Systems and processes for producing ammonium sulfate that include providing an industrial waste material that includes at least lead sulfate and sulfuric acid. Ammonium hydroxide is added to the industrial waste material to raise the pH thereof and react the sulfuric acid to produce ammonium sulfate, and the lead sulfate is reacted with ammonium carbonate to produce lead carbonate.
Systems and processes for producing ammonium sulfate that include providing an industrial waste material that includes at least lead sulfate and sulfuric acid. Ammonium hydroxide is added to the industrial waste material to raise the pH thereof and react the sulfuric acid to produce ammonium sulfate, and the lead sulfate is reacted with ammonium carbonate to produce lead carbonate.
Conversion methods and equipment for converting a calcium-based flue gas desulfurization (FGD) system to an ammonia-based FGD systems, including modifying a reagent system and absorber system of the calcium-based FGD system to be capable of, respectively, delivering an ammonia-based reagent to the absorber system rather than the calcium-based reagent, and modifying the absorber system to increase capacity of a reaction tank thereof.
Systems and processes for producing potassium sulfate that include providing an industrial waste material that includes at least sodium sulfate, reacting the sodium sulfate with potassium chloride to produce a byproduct comprising potassium sulfate and a chloride-containing brine, and reacting the chloride-containing brine with barium chloride to produce barium sulfate and sodium chloride.
Systems and methods for producing potassium sulfate. Such a method involves providing an industrial waste material that includes at least one metal sulfate or a metal product that has been reacted with sulfuric acid to produce metal sulfates, and then reacting the metal sulfate with potassium carbonate to produce a byproduct that contains potassium sulfate.
Wet flue gas desulfurization systems and methods for contacting a flue gas with a scrubbing liquid to produce ammonium thiosulfate. The scrubbing liquid absorbs sulfur dioxide and optionally additional acidic gases from the flue gas to produce a scrubbed flue gas, the scrubbing liquid with the absorbed sulfur dioxide therein is collected, and ammonia and elemental sulfur are introduced into the collected scrubbing liquid to react the ammonia, the absorbed sulfur dioxide, and the elemental sulfur in the collected scrubbing liquid to produce ammonium thiosulfate.
Systems and methods for producing potassium sulfate. Such a method involves providing an industrial waste material that includes at least one metal sulfate or a metal product that has been reacted with sulfuric acid to produce metal sulfates, and then reacting the metal sulfate with potassium carbonate to produce a byproduct that contains potassium sulfate.
Conversion methods and equipment for converting a calcium-based flue gas desulfurization (FGD) system to an ammonia-based FGD systems, including modifying a reagent system and absorber system of the calcium-based FGD system to be capable of, respectively, delivering an ammonia-based reagent to the absorber system rather than the calcium-based reagent, and modifying the absorber system to increase capacity of a reaction tank thereof.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
9.
Conversion equipment for flue gas desulfurization systems and methods of converting calcium-based flue gas desulfurization systems
Conversion methods and equipment for converting a calcium-based flue gas desulfurization (FGD) system to an ammonia-based FGD systems, including modifying a reagent system and absorber system of the calcium-based FGD system to be capable of, respectively, delivering an ammonia-based reagent to the absorber system rather than the calcium-based reagent, and modifying the absorber system to increase capacity of a reaction tank thereof.
Systems, apparatuses, and processes for controlling free ammonia in wet flue gas desulfurization processes in which an ammonia-containing scrubbing solution is used to produce ammonium sulfate. Such an apparatus includes an absorber having a contactor region through which a flue gas flowd and a reaction tank containing a scrubbing solution containing ammonium sulfate. The tank has a sidewall and bottom wall that define the perimeter and bottom of the tank. Lance-agitator units are distributed around the perimeter of the tank, each having a lance that injects a mixture of oxygen and a dilute ammonia-containing fluid toward the bottom of the tank and an agitator that agitates the mixture and propels the mixture toward the bottom of the tank. The apparatus includes a source of the mixture of oxygen and dilute ammonia-containing fluid, and recirculates the scrubbing solution from the tank to the contactor region.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/78 - Procédés en phase liquide avec un contact gaz-liquide
Systems, apparatuses, and processes for controlling free ammonia in wet flue gas desulfurization processes in which an ammonia-containing scrubbing solution is used to produce ammonium sulfate. Such an apparatus includes an absorber having a contactor region through which a flue gas comprising sulfur dioxide is able to flow and a reaction tank containing a scrubbing solution containing ammonium sulfate. The tank has a sidewall and bottom wall that define the perimeter and bottom of the tank. Lance-agitator units are distributed around the perimeter of the tank, each having a lance that injects a mixture of oxygen and a dilute ammonia-containing fluid toward the bottom of the tank and an agitator that agitates the mixture and propels the mixture toward the bottom of the tank. The apparatus includes a source of the mixture of oxygen and dilute ammonia-containing fluid, and recirculates the scrubbing solution from the tank to the contactor region.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
B01J 8/26 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées selon la technique du "lit fluidisé" comportant au moins deux lits fluidisés, p. ex. installations de réaction et de régénération
12.
Process and system for removing sulfur dioxide from flue gas
Processes and systems for producing potassium sulfate as a byproduct of a desulfurization process. Sulfur dioxide is absorbed from a flue gas using an ammonia-containing solution to produce an ammonium sulfate solution that contains dissolved ammonium sulfate. At least a first portion of the ammonium sulfate solution is heated before dissolving potassium chloride therein to form a slurry that contains potassium sulfate crystals and an ammonium chloride solution. The slurry is then cooled to precipitate additional potassium sulfate crystals, after which the potassium sulfate crystals are removed to yield a residual ammonium chloride solution that contains dissolved ammonium chloride and residual dissolved potassium sulfate. Ammonia is then absorbed into the residual ammonium chloride solution to further precipitate potassium sulfate crystals, which are removed to yield a residual ammonium chloride solution that is substantially free of dissolved potassium sulfate.
A process and system for hydrogen sulfide capture from gas streams employing an absorber vessel in which the gas stream containing hydrogen sulfide is contacted with an absorbent solution to remove the hydrogen sulfide from the gas stream. The process and system may further employ an oxidation vessel in which sulfides and/or bisulfides in the absorbent solution are oxidized to produce a thiosulfate and/or sulfate, yielding a solution that can be used as fertilizer or other applications.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
14.
PROCESS AND SYSTEM FOR REMOVING SULFUR DIOXIDE FROM FLUE GAS
Processes and systems (10,110) for producing potassium sulfate (36) as a byproduct of a desulfurization process. Sulfur dioxide is absorbed (12) from a flue gas (14) using an ammonia-containing solution to produce an ammonium sulfate solution (24) that contains dissolved ammonium sulfate. At least a first portion (25) of the ammonium sulfate solution (24) is heated (26) before dissolving potassium chloride (22) therein to form a slurry (28) that contains potassium sulfate crystals (36) and an ammonium chloride solution. The slurry (28) is then cooled (32) to precipitate additional potassium sulfate crystals (36), after which the potassium sulfate crystals (36) are removed (34) to yield a residual ammonium chloride solution (38,48) that contains dissolved ammonium chloride and residual dissolved potassium sulfate. Ammonia (50) is then absorbed (40) into the residual ammonium chloride solution (38) to further precipitate potassium sulfate crystals (42), which are removed (44) to yield a residual ammonium chloride solution (46) that is substantially free of dissolved potassium sulfate.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
Processes and systems for producing potassium sulfate as a byproduct of a desulfurization process. Sulfur dioxide is absorbed from a flue gas using an ammonia-containing solution to produce an ammonium sulfate solution that contains dissolved ammonium sulfate. At least a first portion of the ammonium sulfate solution is heated before dissolving potassium chloride therein to form a slurry that contains potassium sulfate crystals and an ammonium chloride solution. The slurry is then cooled to precipitate additional potassium sulfate crystals, after which the potassium sulfate crystals are removed to yield a residual ammonium chloride solution that contains dissolved ammonium chloride and residual dissolved potassium sulfate. Ammonia is then absorbed into the residual ammonium chloride solution to further precipitate potassium sulfate crystals, which are removed to yield a residual ammonium chloride solution that is substantially free of dissolved potassium sulfate.
A system and method suitable for the removal of pollutants from gases with a circulating dry scrubber system having a circulating dry scrubber reactor containing a fluidized bed adapted to contact the gas with a dry reagent within the fluidized bed. The system includes a housing fluidically coupled to the reactor, a filter array within the housing, and an internal hopper within the housing and adapted to return at least some of the particulates to the fluidized bed within the circulating dry scrubber reactor. The scrubbed gas stream exits the circulating dry scrubber reactor and flows upward between an interior of the housing and an exterior of the internal hopper before contacting the filter array. The exterior of the internal hopper is exposed to the scrubbed gas stream, and the scrubbed gas stream is not recirculated to the circulating dry scrubber reactor to maintain the fluidized bed therein.
Flue gas desulfurization processes and systems that utilize ammonia as a reactant, and in which any hydrogen sulfide and/or mercaptans within the ammonia are separated during the desulfurization process so as to prevent their release into the atmosphere. The process and system entail absorbing acidic gases from a flue gas with a scrubbing media containing ammonium sulfate to produce a stream of scrubbed flue gas, collecting the scrubbing media containing the absorbed acidic gases, injecting into the collected scrubbing media a source of ammonia that is laden with hydrogen sulfide and/or mercaptans so that the injected ammonia is absorbed into and reacted with the collected scrubbing media, stripping the hydrogen sulfide and/or mercaptans from the collected scrubbing media by causing the hydrogen sulfide and/or mercaptans to exit the collected scrubbing media as stripped gases, and collecting the stripped gases without allowing the stripped gases to enter the stream of scrubbed flue gas.
B01D 47/00 - Séparation de particules dispersées dans l'air, des gaz ou des vapeurs en utilisant un liquide comme agent de séparation
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A system and method suitable for the removal of pollutants from gases with a circulating dry scrubber system having a circulating dry scrubber reactor containing a fluidized bed adapted to contact the gas with a dry reagent within the fluidized bed. The system includes a housing fluidically coupled to the reactor, a filter array within the housing, and an internal hopper within the housing and adapted to return at least some of the particulates to the fluidized bed within the circulating dry scrubber reactor. The scrubbed gas stream exits the circulating dry scrubber reactor and flows upward between an interior of the housing and an exterior of the internal hopper before contacting the filter array. The exterior of the internal hopper is exposed to the scrubbed gas stream, and the scrubbed gas stream is not recirculated to the circulating dry scrubber reactor to maintain the fluidized bed therein.
A system and method suitable for the removal of pollutants from gases with a circulating dry scrubber system (12) having a circulating dry scrubber reactor (14) containing a fluidized bed adapted to contact the gas with a dry reagent within the fluidized bed. The system includes a housing (25) fluidically coupled to the reactor (14), a filter array (29) within the housing (25), and an internal hopper (28) within the housing (25) and adapted to return at least some of the particulates to the fluidized bed within the circulating dry scrubber reactor (14). The scrubbed gas stream exits the circulating dry scrubber reactor (14) and flows upward between an interior (26) of the housing (25) and an exterior of the internal hopper (28) before contacting the filter array (29). The exterior of the internal hopper (28) is exposed to the scrubbed gas stream, and the scrubbed gas stream is not recirculated to the circulating dry scrubber reactor (14) to maintain the fluidized bed therein.
B01D 53/02 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse
B01D 46/00 - Filtres ou procédés spécialement modifiés pour la séparation de particules dispersées dans des gaz ou des vapeurs
09 - Appareils et instruments scientifiques et électriques
11 - Appareils de contrôle de l'environnement
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Air Quality Control Equipment, namely, flue gas desulfurization systems and flue gas scrubbing systems, comprised of electrostatic emission control devices, namely, electrostatic precipitators and fabric filters for reducing particulate emission in industrial applications Air Quality Control Equipment, namely, flue gas desulfurization systems and flue gas scrubbing systems, comprised of chemical flue gas scrubbing machine Air Quality Control Services, namely, technical air quality monitoring services, custom design and development of air quality measurement programs, repair and maintenance of flue gas desulferization systems and flue gas scrubbing systems
A flue gas desulfurization process and system that utilize ammonia as a reactant, and in which any hydrogen sulfide and/or mercaptans within the ammonia are separated during the desulfurization process so as to prevent their release into the atmosphere. The process and system entail absorbing acidic gases from a flue gas with a scrubbing media containing ammonium sulfate to produce a stream of scrubbed flue gas, collecting the scrubbing media containing the absorbed acidic gases, injecting into the collected scrubbing media a source of ammonia that is laden with hydrogen sulfide and/or mercaptans so that the injected ammonia is absorbed into and reacted with the collected scrubbing media, stripping the hydrogen sulfide and/or mercaptans from the collected scrubbing media by causing the hydrogen sulfide and/or mercaptans to exit the collected scrubbing media as stripped gases, and collecting the stripped gases without allowing the stripped gases to enter the stream of scrubbed flue gas.
An apparatus and process for removing acidic gases from flue gases produced by, for example, utility and industrial facilities. The acidic gases are removed as the flue gas flows upward through a contact zone within a passage, where the flue gas is contacted with an ammonium sulfate-containing scrubbing solution to absorb the acidic gases from the flue gas. The scrubbing solution and absorbed acidic gases therein are then accumulated, and ammonia and an oxygen-containing gas are injected into the accumulated scrubbing solution to react the absorbed acidic gases and produce ammonium sulfate. An acid solution is flowed across the passage above the contact zone of the passage, and the scrubbed flue gas is flowed upward through the acid solution to remove unreacted ammonia from the scrubbed flue gas. The acid solution is then removed from the passage after the acid solution has been contacted by the scrubbed flue gas.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
An apparatus (10) and process for removing acidic gases from flue gases produced by, for example, utility and industrial facilities. The acidic gases are removed as the flue gas flows upward through a contact zone (16) within a passage (13), where the flue gas is contacted with an ammonium sulfate-containing scrubbing solution to absorb the acidic gases from the flue gas. The scrubbing solution and absorbed acidic gases therein are then accumulated, and ammonia and an oxygen-containing gas are injected into the accumulated scrubbing solution to react the absorbed acidic gases and produce ammonium sulfate. An acid solution (32) is flowed across the passage (13) above the contact zone (16) of the passage (13). The scrubbed flue gas is flowed upward through the acid solution (32) to remove unreacted ammonia from the scrubbed flue gas. The acid solution (32) is then removed from the passage (13) after the acid solution (32) has been contacted by the scrubbed flue gas.
F23J 15/04 - Aménagement des dispositifs de traitement de fumées ou de vapeurs des purificateurs, p. ex. pour enlever les matériaux nocifs utilisant des fluides de lavage
A flue gas desulfurization process and system (10,100) that utilize ammonia as a reactant, and in which any hydrogen sulfide and/or mercaptans within the ammonia are separated during the desulfurization process so as to prevent their release into the atmosphere. The process and system (10,100) entail absorbing acidic gases from a flue gas with a scrubbing media (26) containing ammonium sulfate to produce a stream of scrubbed flue gas, collecting the scrubbing media (26) containing the absorbed acidic gases, injecting into the collected scrubbing media (26) a source (31 ) of ammonia that is laden with hydrogen sulfide and/or mercaptans so that the injected ammonia is absorbed into and reacted with the collected scrubbing media (26), stripping the hydrogen sulfide and/or mercaptans from the collected scrubbing media (26) by causing the hydrogen sulfide and/or mercaptans to exit the collected scrubbing media (26) as stripped gases, and collecting the stripped gases without allowing the stripped gases to enter the stream of scrubbed flue gas.
B01D 53/34 - Épuration chimique ou biologique des gaz résiduaires
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
25.
Process and system for removing hydrogen sulfide and mercaptans in ammonia-based desulfurization systems
A flue gas desulfurization process and system that utilize ammonia as a reactant, and in which any hydrogen sulfide and/or mercaptans within the ammonia are separated during the desulfurization process so as to prevent their release into the atmosphere. The process and system entail absorbing acidic gases from a flue gas with a scrubbing media containing ammonium sulfate to produce a stream of scrubbed flue gas, collecting the scrubbing media containing the absorbed acidic gases, injecting into the collected scrubbing media a source of ammonia that is laden with hydrogen sulfide and/or mercaptans so that the injected ammonia is absorbed into and reacted with the collected scrubbing media, stripping the hydrogen sulfide and/or mercaptans from the collected scrubbing media by causing the hydrogen sulfide and/or mercaptans to exit the collected scrubbing media as stripped gases, and collecting the stripped gases without allowing the stripped gases to enter the stream of scrubbed flue gas.