in the closed position. The locking plate defines a plurality of holes positioned to receive the plurality of pins when the door is rotated into the closed position. The lock actuator is coupled to the locking plate and configured to translate the locking plate between an unlocked position and a locked position.
B22F 12/00 - Appareils ou dispositifs spécialement adaptés à la fabrication additiveMoyens auxiliaires pour la fabrication additiveCombinaisons d’appareils ou de dispositifs pour la fabrication additive avec d’autres appareils ou dispositifs de traitement ou de fabrication
B22F 10/322 - Commande ou régulation des opérations de l’atmosphère, p. ex. de la composition ou de la pression dans une chambre de fabrication d’un écoulement de gaz, p. ex. du débit ou de la direction
A three-dimensional (3D) printing system for forming a 3D article includes a print engine and a controller. The print engine includes a build plate, a coater, and a plurality of beam units. The coater is configured to coat a layer of fusible powder over the build plate to span a build plane. The first beam unit is configured to generate and scan an energy beam over a first lateral region of the build plane. The second beam unit is configured to generate and scan an energy beam over a second lateral region of the build plane. The first and second lateral regions overlap over an overlap zone. In forming contours, the controller is configured to define sub-contours that connect along a seam within a layer. In the overlap zone, the sub-contours have an offset along the seam that varies from layer to layer.
A three-dimensional (3D) printing system for forming a 3D article includes a print engine and a controller. The print engine includes a build plate, a coater, and a plurality of beam units. The coater is configured to coat a layer of fusible powder over the build plate to span a build plane. The first beam unit is configured to generate and scan an energy beam over a first lateral region of the build plane. The second beam unit is configured to generate and scan an energy beam over a second lateral region of the build plane. The first and second lateral regions overlap over an overlap zone. In forming contours, the controller is configured to define sub- contours that connect along a seam within a layer. In the overlap zone, the sub- contours have an offset along the seam that varies from layer to layer.
A three-dimensional printing system for manufacturing a three-dimensional article includes a build chamber, an overflow chamber adjacent to the build chamber, a motorized build plate, a powder coater including a vibration generator, a lateral movement mechanism coupled to the powder coater, and a controller. The controller is configured to perform a process to remove accumulated powder from surfaces of the powder coater according to the steps: (1) operate the lateral movement mechanism to position the powder coater over a location outside of the build chamber; (2) operate the vibration generator to shake the accumulated powder into the location outside of the build chamber. The location outside of the build chamber can be defined by the overflow chamber.
A three-dimensional printing system includes a build platform, a movement mechanism, a coating module, a consolidation module, and a controller. The controller is configured to (1) operate the movement mechanism and the coating module to deposit a new powder layer over an upper surface of the build platform or powder, (2) operate the consolidation module to selectively consolidate the new powder layer, and (3) repeat (1) and (2) until a three-dimensional article is fabricated from a plurality of layers. Step (1) includes, at least one of the plurality of layers (a) operate the movement mechanism and the coating module to deposit a first sublayer of powder having a thickness T1 over the upper surface, and (b) operate the movement mechanism and the coating module to deposit a second sublayer of powder having at thickness T2 over the first sublayer of powder. T2 is less than 20% of T1.
B22F 10/28 - Fusion sur lit de poudre, p. ex. fusion sélective par laser [FSL] ou fusion par faisceau d’électrons [EBM]
B22F 10/38 - Commande ou régulation des opérations pour obtenir des caractéristiques spécifiques du produit, p. ex. le lissage de la surface, la densité, la porosité ou des structures creuses
B29C 64/00 - Fabrication additive, c.-à-d. fabrication d’objets en trois dimensions [3D] par dépôt additif, agglomération additive ou stratification additive, p. ex. par impression en 3D, stéréolithographie ou frittage laser sélectif
A three-dimensional printing system includes a motorized build platform, a material coating module, and a beam generation module. The beam generation module is configured to selectively fuse or harden material over a build plane. The build plane defines a centroid. The beam generation module includes a laser beam formation unit, a scan module, and flat field focusing component (FFFC). The scan module has a scanner optical axis that intersects the build plane at a location that is offset from the centroid. The FFFC is configured to focus the laser beam across the build plane. The FFFC includes a plurality of lenses at least one of which has an optical asymmetry relative to the scanner optical axis. The asymmetry includes one or more of a lateral offset with an offset distance D and an angular offset with an offset angle α.
A three-dimensional printing system includes a motorized build platform, a material coating module, and a beam generation module. The beam generation module includes a laser beam formation unit, a scan module, and flat field focusing system. The laser beam formation unit includes a laser configured to output a laser beam. The scan module is configured to receive the laser beam and to scan the laser beam over a build plane that is above the motorized build platform. The flat field focusing system is configured to focus the laser beam across the laser beam and includes an input component and an output component. The input component is configured to receive the laser beam from the beam formation unit and to pass the laser beam to the scan module. The output component is configured to receive the laser beam from the scan module and pass the laser beam to the build plane.
A three-dimensional printing system includes a motorized build platform, a material coating module, and a beam generation module. The beam generation module includes a laser beam formation unit, a scan module, and flat field focusing system. The laser beam formation unit includes a laser configured to output a laser beam. The scan module is configured to receive the laser beam and to scan the laser beam over a build plane that is above the motorized build platform. The flat field focusing system is configured to focus the laser beam across the laser beam and includes an input component and an output component. The input component is configured to receive the laser beam from the beam formation unit and to pass the laser beam to the scan module. The output component is configured to receive the laser beam from the scan module and pass the laser beam to the build plane.
A three-dimensional (3D) printing system includes a print engine and a controller. The print engine includes a motorized build platform, a coating apparatus, and a beam forming unit. The controller is configured to perform the following steps: (a) receiving a virtual 3D body, (b) processing the 3D body to define a plurality of N slices, the N slices individually representing intersections of the 3D body with the slice, (c) processing the N slices to represent solid portions of the 3D body with vectors, the vectors defining contours and hatching patterns, the vectors individually bounded by two endpoints, (d) for the individual slices, analyzing a scan speed error for one or more of the plurality of vectors, and (e) for the individual slices, moving some of the endpoints when the scan speed error exceeds a predetermined threshold to provide a speed corrected slice.
G05B 19/4099 - Usinage de surface ou de courbe, fabrication d'objets en trois dimensions 3D, p. ex. fabrication assistée par ordinateur
B22F 10/366 - Paramètres de balayage, p. ex. distance d’éclosion ou stratégie de balayage
B22F 10/80 - Acquisition ou traitement des données
B29C 64/00 - Fabrication additive, c.-à-d. fabrication d’objets en trois dimensions [3D] par dépôt additif, agglomération additive ou stratification additive, p. ex. par impression en 3D, stéréolithographie ou frittage laser sélectif
B33Y 50/02 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
11.
Three-dimensional printing system optimizing contour formation for multiple energy beams
A system for forming a three-dimensional (3D) article includes a powder dispenser, a fusing apparatus, and a controller. The plurality of energy beams include at least a first beam and a second beam. The controller is configured to operate the powder dispenser to dispense a layer of powder and to operate the fusing apparatus to selectively fuse the layer of powder. Operating the fusing apparatus includes operating the first beam to fuse a first hatch pattern over a first area of the layer of powder and operate at least the second beam to fuse a contour that bounds the hatch pattern. The contour is formed from N scans along the contour. N is an integer that is at least equal to one. N is determined by a lateral alignment uncertainty between at least two of the energy beams.
B29C 64/393 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B22F 10/28 - Fusion sur lit de poudre, p. ex. fusion sélective par laser [FSL] ou fusion par faisceau d’électrons [EBM]
B22F 10/366 - Paramètres de balayage, p. ex. distance d’éclosion ou stratégie de balayage
A three-dimensional (3D) printing system includes a print engine and a controller. The print engine includes a motorized build platform, a coating apparatus, and a beam forming unit. The controller is configured to perform the following steps: (a) receiving a virtual 3D body, (b) processing the 3D body to define a plurality of N slices, the N slices individually representing intersections of the 3D body with the slice, (c) processing the N slices to represent solid portions of the 3D body with vectors, the vectors defining contours and hatching patterns, the vectors individually bounded by two endpoints, (d) for the individual slices, analyzing a scan speed error for one or more of the plurality of vectors, and (e) for the individual slices, moving some of the endpoints when the scan speed error exceeds a predetermined threshold to provide a speed corrected slice.
A method of manufacturing a three-dimensional article is provided for a system including a powder handling module containing stored metal powder. The stored metal powder includes used metal powder that was previously part of the metal powder loaded into a print engine during a previous fabrication process. The method includes (1) loading a volume of the metal powder into an agitation device, (2) operating the agitation device until an avalanche angle of the metal powder is modified to within a specified range to provide a volume of usable metal powder, (3) loading the usable metal powder into a three-dimensional print engine, and (4) operating the print engine to fabricate a the three-dimensional article. This process improves coating quality within the print engine. Improving coating quality improves dimensional accuracy of the three-dimensional article along with reducing defects resulting from coating artifacts.
B22F 12/00 - Appareils ou dispositifs spécialement adaptés à la fabrication additiveMoyens auxiliaires pour la fabrication additiveCombinaisons d’appareils ou de dispositifs pour la fabrication additive avec d’autres appareils ou dispositifs de traitement ou de fabrication
B22F 10/28 - Fusion sur lit de poudre, p. ex. fusion sélective par laser [FSL] ou fusion par faisceau d’électrons [EBM]
B23K 26/12 - Travail par rayon laser, p. ex. soudage, découpage ou perçage sous atmosphère particulière, p. ex. dans une enceinte
A manufacturing system for fabricating a three-dimensional article includes a housing, a sensor within the housing, a coater, a removable powder module (RPM) with a platen, a laser system, and a controller. A method of operating the manufacturing system includes installing the RPM into the housing, forming pillars onto the platen, positioning the top surfaces of the pillars a distance D below a build plane, installing a calibration plate onto the top surfaces of the pillars, and then calibrating the laser system using the sensor. The sensor can include one or more of an optical sensor and an acoustic sensor.
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B29C 64/393 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
B23K 26/082 - Systèmes de balayage, c.-à-d. des dispositifs comportant un mouvement relatif entre le faisceau laser et la tête du laser
B29C 64/259 - Enceintes pour le matériau de construction, p. ex. récipients pour poudre interchangeables
B29C 64/232 - Moyens d’entraînement pour un mouvement le long de l'axe orthogonal au plan d’une couche
B29C 64/371 - Conditionnement de l’environnement en utilisant un environnement autre que l’air, p. ex. un gaz inerte
B22F 10/31 - Étalonnage des étapes de procédé ou réglages des appareils, p. ex. avant ou en cours de fabrication
B33Y 40/00 - Opérations ou équipements auxiliaires, p. ex. pour la manipulation de matériau
B29C 64/386 - Acquisition ou traitement de données pour la fabrication additive
B29C 64/30 - Opérations ou équipements auxiliaires
B33Y 50/00 - Acquisition ou traitement de données pour la fabrication additive
G05B 19/401 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par des dispositions de commande pour la mesure, p. ex. étalonnage et initialisation, mesure de la pièce à usiner à des fins d'usinage
B22F 12/90 - Moyens de commande ou de régulation des opérations, p. ex. caméras ou capteurs
A three-dimensional printing system for manufacturing a three-dimensional article includes a chassis, a door, and a plurality of latches. The chassis defines an internal process chamber and a vertical opening for accessing the internal process chamber. A peripheral seal surrounds the vertical opening. The plurality of latches are arranged around the peripheral seal. The latches individually include a hook. The vertical door is mounted to the chassis by a linkage. The door includes a plurality of laterally extending pins individually corresponding to the latches. The pins have locations along the door to be individually engaged by the latches when the door is positioned in the closed position. The latches are individually configured to rotate the hooks around a second lateral axis (Y) when the door is positioned in the closed position with the door closing over the opening to secure the door with respect to a first lateral axis (X).
B29C 64/371 - Conditionnement de l’environnement en utilisant un environnement autre que l’air, p. ex. un gaz inerte
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B22F 10/00 - Fabrication additive de pièces ou d’objets à partir de poudres métalliques
E05B 47/06 - Commande des pênes à fonctionnement mécanique par des cliquets à déclenchement électro-magnétique
E05B 63/00 - Serrures à caractéristiques structurales particulières
B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet
B33Y 40/00 - Opérations ou équipements auxiliaires, p. ex. pour la manipulation de matériau
A method of manufacturing a three-dimensional article includes: (1) Loading a metal platen into a build chamber, the metal platen defines an upper surface; (2) Performing concurrent processes including operating a movement mechanism to vertically translate the platen, operating a laser system to impinge a radiation beam upon the upper surface of the platen, and receiving a signal from an acoustic sensor that is positioned within the build chamber; (3) Analyzing the signal including determining a height of optimal laser convergence for the platen; and (4) Based upon the analysis, adjusting the laser convergence height to a build plane height.
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B29C 64/268 - Agencements pour irradiation par faisceaux laserAgencements pour irradiation par faisceaux d’électrons [FE]
A system for manufacturing a three-dimensional article includes a controller. The controller is configured to: (a) receive an input file defining a solid body; (b) slice the solid body into horizontal slices; (c) analyze the sliced body to identify downward-facing slice regions, a downward-facing slice region intersects with a downward-facing surface of the solid body; (d) for the individual slices, define a contour region to span a Boolean union between a default lateral peripheral contour and the downward-facing slice region; and (e) for the individual slices, define a hatch region that spans a Boolean difference between the slice and the contour region.
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
G06T 19/00 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie
B29C 64/386 - Acquisition ou traitement de données pour la fabrication additive
B22F 10/28 - Fusion sur lit de poudre, p. ex. fusion sélective par laser [FSL] ou fusion par faisceau d’électrons [EBM]
B22F 10/366 - Paramètres de balayage, p. ex. distance d’éclosion ou stratégie de balayage
B22F 10/80 - Acquisition ou traitement des données
B33Y 50/00 - Acquisition ou traitement de données pour la fabrication additive
G03F 7/00 - Production par voie photomécanique, p. ex. photolithographique, de surfaces texturées, p. ex. surfaces impriméesMatériaux à cet effet, p. ex. comportant des photoréservesAppareillages spécialement adaptés à cet effet
B22F 10/36 - Commande ou régulation des opérations des paramètres du faisceau d’énergie
18.
System for Aligning Laser System to a Carrier Plate
A three-dimensional printing system for manufacturing a three-dimensional article includes a build chamber, a carrier plate, a vertical positioning apparatus, a laser system, a sensor, a powder dispenser, and a controller. The carrier plate defines a receptacle and an alignment target. The receptacle is for receiving and aligning a prefabricated body. The alignment target is in precise lateral alignment with respect to the receptacle. The controller is configured to: (1) operate the laser system to generate and scan a radiation beam over an upper surface of the carrier plate; (2) concurrent with scanning the radiation beam, receive a signal from the sensor; (3) analyze the signal to align the radiation beam to the prefabricated body; and (4) operate the vertical positioning apparatus, the laser system, and the powder dispenser to selectively form layers of metal over the prefabricated body to complete manufacture of the three-dimensional article.
B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet
B33Y 50/02 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
B23K 26/03 - Observation, p. ex. surveillance de la pièce à travailler
B23K 26/082 - Systèmes de balayage, c.-à-d. des dispositifs comportant un mouvement relatif entre le faisceau laser et la tête du laser
B23K 26/10 - Dispositifs comportant un mouvement relatif entre le faisceau laser et la pièce avec un support fixe
B23K 26/06 - Mise en forme du faisceau laser, p. ex. à l’aide de masques ou de foyers multiples
B23K 26/14 - Travail par rayon laser, p. ex. soudage, découpage ou perçage en utilisant un écoulement de fluide, p. ex. un jet de gaz, associé au faisceau laserBuses à cet effet
19.
THREE-DIMENSIONAL PRINTING SYSTEM OPTIMIZING SEAMS BETWEEN ZONES FOR MULTIPLE ENERGY BEAMS
A system for fabricating a three-dimensional article includes a powder dispenser and a fusing apparatus. The fusing apparatus is configured to generate and scan a plurality of beams across a build plane including a first beam and a second beam. The controller is configured to operate the powder dispenser and the fusing apparatus to form a sequence of at least three fused layers. The layers individually include a first hatch area defined by the first energy beam and a second hatch area defined by the second energy beam. The first and second hatch areas overlap along a seam with a transverse overlap distance. A lateral location of the seam varies layer by layer. No two layers in the sequence have a transverse distance between seams of less than u. The distance u is at least equal to twice the transverse overlap distance.
B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet
B33Y 50/02 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
B23K 26/06 - Mise en forme du faisceau laser, p. ex. à l’aide de masques ou de foyers multiples
B23K 26/08 - Dispositifs comportant un mouvement relatif entre le faisceau laser et la pièce
B23K 26/10 - Dispositifs comportant un mouvement relatif entre le faisceau laser et la pièce avec un support fixe
B23K 26/14 - Travail par rayon laser, p. ex. soudage, découpage ou perçage en utilisant un écoulement de fluide, p. ex. un jet de gaz, associé au faisceau laserBuses à cet effet
20.
Three-dimensional printing system optimizing contour formation for multiple energy beams
A system for forming a three-dimensional (3D) article includes a powder dispenser, a fusing apparatus, and a controller. The plurality of energy beams include at least a first beam and a second beam. The controller is configured to operate the powder dispenser to dispense a layer of powder and to operate the fusing apparatus to selectively fuse the layer of powder. Operating the fusing apparatus includes operating the first beam to fuse a first hatch pattern over a first area of the layer of powder and operate at least the second beam to fuse a contour that bounds the hatch pattern. The contour is formed from N scans along the contour. N is an integer that is at least equal to one. N is determined by a lateral alignment uncertainty between at least two of the energy beams.
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet
B29C 64/393 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
A system (2) for forming a three-dimensional (3D) article includes a powder dispenser (14), a fusing apparatus (16), and a controller (20). The plurality of energy beams (18) include at least a first beam and a second beam. The controller is configured to operate the powder dispenser to dispense a layer of powder (15) and to operate the fusing apparatus to selectively fuse the layer of powder. Operating the fusing apparatus includes operating the first beam to fuse a first hatch pattern (32) over a first area of the layer of powder and operate at least the second beam to fuse a contour (30) that bounds the hatch pattern. The contour is formed from N scans along the contour. N is an integer that is at least equal to one. N is determined by a lateral alignment uncertainty between at least two of the energy beams.
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B29C 64/268 - Agencements pour irradiation par faisceaux laserAgencements pour irradiation par faisceaux d’électrons [FE]
B29C 64/282 - Agencements pour irradiation utilisant des moyens de rayonnement multiples, p. ex. des micro-miroirs ou des diodes électroluminescentes multiples [LED] du même type, p. ex. utilisant des niveaux d’énergie différents
B29C 64/393 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
B22F 3/105 - Frittage seul en utilisant un courant électrique, un rayonnement laser ou un plasma
A system for manufacturing a three-dimensional article includes a support plate, a powder dispenser, a fusing apparatus, and a controller. The controller is configured to operate various printer components of the system to: (1) dispense a first layer of powder, (2) fuse a first boundary contour that is fused at least through the first layer of powder, (3) dispense a second layer of powder over the first layer of powder, (4) fuse a first infill section that is fused through the first and second layers of powder, (5) dispense a third layer of powder over the second layer of powder, (6) fuse a second boundary contour that is fused through the second and third layers of powder and is fused to the first boundary contour; and (7) continue to operate printer components to complete a fabrication of the three-dimensional article.
A system for manufacturing a three-dimensional article includes a support plate, a powder dispenser, a fusing apparatus, and a controller. The controller is configured to operate various printer components of the system to: (1) dispense a first layer of powder, (2) fuse a first boundary contour and a first infill section at least through the first layer of powder and are laterally separated by an unfused zone of powder, (3) dispense a second layer of powder over the first layer of powder, (4) fuse the unfused zone of powder through the first and second layers of powder to define a first fused connecting zone, (5) dispense a third layer of powder over the second layer of powder, (6) fuse a second boundary contour and a second infill section through the second and third layers of powder.
B22F 3/105 - Frittage seul en utilisant un courant électrique, un rayonnement laser ou un plasma
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
A system for manufacturing a three-dimensional article includes a support plate, a powder dispenser, a fusing apparatus, and a controller. The controller is configured to operate various printer components of the system to: (1) dispense a first layer of powder, (2) fuse a first boundary contour and a first infill section at least through the first layer of powder and are laterally separated by an unfused zone of powder, (3) dispense a second layer of powder over the first layer of powder, (4) fuse the unfused zone of powder through the first and second layers of powder to define a first fused connecting zone, (5) dispense a third layer of powder over the second layer of powder, (6) fuse a second boundary contour and a second infill section through the second and third layers of powder.
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
A system for manufacturing a three-dimensional article includes a support plate, a powder dispenser, a fusing apparatus, and a controller. The controller is configured to operate various printer components of the system to: (1) dispense a first layer of powder, (2) fuse a first boundary contour that is fused at least through the first layer of powder, (3) dispense a second layer of powder over the first layer of powder, (4) fuse a first infill section that is fused through the first and second layers of powder, (5) dispense a third layer of powder over the second layer of powder, (6) fuse a second boundary contour that is fused through the second and third layers of powder and is fused to the first boundary contour; and (7) continue to operate printer components to complete a fabrication of the three-dimensional article.
B22F 3/105 - Frittage seul en utilisant un courant électrique, un rayonnement laser ou un plasma
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B29C 64/393 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
The invention concerns a method and a device for calibrating at least one scanning system (4, 5, 17) when producing an object (8) by additive manufacturing, wherein the coordinates of one or several reference positions are measured in the relative coordinate system of each scanning system (4, 5, 17), after which the calibration of each of the scanning systems is adapted starting from the measured coordinates of the reference positions.
B23K 26/02 - Mise en place ou surveillance de la pièce à travailler, p. ex. par rapport au point d'impactAlignement, pointage ou focalisation du faisceau laser
B23K 26/08 - Dispositifs comportant un mouvement relatif entre le faisceau laser et la pièce
G03F 9/00 - Mise en registre ou positionnement d'originaux, de masques, de trames, de feuilles photographiques, de surfaces texturées, p. ex. automatique
B29C 67/00 - Techniques de façonnage non couvertes par les groupes , ou
B41J 3/407 - Machines à écrire ou mécanismes d'impression ou de marquage sélectif caractérisés par le but dans lequel ils sont construits pour le marquage sur des matériaux particuliers
G03F 7/00 - Production par voie photomécanique, p. ex. photolithographique, de surfaces texturées, p. ex. surfaces impriméesMatériaux à cet effet, p. ex. comportant des photoréservesAppareillages spécialement adaptés à cet effet
B23K 26/00 - Travail par rayon laser, p. ex. soudage, découpage ou perçage
B23K 26/04 - Alignement, pointage ou focalisation automatique du faisceau laser, p. ex. en utilisant la lumière rétrodiffusée
G01B 11/00 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques
The invention concerns a method for manufacturing at least one thin-walled structure (1,11,13,17,18), whereby this structure is built layer by layer by applying successive powder layers extending substantially horizontally and by moving an energy beam over each of these powder layers according to a predetermined pattern so as to make said powder melt and subsequently make it solidify or sinter, such that successive layers connected to each other of said thin-walled structure (1,11, 13,17,18) are formed which extend according to a horizontal cross section of this thin-walled structure (1, 11,13,17,18). According to the method a support structure (20) is built in layers together with said thin-walled structures (1,11,13,17,18) and connected to it such that a rigid unit (14) is manufactured, whereby after building this unit (14) layer by layer, at least the thin-walled structures (1,11,13,17,18) are annealed in order to at least partly eliminate any stresses present, and whereby both structures are separated from each other.
B22F 3/105 - Frittage seul en utilisant un courant électrique, un rayonnement laser ou un plasma
B22F 5/00 - Fabrication de pièces ou d'objets à partir de poudres métalliques caractérisée par la forme particulière du produit à réaliser
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B29C 64/40 - Structures de support des objets en 3D pendant la fabrication, lesdites structures devant être sacrifiées après réalisation de la fabrication
B33Y 80/00 - Produits obtenus par fabrication additive
The invention concerns an implant for adjusting the position of at least one tissue holder (6) for soft tissue, whereby this implant can be fixed to bone tissue at a distance from said tissue holder (6) and has a guide (3) for an elongate pulling member (4), whereby this pulling member (4) is connected to said tissue holder (6), and whereby the implant includes a fixing element (10) which can be moved between a fixing position in which the pulling member (4) is clamped by the fixing element (10) and a free position in which said pulling member (4) can freely move through said guide (3), characterised in that said fixing element (10) cooperates with a control element (14) which makes it possible to move this fixing element (10) between said fixing position and said free position when the implant is attached to said bone tissue and when the implant is covered with soft tissue such as muscle tissue or skin tissue.
A61B 17/04 - Instruments, dispositifs ou procédés chirurgicaux pour refermer les plaies ou les maintenir ferméesAccessoires utilisés en liaison avec ces opérations pour la suture des plaiesSupports ou emballages pour aiguilles ou matériaux de suture
A61B 17/00 - Instruments, dispositifs ou procédés chirurgicaux
29.
METHOD FOR MANUFACTURING THIN-WALLED STRUCTURES IN LAYERS
The invention concerns a method for manufacturing at least one thin- walled structure (1,11,13,17,18), whereby this structure is built layer by layer by applying successive powder layers extending substantially horizontally and by moving an energy beam over each of these powder layers according to a predetermined pattern so as to make said powder melt and subsequently make it solidify or sinter, such that successive layers connected to each other of said thin- walled structure (1,11, 13,17,18) are formed which extend according to a horizontal cross section of this thin-walled structure (1, 11,13,17,18). According to the method a support structure (20) is built in layers together with said thin-walled structures (1,11,13,17,18) and connected to it such that a rigid unit (14) is manufactured, whereby after building this unit (14) layer by layer, at least the thin-walled structures (1,11,13,17,18) are annealed in order to at least partly eliminate any stresses present, and whereby both structures are separated from each other.
The invention concerns a supporting structure for a dental prosthesis and a method for producing this supporting structure, whereby this supporting structure (6) comprises means (7) to be fixed to at least one implant (4) and/or at least one tooth which is set into a person's jawbone, whereby the supporting structure (6) has a nominal surface (9) having a surface texture (8) which is at least partly formed of retention elements (12). Said retention elements retention elements (12) comprise protrusions and/or recesses in relation to said nominal surface (9) each having an undercut (13).
A61C 8/00 - Moyens destinés à être fixés à l'os de la mâchoire pour consolider les dents naturelles ou pour y assujettir des prothèses dentairesImplants dentairesOutils pour l'implantation
The present invention provides methods allowing the use of selective laser powder processing techniques for the production of medically acceptable prosthetic dental frameworks. The frameworks produced according to the present invention have high grade mechanical properties as well as a high accuracy.
A61C 8/00 - Moyens destinés à être fixés à l'os de la mâchoire pour consolider les dents naturelles ou pour y assujettir des prothèses dentairesImplants dentairesOutils pour l'implantation
G06F 19/00 - Équipement ou méthodes de traitement de données ou de calcul numérique, spécialement adaptés à des applications spécifiques (spécialement adaptés à des fonctions spécifiques G06F 17/00;systèmes ou méthodes de traitement de données spécialement adaptés à des fins administratives, commerciales, financières, de gestion, de surveillance ou de prévision G06Q;informatique médicale G16H)
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Metal components made by rapid manufacturing technologies; machine components and machine component prototypes, metallic housings and fixtures for components; industrial tools namely injection moulding and die casting moulds or moulds inserts, engine components, functional metallic end components, metallic sculptures and art pieces. Standard or patient-specific dental and medical prostheses, implants and instruments. Design, redesign, technical geometric adaptation and functional optimisation of industrial, medical or artistic metal components to reduce the cost and/or increase performance and/or improve appearance of products; reverse engineering services; development and testing of new materials for rapid manufacturing processes; improvement and development of hard- and software for rapid manufacturing processes.