INSTITUTE OF FACILITY AGRICULTURE, GUANGDONG ACADEMY OF AGRICULTURAL SCIENCES (Chine)
Inventeur(s)
Xu, Sai
Lu, Huazhong
Liang, Xin
Abrégé
A non-destructive fruit defect detection method and system based on neural networks are used to solve problem of inaccurate selection of high-quality fruits by current consumers. The system includes a standard formulation module configured to formulate monitoring standards for different batches and varieties of the fruits to obtain standard detection parameters for the different batches and varieties of the fruits, a preliminary identification module configured to preliminarily identify external conditions of the different batches and varieties of the fruits, a non-destructive detection module configured to non-destructively detect the different batches and varieties of the fruits, generate a fruit abnormal signal or obtain growth deviation values of the different batches and varieties of the fruits, and a quality judgment module configured to judge quality of the different batches and varieties of the fruits. Accurate non-destructive detection for the different batches and varieties of the fruits are realized.
G06K 9/00 - Méthodes ou dispositions pour la lecture ou la reconnaissance de caractères imprimés ou écrits ou pour la reconnaissance de formes, p.ex. d'empreintes digitales
G06V 10/75 - Organisation de procédés de l’appariement, p. ex. comparaisons simultanées ou séquentielles des caractéristiques d’images ou de vidéosApproches-approximative-fine, p. ex. approches multi-échellesAppariement de motifs d’image ou de vidéoMesures de proximité dans les espaces de caractéristiques utilisant l’analyse de contexteSélection des dictionnaires
G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
Institute of Facility Agriculture, Guangdong Academy of Agricultural Science (Chine)
Inventeur(s)
Xu, Sai
Lu, Huazhong
Zhang, Changyuan
Liang, Xin
Qiu, Guangjun
Fan, Changxiang
Peng, Jian
Abrégé
An intelligent recognition method of hyperspectral image of parasites in raw fish relates to optical detection technology, and includes step 1: obtaining a hyperspectral image of the raw fish in a wavelength range from 300 to 1100 nm; step 2: extracting a grayscale image of the hyperspectral image at a wavelength value of 437 nm, and obtaining a position range of fish meat in the grayscale image by performing a median filtering process and a binarization process on the grayscale image; step 3: extracting spectral signals of pixel points in the position range of the hyperspectral image, performing a first-order derivative process on the spectral signals, and import the spectral signals after the first-order derivative process into a preset first model, a second model, and a third model for analysis. The method can accurately distinguish the parasite body in the raw fish.
G06V 10/28 - Quantification de l’image, p. ex. seuillage par histogramme visant à discriminer entre les formes d’arrière-plan et d’avant-plan
G06V 10/34 - Lissage ou élagage de la formeOpérations morphologiquesSquelettisation
G06V 10/36 - Utilisation d’un opérateur local, c.-à-d. des moyens pour opérer sur des points d’image situés dans la proximité d’un point donnéOpérations de filtrage locales non linéaires, p. ex. filtrage médian
G06V 10/58 - Extraction de caractéristiques d’images ou de vidéos relative aux données hyperspectrales
G06V 10/774 - Génération d'ensembles de motifs de formationTraitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source méthodes de Bootstrap, p. ex. "bagging” ou “boosting”
G06V 40/10 - Corps d’êtres humains ou d’animaux, p. ex. occupants de véhicules automobiles ou piétonsParties du corps, p. ex. mains
3.
Automatic peeling and splitting device for citrus fruits
Institute of Facility Agriculture, Guangdong Academy of Agricultural Science (Chine)
Inventeur(s)
Xu, Sai
Lu, Huazhong
Zhang, Changyuan
Liang, Xin
Abrégé
An automatic peeling and splitting device for citrus fruits includes a bracket, a pomelo fixing module, and a pomelo peeling module arranged on the bracket. The pomelo fixing module includes a cylinder arranged on an upper part of the bracket, a fixed block arranged on a power output end of the cylinder, and a motor arranged on the fixed block, the power output end of the motor is connected with a rotation shaft, an end of the rotation shaft is sleeved with an air sac, and the end of the rotation shaft is further hinged with a plurality of arc baffles, a concave member of the arc baffle is bonded to a surface of the air sac, an outer convex edge of the arc baffle faces outside of the air sac; the rotation shaft and the power output end of the cylinder are both extended vertically downward.
Institute of Facility Agriculture, Guangdong Academy of Agricultural Science (Chine)
Guangdong Laboratory for Lingnan Modern Agriculture (Chine)
Inventeur(s)
Xu, Sai
Lu, Huazhong
Liang, Xin
Abrégé
A feature extraction method of fruit spectrum includes taking a vector of each wavelength point in spectrum of samples as source data, and acquiring a sorting of all vectors by processing the source data by SPA; according to the sorting of the vectors, acquiring distribution points of each sample on a coordinate system; acquiring classification results of the samples by destructive analysis, and acquiring a number of first sample categories; acquiring a first Euclidean distance between the first sample categories; according to a sorting of the wavelength points, acquiring distribution points of each sample on the coordinate system; acquiring a number of second sample categories; acquiring a second Euclidean distance between the second sample categories; determining whether the first Euclidean distance is less than the second Euclidean distance; determine a (M+2)-th vector to be valid or invalid based on a comparison result.
G06V 10/77 - Traitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source
G06V 10/74 - Appariement de motifs d’image ou de vidéoMesures de proximité dans les espaces de caractéristiques