A quantum object confinement apparatus comprising one or more high-voltage semiconductor switches is provided. Each switch comprises a transmission gate portion, a gate driver portion, a current distribution portion, and a logic enable portion. The transmission gate portion comprises two transistors connected in series source-to-source or drain-to-drain. The gate driver portion detects a voltage at the switch input terminal and the switch output terminal and applies a bias voltage to the gates of the two transistors of the transmission gate portion that is a predetermined amount above a lesser or a greater of the voltage at the switch input terminal or the voltage at the switch output terminal.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
2.
HIGH-VOLTAGE GLITCH-SUPPRESSSED SEMICONDUCTOR SWITCH FOR QUANTUM OBJECT CONFINEMENT APPARATUS
A quantum object confinement apparatus comprising one or more high-voltage semiconductor switches is provided. Each switch comprises a transmission gate portion, a gate driver portion, a current distribution portion, and a logic enable portion. The transmission gate portion comprises two transistors connected in series source-to-source or drain-to-drain. The gate driver portion detects a voltage at the switch input terminal and the switch output terminal and applies a bias voltage to the gates of the two transistors of the transmission gate portion that is a predetermined amount above a lesser or a greater of the voltage at the switch input terminal or the voltage at the switch output terminal.
H03K 17/16 - Modifications pour éliminer les tensions ou courants parasites
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Artificial intelligence (AI) software; artificial intelligence (AI) software operated via quantum computer applications; AI-based interactive software; artificial intelligence (AI) software for sensing, acquiring, analyzing, processing, storing, or providing quantum qubit-level information; software for using quantum computer generated data to train artificial intelligence (AI) systems; software for using quantum-computer-generated data to enhance AI model fidelity; software for using quantum computer generated data with artificial intelligence (AI) systems for commercial applications in medicine development, drug discovery, financial market modeling, and logistics optimization Platform-as-a-service (PaaS) services featuring computer software platforms for programming and running software on quantum qubit-based computers; software as a service (SAAS) services featuring software for quantum-based artificial intelligence (AI) programming; cloud computing services featuring software for data and source code processing in the field of quantum qubit-based computing; technical consulting in the field of quantum-based artificial intelligence (AI) software customization, specifically in the field of generative artificial intelligence (AI) technology; custom design of prototypes in the field of quantum-based generative artificial intelligence (AI) technology; developing artificial intelligence (AI) software in the field of quantum-based generative technology; software as a service (SaaS) services featuring software for constructing, analyzing and running quantum qubit-based programs and quantum qubit-based algorithms; application service provider featuring application programming interface (API) software for use in quantum qubit-based programming and developing and testing quantum qubit-based algorithms; software as a service (SAAS) services featuring software for quantum qubit-based programming and quantum qubit-based computing; software as a service (SAAS) services featuring software for solving quantum qubit-based algorithms, simulation of quantum qubit-based processes, quantum qubit-based machine learning, quantum qubit-based analytics, quantum qubit-based search analysis, quantum qubit-resistant cybersecurity and solving quantum qubit-based mathematical problems; software as a service (SAAS) services featuring software for sensing, acquiring, analyzing, processing, storing, or providing quantum qubit-level information; software as a service (SAAS) services featuring artificial intelligence (AI) software for sensing, acquiring, analyzing, processing, storing, or providing quantum qubit-level information; software as a service (SAAS) services featuring software for using quantum computer generated data to train artificial intelligence (AI) systems; software as a service (SAAS) services featuring software for using quantum-computer-generated data to enhance AI model fidelity; software as a service (SAAS) services featuring software for using quantum computer generated data with artificial intelligence (AI) systems for commercial applications in medicine development, drug discovery, financial market modeling, and logistics optimization
4.
CONTROLLING OPERATION OF A CONFINEMENT APPARATUS USING INDIVIDUALIZED BROADCASTED VOLTAGE SIGNALS
A system includes a confinement apparatus, arbitrary waveform generators (AWGs), and channel-dedicated signal processing assemblies. Application of respective voltage signals to the plurality of control electrodes of the confinement apparatus is configured to cause the confinement apparatus to confine manipulatable objects. The AWGs are operable to generate respective waveforms. Each signal processing assembly is configured to condition a voltage signal applied to a respective electrode of the confinement apparatus. The signal processing assembly includes a channel-dedicated voltage generator and an operational amplifier. The operational amplifier is configured to receive (i) a broadcasted waveform generated by an AWG and broadcasted to at least two signal processing assemblies of the plurality of channel -dedicated signal processing assemblies and (ii) a quasi-static voltage generated by the channel-dedicated voltage generator. The operational amplifier is configured to output a combined signal generated by combining the broadcasted waveform and the quasi-static voltage.
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Artificial intelligence (AI) software; artificial intelligence (AI) software operated via quantum computer applications; AI-based interactive software; artificial intelligence (AI) software for sensing, acquiring, analyzing, processing, storing, or providing quantum qubit-level information; software for using quantum computer generated data to train artificial intelligence (AI) systems; software for using quantum-computer-generated data to enhance AI model fidelity; software for using quantum computer generated data with artificial intelligence (AI) systems for commercial applications in medicine development, drug discovery, financial market modeling, and logistics optimization Platform-as-a-service (PaaS) services featuring computer software platforms for programming and running software on quantum qubit-based computers; software as a service (SAAS) services featuring software for quantum-based artificial intelligence (AI) programming; cloud computing services featuring software for data and source code processing in the field of quantum qubit-based computing; technical consulting in the field of quantum-based artificial intelligence (AI) software customization, specifically in the field of generative artificial intelligence (AI) technology; custom design of prototypes in the field of quantum-based generative artificial intelligence (AI) technology; developing artificial intelligence (AI) software in the field of quantum-based generative technology; software as a service (SaaS) services featuring software for constructing, analyzing and running quantum qubit-based programs and quantum qubit-based algorithms; application service provider featuring application programming interface (API) software for use in quantum qubit-based programming and developing and testing quantum qubit-based algorithms; software as a service (SAAS) services featuring software for quantum qubit-based programming and quantum qubit-based computing; software as a service (SAAS) services featuring software for solving quantum qubit-based algorithms, simulation of quantum qubit-based processes, quantum qubit-based machine learning, quantum qubit-based analytics, quantum qubit-based search analysis, quantum qubit-resistant cybersecurity and solving quantum qubit-based mathematical problems; software as a service (SAAS) services featuring software for sensing, acquiring, analyzing, processing, storing, or providing quantum qubit-level information; software as a service (SAAS) services featuring artificial intelligence (AI) software for sensing, acquiring, analyzing, processing, storing, or providing quantum qubit-level information; software as a service (SAAS) services featuring software for using quantum computer generated data to train artificial intelligence (AI) systems; software as a service (SAAS) services featuring software for using quantum-computer-generated data to enhance AI model fidelity; software as a service (SAAS) services featuring software for using quantum computer generated data with artificial intelligence (AI) systems for commercial applications in medicine development, drug discovery, financial market modeling, and logistics optimization
6.
CONTROLLING OPERATION OF A CONFINEMENT APPARATUS USING INDIVIDUALIZED BROADCASTED VOLTAGE SIGNALS
A system includes a confinement apparatus, arbitrary waveform generators (AWGs), and channel-dedicated signal processing assemblies. Application of respective voltage signals to the plurality of control electrodes of the confinement apparatus is configured to cause the confinement apparatus to confine manipulatable objects. The AWGs are operable to generate respective waveforms. Each signal processing assembly is configured to condition a voltage signal applied to a respective electrode of the confinement apparatus. The signal processing assembly includes a channel-dedicated voltage generator and an operational amplifier. The operational amplifier is configured to receive (i) a broadcasted waveform generated by an AWG and broadcasted to at least two signal processing assemblies of the plurality of channel-dedicated signal processing assemblies and (ii) a quasi-static voltage generated by the channel-dedicated voltage generator. The operational amplifier is configured to output a combined signal generated by combining the broadcasted waveform and the quasi-static voltage.
A controller of a quantum system causes performance of a single qubit gate on a target qubit. The controller causes a dressing field circuit to generate a dressing field at a target location where the target qubit is located. The dressing field modifies a set of initial states into a set of superposition states. A first (second) dressed state of the set of superposition states includes a non-zero contribution from a first (second) qubit state of the set of initial states. A dressed frequency difference between the first and second dressed states and a qubit frequency difference between the first and second qubit states are different. The controller causes a gate microwave signal characterized by the dressed frequency difference plus the qubit frequency difference to be incident on the target location. After a gate time, the controller controls operation of the dressing field circuit to stop generating the dressing field.
An atomic object confined in a particular region of a confinement apparatus is cooled via a simultaneous sideband and Doppler laser cooling operation. A controller controls first and second manipulation sources to provide first and second two-photon transition manipulation signals to the particular region. The controller controls a third manipulation source to provide a repump manipulation signal to the particular region. The first and second two-photon transition manipulation signals are collectively configured to cause the atomic object to undergo a red sideband transition from a first ground state to a second ground state. The repump manipulation signal is configured to repump the atomic object from the second ground state to the first ground state via an excited state. The repump manipulation signal is red detuned from a transition from the second ground state to the excited state by a repump detuning configured to cause Doppler cooling of the atomic object.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
9.
CONTROLLING FREQUENCY DEPENDENCE OF 0 GAUSS CLOCK STATE FREQUENCY ON BZ USING A MICROWAVE DRESSING FIELD
A controller of a quantum system causes a dressing field circuit to generate a dressing field at a target location where one or more target qubits are located. The dressing field modifies a set of initial states into a set of superposition states. A first (second) dressed state of the set of superposition states includes a non-zero contribution from a first (second) qubit state of the set of initial states. A dressed frequency difference between the first and second dressed states and a qubit frequency difference between the first and second qubit states are different. The dressing field is configured to generate first and second dressed states having a desired level of sensitivity (e.g., energy/frequency dependence) on the component of the external magnetic field that is in the quantization direction of the quantum system.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
10.
ENTANGLEMENT APPARATUS WITH REFLECTORS ON A QUANTUM DEVICE
Example embodiments provide methods, systems, apparatuses, products and/or the like for reflecting, collecting, entangling, and/or detecting photons generated by quantum objects. In various embodiments a quantum entanglement apparatus is provided. The quantum entanglement apparatus comprising a first reflecting component on a first surface of a first quantum object confinement component, the first reflecting component configured to reflect a first emitted photon emitted by a first quantum object, a first photonic integrated circuit on a first side of the first quantum object confinement component, a first collection component optically coupled to the first photonic integrated circuit, wherein the first collection component is configured to collect the first emitted photon reflected by the first reflecting component, a first detector configured to detect photons traversing a first optical path of the first photonic integrated circuit, and a first filter along the first optical path.
G02B 6/42 - Couplage de guides de lumière avec des éléments opto-électroniques
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
A controller of a quantum system causes a dressing field circuit to generate a dressing field at a target location where one or more target qubits are located. The dressing field modifies a set of initial states into a set of superposition states. A first (second) dressed state of the set of superposition states includes a non-zero contribution from a first (second) qubit state of the set of initial states. A dressed frequency difference between the first and second dressed states and a qubit frequency difference between the first and second qubit states are different. The dressing field is configured to generate first and second dressed states having a desired level of sensitivity (e.g., energy/frequency dependence) on the component of the external magnetic field that is in the quantization direction of the quantum system.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
12.
SYSTEMS, APPARATUSES, AND METHODS FOR FILM THICKNESS CONTROL FOR INTEGRATED PHOTONICS
Embodiments of the disclosure provide apparatuses, systems, and methods related to controlling film thickness in photonic-integrated apparatus, for example a photonic-integrated confinement apparatus such as a multi-layered ion trap. In some embodiments, a bottom cladding layer is deposited on a substrate, a thickness map of the bottom cladding layer is generated, thickness trimming is performed on the bottom cladding layer based on the thickness map for the bottom cladding layer; a waveguide core layer is deposited on the bottom cladding layer, a thickness map of the waveguide core layer is generated, thickness trimming is performed on the waveguide core layer based on the thickness map for the bottom waveguide core layer; a top cladding layer is deposited on the waveguide core layer, a thickness map of the top cladding layer is generated; and thickness trimming is performed on the top cladding layer based on the thickness map for the top cladding layer.
G02B 6/13 - Circuits optiques intégrés caractérisés par le procédé de fabrication
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
13.
HELICAL FIBER GEOMETRY FOR CONTINUOUS HIGHER-ORDER MODE STRIPPING IN BEAM DELIVERY FIBERS
Example embodiments provide quantum computers, laser light delivery systems for quantum computers, and methods for delivering laser light from lasers of quantum computers to atomic object confinement apparatuses of quantum computers. In an example embodiment, a quantum computer comprises an atomic object confinement apparatus, a laser, a cylindrical guide positioned such that a first end of the cylindrical guide is adjacent the laser and a second end of the cylindrical guide is adjacent the atomic object confinement apparatus, and an optical fiber cable helically wrapped around the cylindrical guide and spanning from the first end to the second end. The optical fiber cable is configured to deliver laser light generated by the laser to the atomic object confinement apparatus. A pitch of the helically wrapped optical fiber cable is selected to provide a desired effective bend radius of the optical fiber cable to strip higher-order modes of the laser light.
G21K 1/02 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer utilisant des diaphragmes, des collimateurs
B82Y 20/00 - Nano-optique, p. ex. optique quantique ou cristaux photoniques
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
14.
DETERMINING SPECIES ORDER OF A CONFINED MULTI-SPECIES OBJECT CRYSTAL
A controller (30) of an atomic system controls operation of potential sources (50) to cause potential generating signals to be provided. Application of the potential generating signals to respective potential generating elements causes performance of a split operation causing confinement of a first subset (2A) of atomic objects of an object crystal in a first potential well (315A) and a second subset (2B) of atomic objects of the object crystal in a second potential well (315B). The first subset consists of one or more atomic objects. The object crystal includes atomic objects of at least two species. The controller controls operation of manipulation sources (60) to cause manipulation signals to be incident on the first subset. The controller receives a sensor signal generated by a photodetector configured to capture fluorescence signals generated by the first subset. The controller processes the sensor signal to determine a respective species of at least one atomic object of the first subset.
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
15.
DETERMINING SPECIES ORDER OF A CONFINED MULTI-SPECIES OBJECT CRYSTAL
A controller of an atomic system controls operation of potential sources to cause potential generating signals to be provided. Application of the potential generating signals to respective potential generating elements causes performance of a split operation causing confinement of a first subset of atomic objects of an object crystal in a first potential well and a second subset of atomic objects of the object crystal in a second potential well. The first subset consists of one or more atomic objects. The object crystal includes atomic objects of at least two species. The controller controls operation of manipulation sources to cause manipulation signals to be incident on the first subset. The controller receives a sensor signal generated by a photodetector configured to capture fluorescence signals generated by the first subset. The controller processes the sensor signal to determine a respective species of at least one atomic object of the first subset.
Embodiments of the disclosure provide apparatuses, systems, and methods related to controlling film thickness in photonic-integrated apparatus. In some embodiments, a bottom cladding layer is deposited on a substrate, a thickness map of the bottom cladding layer is generated, thickness trimming is performed on the bottom cladding layer based on the thickness map for the bottom cladding layer; a waveguide core layer is deposited on the bottom cladding layer, a thickness map of the waveguide core layer is generated, thickness trimming is performed on the waveguide core layer based on the thickness map for the bottom waveguide core layer; a top cladding layer is deposited on the waveguide core layer, a thickness map of the top cladding layer is generated; and thickness trimming is performed on the top cladding layer based on the thickness map for the top cladding layer.
Example embodiments provide quantum computers, laser light delivery systems for quantum computers, and methods for delivering laser light from lasers of quantum computers to atomic object confinement apparatuses of quantum computers. In an example embodiment, a quantum computer comprises an atomic object confinement apparatus, a laser, a cylindrical guide positioned such that a first end of the cylindrical guide is adjacent the laser and a second end of the cylindrical guide is adjacent the atomic object confinement apparatus, and an optical fiber cable helically wrapped around the cylindrical guide and spanning from the first end to the second end. The optical fiber cable is configured to deliver laser light generated by the laser to the atomic object confinement apparatus. A pitch of the helically wrapped optical fiber cable is selected to provide a desired effective bend radius of the optical fiber cable to strip higher-order modes of the laser light.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G02B 6/42 - Couplage de guides de lumière avec des éléments opto-électroniques
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
18.
RESONATOR-BASED ACTIVE PHOTONICS WITH REDUCED FOOTPRINT
A resonant photonic element includes a propagation waveguide defining a propagation direction; and a guided mode resonator comprising a periodically perturbed waveguide. The periodically perturbed waveguide is a waveguide that extends a first length in a resonator direction, the resonator direction is transverse to the propagation direction, and the periodically perturbed waveguide intersects the waveguide.
G02F 1/21 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur par interférence
G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré
G02B 6/122 - Éléments optiques de base, p. ex. voies de guidage de la lumière
19.
RESONATOR-BASED ACTIVE PHOTONICS WITH REDUCED FOOTPRINT
A resonant photonic element includes a propagation waveguide defining a propagation direction; and a guided mode resonator comprising a periodically perturbed waveguide. The periodically perturbed waveguide is a waveguide that extends a first length in a resonator direction, the resonator direction is transverse to the propagation direction, and the periodically perturbed waveguide intersects the waveguide.
G02F 1/225 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur par interférence dans une structure de guide d'ondes optique
G02F 1/21 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur par interférence
20.
VOLUMETRIC WAVEGUIDES IN GLASS FOR OPTICAL FEEDTHROUGH TO VACUUM
A window component of a controlled environment chamber is provided. The window component includes a window plate; a first array of coupling elements disposed on a first surface of the window plate; a second array of coupling elements disposed on a second surface of the window plate; and a plurality of waveguides formed in a volume of the window plate between the first and second surfaces. A respective waveguide of the plurality of waveguides optically connects a respective first coupling element of the first array of coupling elements to a respective coupling element of the second array of coupling elements.
F21V 8/00 - Utilisation de guides de lumière, p. ex. dispositifs à fibres optiques, dans les dispositifs ou systèmes d'éclairage
B01J 3/03 - Récipients sous pression, ou récipients sous vide, comportant des organes de fermeture ou des joints d'étanchéité spécialement adaptés à cet effet
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
21.
SIGNAL MANIPULATION ELEMENTS INTEGRATED WITH WINDOW PLATE FOR OPTICAL FEEDTHROUGH TO VACUUM
A controlled environment chamber is provided. The controlled environment chamber includes a chamber housing and a window component that is secured to the chamber housing. The window component includes a window plate having a first surface that faces away from an interior of the controlled environment chamber and a second surface that faces toward the interior of the controlled environment chamber. The window plate comprises at least one signal manipulation element.
F21V 8/00 - Utilisation de guides de lumière, p. ex. dispositifs à fibres optiques, dans les dispositifs ou systèmes d'éclairage
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
G21K 1/06 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer utilisant la diffraction, la réfraction ou la réflexion, p. ex. monochromateurs
22.
SIGNAL MANIPULATION ELEMENTS INTEGRATED WITH WINDOW PLATE FOR OPTICAL FEEDTHROUGH TO VACUUM
A controlled environment chamber is provided. The controlled environment chamber includes a chamber housing and a window component that is secured to the chamber housing. The window component includes a window plate having a first surface that faces away from an interior of the controlled environment chamber and a second surface that faces toward the interior of the controlled environment chamber. The window plate comprises at least one signal manipulation element.
Various embodiments provide methods, apparatuses, systems, or computer program products for performing decreased crosstalk atomic object reading/detection. A controller is operatively connected to components of a system comprising a confinement apparatus comprising RF electrodes defining an RF null axis and a plurality of longitudinal electrodes. The components comprise voltage sources and manipulation sources. The controller is configured to cause an atomic object being read and neighboring atomic object(s) to be confined by the confinement apparatus; and cause the voltage sources to provide first control signals to longitudinal electrodes. The first control signals cause the longitudinal electrodes to generate a push field configured to cause one of the atomic object being read or the neighboring atomic object(s) to move off the RF null axis. The controller is further configured to cause a manipulation source to generate/provide a reading beam that is at least partly incident on the atomic object being read.
A method for laser cooling an object crystal comprising at least two atomic objects and confined by a confinement apparatus is provided. A controller controls one or more manipulation sources to cause a first instance of manipulation signals to be incident on the object crystal at a target location defined at least in part by the confinement apparatus. The manipulation signals are configured to laser cool a first motional mode of the object crystal. The controller causes an adiabatic transfer of phonons from a second motional mode of the object crystal to the first motional mode of the object crystal. The controller controls the one or more manipulation sources to cause a second instance of the manipulation signals to be incident on the object crystal at the target location. The manipulation signals are configured to laser cool the first motional mode of the object crystal.
An atomic object confinement apparatus comprising a plurality of electrodes and one or more quasi-direct-current (quasi-DC) circuits. The plurality of electrodes comprise a plurality of radio frequency (RF) rail electrodes arranged to define, at least in part, a periodic array of confinement segments. The plurality of RF rail electrodes are configured such that, when an oscillating voltage signal is applied thereto, the plurality of RF rail electrodes generate a pseudopotential in a form of an array of trapping regions configured to contain at least one atomic object within a respective trapping region of the array of trapping regions. The one or more quasi-direct-current (quasi-DC) circuits are arranged to generate a magnetic field having a selectable magnitude and a selectable direction, such that the generated magnetic field acts on at least one atomic object within the array of trapping regions.
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
26.
OPTICS-INTEGRATED CONFINEMENT APPARATUS INCLUDING POLARIZATION CONTROLLING OPTICAL ELEMENTS
An optics-integrated confinement apparatus is provided. The optics-integrated confinement apparatus includes a first substrate, a plurality of electrical components formed on the first substrate, and an on-chip beam delivery system. The plurality of electrical components define a confinement apparatus configured/ operable to confine one or more quantum objects. The on-chip beam delivery system includes a waveguide, a coupler, and an optical element. The coupler is configured to couple an optical beam out of the waveguide and toward the optical element. The optical element is configured to modify a polarization of the optical beam and direct the optical beam toward a target location defined by the optics-integrated confinement apparatus.
G02F 1/01 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur
B82Y 20/00 - Nano-optique, p. ex. optique quantique ou cristaux photoniques
G02F 1/035 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur basés sur des céramiques ou des cristaux électro-optiques, p. ex. produisant un effet Pockels ou un effet Kerr dans une structure de guide d'ondes optique
G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
27.
OPTICS-INTEGRATED CONFINEMENT APPARATUS INCLUDING POLARIZATION CONTROLLING OPTICAL ELEMENTS
An optics-integrated confinement apparatus is provided. The optics-integrated confinement apparatus includes a first substrate, a plurality of electrical components formed on the first substrate, and an on-chip beam delivery system. The plurality of electrical components define a confinement apparatus configured/operable to confine one or more quantum objects. The on-chip beam delivery system includes a waveguide, a coupler, and an optical element. The coupler is configured to couple an optical beam out of the waveguide and toward the optical element. The optical element is configured to modify a polarization of the optical beam and direct the optical beam toward a target location defined by the optics-integrated confinement apparatus.
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G21K 1/06 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer utilisant la diffraction, la réfraction ou la réflexion, p. ex. monochromateurs
G21K 1/16 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer utilisant des dispositifs polarisants, p. ex. pour obtenir un faisceau d'ions polarisés
28.
Quantum system controller configured for quantum error correction
A quantum system controller configured to perform (near) real-time quantum error correction is provided. The controller comprises a processing device comprising at least one first processing element; a time-indexed command (TIC) sequencer comprising at least one second processing element; and a plurality of driver controller elements configured to control the operation of respective components and associated with respective buffers and processing elements. The processing device is configured to generate commands and the TIC sequencer is configured to cause the time-indexed execution of the commands by the appropriate driver controller elements. The controlling of real-time operations of the quantum computer by the TIC sequencer enables the processing device to generate commands based on conditionals evaluated based on input data indicating quantum errors that are likely present in a quantum calculation being performed by the quantum computer such that commands addressing the quantum errors are generated and executed in (near) real-time.
An optical system includes an optical mode filter comprising a metasurface optical element. The metasurface optical element is configured to, in response to an optical beam being incident thereon, emit a selected mode beam with first propagation characteristics and one or more unselected mode beams with respective second propagation characteristic. The first propagation characteristics differ from the respective second propagation characteristics such that a majority of the optical power of the selected mode beam is caused to be incident on at least one of a downstream optical element or a target location and a majority of the optical power of the one or more unselected mode beams is caused to be not incident on the at least one of the downstream optical element or the target location.
G02B 26/08 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables pour commander la direction de la lumière
G02B 27/09 - Mise en forme du faisceau, p. ex. changement de la section transversale, non prévue ailleurs
G02B 27/46 - Systèmes utilisant des filtres spatiaux
30.
CONFINEMENT APPARATUS SYSTEM WITH INTEGRATED FERROMAGNETIC STRUCTURES
A confinement apparatus system with one or more integrated ferromagnetic structures is provided. The confinement apparatus system includes a confinement apparatus chip; a plurality of electrodes formed on the confinement apparatus chip to form a confinement apparatus; and a spaced flip chip having at least one ferromagnetic structure formed thereon. The confinement apparatus is configured to confine one or more quantum objects and the spaced flip chip is mounted to the confinement apparatus chip with a set distance therebetween.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
A flex ion trap interconnect for a quantum computing system is provided. The flex ion trap interconnect may be configured for operation in the temperature and pressure required by a vacuum chamber. The flex ion trap interconnect may include two or more connectors, which may be located at an end or middle of a flex ion trap interconnect and configured to connect to an ion trap of a quantum computing system to transmit electrical signals to and from the ion trap.
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G21K 1/087 - Déviation, concentration ou focalisation du faisceau par des moyens électriques ou magnétiques par des moyens électriques
32.
ATOMIC OBJECT CONFINEMENT APPARATUS WITH RADIO FREQUENCY ELECTRODE SHAPING FOR PERIODIC BOUNDARY CONDITIONS
Atomic object confinement apparatuses that include RF interior electrodes and systems including atomic object confinement apparatuses that include RF interior electrodes are provided. An example atomic object confinement apparatus comprises RF rail electrodes and a plurality of RF interior electrodes. The RF rail electrodes form a periodic array of confinement segments within a central zone of the atomic object confinement apparatus and the each of the RF interior electrodes are disposed in a respective one of the confinement segments. The RF rail electrodes and the RF interior electrodes are configured to generate a substantially periodic array of trapping regions when an oscillating voltage signal is applied to the RF rail electrodes and the RF interior electrodes.
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
33.
FREQUENCY-SPLAYED MULTI-CHANNEL SYSTEM AND METHODS FOR USE THEREOF
H03K 19/195 - Circuits logiques, c.-à-d. ayant au moins deux entrées agissant sur une sortieCircuits d'inversion utilisant des éléments spécifiés utilisant des dispositifs supraconducteurs
G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
H03K 19/14 - Circuits logiques, c.-à-d. ayant au moins deux entrées agissant sur une sortieCircuits d'inversion utilisant des éléments spécifiés utilisant des dispositifs opto-électroniques, c.-à-d. des dispositifs émetteurs de lumière et des dispositifs photo-électriques couplés électriquement ou optiquement
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Quantum computers; computer hardware for quantum qubit-based
programming; computer hardware for quantum qubit-based
computing; computer software systems for quantum qubit-based
programming; computer software systems for quantum
qubit-based computing; computer hardware for quantum
programming; computer hardware for quantum computing;
computer software for quantum programming; computer software
for quantum computing; computer software for constructing,
analysing and running quantum programs, quantum algorithms,
and quantum instruction language; downloadable application
programming interface (API) software for use in quantum
qubit-based programming and developing and testing quantum
qubit-based algorithms; downloadable computer software for
constructing, analyzing and running quantum qubit-based
programs and quantum qubit-based algorithms; downloadable
computer software for data and source code processing in the
field of quantum qubit-based computing; downloadable
computer software for developing and testing quantum
qubit-based algorithms; downloadable computer software for
developing quantum virtual machines (QVM); downloadable
computer software for quantum computing; downloadable
computer software for quantum programming and developing and
testing quantum algorithms; downloadable computer software
for sensing, acquiring, analysing, processing, storing, or
providing quantum qubit-level information; downloadable
computer software for solving quantum qubit-based
algorithms, simulation of quantum qubit-based processes,
quantum qubit-based machine learning, quantum qubit-based
analytics, quantum qubit-based search analysis, quantum
qubit-resistant cybersecurity and solving quantum
qubit-based mathematical problems; downloadable computer
software platforms for programming and running software on
quantum qubit-based computers; downloadable quantum key
distribution (QKD) software; downloadable quantum key
generation software; quantum software and quantum
algorithms, enhanced by artificial intelligence, machine
learning, deep neural networks and quantum machine learning;
parts and fittings for all of the aforesaid. Scientific and technological services and research and
design relating thereto; quantum artificial intelligence
services; cloud computing services featuring software for
data and source code processing in the field of quantum
qubit-based computing; development of quantum computers;
design of quantum computers; development of hardware for
quantum computers; design of hardware for quantum computers;
design and development services in the field of quantum
entropy generation software; design and development services
in the field of quantum key distribution (QKD) software;
design and development services in the field of quantum key
generation software; technology consultation and research in
the field of quantum computing, quantum programming, quantum
engineering, quantum algorithms and cryogenics; information
and advisory relating to all of the aforesaid.
35.
FREQUENCY-SPLAYED MULTI-CHANNEL SYSTEM AND METHODS FOR USE THEREOF
A system comprises a plurality of voltage signal sources and a controller configured to control operation of the voltage signal sources to cause them to generate respective voltage signals characterized by respective frequencies. The plurality of voltage signal sources includes a first voltage signal source adjacent a second voltage signal source and a third voltage signal source adjacent to the second voltage signal source such that the second voltage signal source is physically disposed between the first voltage signal source and the third voltage signal source. The controller causes the first voltage signal source to generate a first voltage signal characterized by a first frequency, the second voltage signal source to generate a second voltage signal characterized by a second frequency, and the third voltage signal source to generate a third voltage signal characterized by a third frequency. The first and third frequencies are different from the second frequency.
Embodiments of the disclosure provide an RF inductor for an RF resonator. In some embodiments, the example RF inductor includes a machined conductive coil defining a hollow interior and having a cross-sectional area configured to facilitate power dissipation mitigation in the RF resonator. The RF inductor may include a sapphire dielectric core coupled to the machined conductive coil. At least a portion of the sapphire dielectric core may be positioned within the machined conductive coil. The sapphire dielectric core may be configured at least in part to conduct heat away from the sapphire dielectric core.
H01F 17/02 - Inductances fixes du type pour signaux sans noyau magnétique
H01F 27/22 - Refroidissement par conduction de chaleur à travers des éléments de remplissage solides ou en poudre
H01F 41/04 - Appareils ou procédés spécialement adaptés à la fabrication ou à l'assemblage des aimants, des inductances ou des transformateursAppareils ou procédés spécialement adaptés à la fabrication des matériaux caractérisés par leurs propriétés magnétiques pour la fabrication de noyaux, bobines ou aimants pour la fabrication de bobines
B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
37.
PULSE WIDTH MODULATION ELECTRODE CONTROL AND CORRESPONDING METHODS
Embodiments of the disclosure provide for using pulse width modulation (PWM) (50) to generate signals applied to an electrode of an ion trap (100) while mitigating noise thereof. In some embodiments a PWM signal generator (50) is configured to generate at least one signal, a filter network (not shown between 50, 100) is configured to filter the at least one signal, and a controller (30) is configured to control operation of the PWM signal generator (50) and the filter network. The controller (30) may cause the PWM signal generator to generate the at least one signal. The at least one signal may be provided to the filter network. The controller may cause the filter network to filter the at least one signal in accordance with a noise requirement, and the filtered at least one signal may be provided to an electrical component (100) of the system.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
A quantum computing system comprises a classical computing entity, a controller, and a quantum processor. The controller is configured to control operation of the quantum processor and communicate with the computing entity. The controller causes performance of a syndrome circuit segment to generate a syndrome of a logical qubit. The syndrome circuit segment is performed at least in part by causing performance of a sequence of at-least-two- physical-qubits interactions. The logical qubit comprises a plurality of data qubits logically organized in a real projective plane topology and the sequence of at-least-two-physical-qubits interactions is determined based on stabilizers determined based on the real projective plane topology of the logical qubit. The classical computing entity determines at least one quantum error correction based on the syndrome. A classical memory of the controller or the classical computing entity is updated based on the syndrome and/or the at least one quantum error correction.
A multi-frequency laser system including a first beam splitter configured to split the first beam into a high-power portion of the first beam and a low power portion of the first beam and a second beam splitter configured to split the second beam into a high-power portion of the second beam and a low power portion of the second beam, wherein a frequency of the first beam is shifted with respect to a frequency of the second beam. The system includes a combiner configured to combine the low power portion of the first beam and the low power portion of the second beam to generate a heterodyne beam used to reduce a phase error between the high-power portion of the first beam and the high-power portion of the second beam.
Atomic object confinement apparatuses that include RF busses and systems including atomic object confinement apparatuses that include RF busses are provided. An example atomic object confinement apparatus comprises RF rail electrodes and an RF bus electrode(s). The RF rail electrodes form a periodic array of confinement segments within a central zone of the atomic object confinement apparatus and the RF bus electrodes are disposed in a perimeter zone disposed about the central zone. The RF rail electrodes and the RF bus electrode(s) are configured to generate a substantially periodic array of trapping regions when an oscillating voltage signal is applied to the RF rail electrodes and the RF bus electrode(s).
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
41.
COMPOSITE CONFINEMENT APPARATUS ASSEMBLY INCLUDING PHOTONICS PLATFORM
A composite confinement apparatus assembly is provided. The composite confinement apparatus assembly includes a quantum object confinement apparatus and a photonic platform. The confinement apparatus includes one or more electrical components and is fabricated on a confinement apparatus substrate. The photonic platform includes one or more photonic components that are hosted by a photonic platform substrate. The photonic platform substrate is mechanically coupled to the confinement apparatus substrate to form the composite confinement apparatus assembly.
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré
G02B 6/136 - Circuits optiques intégrés caractérisés par le procédé de fabrication par gravure
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G21K 1/10 - Dispositifs de diffusionDispositifs d'absorption
A multi -frequency laser system including a first beam splitter configured to split the first beam into a high-power portion of the first beam and a low power portion of the first beam and a second beam splitter configured to split the second beam into a high-power portion of the second beam and a low power portion of the second beam, wherein a frequency of the first beam is shifted with respect to a frequency of the second beam. The system includes a combiner configured to combine the low power portion of the first beam and the low power portion of the second beam to generate a heterodyne beam used to reduce a phase error between the high-power portion of the first beam and the high-power portion of the second beam.
Quantum object (1220) confinement apparatus (1200) comprising data bus confinement corridors (1210) and cyclic storage areas (1205), systems comprising such confinement apparatuses, and corresponding methods are provided. A quantum object confinement apparatus of an example embodiment comprises one or more data bus confinement corridors and one or more cyclic storage confinement corridors. Each data bus confinement corridor is defined at least in part by respective corridor sequences of control electrodes (214, 224). The data bus confinement corridors are configured for transport of one or more quantum objects there along. Each cyclic storage confinement corridor is defined at least in part by respective cyclic sequences of control electrodes. Each cyclic storage confinement corridor is coupled to a respective data bus confinement corridor via one or more junctions (1215) such that one or more quantum objects may be transported from the cyclic storage confinement corridor to the respective data bus confinement corridor and vice versa.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
44.
Fault Tolerant Quantum Error Correction Using physical Transport of Qubits
A quantum computing system comprises a classical computing entity, a controller, and a quantum processor. The controller is configured to control operation of the quantum processor and communicate with the computing entity. The controller causes performance of syndrome circuit segments to generate syndromes of logical qubits. The syndrome circuit segment is performed at least partially by causing performance of a sequence of transportation operations and at-least-two-physical-qubits interactions. Each transportation operation of the sequence causes physical transport of at least one of a respective data qubit of the logical qubit or a respective ancilla qubit into a respective interaction zone defined by the quantum processor. A respective at-least-two-physical-qubits interaction is performed within the respective interaction zone. Using the syndrome, at least one quantum error correction is determined; and the controller causes a classical memory to be updated based on the syndrome and/or the quantum error correction.
G06N 10/70 - Correction, détection ou prévention d’erreur quantique, p. ex. codes de surface ou distillation d’état magique
G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p. ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p. ex. contrôle de parité, exclusion des 9 ou des 11
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
45.
LOSS OR UNDESIRED REORDERING OF QUANTUM OBJECTS DETECTION
Various embodiments provide methods, apparatuses, systems, or computer program products for performing quantum object loss detection. The method performed by a controller of a quantum computer includes controlling one or more voltage sources to cause a quantum object confinement apparatus to confine a quantum object crystal, where the quantum object crystal (i) includes at least one of (a) a first species quantum object or (b) a second species quantum object and (ii) defines a crystal axis that is aligned along the RF null axis of the quantum object confinement apparatus; causing at least one first control signal to be provided to at least one control electrode of the plurality of control electrodes, where the at least one first control signal causes the at least one control electrode to generate a push field configured to cause the quantum object crystal axis to rotate with respect to the RF null axis.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
46.
CONDITIONAL OPERATIONS IN QUANTUM OBJECT CONFINEMENT APPARATUS USING BROADCASTED CONTROL VOLTAGE SIGNALS
A quantum object confinement apparatus configured for performing conditional operations using broadcasted voltage signals is provided. In an example embodiment, the confinement apparatus comprises one or more electrode sequences. Each electrode sequence comprises a respective plurality of control electrodes configured to control the electric potential in a respective trapping region of one or more trapping regions of the confinement apparatus. A first switchable control electrode of the respective plurality of control electrodes is configured to be switchably in electrical communication with a respective selected switchable control voltage source of two or more switchable control voltage sources.
H01J 49/42 - Spectromètres à stabilité de trajectoire, p. ex. monopôles, quadripôles, multipôles, farvitrons
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
47.
ULTRA-HIGH VACUUM SEAL, ASSEMBLY, AND METHOD OF MAKING THE SAME
An ultra-high vacuum seal assembly includes a circuit board, a first ring, and a second ring. The first ring and the second ring include indium. The circuit board includes a first surface and a second surface that is opposite the first surface. The circuit board also includes a via array that is in electrical communication with the first surface and the second surface of the circuit board. The first ring is positioned directly on the first surface of the circuit board and the second ring is positioned directly on the second surface of the circuit board.
Quantum object confinement apparatus comprising confinement corridors and confinement sites, systems comprising such confinement apparatuses, and corresponding methods are provided. A quantum object confinement apparatus of an example embodiment comprises one or more confinement corridors and one or more confinement sites. Each confinement corridor is defined at least in part by respective corridor sequences of control electrodes. The confinement corridors are configured for transport of one or more quantum objects there along. Each confinement site is defined at least in part by respective site sequences of control electrodes. Each confinement site is coupled to a respective confinement corridor such that one or more quantum objects may be transported from the respective confinement corridor to the confinement site and from the confinement site to the respective confinement corridor.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
Provided is a novel beam delivery system comprising an optical beam spatial period converter. The converter comprises a substrate comprising two or more flexures coupled in series; a plurality of first spacing reflective elements and a plurality of second spacing reflective elements disposed on surface of the substrate. Each first spacing reflective element is configured to receive a respective incoming beam of an incoming array of beams and redirect the respective incoming beam to provide an intermediate beam to a respective second spacing reflective element. Each second spacing reflective element is configured to receive a respective intermediate beam and redirect the respective intermediate beam to provide a respective outgoing beam. The respective outgoing beam is one of plurality of outgoing beams that form an outgoing array of beams. The outgoing array of beams and the incoming array of beams have a different spatial frequencies.
G02B 26/08 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables pour commander la direction de la lumière
50.
QUANTUM ERROR CORRECTION USING REAL PROJECTIVE PLANE TOPOLOGY DEFINED STABILIZERS
A quantum computing system comprises a classical computing entity, a controller, and a quantum processor. The controller is configured to control operation of the quantum processor and communicate with the computing entity. The controller causes performance of a syndrome circuit segment to generate a syndrome of a logical qubit. The syndrome circuit segment is performed at least in part by causing performance of a sequence of at-least-two-physical-qubits interactions. The logical qubit comprises a plurality of data qubits logically organized in a real projective plane topology and the sequence of at-least-two-physical-qubits interactions is determined based on stabilizers determined based on the real projective plane topology of the logical qubit. The classical computing entity determines at least one quantum error correction based on the syndrome. A classical memory of the controller or the classical computing entity is updated based on the syndrome and/or the at least one quantum error correction.
G06N 10/70 - Correction, détection ou prévention d’erreur quantique, p. ex. codes de surface ou distillation d’état magique
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
51.
SEEDING AND OPTICAL PUMPING OF INTEGRATED LASERS FOR TRAPPED PARTICLE INTERACTION
A confinement assembly configured for confining quantum objects is provided. The confinement assembly includes a first substrate having potential generating elements formed thereon; and may include a second substrate that is secured with respect to the first substrate. The confinement assembly further includes at least a portion of a laser (e.g., gain media and at least part of a resonant structure) formed on the first and/or second substrate. The potential generating elements are operable for generating confinement regions configured for confining the quantum objects. The confinement assembly at least partially defines an optical path for causing an optical beam to interact with the at least a portion of the laser. The optical beam is (a) a seeding laser beam configured to control at least one property of light emitted by the laser or (b) an optical pumping beam configured to power the lasing activity of the laser.
B82Y 20/00 - Nano-optique, p. ex. optique quantique ou cristaux photoniques
H01S 3/063 - Lasers à guide d'ondes, p. ex. amplificateurs laser
H01S 5/04 - Procédés ou appareils pour l'excitation, p. ex. pompage
H01S 5/34 - Structure ou forme de la région activeMatériaux pour la région active comprenant des structures à puits quantiques ou à superréseaux, p. ex. lasers à puits quantique unique [SQW], lasers à plusieurs puits quantiques [MQW] ou lasers à hétérostructure de confinement séparée ayant un indice progressif [GRINSCH]
52.
COATED PHOTONIC INTEGRATED CIRCUIT (PIC) WITH OUTPUT APERTURE(S)
A coated photonic integrated circuit (PIC) with output apertures is provided. The PIC includes a PIC body; at least one input defined in the PIC body; one or more outputs defined in an exit side of the PIC body; and at least one waveguide defined in the PIC body, the at least one waveguide optically coupling the at least one input to a respective output of the one or more outputs. A coating covers an exterior surface of at least the exit side of the PIC body and one or more apertures are formed through the coating. Each aperture of the one or more apertures coincides with a respective output of the one or more outputs. The coating is optically opaque or metal.
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Platform-as-a-service (PaaS) services featuring computer software platforms for programming and running software on quantum qubit-based computers; cloud computing services featuring software for data and source code processing in the field of quantum qubit-based computing; Software as a service (SaaS) services featuring software for constructing, analyzing and running quantum qubit-based programs and quantum qubit-based algorithms; application service provider featuring application programming interface (API) software for use in quantum qubit-based programming and developing and testing quantum qubit-based algorithms, API software for developing and testing quantum qubit-based algorithms; software as a service (SAAS) services featuring software for quantum qubit-based programming and quantum qubit-based computing; software as a service (SAAS) services featuring software for solving quantum qubit-based algorithms, simulation of quantum qubit-based processes, quantum qubit-based machine learning, quantum qubit-based analytics, quantum qubit-based search analysis, solving quantum qubit-based mathematical problems; software as a service (SAAS) services featuring software for sensing, acquiring, analyzing, processing, storing, or providing quantum qubit-level information
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Platform-as-a-service (PaaS) services featuring computer software platforms for programming and running software on quantum qubit-based computers; cloud computing services featuring software for data and source code processing in the field of quantum qubit-based computing; Software as a service (SaaS) services featuring software for constructing, analyzing and running quantum qubit-based programs and quantum qubit-based algorithms; application service provider featuring application programming interface (API) software for use in quantum qubit-based programming and developing and testing quantum qubit-based algorithms, API software for developing and testing quantum qubit-based algorithms; software as a service (SAAS) services featuring software for quantum qubit-based programming and quantum qubit-based computing; software as a service (SAAS) services featuring software for solving quantum qubit-based algorithms, simulation of quantum qubit-based processes, quantum qubit-based machine learning, quantum qubit-based analytics, quantum qubit-based search analysis, solving quantum qubit-based mathematical problems; software as a service (SAAS) services featuring software for sensing, acquiring, analyzing, processing, storing, or providing quantum qubit-level information
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Platform-as-a-service (PaaS) services featuring computer software platforms for programming and running software on quantum qubit-based computers; cloud computing services featuring software for data and source code processing in the field of quantum qubit-based computing; Software as a service (SaaS) services featuring software for constructing, analyzing and running quantum qubit-based programs and quantum qubit-based algorithms; application service provider featuring application programming interface (API) software for use in quantum qubit-based programming and developing and testing quantum qubit-based algorithms, API software for developing and testing quantum qubit-based algorithms; software as a service (SAAS) services featuring software for quantum qubit-based programming and quantum qubit-based computing; software as a service (SAAS) services featuring software for solving quantum qubit-based algorithms, simulation of quantum qubit-based processes, quantum qubit-based machine learning, quantum qubit-based analytics, quantum qubit-based search analysis, solving quantum qubit-based mathematical problems; software as a service (SAAS) services featuring software for sensing, acquiring, analyzing, processing, storing, or providing quantum qubit-level information
56.
GEOMETRIC PHASE GATE USING A STATIC MAGNETIC FIELD GRADIENT
A controller of a quantum system causes a geometric phase gate to be performed on two or more qubits by causing a first adiabatic coupling of at least one memory state of two or more quantum objects embodying the two or more qubits to a respective magnetic field sensitive state of the two or more quantum objects while the two or more quantum objects are disposed within a static magnetic field gradient zone of a confinement apparatus. The first adiabatic coupling is performed for a shelving time. Responsive to determining that a gate time period has elapsed since a completion of the shelving time, the controller causes a second adiabatic coupling of the at least one memory state to the respective magnetic field sensitive state while the two or more quantum objects are disposed within the static magnetic field gradient zone.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
57.
ION TRAP WITH REDUCED RADIO FREQUENCY (RF) CURRENTS USING MULTIPLE FEED PORTS
Various embodiments provide ion traps (100) or systems comprising ion traps that comprise a trapping portion (110) and a radio frequency (RF) border electrode (120) bounding the trapping portion. The RF border electrode comprises or is in electrical communication with a plurality of feed ports (130A, 130B). In an example embodiment, the ion trap (300) comprises a plurality of unit cells (305A-Q) each comprising a respective trapping portion (310), a respective RF border electrode (320) bounding the respective trapping portion, and a respective feed port (330A-Q) of the plurality of feed ports.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
Various embodiments relate to detecting leakage errors in a quantum system. A controller of the quantum system causes a first manipulation source to provide a first manipulation signal to a particular region of an apparatus of the quantum system having one or more atomic objects therein. The first manipulation signal is tuned to excite the one or more atomic objects within the particular region that are in a qubit space of a ground state manifold to a shelving manifold and to suppress excitation of atomic objects within the particular region that have leaked out of the qubit space into leaked states. The controller causes a second manipulation source to provide a second manipulation signal to perform a detection operation on the one or more atomic objects. The controller determines if leakage errors have occurred based on a signal generated as part of the detection operation.
G06N 10/70 - Correction, détection ou prévention d’erreur quantique, p. ex. codes de surface ou distillation d’état magique
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
59.
HYBRID ARCHITECTURE FOR QUANTUM OBJECT CONFINEMENT APPARATUS
A confinement apparatus (200) is provided that includes one or more sorting sections (210A, 210B) and an operation section (230). Each sorting section comprises a plurality of sorting section radio frequency (RF) rails (416A, 416B) that are configured to, when a sorting RF voltage is applied thereto, define a plurality of sorting confinement regions (212) configured for confining quantum objects. Each sorting section RF rail has a sorting thickness in a direction perpendicular to a longitudinal axis of the sorting section RF rail. The operation section comprises a plurality of operation section RF rails (436) that are configured to, when an operation RF voltage is applied thereto, define a plurality of operation confinement regions configured for confining the quantum objects. Each operation section RF rail has an operation thickness in a direction perpendicular to a longitudinal axis of the operation section RF rail. The operation thickness is larger than the sorting thickness.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
60.
ATOMIC OBJECT CONFINEMENT APPARATUS WITH RADIO FREQUENCY ELECTRODE SHAPING FOR PERIODIC BOUNDARY CONDITIONS
Atomic object confinement apparatuses (800) that include RF interior electrodes (880A-E) and systems including atomic object confinement apparatuses that include RF interior electrodes are provided. An example atomic object confinement apparatus comprises RF rail electrodes (822) and a plurality of RF interior electrodes. The RF rail electrodes form a periodic array of confinement segments within a central zone of the atomic object confinement apparatus and the each of the RF interior electrodes are disposed in a respective one of the confinement segments. The RF rail electrodes and the RF interior electrodes are configured to generate a substantially periodic array of trapping regions when an oscillating voltage signal is applied to the RF rail electrodes and the RF interior electrodes.
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
A flex ion trap interconnect for a quantum computing system is provided. The flex ion trap interconnect may be configured for operation in the temperature and pressure required by a vacuum chamber. The flex ion trap interconnect may include two or more connectors, which may be located at an end or middle of a flex ion trap interconnect and configured to connect to an ion trap of a quantum computing system to transmit electrical signals to and from the ion trap.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
H05K 1/14 - Association structurale de plusieurs circuits imprimés
62.
FOUR-TONE PHASE INSENSITIVE GEOMETRY FOR MØLMER-SØRENSEN INTERACTION WITH CONFINED QUANTUM OBJECTS
A quantum computing four-tone phase insensitive Maimer- Sorensen gate system comprises a confinement apparatus, manipulation source(s), and beam path system(s). The confinement apparatus is configured to confine quantum objects. A qubit space of the quantum objects is defined comprising two qubit states. The manipulation source(s) is configured to generate first, second, third, and fourth manipulation signals. The first and fourth manipulation signals are configured to interact to provide a red sideband signal corresponding to a Raman transition between the two qubit states. The second and third manipulation signals are configured to interact to provide a blue sideband signal corresponding to the Raman transition. The beam path system(s) defines first and second beam paths. The first (second) beam path is configured to provide the first and second (third and fourth) manipulation signals to the defined location. A non-zero angle exists between the first and second beam paths at the defined location.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
63.
FOUR-TONE PHASE INSENSITIVE GEOMETRY FOR MØLMER-SØRENSEN INTERACTION WITH CONFINED QUANTUM OBJECTS
A quantum computing four-tone phase insensitive Mølmer-Sørensen gate system comprises a confinement apparatus, manipulation source(s), and beam path system(s). The confinement apparatus is configured to confine quantum objects. A qubit space of the quantum objects is defined comprising two qubit states. The manipulation source(s) is configured to generate first, second, third, and fourth manipulation signals. The first and fourth manipulation signals are configured to interact to provide a red sideband signal corresponding to a Raman transition between the two qubit states. The second and third manipulation signals are configured to interact to provide a blue sideband signal corresponding to the Raman transition. The beam path system(s) defines first and second beam paths. The first (second) beam path is configured to provide the first and second (third and fourth) manipulation signals to the defined location. A non-zero angle exists between the first and second beam paths at the defined location.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
64.
QUANTUM SYSTEM COMPRISING METASURFACES COMPRISING TRANSPARENT CONDUCTIVE MATERIAL
In various embodiments, a quantum object confinement apparatus comprising a plurality of electrodes and configured to define a confinement volume within configured for confining one or more quantum objects therein is provided. The confinement volume defines one or more quantum objects positions. The quantum object confinement apparatus comprises one or more metasurfaces that are configured to be associated with respective quantum object positions. The plurality of metasurfaces comprises of a plurality of transparent conducting oxide metamaterial structures.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G02B 1/00 - Éléments optiques caractérisés par la substance dont ils sont faitsRevêtements optiques pour éléments optiques
65.
FAULT TOLERANT QUANTUM ERROR CORRECTION USING PHYSICAL TRANSPORT OF QUBITS
A quantum computing system comprises a classical computing entity, a controller, and a quantum processor. The controller is configured to control operation of the quantum processor and communicate with the computing entity. The controller causes performance of syndrome circuit segments to generate syndromes of logical qubits. The syndrome circuit segment is performed at least partially by causing performance of a sequence of transportation operations and at-least-two-physical-qubits interactions. Each transportation operation of the sequence causes physical transport of at least one of a respective data qubit of the logical qubit or a respective ancilla qubit into a respective interaction zone defined by the quantum processor. A respective at-least-two-physical-qubits interaction is performed within the respective interaction zone. Using the syndrome, at least one quantum error correction is determined; and the controller causes a classical memory to be updated based on the syndrome and/or the quantum error correction.
An ultra-high vacuum seal assembly includes a circuit board, a first ring, and a second ring. The first ring and the second ring include indium. The circuit board includes a first surface and a second surface that is opposite the first surface. The circuit board also includes a via array that is in electrical communication with the first surface and the second surface of the circuit board. The first ring is positioned directly on the first surface of the circuit board and the second ring is positioned directly on the second surface of the circuit board.
F16K 51/02 - Autres détails non particuliers aux types de soupapes ou clapets ou autres appareils d'obturation spécialement conçus pour les installations de vide poussé
F16L 23/16 - Raccords à brides caractérisés par les moyens d'étanchéité
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
67.
COMPOSITE CONFINEMENT APPARATUS ASSEMBLY INCLUDING PHOTONICS PLATFORM
A composite confinement apparatus assembly is provided. The composite confinement apparatus assembly includes a quantum object confinement apparatus and a photonic platform. The confinement apparatus includes one or more electrical components and is fabricated on a confinement apparatus substrate. The photonic platform includes one or more photonic components that are hosted by a photonic platform substrate. The photonic platform substrate is mechanically coupled to the confinement apparatus substrate to form the composite confinement apparatus assembly.
G02B 5/00 - Éléments optiques autres que les lentilles
G02B 6/00 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
G04F 5/14 - Appareils pour la production d'intervalles de temps prédéterminés, utilisés comme étalons utilisant des horloges atomiques
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
Various embodiments relate to detecting leakage errors in a quantum system. A controller of the quantum system causes a first manipulation source to provide a first manipulation signal to a particular region of an apparatus of the quantum system having one or more atomic objects therein. The first manipulation signal is tuned to excite the one or more atomic objects within the particular region that are in a qubit space of a ground state manifold to a shelving manifold and to suppress excitation of atomic objects within the particular region that have leaked out of the qubit space into leaked states. The controller causes a second manipulation source to provide a second manipulation signal to perform a detection operation on the one or more atomic objects. The controller determines if leakage errors have occurred based on a signal generated as part of the detection operation.
A method for cooling an atomic object is provided. The method includes controlling voltage sources (50) to cause a confinement apparatus (200) to confine the atomic object (408) at a position defined by the confinement apparatus, where motion of the atomic object at the position defined by the confinement apparatus comprises contributions from one or more radial motional modes of the atomic object and contributions from one or more axial motional modes of the atomic object; and causing at least one first control signal to be provided to at least one control electrode of the plurality of control electrodes (216), where an oscillating potential is generated at the position defined by the confinement apparatus and configured to cause at least one radial mode of the one or more radial modes of the atomic object to couple to at least one axial mode of the one or more axial modes of the atomic object..
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
A method for cooling an atomic object is provided. The method includes controlling voltage sources to cause a confinement apparatus to confine the atomic object at a position defined by the confinement apparatus, where motion of the atomic object at the position defined by the confinement apparatus comprises contributions from one or more radial motional modes of the atomic object and contributions from one or more axial motional modes of the atomic object; and causing at least one first control signal to be provided to at least one control electrode of the plurality of control electrodes, where an oscillating potential is generated at the position defined by the confinement apparatus and configured to cause at least one radial mode of the one or more radial modes of the atomic object to couple to at least one axial mode of the one or more axial modes of the atomic object.
F25B 23/00 - Machines, installations ou systèmes ayant un seul principe de fonctionnement non compris dans les groupes , p. ex. utilisant l'effet de radiation sélective
71.
FILTER-AWARE VOLTAGE SIGNAL SEQUENCE DETERMINATION FOR TRANSPORT OPERATIONS
A controller is configured to control operation of a confinement apparatus comprising one or more radio frequency rails and a plurality of control electrodes. The controller comprises a processing element, non-transitory computer-readable memory storing computer-executable instructions. The computer-executable instructions are configured to, when executed by the processing element, cause the controller to at least identify a manipulatable object transport operation to be performed; obtain a set of voltage signal sequences corresponding to the manipulatable object transport operation to be performed from the voltage signal sequence library; and cause one or more voltage sources to apply respective voltage signal sequences of the set of voltage signal sequences corresponding to the manipulatable object transport operation to respective control electrodes of the plurality of control electrodes via respective filters. The set of voltage signal sequences is determined based at least in part on respective filter responses of the respective filters.
B82B 3/00 - Fabrication ou traitement des nanostructures par manipulation d’atomes ou de molécules, ou d’ensembles limités d’atomes ou de molécules un à un comme des unités individuelles
B01L 3/00 - Récipients ou ustensiles pour laboratoires, p. ex. verrerie de laboratoireCompte-gouttes
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
G04F 5/14 - Appareils pour la production d'intervalles de temps prédéterminés, utilisés comme étalons utilisant des horloges atomiques
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
72.
FILTER-AWARE VOLTAGE SIGNAL SEQUENCE DETERMINATION FOR TRANSPORT OPERATIONS
A controller is configured to control operation of a confinement apparatus comprising one or more radio frequency rails and a plurality of control electrodes. The controller comprises a processing element, non-transitory computer-readable memory storing computer-executable instructions. The computer-executable instructions are configured to, when executed by the processing element, cause the controller to at least identify a manipulatable object transport operation to be performed; obtain a set of voltage signal sequences corresponding to the manipulatable object transport operation to be performed from the voltage signal sequence library; and cause one or more voltage sources to apply respective voltage signal sequences of the set of voltage signal sequences corresponding to the manipulatable object transport operation to respective control electrodes of the plurality of control electrodes via respective filters. The set of voltage signal sequences is determined based at least in part on respective filter responses of the respective filters.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
A system comprising a particle confinement assembly and one or more signal manipulation elements is provided. The particle confinement assembly defines a plurality of particle positions. Each signal manipulation element of the one or more signal manipulation elements (a) is associated with at least one respective position of the plurality of particle positions and (b) comprises an active nanophotonic component having a dynamically controllable optical effect. A respective signal manipulation element of the one or more signal manipulation elements is configured to, responsive to an incident signal being incident thereon and based on a state of the dynamically controllable optical effect, cause either (a) an induced signal to be incident on at least a portion of the at least one respective position or (b) an induced signal to be incident on a respective collection location corresponding to the at least one respective position.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
B82Y 20/00 - Nano-optique, p. ex. optique quantique ou cristaux photoniques
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
One or more real time engines of a quantum computer provide quantum measurement information to a classical computing engine via a classical function call. The quantum computer includes a controller comprising the one or more real time engines in communication with the classical computing engine, and a quantum processor. The controller is configured to control operation of one or more components of the quantum processor. The real time engines receive a classical call response comprising an indication of a result determined via execution of a classical function by the classical computing engine based at least in part on the classical function call; and control operation of the one or more components of the quantum processor based at least in part on the result.
G06N 10/80 - Programmation quantique, p. ex. interfaces, langages ou boîtes à outils de développement logiciel pour la création ou la manipulation de programmes capables de fonctionner sur des ordinateurs quantiquesPlate-formes pour la simulation ou l’accès aux ordinateurs quantiques, p. ex. informatique quantique en nuage
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
G06N 10/70 - Correction, détection ou prévention d’erreur quantique, p. ex. codes de surface ou distillation d’état magique
75.
METHOD OF APPLYING A DIELECTRIC COATING ON A COMPONENT OF AN ELECTRICAL DEVICE
A method of applying a dielectric coating on a structure array of a component of an electrical device includes applying a first layer of a first dielectric material on a structure array with an atomic layer deposition (ALD) process. The structure array is formed on a substrate and has a plurality of features, each of the plurality of features having an aspect ratio of at least 1 : 1.
A method of applying a dielectric coating (300) on a structure array (210) of a component (200) of an electrical device (100) includes applying a first layer (310) of a first dielectric material on a structure array (210) with an atomic layer deposition (ALD) process or a spin-on cladding process. The structure array (210) has a plurality of features (220). The method may include applying a second layer (320) of a second dielectric material on the first layer (310) with an evaporation deposition process, a physical vapor deposition process (PVD), or a flux-controlled chemical vapor deposition (CVD) process. The first layer (310) has a first thickness (Tl) and the second layer (320) has a second thickness (T2) that is greater than the first thickness.
G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré
G02B 6/124 - Lentilles géodésiques ou réseaux intégrés
Various embodiments provide a waveguide with reduced optical power loss. The waveguide comprises a waveguide core having a core index of refraction; and a cladding disposed about at least a portion of a perimeter of the waveguide core. The cladding includes a plurality of layers that define a periodic index of refraction. The plurality of layers includes a core-adjacent layer having a core-adjacent layer index of refraction. The core index of refraction is greater than the core-adjacent layer index of refraction.
A method of applying a dielectric coating on a structure array of a component of an electrical device includes applying a first layer of a first dielectric material on a structure array with an atomic layer deposition (ALD) process. The structure array is formed on a substrate and has a plurality of features, each of the plurality of features having an aspect ratio of at least 1:1.
A method for designing a metasurface is provided. The method may include selecting a first metamaterial structure of a plurality of metamaterial structures of the metasurface; generating a forward light propagation model for the first metamaterial structure; generating a reciprocal light propagation model for the first metamaterial structure using a light manipulation function for the metasurface; determining a first electromagnetic response difference between the forward light propagation model and the reciprocal light propagation model; and determining a first property range of the first metamaterial structure such that the first electromagnetic response difference is optimized.
A method for designing a metasurface is provided. The method may include selecting a first metamaterial structure of a plurality of metamaterial structures of the metasurface; generating a forward light propagation model for the first metamaterial structure; generating a reciprocal light propagation model for the first metamaterial structure using a light manipulation function for the metasurface; determining a first electromagnetic response difference between the forward light propagation model and the reciprocal light propagation model; and determining a first property range of the first metamaterial structure such that the first electromagnetic response difference is optimized.
G02B 1/00 - Éléments optiques caractérisés par la substance dont ils sont faitsRevêtements optiques pour éléments optiques
G02F 1/00 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire
G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
A quantum noise decoder comprising a machine- learning trained quantum error determination model is trained using training data comprising empirical operational data captured based at least in part on operation of a particular quantum processor. A noise model for the particular quantum processor is generated based on the machine-learning trained quantum error determination model. The noise model is provided. Providing the noise model comprises at least one of (a) causing a graphical representation of the noise model to be provided via a display of a computing entity such a component or parameter of the particular quantum processor is modified or changed based thereon or (b) providing the noise model as input associated with executable instructions for execution by a controller of the particular quantum processor or a computing entity in communication with the controller such that a component or parameter of the particular quantum processor is modified or changed based thereon.
G06N 3/0442 - Réseaux récurrents, p. ex. réseaux de Hopfield caractérisés par la présence de mémoire ou de portes, p. ex. mémoire longue à court terme [LSTM] ou unités récurrentes à porte [GRU]
A beam delivery system is provided that includes a beam delivery photonic integrated circuit. The beam delivery photonic integrated circuit includes one or more optical inputs; a plurality of waveguide outputs; and a plurality of beam paths. Each beam path connects one of the plurality of waveguide outputs to at least one of the optical inputs. The plurality of waveguide outputs are configured to emit a plurality of parallel beams. The beam delivery photonic integrated circuit is on a chip. The beam delivery system further includes a telecentric optical relay assembly. The telecentric optical relay assembly is configured to receive the plurality of parallel beams provided by the waveguide outputs and focus each received beam on a corresponding one of a plurality of positions of an atomic object confinement apparatus in a telecentric manner.
G02F 1/29 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de la position ou de la direction des rayons lumineux, c.-à-d. déflexion
G02B 6/122 - Éléments optiques de base, p. ex. voies de guidage de la lumière
G02B 6/125 - Courbures, branchements ou intersections
G02F 1/295 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de la position ou de la direction des rayons lumineux, c.-à-d. déflexion dans une structure de guide d'ondes optique
G06E 3/00 - Dispositifs non prévus dans le groupe , p. ex. pour traiter des données analogiques hybrides
G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
83.
CONDITIONAL OPERATIONS IN QUANTUM OBJECT CONFINEMENT APPARATUS USING BROADCASTED CONTROL VOLTAGE SIGNALS
A quantum object confinement apparatus (100) configured for performing conditional operations using broadcasted voltage signals is provided. In an example embodiment, the confinement apparatus comprises one or more electrode sequences (130). Each electrode sequence comprises a respective plurality of control electrodes (114) configured to control the electric potential in a respective trapping region of one or more trapping regions (110) of the confinement apparatus. A first switchable control electrode of the respective plurality of control electrodes is configured to be switchably in electrical communication with a respective selected switchable control voltage source (5A, 5B) of two or more switchable control voltage sources (5A, 5B).
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
(1) Quantum computers; computer hardware for quantum qubit-based programming; computer hardware for quantum qubit-based computing; computer software systems for quantum qubit-based programming; computer software systems for quantum qubit-based computing; computer hardware for quantum programming; computer hardware for quantum computing; computer software for quantum programming; computer software for quantum computing; computer software for constructing, analysing and running quantum programs, quantum algorithms, and quantum instruction language; downloadable application programming interface (API) software for use in quantum qubit-based programming and developing and testing quantum qubit-based algorithms; downloadable computer software for constructing, analyzing and running quantum qubit-based programs and quantum qubit-based algorithms; downloadable computer software for data and source code processing in the field of quantum qubit-based computing; downloadable computer software for developing and testing quantum qubit-based algorithms; downloadable computer software for developing quantum virtual machines (QVM); downloadable computer software for quantum computing; downloadable computer software for quantum programming and developing and testing quantum algorithms; downloadable computer software for sensing, acquiring, analysing, processing, storing, or providing quantum qubit-level information; downloadable computer software for solving quantum qubit-based algorithms, simulation of quantum qubit-based processes, quantum qubit-based machine learning, quantum qubit-based analytics, quantum qubit-based search analysis, quantum qubit-resistant cybersecurity and solving quantum qubit-based mathematical problems; downloadable computer software platforms for programming and running software on quantum qubit-based computers; downloadable quantum key distribution (QKD) software; downloadable quantum key generation software; quantum software and quantum algorithms, enhanced by artificial intelligence, machine learning, deep neural networks and quantum machine learning; parts and fittings for all of the aforesaid; none of the aforementioned goods relating to autonomous control systems for vehicles. (1) Scientific and technological services and research and design relating thereto; quantum artificial intelligence services; cloud computing services featuring software for data and source code processing in the field of quantum qubit-based computing; development of quantum computers; design of quantum computers; development of hardware for quantum computers; design of hardware for quantum computers; design and development services in the field of quantum entropy generation software; design and development services in the field of quantum key distribution (QKD) software; design and development services in the field of quantum key generation software; technology consultation and research in the field of quantum computing, quantum programming, quantum engineering, quantum algorithms and cryogenics; information and advisory relating to all of the aforesaid; none of the aforementioned services relating to autonomous control systems for vehicles.
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Quantum computers; computer hardware for quantum qubit-based programming; computer hardware for quantum qubit-based computing; computer software systems for quantum qubit-based programming; computer software systems for quantum qubit-based computing; computer hardware for quantum programming; computer hardware for quantum computing; computer software for quantum programming; computer software for quantum computing; computer software for constructing, analysing and running quantum programs, quantum algorithms, and quantum instruction language; downloadable application programming interface (API) software for use in quantum qubit-based programming and developing and testing quantum qubit-based algorithms; downloadable computer software for constructing, analyzing and running quantum qubit-based programs and quantum qubit-based algorithms; downloadable computer software for data and source code processing in the field of quantum qubit-based computing; downloadable computer software for developing and testing quantum qubit-based algorithms; downloadable computer software for developing quantum virtual machines (QVM); downloadable computer software for quantum computing; downloadable computer software for quantum programming and developing and testing quantum algorithms; downloadable computer software for sensing, acquiring, analysing, processing, storing, or providing quantum qubit-level information; downloadable computer software for solving quantum qubit-based algorithms, simulation of quantum qubit-based processes, quantum qubit-based machine learning, quantum qubit-based analytics, quantum qubit-based search analysis, quantum qubit-resistant cybersecurity and solving quantum qubit-based mathematical problems; downloadable computer software platforms for programming and running software on quantum qubit-based computers; downloadable quantum key distribution (QKD) software; downloadable quantum key generation software; quantum software and quantum algorithms, enhanced by artificial intelligence, machine learning, deep neural networks and quantum machine learning; parts and fittings for all of the aforesaid. Scientific and technological services and research and design relating thereto; quantum artificial intelligence services; cloud computing services featuring software for data and source code processing in the field of quantum qubit-based computing; development of quantum computers; design of quantum computers; development of hardware for quantum computers; design of hardware for quantum computers; design and development services in the field of quantum entropy generation software; design and development services in the field of quantum key distribution (QKD) software; design and development services in the field of quantum key generation software; technology consultation and research in the field of quantum computing, quantum programming, quantum engineering, quantum algorithms and cryogenics; information and advisory relating to all of the aforesaid.
An optics-integrated confinement apparatus system comprises a confinement apparatus chip having a confinement apparatus formed thereon and having at least one apparatus optical element disposed and/or formed thereon.
G02B 5/00 - Éléments optiques autres que les lentilles
G02B 6/00 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
An installation and removal tool and a method of using the tool are provided, including for installing and removing semiconductor devices, such as computer chips. The tool may comprise a tool body comprising a plurality of tool body sides and a plurality of tool body projections, wherein each of the plurality of tool body sides includes at least one tool body projection. The tool may further comprise a plurality of fingers, wherein each of the plurality of fingers is pivotally coupled to one or more tool body projections via one or more pivots. Each of the plurality of fingers may be configured to be moveable via the pivot between a first position and a second position, the first position associated with a first stop on the associated finger and the second position associated with a second stop on the associated finger.
B25J 15/10 - Têtes de préhension avec des éléments en forme de doigts avec au moins trois éléments en forme de doigts
H01L 21/677 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le transport, p. ex. entre différents postes de travail
H01L 21/687 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension en utilisant des moyens mécaniques, p. ex. mandrins, pièces de serrage, pinces
88.
LOW TEMPERATURE LOW-ABUNDANCE ATOMIC OBJECT DISPENSING
Methods and dispensers for dispensing atomic objects are provided. An example method for dispensing atomic objects includes depositing a reaction agent and a composition comprising the atomic objects inside a crucible chamber of a crucible; and heating the composition comprising the atomic objects to an atomizing reaction temperature to cause an atomizing chemical reaction to occur. The reaction component comprises a material that is a participant in the atomizing chemical reaction, the result of the atomizing chemical reaction is elemental atomic objects, and (c) the elemental atomic object is dispensed during the atomizing chemical reaction.
B22F 9/20 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par un procédé chimique avec réduction de mélanges métalliques à partir de mélanges métalliques solides
B22F 9/30 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par un procédé chimique avec décomposition de mélanges métalliques, p. ex. par pyrolyse
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
B01D 59/00 - Séparation d'isotopes différents d'un même élément chimique
C22B 26/00 - Obtention des métaux alcalins ou alcalino-terreux ou du magnésium
An installation and removal tool and a method of using the tool are provided, including for installing and removing semiconductor devices, such as computer chips. The tool may comprise a tool body comprising a plurality of tool body sides and a plurality of tool body projections, wherein each of the plurality of tool body sides includes at least one tool body projection. The tool may further comprise a plurality of fingers, wherein each of the plurality of fingers is pivotally coupled to one or more tool body projections via one or more pivots. Each of the plurality of fingers may be configured to be moveable via the pivot between a first position and a second position, the first position associated with a first stop on the associated finger and the second position associated with a second stop on the associated finger.
Methods and dispensers for dispensing atomic objects are provided. An example method for dispensing atomic objects includes depositing a reaction agent and a composition comprising the atomic objects inside a crucible chamber of a crucible; and heating the composition comprising the atomic objects to an atomizing reaction temperature to cause an atomizing chemical reaction to occur. The reaction component comprises a material that is a participant in the atomizing chemical reaction, the result of the atomizing chemical reaction is elemental atomic objects, and (c) the elemental atomic object is dispensed during the atomizing chemical reaction.
G21G 4/04 - Sources radioactives autres que les sources de neutrons
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
An optics-integrated confinement apparatus system comprises a confinement apparatus chip having a confinement apparatus formed thereon and having at least one apparatus optical element disposed and/or formed thereon.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
H01L 33/06 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les corps semi-conducteurs ayant une structure à effet quantique ou un superréseau, p.ex. jonction tunnel au sein de la région électroluminescente, p.ex. structure de confinement quantique ou barrière tunnel
92.
LOSS OR UNDESIRED REORDERING OF QUANTUM OBJECTS DETECTION
Various embodiments provide methods, apparatuses, systems, or computer program products for performing quantum object loss detection. The method performed by a controller of a quantum computer includes controlling one or more voltage sources to cause a quantum object confinement apparatus to confine a quantum object crystal, where the quantum object crystal (i) includes at least one of (a) a first species quantum object or (b) a second species quantum object and (ii) defines a crystal axis that is aligned along the RF null axis of the quantum object confinement apparatus; causing at least one first control signal to be provided to at least one control electrode of the plurality of control electrodes, where the at least one first control signal causes the at least one control electrode to generate a push field configured to cause the quantum object crystal axis to rotate with respect to the RF null axis.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
93.
INTEGRATED SERVO SYSTEMS AND APPARTUSES FOR CONTROLLING QUANTUM COMPUTING OPERATIONS
Embodiments of the present disclosure provide for a quantum computing system with one or more integrated servo systems. In some embodiments, the one or more integrated servo systems may be dynamically tuned or adjusted, which may provide for reduction of noise and improvement of timing of execution of quantum operations in the quantum computing system. In some embodiments, the integrated servo systems may be configured to use closed loop control system to tune the integrated servo systems. In some embodiments, the integrated servo systems may be configured for live streaming to operators through a plurality of operations.
G05B 19/4155 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par le déroulement du programme, c.-à-d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p. ex. choix d'un programme
94.
ACTIVE NANO-PHOTONICS FOR TRAPPED PARTICLE INTERACTION
A system comprising a particle confinement assembly and one or more signal manipulation elements is provided. The particle confinement assembly defines a plurality of particle positions. Each signal manipulation element of the one or more signal manipulation elements (a) is associated with at least one respective position of the plurality of particle positions and (b) comprises an active nanophotonic component having a dynamically controllable optical effect. A respective signal manipulation element of the one or more signal manipulation elements is configured to, responsive to an incident signal being incident thereon and based on a state of the dynamically controllable optical effect, cause either (a) an induced signal to be incident on at least a portion of the at least one respective position or (b) an induced signal to be incident on a respective collection location corresponding to the at least one respective position.
G02F 1/01 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur
B82Y 20/00 - Nano-optique, p. ex. optique quantique ou cristaux photoniques
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
H01S 5/42 - Réseaux de lasers à émission de surface
95.
QUANTUM SYSTEM COMPRISING METASURFACES COMPRISING TRANSPARENT CONDUCTIVE MATERIAL
In various embodiments, a quantum object confinement apparatus comprising a plurality of electrodes and configured to confine one or more quantum objects is provided. Each electrode is configured to generate a confinement potential to confine the one or more quantum objects, wherein the confinement potential defines the location of the one or more quantum objects. The quantum object confinement apparatus comprises one or more metasurfaces that are configured to be associated with a quantum object's position. The plurality of metasurfaces comprises of a plurality of transparent conducting oxide metamaterial structures.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron
B82Y 20/00 - Nano-optique, p. ex. optique quantique ou cristaux photoniques
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
96.
GEOMETRIC PHASE GATE USING A MAGNETIC FIELD GRADIENT
A controller of a quantum system causes a geometric phase gate to be performed on two or more qubits by causing two or more qubits of the quantum system to experience a (near field and/or non-radiating) magnetic field gradient; and, responsive to determining that a gate time period has elapsed since the two or more qubits of the quantum system started to experience the magnetic field gradient, causing the two or more qubits to no longer experience the magnetic field gradient. The entanglement of the two or more qubits corresponding to the performance of the gate is enacted, mediated, and/or caused by the magnetic field gradient.
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
G06N 10/70 - Correction, détection ou prévention d’erreur quantique, p. ex. codes de surface ou distillation d’état magique
97.
LOW LOSS SILICON NITRIDE AND WAVEGUIDES COMPRISING LOW LOSS SILICON NITRIDE
A low loss silicon nitride film is formed by depositing a silicon nitride film on a substrate and annealing the silicon nitride film for at least ten hours at a temperature of at least 400° C. to cause the silicon nitride film to become a low loss silicon nitride film. The low loss silicon nitride film has an optical loss of less than 1 dB per cm at a wavelength of 488 nm.
A low loss silicon nitride film is formed by depositing a silicon nitride film on a substrate and annealing the silicon nitride film for at least ten hours at a temperature of at least 400° C to cause the silicon nitride film to become a low loss silicon nitride film. The low loss silicon nitride film has an optical loss of less than 1 dB per cm at a wavelength of 488 nm.
G02B 6/122 - Éléments optiques de base, p. ex. voies de guidage de la lumière
G02B 6/132 - Circuits optiques intégrés caractérisés par le procédé de fabrication par le dépôt de couches minces
G02B 6/10 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques
G02B 6/134 - Circuits optiques intégrés caractérisés par le procédé de fabrication par substitution par des atomes de dopage
G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré
99.
GEOMETRIC PHASE GATE USING A MAGNETIC FIELD GRADIENT
A controller of a quantum system causes a geometric phase gate to be performed on two or more qubits by causing two or more qubits of the quantum system to experience a (near field and/or non-radiating) magnetic field gradient; and, responsive to determining that a gate time period has elapsed since the two or more qubits of the quantum system started to experience the magnetic field gradient, causing the two or more qubits to no longer experience the magnetic field gradient. The entanglement of the two or more qubits corresponding to the performance of the gate is enacted, mediated, and/or caused by the magnetic field gradient.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
100.
INTEGRATED SERVO SYSTEMS AND APPARTUSES FOR CONTROLLING QUANTUM COMPUTING OPERATIONS
Embodiments of the present disclosure provide for a quantum computing system with one or more integrated servo systems. In some embodiments, the one or more integrated servo systems may be dynamically tuned or adjusted, which may provide for reduction of noise and improvement of timing of execution of quantum operations in the quantum computing system. In some embodiments, the integrated servo systems may be configured to use closed loop control system to tune the integrated servo systems. In some embodiments, the integrated servo systems may be configured for live streaming to operators through a plurality of operations.
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit