A gas turbine engine includes a turbine section located at an engine central longitudinal axis, a combustor configured to drive rotation of the turbine with combustion products, and a compressor section coupled to the turbine section at the engine central longitudinal axis and driven by the turbine section. An auxiliary compressor is located fluidly between the compressor section and the combustor such that an airflow exiting the compressor section is directed toward the auxiliary compressor. The auxiliary compressor is driven independently from the compressor section and is configured to output the airflow toward the combustor.
A fan drive gear system for a turbine engine includes a carrier that supports rotation of a plurality of planet gears and is rotatable about an engine longitudinal axis. The carrier includes an axially facing seal plate that defines a lubricant passage to the carrier. A transfer bearing assembly has a seal member that defines a lubricant supply path to the seal plate and at least one biasing member that biases the seal member against the seal plate.
F02C 7/36 - Transmission de puissance entre les différents arbres de l'ensemble fonctionnel de turbine à gaz, ou entre ce dernier et l'utilisateur de puissance
F16C 33/78 - Dispositifs d'étanchéité pour roulements à billes ou à rouleaux avec diaphragme, disque ou bague, avec ou sans parties élastiques
3.
CONTROL OF LEAKAGE FOR GAS TURBINE ENGINE COMPRESSOR BLADES
A compressor section includes a compressor disk having a slot receiving a blade with an airfoil extending from a platform and the compressor disk having an upstream end and a downstream end. A cover plate at one of the upstream end and the downstream end covers an area between the blade and the compressor disk across a circumference of the compressor disk. The cover plate covers an area between an inner peripheral surface of the platform to a radially innermost end of the slot in the disk. The compressor disk has hooks, and there is a retention ring mounted in a cavity between the hooks and the compressor disk. The cover plate is mounted between the retention ring and the compressor disk. The retention ring retains the cover plate against the compressor disk. A gas turbine engine is also disclosed.
A method includes the steps of providing an engine with a compressor. A tap taps air from the compressor and passes it through a bleed valve, and a precooler, and downstream of the precooler to a use on an associated aircraft. Fan cooling air passes through a fan air valve across the precooler to cool the tapped air before it passes to the use and then into a core engine downstream of the precooler to cool internal components. If shutdown of the engine is coming, the method runs the engine for a period of time, closes the bleed valve and opens the fan air valve to allow fan cooling air to continue passing through the precooler, and into the engine to cool the components. A combination and an aircraft are also disclosed.
F02C 9/18 - Commande du débit du fluide de travail par prélèvement, par bipasse ou par action sur des raccordements variables du fluide de travail entre des turbines ou des compresseurs ou entre leurs étages
F01D 21/00 - Arrêt des "machines" ou machines motrices, p. ex. dispositifs d'urgenceDispositifs de régulation, de commande ou de sécurité non prévus ailleurs
F02C 7/18 - Refroidissement des ensembles fonctionnels caractérisé par l'agent refroidisseur l'agent refroidisseur étant gazeux, p. ex. l'air
A rotor assembly for a gas turbine engine includes a shaft co-rotatable with a rotor with an annular seal assembly that is carried within an annular channel within the shaft that provides a seal between the shaft and the bore. The annular seal assembly includes a first member that is configured to seal against a radial surface of the bore and a second member that is configured to seal against an axial surface of the annular channel.
An airfoil includes an airfoil wall formed of a fiber-reinforced composite material that has a layup structure that includes groups of unidirectional fiber tows. The groups are oriented at angles Θ(theta) relative to a reference orientation. The unidirectional fiber tows cross-over each other according to a sequence N1, N2, N3, . . . Ni, wherein N is a whole number that indicates which numerical group the unidirectional fiber tows are in and i is a whole number that indicates a sequential layup order of the unidirectional fiber tows. Each of the unidirectional fiber tows in the sequence starting at N2 crosses-over the unidirectional fiber tows of the other groups that have a lower value of i in the sequence.
F01D 5/28 - Emploi de matériaux spécifiésMesures contre l'érosion ou la corrosion
B32B 5/12 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments caractérisés par la disposition relative des fibres ou filaments des couches adjacentes
B32B 38/18 - Manipulation des couches ou du stratifié
F02C 3/04 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail ayant une turbine entraînant un compresseur
A device for forming a feature in a workpiece includes a waterjet guided laser device translatable relative to the workpiece. The waterjet guided laser device includes a head assembly having a nozzle comprising an aperture for ejecting a waterjet with an internal laser beam, and a camera system comprising a plurality of cameras disposed about the nozzle.
B23K 26/14 - Travail par rayon laser, p. ex. soudage, découpage ou perçage en utilisant un écoulement de fluide, p. ex. un jet de gaz, associé au faisceau laserBuses à cet effet
B23K 26/10 - Dispositifs comportant un mouvement relatif entre le faisceau laser et la pièce avec un support fixe
B23K 26/142 - Travail par rayon laser, p. ex. soudage, découpage ou perçage en utilisant un écoulement de fluide, p. ex. un jet de gaz, associé au faisceau laserBuses à cet effet pour l'enlèvement de résidus
B23K 26/146 - Travail par rayon laser, p. ex. soudage, découpage ou perçage en utilisant un écoulement de fluide, p. ex. un jet de gaz, associé au faisceau laserBuses à cet effet l'écoulement de fluide contenant un liquide
A turbine engine assembly includes a first case structure with a first flange and a second case structure that includes a second flange. The second flange is configured for securement to the first flange at a connection interface. At least one steam conduit is in thermal communication with the connection interface and configured to receive a portion of a flow of steam to heat the connection interface. Heating the connection interface provides for control of a thermal gradient generated by a difference in temperature in temperatures on either side of the connection interface.
An aircraft includes a gas turbine engine and an optically-based measurement system. The gas turbine engine is configured to ingest a first mass flow and to exhaust a second mass flow. The optically-based measurement system is configured to determine the first and second mass flows in response to performing an imaging process on the gas turbine engine.
F01D 21/00 - Arrêt des "machines" ou machines motrices, p. ex. dispositifs d'urgenceDispositifs de régulation, de commande ou de sécurité non prévus ailleurs
B64D 27/18 - Aéronefs caractérisés par le type ou la position des groupes moteurs du type à réaction à l'intérieur des ailes ou fixés à celles-ci
B64D 43/00 - Aménagements ou adaptations des instruments
F02C 9/00 - Commande des ensembles fonctionnels de turbines à gazCommande de l'alimentation en combustible dans les ensembles fonctionnels de propulsion par réaction alimentés en air ambiant
G01F 1/661 - Mesure du débit volumétrique ou du débit massique d'un fluide ou d'un matériau solide fluent, dans laquelle le fluide passe à travers un compteur par un écoulement continu en mesurant la fréquence, le déphasage, le temps de propagation d'ondes électromagnétiques ou d'autres types d'ondes, p. ex. en utilisant des débitmètres à ultrasons en utilisant la lumière
10.
METHOD OF ASSEMBLY FOR GAS TURBINE FAN DRIVE GEAR SYSTEM
A method of mounting a gear train to a torque frame comprises the steps of providing a unitary carrier having a central axis that includes spaced apart side walls and circumferentially spaced connecting structure defining mounts that interconnect the side walls, spaced apart apertures provided between the mounts at an outer circumference of the carrier, gear pockets provided between the side walls and the mounts extending to the apertures, and a central opening in at least one of the side walls. A plurality of intermediate gears are inserted in the carrier. A first ring gear half of a ring gear is placed about the outer periphery of the intermediate gears. A torque frame is attached to the carrier.
F02C 7/36 - Transmission de puissance entre les différents arbres de l'ensemble fonctionnel de turbine à gaz, ou entre ce dernier et l'utilisateur de puissance
F02C 3/107 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail ayant une turbine entraînant un compresseur avec plusieurs rotors raccordés par transmission de puissance
F02C 7/32 - Aménagement, montage ou entraînement des auxiliaires
F02K 3/06 - Ensembles fonctionnels comportant une turbine à gaz entraînant un compresseur ou un ventilateur soufflant dans lesquels une partie du fluide énergétique passe en dehors de la turbine et de la chambre de combustion l'ensemble fonctionnel comprenant des soufflantes carénées, c.-à-d. des soufflantes à fort débit volumétrique sous basse pression pour augmenter la poussée, p. ex. du type à double flux comprenant une soufflante avant
F16H 1/28 - Transmissions à engrenages pour transmettre un mouvement rotatif avec engrenages à mouvement orbital
F16H 57/023 - Montage ou installation d'engrenages ou d'arbres dans les boîtes de vitesses, p. ex. procédés ou moyens d'assemblage
F16H 57/04 - Caractéristiques relatives à la lubrification ou au refroidissement
F16H 57/08 - Parties constitutives générales des transmissions des transmissions à organes à mouvement orbital
11.
METALLIC COATING PROCESS FOR COMBUSTOR PANELS USING A BARREL CONFIGURATION
A method of coating a component includes attaching the component to a support that is configured to hold a plurality of components and placing a base of the support in a holder that is attached to rotatable member of a fixture, wherein an axis of the holder is parallel to an axis of rotation of the rotatable member. The method also includes transporting the fixture into a coating chamber wherein a direction of an exit stream of a coater in oriented perpendicularly to the axis of rotation, exposing the fixture and the component to a reverse transfer arc cleaning/pre-heating procedure, and exposing the fixture and the component to a coating procedure during which a coating is directed at the component in a direction perpendicular to the axis of rotation while the rotatable member is rotating. The method further includes transporting the fixture and removing the component from the support fixture.
B05B 13/02 - Moyens pour supporter l'ouvrageDisposition ou assemblage des têtes de pulvérisationAdaptation ou disposition des moyens pour entraîner des pièces
C23C 4/02 - Pré-traitement du matériau à revêtir, p. ex. pour revêtement de parties déterminées de la surface
C23C 4/073 - Matériaux métalliques contenant des alliages MCrAl ou MCrAlY où M est le nickel, le cobalt ou le fer, avec ou sans éléments non métalliques
A balancing system includes a rotor hub having a center axis and a balancing ring surrounding the rotor hub. The balancing ring includes a plurality of ring teeth. A pinion gear includes a plurality of gear teeth in meshing engagement with the plurality of ring teeth, wherein the pinion gear is selectively rotated to adjust a position of the balancing ring relative to the rotor hub.
A propulsion system for an aircraft includes an intercooling system configured to inject water into a compressor section to reduce a temperature of a core airflow within the core flow path. The intercooling system includes a plurality of injectors for injecting water at a water injection angle relative to an airflow to generate a defined swirl of a combined airflow and water to the compressor section.
F02C 7/16 - Refroidissement des ensembles fonctionnels caractérisé par l'agent refroidisseur
F02C 3/06 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail ayant une turbine entraînant un compresseur le compresseur ne comprenant que des étages axiaux
F02C 3/30 - Addition d'eau, de vapeur ou d'autres fluides aux composants combustibles ou au fluide de travail avant l'échappement de la turbine
An aircraft propulsion system includes a compressor section where an inlet airflow is compressed, a combustor section where the compressed inlet airflow is mixed with fuel and ignited to generate an exhaust gas flow that is communicated through a core flow path, a turbine section through which the exhaust gas flow expands to generate a mechanical power output, the exhaust gas flow is split into at least a first exhaust gas flow and a second exhaust gas flow, and a condenser where water is extracted from the second exhaust gas flow, and a first heat exchanger where at least a portion of the extracted water is utilized for cooling a core flow along the core flow path.
F02C 7/141 - Refroidissement des ensembles fonctionnels des fluides dans l'ensemble fonctionnel du fluide de travail
F02C 3/06 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail ayant une turbine entraînant un compresseur le compresseur ne comprenant que des étages axiaux
F02C 7/143 - Refroidissement des ensembles fonctionnels des fluides dans l'ensemble fonctionnel du fluide de travail avant ou entre les étages du compresseur
F02C 7/16 - Refroidissement des ensembles fonctionnels caractérisé par l'agent refroidisseur
An aircraft propulsion system includes a compressor section where an inlet airflow is compressed, a combustor section where the compressed inlet airflow is mixed with fuel and ignited to generate an exhaust gas flow that is communicated through a core flow path, a turbine section through which the exhaust gas flow expands to generate a mechanical power output, the exhaust gas flow is split into at least a first exhaust gas flow and a second exhaust gas flow, and a condenser where water is extracted from the second exhaust gas flow, and a bottoming cycle where extracted water is transformed into a steam flow and injected into the core flow path.
F02C 7/143 - Refroidissement des ensembles fonctionnels des fluides dans l'ensemble fonctionnel du fluide de travail avant ou entre les étages du compresseur
F02C 3/06 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail ayant une turbine entraînant un compresseur le compresseur ne comprenant que des étages axiaux
F02C 3/30 - Addition d'eau, de vapeur ou d'autres fluides aux composants combustibles ou au fluide de travail avant l'échappement de la turbine
F02C 7/16 - Refroidissement des ensembles fonctionnels caractérisé par l'agent refroidisseur
An assembly is provided for a turbine engine. This assembly includes a nozzle structure and a combustor wall. The nozzle structure includes a first platform, a second platform and a plurality of nozzle vanes arranged circumferentially about an axis. The nozzle vanes extends radially between and are connected to the first platform and the second platform. The combustor wall includes a plurality of apertures. An upstream portion of the combustor wall is radially between and borders a plenum and a combustion chamber. A downstream portion of the combustor wall is radially between and borders the plenum and a gap. The downstream portion of the combustor wall axially overlaps the nozzle structure with the gap formed by and extending between the combustor wall and the first platform. The apertures extends through the downstream portion of the combustor wall and are aligned with the nozzle vanes.
A three-dimensional (3-D) composite structure has a 3-D lattice structure that includes a plurality of struts, a matrix phase surrounding the 3-D lattice structure, and a strain limiting structure positioned at or near a center of the 3-D lattice structure. The strain limiting structure is fixed to at least one of the plurality of struts. The 3-D composite structure can be made using additive manufacturing techniques.
A recoater assembly for an additive manufacturing (AM) machine includes a recoater blade magazine, an optical transmitter associated with the recoater blade magazine, an optical sensor positioned to receive a light beam transmitted from the optical transmitter as the optical transmitter tracks the path of the primary recoater blade over the build powder bed, a controller configured to receive the failure signal transmitted from the optical sensor to the controller, a recoater blade disengagement mechanism, and a recoater blade compression mechanism positioned in the recoater blade magazine.
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B29C 64/268 - Agencements pour irradiation par faisceaux laserAgencements pour irradiation par faisceaux d’électrons [FE]
A part intended for use with a threaded insert includes a main body manufactured from fully dense material and a plurality of localized, higher porosity, lower strength regions configured to accept a plurality of keys from the threaded insert. A method of inserting a threaded insert into a part includes the steps of providing a part with a main body manufactured from fully dense material and a plurality of localized, higher porosity, lower strength regions configured to accept a plurality of keys from the threaded insert; forming in the main body a threaded bore configured to accept the threaded insert in which a plurality of localized, higher porosity, lower strength regions surround a periphery of the threaded bore; forming a countersink in the threaded bore such that the countersink is adjacent to a top surface of the part; and inserting the threaded insert into the threaded bore to position the threaded part at or below the top surface of the part. A plurality of keys inserted into a plurality of dovetail slots established in external threads of the threaded insert align with the plurality of localized, higher porosity, lower strength regions. The plurality of keys are driven into the plurality of localized, higher porosity, lower strength regions to anchor the threaded inset into the part.
F16B 37/12 - Écrous ou pièces similaires avec entrées de filetage avec surfaces d'entrée de filetage consistant en une insertion de ressorts hélicoïdaux, de disques ou de pièces analoguesÉcrous constitués par des morceaux indépendants de fil métallique enrouléGarnitures filetées intérieures pour trous
20.
Aircraft engine entrained particle separation system and method
A gas turbine engine is provided that includes a bypass duct, fan, compressor, combustor, and turbine sections, a nozzle, a turning duct assembly, and a first bleed valve. The compressor section includes a compressor inlet and low and high pressure compressors. The turning duct assembly has first and second axial segments and first and second return segments. The first axial segment is in fluid communication with the low pressure compressor and the first return segment. The second axial segment is in fluid communication with the first return segment and the second return segment. The high pressure compressor is in fluid communication with the second return segment. The first and second axial segments and the first and second return segments are configured to provide an airflow passage between the low and high pressure compressors. The first bleed valve is in fluid communication with the first return segment.
F02C 7/05 - Entrées d'air pour ensembles fonctionnels de turbines à gaz ou de propulsion par réaction comportant des dispositifs pour empêcher la pénétration d'objets ou de particules endommageantes
F02C 9/18 - Commande du débit du fluide de travail par prélèvement, par bipasse ou par action sur des raccordements variables du fluide de travail entre des turbines ou des compresseurs ou entre leurs étages
A blade fuel injector for a gas turbine engine, including: a mixer, the mixer having a first set of openings located on opposite sides of the mixer and a second set of openings located below the first set of openings; and a blade injector, the blade injector having a plurality of atomizers, wherein some of the first set of openings align with the plurality of atomizers.
A hollow vane assembly including an open body including an interior; at least one cover support structure formed in said open body proximate the interior; a cover brazed to the open body to form at least one flow passage; and the open body and the cover configured as two piece substantially symmetrical halves.
A method is provided for an HEP system that includes a gas turbine engine and an electric motor configured to assist the gas turbine engine by rotating a first shaft of the gas turbine engine. The method includes receiving a throttle command, and determining, based on an amount of electric power available to the electric motor, a power allocation between the gas turbine engine and the electric motor for an acceleration period during which a rotational speed of the first shaft is accelerated to implement the throttle command. The method also includes determining a target clearance between a tip of a rotor blade and a case structure for the acceleration period and, during the acceleration period, implementing the power allocation and operating an active clearance control (ACC) system to establish the target clearance. A system for an aircraft and a method for a HEP system are also disclosed.
An airfoil wall that includes a wishbone-shaped fiber layup structure that has first and second arms that merge into a single leg. The leg includes fiber tows from each of the arms and the tows are interwoven in the leg. Each of the arms includes a first section that is distal from the leg and a second section that is proximal to the leg. The first section defines a first thickness and a first fiber tow count. The second section defines a second thickness that is greater than the first thickness and a second fiber tow count that is greater than the first fiber tow count. The single leg defines a third thickness that is greater than the second thickness and a third fiber tow count that is greater than the second fiber tow count.
An article includes a ceramic-based substrate and a barrier layer on the ceramic-based substrate. The barrier layer includes a matrix of barium-magnesium alumino-silicate or SiO2, a dispersion of silicon oxycarbide particles in the matrix, and a dispersion of particles, of the other of barium-magnesium alumino-silicate or SiO2, in the matrix.
B32B 9/00 - Produits stratifiés composés essentiellement d'une substance particulière non couverte par les groupes
C04B 35/14 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes à base de silice
C04B 35/195 - Aluminosilicates de métaux alcalino-terreux, p. ex. cordiérite
C04B 35/56 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbures
C04B 35/565 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbures à base de carbure de silicium
A casting core assembly has: a first ceramic piece including a projecting post; a second ceramic piece including a socket; and a ceramic filler material between the post and the socket. In transverse section at at least one location one of the post and socket has a configuration of: three circumferentially offset radial peaks of a peak radius (RPMAX, RSMAX); and three radial troughs of a trough radius (RPMIN, RSMIN) not more than 98.0% of the peak radius.
A turbine engine assembly an inter-turbine burner that is disposed between at least two of a plurality of turbine stages where an additional amount of fuel is mixed with an exhaust gas flow to generate a reheated gas flow. A condenser extracts water from the reheated gas flow and an evaporator system generates a steam flow from at least a portion of water that is extracted by the condenser for injection into the core airflow.
A patch has: a silicone body; a primer on an underside of the body; a silicone adhesive on the primer; and a release strip on the adhesive. The body has a plurality of perforations.
B29C 73/10 - Réparation d'articles faits de matières plastiques ou de substances à l'état plastique, p. ex. d'objets façonnés ou fabriqués par utilisation de techniques couvertes par la présente sous-classe ou la sous-classe utilisant des éléments préformés utilisant des pastilles d'obturation appliquées à la surface de l'objet
F01D 5/00 - AubesOrganes de support des aubesDispositifs de chauffage, de protection contre l'échauffement, de refroidissement, ou dispositifs contre les vibrations, portés par les aubes ou les organes de support
29.
Turbine engine tip clearance control utilizing electric machine
An operating method is provided during which a command is received to decrease thrust generated by a propulsor rotor from a first thrust level to a second thrust level. The propulsor rotor is operatively coupled to an engine core and an electric machine. The engine core includes a flowpath, a compressor section, a combustor section and a turbine section. The engine core is operated in a transient state to decrease total power of the engine core from a first power level to a second power level in response to the command. The electric machine is operated as a generator to reduce power output from the engine core to the propulsor rotor while the engine core is operating in the transient state. A clearance control system for the engine core is operated based on the operation of the electric machine.
F01D 11/14 - Régulation ou commande du jeu d'extrémité des aubes, c.-à-d. de la distance entre les extrémités d'aubes du rotor et le corps du stator
F02C 6/00 - Ensembles fonctionnels multiples de turbines à gazCombinaisons d'ensembles fonctionnels de turbines à gaz avec d'autres appareilsAdaptations d'ensembles fonctionnels de turbines à gaz à des applications particulières
30.
TURBINE ENGINE TIP CLEARANCE CONTROL UTILIZING ELECTRIC MACHINE
An operating method is provided during which a command is received to increase thrust generated by a propulsor rotor from a first thrust level to a second thrust level. The propulsor rotor is operatively coupled to an engine core and an electric machine. The engine core includes a flowpath, a compressor section, a combustor section and a turbine section. The engine core is operated in a transient state to increase power output from the engine core to the propulsor rotor from a first power level to a second power level in response to the command. The electric machine is operated to boost the power output from the engine core to the propulsor rotor while the engine core is operating in the transient state. A clearance control system for the engine core is operated based on the operation of the electric machine.
F01D 15/10 - Adaptations pour la commande des générateurs électriques ou combinaisons avec ceux-ci
F01D 11/22 - Réglage actif du jeu d'extrémité des aubes par actionnement mécanique d'éléments du stator ou du rotor, p. ex. par déplacement de sections d'enveloppe par rapport au rotor
A ceramic article includes a ceramic matrix composite that has a porous reinforcement structure and a ceramic matrix within pores of the porous reinforcement structure. The ceramic matrix composite includes a surface zone comprised of an exterior surface of the ceramic matrix composite and pores that extend from the exterior surface into the ceramic matrix composite. A glaze material seals the surface zone within the pores of the surface zone and on the exterior surface of the surface zone as an exterior glaze layer on the ceramic matrix composite. The glaze material is a glass or glass-ceramic material. The ceramic matrix composite includes an interior zone under the surface zone, and the interior zone is free of any of the glaze material and has a greater porosity than the surface zone.
C04B 41/50 - Revêtement ou imprégnation avec des substances inorganiques
C03C 8/02 - Compositions en verre fritté, c.-à-d. broyées ou sous forme de poudre
C03C 8/20 - Mélanges de frittes vitreuses contenant des additifs, p. ex. des agents opacifiants, des colorants, des agents de broyage contenant des composés du titaneMélanges de frittes vitreuses contenant des additifs, p. ex. des agents opacifiants, des colorants, des agents de broyage contenant des composés du zirconium
C03C 10/00 - Verre dévitrifié ou vitrocéramiques, c.-à-d. verre ou céramiques ayant une phase cristalline dispersée dans la phase vitreuse et constituant au moins 50% en poids de la composition
C04B 41/00 - Post-traitement des mortiers, du béton, de la pierre artificielle ou des céramiquesTraitement de la pierre naturelle
A high-entropy alloy includes a single-phase, face centered cubic structure composition containing between 43.0 and 49.9 at% nickel, between 16.0 and 26.0 at% chromium, between 6.5 and 16.5 at% iron, between 1.5 and 4.5 at% molybdenum, between 2.0 and 7.5 at% aluminum and between 6.5 and 11.0 at% cobalt. Such compositions are good replacements for more expensive nickel-based alloys and have good strength and corrosion resistance properties.
An assembly for an aircraft propulsion system includes a propulsor rotor and a guide vane structure. The propulsor rotor is configured to rotate about an axis. The guide vane structure includes a plurality of guide vanes arranged circumferentially about the axis. The guide vane structure is axially next to and downstream of the propulsor rotor. The guide vanes include a first guide vane. The first guide vane includes a camber line, a leading edge, a trailing edge, a leading edge section and a trailing edge section. The first guide vane extends longitudinally along the camber line from the leading edge to the trailing edge. The leading edge section forms the leading edge. The trailing edge section forms the trailing edge. The leading edge section is configured to move longitudinally along the camber line relative to the trailing edge section to change a camber of the first guide vane.
A turbine blade includes a platform, a root section, and an airfoil section extending from the platform to a tip. The airfoil section includes a leading edge and a trailing edge extending from the platform to the tip. A tip wall is at the tip and extends from the leading edge to the trailing edge. A first core passage extends from the root section to the tip wall between the leading edge and the trailing edge. A first tip flag passage extends adjacent to the tip wall from the first core passage to a first flag outlet on the trailing edge. A second tip flag passage extends toward the leading edge from a second flag outlet on the trailing edge and is between the first tip flag passage and the root section. A second core passage extends from the root section to the second tip flag passage.
A turbine engine assembly includes a shaft rotatable about an engine axis, the shaft includes slots that are formed on an outer surface and passages between an inner cavity to the outer surface, and a bearing assembly that is configured to support rotation of the shaft. The bearing assembly includes an inner race that is supported on the outer surface of the shaft over the slots. At least one bearing member is supported in the inner race, an outer race, a first cover that is disposed on a forward side of the inner race and a second cover that is disposed on an aft side of the inner race. Each of the first cover and the second cover include radially extending grooves for communicating lubricant from the slots to the bearing member.
A method of reducing depletion of elements from an airfoil includes disposing a bond coating on the airfoil, where the airfoil comprises cooling channels. The airfoil includes a material that has an initial composition. A cooling hole is machined in the airfoil to contact the cooling channels such that a fluid travelling in the cooling channel may be discharged via the cooling hole. The machining of the cooling hole results in a formation of a depleted region around the cooling hole. The depleted region is depleted of a portion of the initial composition of the airfoil. A top coat is disposed on the bond coat. The airfoil is subjected to a heat treatment at a temperature effective to promote diffusion of elements from a non-depleted region to the depleted region around the cooling hole.
F01D 5/00 - AubesOrganes de support des aubesDispositifs de chauffage, de protection contre l'échauffement, de refroidissement, ou dispositifs contre les vibrations, portés par les aubes ou les organes de support
B23P 6/04 - Réparation de pièces ou de produits métalliques brisés ou fissurés, p. ex. de pièces de fonderie
F01D 5/18 - Aubes creusesDispositifs de chauffage, de protection contre l'échauffement ou de refroidissement des aubes
F01D 5/28 - Emploi de matériaux spécifiésMesures contre l'érosion ou la corrosion
F01D 9/06 - Conduits d'admission du fluide à l'injecteur ou à l'organe analogue
37.
INTRODUCING STEAM WITH QUENCH AIR INTO TURBINE ENGINE COMBUSTOR
An assembly is provided for a turbine engine. This assembly includes a housing, a combustor and a steam injector. The housing includes an air plenum. The combustor is disposed within the air plenum. The combustor includes a combustor wall and a combustion chamber. The combustor wall is disposed between the combustion chamber and the air plenum. The combustor wall includes a quench aperture that extends through the combustor wall from the air plenum to the combustion chamber. The steam injector projects partially into or through the quench aperture.
A method for repairing a component without further damaging the component is provided. A magnetic field is applied to the component via an induction coil thereby causing a temperature of the component to increase. Responsive to the component reaching a desired temperature, the component is repaired via a direct energy deposition process.
A turbine engine including one or more conduits is disclosed herein. At least one conduit of the turbine engine includes a first end coupled to the turbine engine, a second end, and a body extending from the first end to the second end, the body including an interior surface and an exterior surface, wherein at least one of the interior surface or the exterior surface includes a protrusion configuration.
F02C 7/143 - Refroidissement des ensembles fonctionnels des fluides dans l'ensemble fonctionnel du fluide de travail avant ou entre les étages du compresseur
40.
IN SITU ENGINE AIRFOIL PROCESS COMPENSATED RESONANCE TESTING
An inspection system for in-situ identification of defects associated with a component of an assembled engine is provided. The system includes an inspection device and a controller. The controller is configured to generate, via the inspection device, one or more first signals in proximity to the component; receive, via the inspection device, data associated with the one or more first signals; and apply an inspection process to the data to determine whether the component includes a defect.
A method of repairing a stator stage is disclosed herein. The method includes receiving a stator stage including a plurality of stator vanes disposed between an outer diameter and an inner diameter, analyzing the stator stage for defects, determining based on the analysis that there is a first defect on an edge of a first stator vane of the plurality of stator vanes, removing a portion of the first stator vane including the first defect to form a first scallop on the edge of the first stator vane, repairing the first stator vane including filling the first scallop to fill the first stator vane to its original size and shape creating a repaired portion, and performing a blending process to the stator stage including the first stator vane and the repaired portion to smooth the plurality of stator vanes.
F01D 5/00 - AubesOrganes de support des aubesDispositifs de chauffage, de protection contre l'échauffement, de refroidissement, ou dispositifs contre les vibrations, portés par les aubes ou les organes de support
An airfoil vane assembly includes a vane piece defining a first vane platform, a second vane platform, and a hollow airfoil section joining the first vane platform and the second vane platform. The first vane platform defines a collar projection therefrom. A spar piece defines a spar platform and a spar extends from the spar platform into the hollow airfoil section. The spar platform includes a radial opening defined by first and second axial faces. The radial opening is configured to receive the collar projection, and a groove in the first axial face. A seal is situated in the groove. The seal seals against the collar projection and a biasing member is configured to bias the seal towards the collar projection. A method of assembling a vane is also disclosed.
Embodiments of the present disclosure generally relate to aircraft engines and, more particularly, to detecting defects in aircraft engines using visual neuromorphic sensors. In some embodiments, an event associated with a portion of an aircraft engine may be identified based on a change on a visual data characteristic from a visual neuromorphic sensor. In response to identifying the event associated with the portion of the aircraft engine, synchronous data from a synchronous data collection sensor coupled to the aircraft engine may be retrieved for a predetermined period of time, and a defect associated with the aircraft engine detected based on the identified event and the synchronous data. Other embodiments may be disclosed or claimed.
An assembly is provided for rotational equipment. This assembly includes a guide rail, a seal carrier, a seal element and a seal land. The seal carrier is mated with and is configured to translate along the guide rail. The seal carrier includes a rolling element configured to engage and roll against the guide rail as the seal carrier translates along the guide rail. The seal element is mounted to the seal carrier. The seal land is configured to rotate about an axis. The seal element is configured to sealingly engage the seal land.
A method for repairing a stator stage is disclosed herein. The method includes receiving a stator stage including a plurality of stator vanes disposed between an outer diameter and an inner diameter, analyzing the stator stage for defects, determining there is a first defect in a first segment of a the stator stage, the first segment including at least one of a first portion of the outer diameter, a first portion of the inner diameter, or a first stator vane, removing the first segment from the stator stage forming a void in the stator stage, manufacturing a second segment that is the same size as the first segment, attaching the second segment to the stator stage to fill the void, performing a blending process on the stator stage including the second segment to smooth the plurality of stator vanes including the second stator vane.
Embodiments of the present disclosure generally relate to aircraft engines and, more particularly to data acquisition for aircraft engines using thermal neuromorphic sensors. In some embodiments, an event associated with the aircraft engine may be identified based on a change in a thermal data characteristic measured from a thermal neuromorphic sensor. In response to identifying the event associated with the aircraft engine, one or more other sensors coupled to the aircraft engine may be activated and data received from the activated sensors stored in memory. Other embodiments may be disclosed or claimed.
Embodiments of the present disclosure generally relate to aircraft engines and, more particularly, to aircraft engine inlet monitoring using neuromorphic sensors. In some embodiments, an event associated with debris in the inlet of an aircraft engine may be identified based on a change in a visual data characteristic from a visual neuromorphic sensor. In response to identifying the event, one or more other neuromorphic sensors coupled to the aircraft may be activated. Other embodiments may be disclosed or claimed.
G01M 15/14 - Test des moteurs à turbine à gaz ou des moteurs de propulsion par réaction
F01D 21/00 - Arrêt des "machines" ou machines motrices, p. ex. dispositifs d'urgenceDispositifs de régulation, de commande ou de sécurité non prévus ailleurs
G01N 21/94 - Recherche de souillures, p. ex. de poussières
Disclosed herein is a blade for a turbine comprising a blade cover; a blade body; and a layer of adhesive disposed between the blade cover and the blade body; where the layer of adhesive comprises a first adhesive region and a second adhesive region; where the first adhesive region comprises an adhesive that is chemically different from an adhesive used in the second adhesive region.
A gas turbine engine includes a rotor that has a seal surface and a shaft that is rotatable about an engine central axis. The shaft has an annular seal channel that opens to the seal surface. There is a seal for sealing against the seal surface. The seal has channels formed therein that define a tortuous seal wall with interconnected spring ligaments such that the seal is elastically diametrically expandable for installation clearance around the shaft and, once on the shaft, elastically diametrically collapsible into the annular seal channel.
Embodiments of the present disclosure generally relate to aircraft engines and, more particularly to data acquisition for aircraft engines using neuromorphic sensors. In some embodiments, an event associated with the aircraft engine may be identified based on a change in a data characteristic measured from a neuromorphic sensor and, in response to identifying the event associated with the aircraft engine, at least one other sensor coupled to the aircraft engine may be activated. Other embodiments may be disclosed or claimed.
Embodiments of the present disclosure generally relate to aircraft engines and, more particularly, to detecting material failures associated with aircraft engines using neuromorphic sensors. In some embodiments, an event associated with a material failure in the portion of an aircraft engine is identified based on a change in a data characteristic from a neuromorphic sensor. In response to identifying the event associated with the material failure of the aircraft engine, at least one other sensor coupled to the aircraft engine is activated, where the activated sensor(s) is configured to collect data associated with the aircraft engine synchronously. Other embodiments may be disclosed or claimed.
H04N 25/47 - Capteurs d'images avec sortie d'adresse de pixelCapteurs d'images commandés par événementSélection des pixels à lire en fonction des données d'image
52.
AIRCRAFT PROPULSION SYSTEM ENGINE WITH MULTIPLE INDEPENDENT ROTATING STRUCTURES
A turbine engine is provided that includes a propulsor rotor and an engine core. The propulsor rotor is rotatable about a propulsor axis. The engine core is configured to power operation of the propulsor rotor. The engine core includes a core compressor section, a core combustor section, a core turbine section, a first rotating structure and a second rotating structure. The first rotating structure includes a first compressor rotor arranged within the core compressor section. The first rotating structure is rotatable about a first structure axis which is offset from the propulsor rotor axis. The second rotating structure includes a second compressor rotor arranged within the core compressor section. The second rotating structure is rotatable about a second structure axis which is offset from the propulsor rotor axis and the first structure axis.
F02C 3/06 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail ayant une turbine entraînant un compresseur le compresseur ne comprenant que des étages axiaux
F02C 7/36 - Transmission de puissance entre les différents arbres de l'ensemble fonctionnel de turbine à gaz, ou entre ce dernier et l'utilisateur de puissance
53.
Dual speed planetary gear system for convertible engines
A gear carrier drives a propulsor. Two ring gears engage with respective tooth locations on planet gears. A first gear tooth set on a ring lock selectively engage with a first ring gear and a second gear tooth set on a ring lock selectively engage with a second ring gear. When the first gear tooth set on the ring lock engages the first ring gear, rotation of the first ring gear stops, and the planet gears drive the carrier at a first speed. When the second ring lock gear tooth set engages the second ring gear, rotation of the second ring gear stops and the planet gear drives the carrier at a second speed which is different than the first speed. An aircraft and a method are also disclosed.
B64D 35/02 - Transmission de la puissance des groupes moteurs aux hélices ou aux rotorsAménagements des transmissions spécialement adaptés à des groupes moteurs spécifiques
B64D 27/10 - Aéronefs caractérisés par le type ou la position des groupes moteurs du type à turbine à gaz
F02C 7/36 - Transmission de puissance entre les différents arbres de l'ensemble fonctionnel de turbine à gaz, ou entre ce dernier et l'utilisateur de puissance
F16H 3/78 - Adaptations particulières des mécanismes de synchronisation à ces transmissions
A fan drive gear system for a turbine engine includes a carrier that supports rotation of the plurality of intermediate gears and is configured for rotation about the axis. A rotating oil inlet and rotating gutter are attached to the carrier. A transfer bearing is fixed to a static engine structure and engaged to communicate oil to the rotating oil inlet. A static baffle that is disposed radially outward of the transfer bearing and configured to direct oil that is expelled from the transfer bearing into the rotating gutter.
F02C 7/36 - Transmission de puissance entre les différents arbres de l'ensemble fonctionnel de turbine à gaz, ou entre ce dernier et l'utilisateur de puissance
An engine assembly is provided that includes a geartrain, a rotating structure, a support structure and a bearing. The rotating structure is rotatable about an axis. The rotating structure forms a first component of the geartrain. The rotating structure includes a shaft and a rotating structure passage. The support structure circumscribes the shaft with a plenum, where the plenum is formed by and radially between the support structure and the shaft. The support structure includes a support structure passage. The plenum fluidly couples the support structure passage to the rotating structure passage. The bearing rotatably couples the shaft to the support structure.
F02C 7/36 - Transmission de puissance entre les différents arbres de l'ensemble fonctionnel de turbine à gaz, ou entre ce dernier et l'utilisateur de puissance
F16H 57/029 - Boîtes de vitessesMontage de la transmission à l'intérieur caractérisés par des moyens pour rendre hermétiques les boîtes de vitesses, p. ex. pour améliorer l'étanchéité à l'air
A propulsion system for an air vehicle includes a fan system that includes a fan that is coupled to a fan drive electric motor for generating a fan discharge airflow, an augmentor where fuel is mixed with a portion of the fan discharge airflow to generate a propulsive flow in a first operating configuration, a bypass duct for directing the fan discharge airflow into the augmentor, a duct blocker for selectively closing the bypass duct to the fan discharge airflow, a liquid oxygen system that is configured to inject liquid oxygen into the augmentor to mix with the fuel when the fan discharge airflow is closed by the duct blocker, the mixture of fuel flow and liquid oxygen generates the propulsive flow in a second operating configuration, and an electric power generation system is coupled to drive the fan drive electric motor.
F23R 3/28 - Chambres de combustion à combustion continue utilisant des combustibles liquides ou gazeux caractérisées par l'alimentation en combustible
F01D 15/10 - Adaptations pour la commande des générateurs électriques ou combinaisons avec ceux-ci
F02C 7/22 - Systèmes d'alimentation en combustible
F02C 9/18 - Commande du débit du fluide de travail par prélèvement, par bipasse ou par action sur des raccordements variables du fluide de travail entre des turbines ou des compresseurs ou entre leurs étages
57.
COMBUSTOR LINER WITH PATTERN OF VOIDS IN CMC FIBER PLY FOR COOLING CHANNELS
A combustor includes a combustion chamber and a liner that bounds at least a portion of the combustion chamber. The liner includes a first side facing the combustion chamber and a second side facing away from the combustion chamber. The liner is formed of a lay-up of ceramic matrix composite (CMC) plies that have a first CMC ply on the first side, a second CMC ply on the second side, and intermediate CMC plies between the first and second CMC plies. At least one of the intermediate CMC plies has a pattern of voids that define cooling channels in the combustor panel. The cooling channels are bound on lateral channel sides by the at least one of the intermediate CMC plies.
F23R 3/00 - Chambres de combustion à combustion continue utilisant des combustibles liquides ou gazeux
B32B 3/10 - Produits stratifiés comprenant une couche ayant des discontinuités ou des rugosités externes ou internes, ou une couche de forme non planeProduits stratifiés comprenant une couche ayant des particularités au niveau de sa forme caractérisés par une couche discontinue, c.-à-d. soit continue et percée de trous, soit réellement constituée d'éléments individuels
B32B 3/26 - Produits stratifiés comprenant une couche ayant des discontinuités ou des rugosités externes ou internes, ou une couche de forme non planeProduits stratifiés comprenant une couche ayant des particularités au niveau de sa forme caractérisés par une couche continue dont le périmètre de la section droite a une allure particulièreProduits stratifiés comprenant une couche ayant des discontinuités ou des rugosités externes ou internes, ou une couche de forme non planeProduits stratifiés comprenant une couche ayant des particularités au niveau de sa forme caractérisés par une couche comportant des cavités ou des vides internes
B32B 5/02 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments
B32B 5/26 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par la présence de plusieurs couches qui comportent des fibres, filaments, grains ou poudre, ou qui sont sous forme de mousse ou essentiellement poreuses une des couches étant fibreuse ou filamenteuse un autre couche également étant fibreuse ou filamenteuse
58.
GENERATION OF MICROSTRUCTURAL IMAGES OF TITANIUM ALLOYS AS A FUNCTION OF HEAT TREATMENT CONDITIONS USING CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
The present disclosure provides for the generation of microstructural images of components (e.g., titanium alloys) using machine learning frameworks. More particularly, the present disclosure provides for the generation of microstructural images of components (e.g., titanium alloys) as a function of heat treatment conditions using conditional generative adversarial networks. The present disclosure advantageously provides ways to accelerate component designs (e.g., titanium alloy designs) by developing generative models which can produce synthetic yet realistic microstructures conditioned on heat treatment conditions.
G06F 18/2415 - Techniques de classification relatives au modèle de classification, p. ex. approches paramétriques ou non paramétriques basées sur des modèles paramétriques ou probabilistes, p. ex. basées sur un rapport de vraisemblance ou un taux de faux positifs par rapport à un taux de faux négatifs
A build plate for a powder bed fusion-laser (PBF-L) additive manufacturing system has a support region and a top region. The top region is formed on the support region by a cold spray process, such that the top region is under a compressive stress. The build plate can be prepared by preparing the build plate support region to receive the top region and depositing, using a cold spray process, a layer of metal on the support region. The layer of metal is formed with a compressive stress to form the top region. The top region is then machined to provide a desired surface roughness.
A laser powder bed fusion (LPBF) system includes a build plate, a build station piston configured to adjust the height of the build plate as a part is built on top of the build plate, and a powder chamber configured to contain loose build powder, wherein the powder chamber surrounds the build plate. The LPBF system also includes a laser system configured to direct a laser beam onto the loose build powder to form a melt pool, which forms a layer of the part as the melt pool solidifies. As each layer of the part is formed, the build station piston lowers the build plate and part by a predetermined distance corresponding to a desired thickness of a next layer of the part. The LPBF system further includes a powder coater configured to distribute additional build powder over the part after completion of each layer of the part, a controller, at least one neuromorphic sensor configured capture asynchronous data indicative of visually observable changes to the melt pool, optionally, at least one synchronous sensor configured to capture synchronous data, and means to transmit to the controller the asynchronous data and, optionally, the synchronous data. The controller is configured to process the asynchronous data and, optionally, the synchronous data to determine whether conditions in the LPBF system are suitable for formation of or protentional formation of defects in the part. The controller is further configured to take at least one predetermined mitigation action to mitigate the formation of or potential formation of defects in the part.
B22F 12/90 - Moyens de commande ou de régulation des opérations, p. ex. caméras ou capteurs
B22F 10/28 - Fusion sur lit de poudre, p. ex. fusion sélective par laser [FSL] ou fusion par faisceau d’électrons [EBM]
B22F 10/38 - Commande ou régulation des opérations pour obtenir des caractéristiques spécifiques du produit, p. ex. le lissage de la surface, la densité, la porosité ou des structures creuses
B22F 10/85 - Acquisition ou traitement des données pour la commande ou la régulation de procédés de fabrication additive
A gas turbine engine includes a rotor that has a seal surface and a shaft that is rotatable about an engine central axis. The shaft has an annular seal channel that opens to the seal surface. An annular seal is insertable into the annular seal channel for sealing against the seal surface. The annular seal is comprised of first and second rings that each have a split joint, a slot radially adjacent the split joint, and a tab that projects into the slot of the other of the first or second rings such that the first and second rings are circumferentially interlocked.
F01D 11/00 - Prévention ou réduction des pertes internes du fluide énergétique, p. ex. entre étages
F16J 15/3284 - Joints d'étanchéité entre deux surfaces mobiles l'une par rapport à l'autre par joints élastiques, p. ex. joints toriques caractérisés par leur structureEmploi des matériaux
62.
Heat Exchanger with Enhanced Heat Transfer Manifold
A heat exchanger is provided that includes a heat exchanger core, an inlet manifold, and a turbulence generating structure. The inlet manifold is in fluid communication with the heat exchanger core. The inlet manifold has a fluid inlet and outlet. The turbulence generating structure is disposed adjacent to the fluid inlet, and a separation distance from the fluid outlet. The heat exchanger is configured with a fluid flow path through which a fluid flow enters the heat exchanger through the fluid inlet, encounters the turbulence generating structure and passes through the fluid outlet, and into the heat exchanger core. The turbulence generating structure is configured to produce turbulence in the fluid flow. The separation distance is long enough such that the fluid flow entering the heat exchanger core is substantially free of the turbulence.
F28F 13/12 - Dispositions pour modifier le transfert de chaleur, p. ex. accroissement, diminution en affectant le mode d'écoulement des sources de potentiel calorifique en créant une turbulence, p. ex. par brassage, par augmentation de la force de circulation
G01F 1/32 - Mesure du débit volumétrique ou du débit massique d'un fluide ou d'un matériau solide fluent, dans laquelle le fluide passe à travers un compteur par un écoulement continu en utilisant des effets mécaniques par détection des effets dynamiques de l’écoulement utilisant des débitmètres à tourbillons
63.
METHOD OF INLET DISTORTION PREDICTION AND MONITORING
A method for a gas turbine engine includes calculating an inlet airflow distortion value at a reference area within an airflow duct and in front of a fan of the gas turbine engine. The inlet airflow distortion value is indicative of an air pressure of an air vortex at the reference area caused by a set of crosswind conditions. The calculating is based on a ratio between an inlet airflow static air pressure in the reference area and a total ambient air pressure. The inlet airflow distortion value is compared to a threshold corresponding to a permissible amount of inlet airflow distortion at the reference area for the set of crosswind conditions, and, based on the comparison indicating that the inlet airflow distortion exceeds the threshold, an inlet airflow distortion notification is provided. A system for a gas turbine engine and a method for a gas turbine engine are also disclosed.
G01M 15/14 - Test des moteurs à turbine à gaz ou des moteurs de propulsion par réaction
F01D 21/00 - Arrêt des "machines" ou machines motrices, p. ex. dispositifs d'urgenceDispositifs de régulation, de commande ou de sécurité non prévus ailleurs
An assembly for rotational equipment includes a shaft, a first rolling-element bearing, a second rolling-element bearing, and a mid-shaft foil bearing. The shaft extends along a rotational axis between and to a first axial end and a second axial end. The shaft is configured for rotation about the rotational axis. The first rolling-element bearing is disposed at the first axial end. The second rolling-element bearing is disposed at the second axial end. The mid-shaft foil bearing is disposed axially between the first rolling-element bearing and the second rolling-element bearing.
F01D 25/16 - Aménagement des paliersSupport ou montage des paliers dans les stators
F01D 25/22 - Systèmes de lubrification utilisant un fluide énergétique ou un autre fluide gazeux comme lubrifiant
F02C 3/04 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail ayant une turbine entraînant un compresseur
F16C 17/02 - Paliers à contact lisse pour mouvement de rotation exclusivement pour charges radiales uniquement
65.
HARDWARE FOR AUTOMATION OF COMPUTER TOMOGRAPHY SAMPLE CHANGING
An X-ray tomography sample changing hardware including a support bracket configured to attach to an X-ray tomography support; a mounting arm attached to the support bracket, the mounting arm having a beam, at least one slot formed in the beam, the at least one slot including a mouth configured to receive a sample stage; the sample stage including a body having an axis with an upper portion and a lower portion axially opposite the upper portion; the lower portion configured to mate with a receiver on a sample manipulator for an X-ray tomography machine; and multiple chambers formed in the body and aligned axially between the upper portion and the lower portion, each of the multiple chambers including a mounting feature configured to support a part within each of the multiple chambers.
A powerplant is provided that includes an electric machine, a turbine engine and a fluid circuit. The turbine engine is operatively coupled to the electric machine. The turbine engine includes a flowpath, a compressor section, a combustor section and a turbine section. The flowpath extends through the compressor section, the combustor section and the turbine section from an inlet into the flowpath to an exhaust from the flowpath. The compressor section includes a shroud forming a peripheral boundary of the flowpath. The fluid circuit includes a passage, a port and a conduit. The passage is within the electric machine. The port extends through the shroud to the flowpath. The conduit fluidly couples the passage to the port.
H02K 5/20 - Enveloppes ou enceintes caractérisées par leur configuration, leur forme ou leur construction avec des canaux ou des conduits pour la circulation d'un agent de refroidissement
F02C 6/00 - Ensembles fonctionnels multiples de turbines à gazCombinaisons d'ensembles fonctionnels de turbines à gaz avec d'autres appareilsAdaptations d'ensembles fonctionnels de turbines à gaz à des applications particulières
F02C 7/18 - Refroidissement des ensembles fonctionnels caractérisé par l'agent refroidisseur l'agent refroidisseur étant gazeux, p. ex. l'air
H02K 7/116 - Association structurelle avec des embrayages, des freins, des engrenages, des poulies ou des démarreurs mécaniques avec des engrenages
H02K 7/18 - Association structurelle de génératrices électriques à des moteurs mécaniques d'entraînement, p. ex. à des turbines
67.
METHOD AND APPARATUS FOR FORMING LEADING AND TRAILING EDGES ON AIRFOILS
A method of forming a component having an airfoil includes the steps of a) molding an airfoil preform such that it has an airfoil extending radially, and between a leading edge and a trailing edge, with at least one of the leading and trailing edges being formed with a mold flash, b) machining away the mold flash, c) moving a cutting tool having at least one grinder with a notch along the at least one of the preform leading edge and trailing edge, the notch having side surfaces that will form the at least one of the leading edge and trailing edge on the airfoil preform and d) moving the cutting tool in conjunction with a cam moving through a cam path to control the position of the at least one grinder along the at least one of leading and trailing edges. A machining assembly is also disclosed.
B24B 9/06 - Machines ou dispositifs pour meuler les bords ou les biseaux des pièces ou pour enlever des bavuresAccessoires à cet effet caractérisés par le fait qu'ils sont spécialement étudiés en fonction des propriétés de la matière propre aux objets à meuler de matière inorganique non métallique, p. ex. de la pierre, des céramiques, de la porcelaine
B24B 19/14 - Machines ou dispositifs conçus spécialement pour une opération particulière de meulage non couverte par d'autres groupes principaux pour meuler des aubes de turbine, des pales d'hélice ou similaires
A fuel nozzle guide assembly for a gas turbine engine is provided. The fuel nozzle guide assembly includes a housing; a tube arranged in the housing and defining a portion of a first fluid passage therein, the first fluid passage configured to include a first fluid, wherein a second fluid passage is defined, in part, between an exterior surface of the tube and an interior surface of the housing, the second fluid passage configured to include a second fluid; an air inflow tube, the air inflow tube defining a central air passage and configured to include a third fluid; an air inflow assembly defining a third fluid passage and configured to include a fourth fluid; and a nozzle outlet configured to receive each of the first fluid, the second fluid, the third fluid, and the fourth fluid to cause mixing thereof.
An assembly is provided for a turbine engine. This assembly includes an engine core extending along an axis. The engine core includes a first compressor section, a second compressor section, a flowpath, a bleed port, an inner passage, an outer passage and a flow diverter. The flowpath extends longitudinally through the first compressor section and the second compressor section. The bleed port fluidly couples the flowpath to the inner passage and the outer passage in parallel. The bleed port is located longitudinally along the flowpath between the first compressor section and the second compressor section. The flow diverter is located at an inlet into the bleed port from the flowpath. The flow diverter is configured to move between a first position and a second position.
F02C 9/18 - Commande du débit du fluide de travail par prélèvement, par bipasse ou par action sur des raccordements variables du fluide de travail entre des turbines ou des compresseurs ou entre leurs étages
F02C 3/08 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail ayant une turbine entraînant un compresseur le compresseur comprenant au moins un étage radial
F02C 7/10 - Chauffage de l'air d'alimentation avant la combustion, p. ex. par les gaz d'échappement au moyen d'échangeurs de récupération de chaleur
A fuel nozzle for a gas turbine engine combustor includes a fuel nozzle assembly including an inflow tube disposed along and a nozzle axis, the inflow tube defining an inner air passage, and a liquid swirler concentrically disposed about the inflow tube, the liquid swirler including a liquid swirler inner wall, liquid swirler outer wall having a liquid swirler outer wall end portion angled radially inward toward the nozzle axis, and an annular liquid passage defined therebetween. The fuel nozzle assembly further includes a radial air swirler (RAS) concentrically disposed about the liquid swirler outer wall, the RAS including an RAS inner wall having an RAS inner wall end portion angled radially inward toward the nozzle axis such that it is parallel to the liquid swirler outer wall end portion, an RAS outer wall having an end cap at a downstream-most position, and an annular gas passage defined therebetween. The end cap includes a radiused inner surface and an outer surface.
A propulsion system includes a propulsion unit including a multi-stage fan having a first fan stage including a first rotor and a second fan stage including a second rotor. At least one propulsion motor is operably coupled to the first rotor and to the second rotor to drive the first rotor and the second rotor about a fan axis. A controller is configured to determine a position of at least one of the first rotor and the second rotor in response to an electrical signature of the at least one propulsion motor and adjust one or more operating parameters of at least one of the first rotor and the second rotor to reduce a noise produced by rotation of the first rotor and the noise produced by rotation of the second rotor in combination.
B64D 31/16 - Systèmes de commande des groupes moteursAménagement de systèmes de commande des groupes moteurs sur aéronefs pour les groupes moteurs électriques
B64C 11/50 - Synchronisation des hélices multiples
A turbine engine assembly includes a compressor section where an inlet airflow is compressed, a cryogenic fuel system for generating flow of cryogenic fuel, an air separation system where an airflow is placed in thermal communication with a portion of the flow of cryogenic fuel for generating an enhanced oxygen flow. In a combustor section, the compressed inlet airflow and a portion of the enhanced oxygen flow is mixed with fuel and ignited to generate an exhaust gas flow that is communicated through a core flow path to a turbine section where expansion of the exhaust gas flow is utilized to generate a mechanical power output. Water is extracted from the exhaust gas flow in condenser transformed into a steam flow for injection into the core flow path in an evaporator system.
F02C 3/30 - Addition d'eau, de vapeur ou d'autres fluides aux composants combustibles ou au fluide de travail avant l'échappement de la turbine
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
F02C 6/20 - Aménagements des ensembles fonctionnels de turbines à gaz pour l'entraînement des véhicules
F02C 7/18 - Refroidissement des ensembles fonctionnels caractérisé par l'agent refroidisseur l'agent refroidisseur étant gazeux, p. ex. l'air
73.
FAULT DETECTION AND LOAD MANAGEMENT IN A SERIES HYBRID PROPULSION SYSTEM
A series hybrid propulsion system of an aircraft includes a gas turbine engine, an electrical generator operably connected to the gas turbine engine configured to generate electrical power from operation of the gas turbine engine, and one or more electrically-driven propulsors configured to provide propulsion for the aircraft, and an electrical power grid configured to distribute electrical power generated at least at the electrical generator to the one or more electrically-driven propulsors. A voltage regulator is positioned downstream of the electrical generator and is configured to take one or more actions to compensate for a loss of load on the generator.
F01D 21/00 - Arrêt des "machines" ou machines motrices, p. ex. dispositifs d'urgenceDispositifs de régulation, de commande ou de sécurité non prévus ailleurs
B64D 27/10 - Aéronefs caractérisés par le type ou la position des groupes moteurs du type à turbine à gaz
B64D 27/24 - Aéronefs caractérisés par le type ou la position des groupes moteurs utilisant la vapeur ou l'énergie de ressorts
B64D 31/00 - Systèmes de commande des groupes moteursAménagement de systèmes de commande des groupes moteurs sur aéronefs
F01D 15/10 - Adaptations pour la commande des générateurs électriques ou combinaisons avec ceux-ci
H02P 9/00 - Dispositions pour la commande de génératrices électriques de façon à obtenir les caractéristiques désirées à la sortie
74.
MACHINING OF CERAMIC MATRIX COMPOSITES WITH CURVED WATERJET GUIDED LASER
A method of machining a feature in a workpiece includes orienting a waterjet guided laser device about the workpiece, ejecting a waterjet from a nozzle of the waterjet guided laser device, impinging the waterjet against the workpiece along a tool path causing a corresponding removal of material therefrom, and generating a non-uniform electric field proximate the waterjet to cause a deflection of the waterjet as the waterjet is impinging against the workpiece.
B23K 26/122 - Travail par rayon laser, p. ex. soudage, découpage ou perçage sous atmosphère particulière, p. ex. dans une enceinte dans un liquide, p. ex. sous l’eau
B23K 26/064 - Mise en forme du faisceau laser, p. ex. à l’aide de masques ou de foyers multiples au moyen d'éléments optiques, p. ex. lentilles, miroirs ou prismes
B23K 26/38 - Enlèvement de matière par perçage ou découpage
75.
WATER ACTUATED TIP CLEARANCE CONTROL SYSTEM FOR TURBINE ENGINE
An assembly is provided for an aircraft powerplant. This assembly includes a bladed rotor, a shroud and an actuation system. The bladed rotor includes a rotor base and a plurality of rotor blades arranged circumferentially around and connected to the rotor base. The shroud is adjacent tips of the rotor blades. The actuation system includes a water source and an actuator coupled to the shroud. The actuation system is configured to direct a quantity of water from the water source to the actuator to control clearance between the shroud and the tips of the rotor blades.
F02C 7/143 - Refroidissement des ensembles fonctionnels des fluides dans l'ensemble fonctionnel du fluide de travail avant ou entre les étages du compresseur
F02C 7/22 - Systèmes d'alimentation en combustible
F04D 29/16 - Joints d'étanchéité entre le côté du refoulement et celui de l'aspiration
F04D 29/68 - Lutte contre la cavitation, les tourbillons, le bruit, les vibrations ou phénomènes analoguesÉquilibrage en agissant sur les couches limites
76.
CMC airfoil with wishbone shaped fiber layup structure forming portion of platform and root
An airfoil includes a CMC airfoil wall that defines a platform, a root that extends radially from the platform, and an airfoil section that extends radially from the platform opposite the root. The CMC airfoil wall includes a wishbone-shaped fiber layup structure. The wishbone-shaped fiber layup structure includes first and second arms that merge into a single leg. The first and second arms are comprised of a network of fiber tows, and the single leg includes fiber tows from each of the first and second arms that are interwoven in the single leg. The single leg forms a portion of the root, and the first and second arms extend in opposite directions from the single leg and form a portion of the platform.
F01D 5/28 - Emploi de matériaux spécifiésMesures contre l'érosion ou la corrosion
F02C 7/00 - Caractéristiques, parties constitutives, détails ou accessoires non couverts dans, ou d'un intérêt plus général que, les groupes Entrées d'air pour ensembles fonctionnels de propulsion par réaction
77.
AIRCRAFT HYBRID ELECTRIC PROPULSION AND ATTITUDE CONTROLLER
An aircraft hybrid electrical propulsion (HEP) propulsion and attitude control system includes a propulsion system, electrical system and HEP controller. The propulsion system includes at least one propulsor and at least one electric motor configured to drive the at least one propulsor to generate to generate one or both of thrust and lift. The electrical system delivers a first amount of power to the at least one electric motor and a second amount of power to a plurality of electrical loads. The HEP controller determines at least one attitude goal of the aircraft, and controls the electrical system to adjust at least one of the thrust or lift to achieve the at least one attitude goal.
A process for forming a multi-material sacrificial fugitive within a ceramic core including forming a ceramic core defining a core interior; and forming at least one sacrificial fugitive; placing the at least one sacrificial fugitive within the core interior, the at least one sacrificial fugitive comprising a multi-material composition comprising a soluble wax portion and a thermoset/photopolymer portion.
A blade includes an airfoil section and a root section that extends in a chord-wise direction between leading and trailing root faces and in a radial direction that is perpendicular to the chord-wise direction from an inner root face to the second end of the airfoil section. The root section defines a dovetail cross-section that is perpendicular to the chord-wise direction. The airfoil section and the root section are comprised of a composite material architecture that includes inter-section fiber plies that each extend from the leading to the trailing edge and from the airfoil section into the root section. Wedges extend in the root section and are interleaved with the inter-section fiber plies. Each of the wedges tapers in the chord-wise direction and the radial direction.
The present disclosure provides improved additive manufacturing methods and systems. More particularly, the present disclosure provides advantageous additive manufacturing methods and systems for the production of hierarchical design optimized components (e.g., composite or composite-like materials). The present disclosure provides a methodology to produce hierarchical design optimized additively manufactured parts/materials that include an inhomogeneous structure with variable local mechanical properties across the entire volume. Hierarchical inhomogeneous structure/composite materials can be produced through a laser powder bed fusion (LPBF) process. A novel LPBF method can be used to obtain location-specific properties through in-situ controlling of the local cooling rate during the additive manufacturing process.
A neuromorphic foreign object debris (FOD) detection system includes a FOD processing system and a neuromorphic sensor. The FOD processing system includes a FOD controller including a trained artificial intelligence machine learning (AIML) model representing an area of interest. The neuromorphic sensor has a field of view (FOV) containing the area of interest and is configured to output pixel data in response to FOD appearing in the FOV. The FOD controller detects the FOD is present in the area of interest in response to receiving the pixel data, and generates an alert signal indicating the presence of the FOD.
H04N 7/18 - Systèmes de télévision en circuit fermé [CCTV], c.-à-d. systèmes dans lesquels le signal vidéo n'est pas diffusé
H04N 23/54 - Montage de tubes analyseurs, de capteurs d'images électroniques, de bobines de déviation ou de focalisation
H04N 25/47 - Capteurs d'images avec sortie d'adresse de pixelCapteurs d'images commandés par événementSélection des pixels à lire en fonction des données d'image
82.
SUPPORT STRUCTURE FOR FORMING TURBINE ENGINE ROTATING STRUCTURE
A method of manufacturing is provided. During this method, a body is formed using an additive manufacturing process. The body includes a shaft, a bladed rotor and a support structure. The shaft projects axially along an axis out from the bladed rotor. The support structure projects radially out from the shaft and axially to the bladed rotor. The support structure includes a plurality of channels arranged circumferentially about the axis. Each of the channels projects radially into the support structure towards the axis and to a respective channel side. Each of the channels projects axially into the support structure towards the bladed rotor and to a respective channel end.
A method of operation is provided during which a fuel-water mixture is directed within a first passage of a fuel injector to a first passage outlet of the fuel injector. The fuel-water mixture includes liquid water and gaseous fuel. The fuel-water mixture is injected into a combustion chamber through the first passage outlet. The combustion chamber is within a combustor of a turbine engine. A fuel-air mixture within the combustion chamber is ignited. The fuel-air mixture includes the gaseous fuel.
A plating method includes: providing a nickel-containing plating solution; immersing a metallic substrate in the plating solution; and applying a voltage between the substrate and an anode to apply a plating. The providing comprises blending chromium powder with a precursor of the plating solution so that the plating solution is a Cr-containing plating solution. The as-applied plating forms a layer containing chromium particles from the powder.
A method for coating a metallic substrate includes applying an MCrAlY coating. Machining removes the MCrAlY coating from one or more regions of the substrate. A simultaneous aluminizing and chromizing: aluminizes an interior surface region of the substrate lacking the MCrAlY and at least a portion of a region where the MCrAlY remains; and chromizes an exterior surface region of the substrate lacking the MCrAlY and at least a different portion of the region where the first MCrAlY remains.
A face skin for an acoustic panel may comprise a sheet defining a first surface and a second surface. A plurality of slots may be formed through the face skin using abrasive blasting. Each slot of the plurality of slots may comprise a first semi-circular wall and a second semi-circular wall opposite the first semi-circular wall.
B32B 38/10 - Enlèvement de couches ou de parties de couches, mécaniquement ou chimiquement
B24C 1/04 - Méthodes d'utilisation de jet abrasif en vue d'effectuer un travail déterminéUtilisation d'équipements auxiliaires liés à ces méthodes pour travailler uniquement certaines parties déterminées, p. ex. pour graver la pierre ou le verre
B32B 3/12 - Produits stratifiés comprenant une couche ayant des discontinuités ou des rugosités externes ou internes, ou une couche de forme non planeProduits stratifiés comprenant une couche ayant des particularités au niveau de sa forme caractérisés par une couche discontinue, c.-à-d. soit continue et percée de trous, soit réellement constituée d'éléments individuels caractérisés par une couche d'alvéoles disposées régulièrement, soit formant corps unique dans un tout, soit structurées individuellement ou par assemblage de bandes indépendantes, p. ex. structures en nids d'abeilles
B32B 3/26 - Produits stratifiés comprenant une couche ayant des discontinuités ou des rugosités externes ou internes, ou une couche de forme non planeProduits stratifiés comprenant une couche ayant des particularités au niveau de sa forme caractérisés par une couche continue dont le périmètre de la section droite a une allure particulièreProduits stratifiés comprenant une couche ayant des discontinuités ou des rugosités externes ou internes, ou une couche de forme non planeProduits stratifiés comprenant une couche ayant des particularités au niveau de sa forme caractérisés par une couche comportant des cavités ou des vides internes
B32B 5/02 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments
B32B 37/14 - Procédés ou dispositifs pour la stratification, p. ex. par polymérisation ou par liaison à l'aide d'ultrasons caractérisés par les propriétés des couches
B32B 37/18 - Procédés ou dispositifs pour la stratification, p. ex. par polymérisation ou par liaison à l'aide d'ultrasons caractérisés par les propriétés des couches toutes les couches existant et présentant une cohésion avant la stratification impliquant uniquement l'assemblage de feuilles ou de panneaux individualisés
G10K 11/168 - Sélection de matériaux de plusieurs couches de matériaux différents, p. ex. sandwiches
A wear-reducing coating system for a substrate includes an innermost layer disposed on a substrate and an outermost layer disposed on the innermost layer. The innermost layer has higher load-carrying capacity than the outermost layer and the outermost layer has a lower coefficient of friction than the innermost layer. A method of applying a wear-reducing coating to a substrate and a method of applying a coating to a split ring casing for a high pressure compressor are also disclosed.
C23C 16/455 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement caractérisé par le procédé utilisé pour introduire des gaz dans la chambre de réaction ou pour modifier les écoulements de gaz dans la chambre de réaction
C23C 28/04 - Revêtements uniquement de matériaux inorganiques non métalliques
F02C 7/00 - Caractéristiques, parties constitutives, détails ou accessoires non couverts dans, ou d'un intérêt plus général que, les groupes Entrées d'air pour ensembles fonctionnels de propulsion par réaction
A component of an aero-propulsion apparatus, wherein the component includes a material and has a surface, and a thin film on the surface, wherein the thin film is configured to undergo a detectible change in properties when exposed to a temperature exceeding a threshold temperature. Methods are also disclosed.
F01D 21/00 - Arrêt des "machines" ou machines motrices, p. ex. dispositifs d'urgenceDispositifs de régulation, de commande ou de sécurité non prévus ailleurs
F02C 7/00 - Caractéristiques, parties constitutives, détails ou accessoires non couverts dans, ou d'un intérêt plus général que, les groupes Entrées d'air pour ensembles fonctionnels de propulsion par réaction
G01K 1/14 - SupportsDispositifs de fixationDispositions pour le montage de thermomètres en des endroits particuliers
G01K 3/00 - Thermomètres donnant une indication autre que la valeur instantanée de la température
A repair process includes providing a gas turbine engine article that has an elastomeric coating that has an eroded region, plasma etching the elastomeric coating in the eroded region, and applying an elastomeric repair coating on the eroded region.
F01D 5/00 - AubesOrganes de support des aubesDispositifs de chauffage, de protection contre l'échauffement, de refroidissement, ou dispositifs contre les vibrations, portés par les aubes ou les organes de support
B05D 3/14 - Traitement préalable des surfaces sur lesquelles des liquides ou d'autres matériaux fluides doivent être appliquésTraitement ultérieur des revêtements appliqués, p. ex. traitement intermédiaire d'un revêtement déjà appliqué, pour préparer les applications ultérieures de liquides ou d'autres matériaux fluides par des moyens électriques
F01D 5/28 - Emploi de matériaux spécifiésMesures contre l'érosion ou la corrosion
A fan includes a rotor hub comprising a slot and a blade comprising an airfoil extending from a blade root in a first direction. The blade root is configured to be received in the slot. The fan also includes a deformable spacer situated between the rotor hub and the blade root in the slot, a first blade lock situated at a first side of the slot, and a second blade lock situated at a second side of the slot opposite the first side. At least one of the first and second blade locks includes a tab configured to extend between the blade root and the rotor hub and to compress the spacer such that the spacer exerts a force on the blade in the first direction. A method of assembling a fan and another example fan are also disclosed.
A hybrid power and propulsion system of a vehicle is provided and includes an engine assembly coupled to a common bus via a first plug type and including a motor-generator configured to generate electricity, a storage element coupled to the common bus via a second plug type and configured to store the electricity, a drive assembly coupled to the common bus via a third plug type and configured to receive the electricity from at least one of the engine assembly or the storage element to drive a propulsive fan and a controller. The controller is connected to the common bus and controls a flow of the electricity between at least one of the engine assembly, the storage element and the drive assembly. The common bus is configured with additional connectors of the second and third plug types to enable removable connections of additional storage elements and drive assemblies.
A turbine vane includes an airfoil section with an airfoil wall defining a leading edge and a trailing edge. A first side extends from the leading edge to the trailing edge and extends from a first end of the airfoil section to a second end of the airfoil section. A second side extends from the leading edge to the trailing edge and extends from the first end to the second end of the airfoil section. The airfoil wall also circumscribes an internal core cavity. A platform is attached to the first end of the airfoil section and a platform cavity is formed in the platform. A baffle is in the internal core cavity and includes a baffle tube extending from a first tube end to a second tube end. A chimney is connected to the first tube end and extends completely through the platform cavity.
A water splitting includes a centrifuge situated in the protective chamber and rotatable within the protective chamber such that constituents inside the centrifuge separate according to their molecular mass; an inlet fluidly connected to the centrifuge and configured to provide water to the centrifuge; and an outlet fluidly connected to the centrifuge and configured to remove hydrogen isolated from the water from the centrifuge. A method of isolating hydrogen from water in a reactor is also disclosed.
A hydrogen isolation system includes a protective chamber and a centrifuge situated in the protective chamber. The centrifuge is configured to receive water and configured to rotate within the protective chamber such that constituents inside the centrifuge separate according to their molecular weights. The hydrogen isolation system also includes an energy source configured to provide heat to the centrifuge such that at least some of the water splits into hydrogen and oxygen.
A turbine engine assembly includes an active clearance control system that is configured to utilize water that is extracted from the exhaust gas flow to control a clearance between a tip of a rotating blade and a case structure by controlling thermal growth of the case structure. Water extracted by the condenser is also provided to an evaporator system where thermal energy from the exhaust gas flow is utilized to transform water into a steam flow. A portion of water utilized in the active clearance control system is communicated to the evaporator system.
A test assembly includes multiple instrumentation egresses disposed throughout the test assembly. Multiple sensors are disposed through the test assembly. The number of sensors in the multiple sensors exceeds the number of instrumentation egresses in the plurality of instrumentation egresses and at least one pair of sensors in the plurality of sensors shares a single instrumentation egress.
G01M 15/02 - Détails ou accessoires pour appareils de test
F01D 21/00 - Arrêt des "machines" ou machines motrices, p. ex. dispositifs d'urgenceDispositifs de régulation, de commande ou de sécurité non prévus ailleurs
G01M 15/14 - Test des moteurs à turbine à gaz ou des moteurs de propulsion par réaction
97.
INVERTING NEURAL RADIANCE FIELDS FOR PART AND SCENE POSE ESTIMATION
A method for generating an application specific pose estimation responsive to a camera pose, a scene pose and an object pose includes generating an observed image (Iobs) of an object and a scene using a camera and generating a current pose estimate having an object image render and a scene image render. The method further includes generating a final rendered output (Irndr) by combining the object image render and the scene image render and processing the final rendered output (Irndr) and the observed image (Iobs) to generate a final pose estimate, wherein the final pose estimate matches the observed image (Iobs).
A stator vane assembly is disclosed herein. The stator vane assembly includes a stator box having a top side and a bottom side, a vane coupled to the top side of the stator box, and an integral seal coupled to the bottom side of the stator box, the integral seal extending away from the stator box and forming a tortuous path to prevent airflow below the stator box.
A method of optimizing the assembly of rotating hardware of a gas turbine engine (GTE) includes obtaining a respective input data set indicative of one or more contributors to unbalance for one or of a plurality of stages of one or more modules of the GTE. For each of the module(s), one or more neural networks associated with the module are utilized to obtain, based on the respective input data set for the module, a set of optimized clock angles for arranging the stages of the module relative to each other to mitigate vibration of the GTE. Each of the first neural network(s) has been trained with training data including the contributor(s) to unbalance, and at least one rotor dynamics model that uses the training data and the set of clock angles from the neural network(s) to predict vibration at one or more locations of interest in the GTE.
G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p. ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
F01D 21/00 - Arrêt des "machines" ou machines motrices, p. ex. dispositifs d'urgenceDispositifs de régulation, de commande ou de sécurité non prévus ailleurs
100.
AIRCRAFT POWERPLANT WITH BOOSTED GAS TURBINE ENGINE
An aircraft system is provided that includes a first turbine engine, a second turbine engine and an electrical system. The electrical system includes a clutch, a first electric machine and a second electric machine electrically coupled to the first electric machine. The first electric machine is mechanically coupled to a first rotating assembly of the first turbine engine. The second electric machine is mechanically coupled to a second rotating assembly of the second turbine engine through the clutch.
F02C 6/20 - Aménagements des ensembles fonctionnels de turbines à gaz pour l'entraînement des véhicules
B64D 27/10 - Aéronefs caractérisés par le type ou la position des groupes moteurs du type à turbine à gaz
F02C 7/32 - Aménagement, montage ou entraînement des auxiliaires
F02C 7/36 - Transmission de puissance entre les différents arbres de l'ensemble fonctionnel de turbine à gaz, ou entre ce dernier et l'utilisateur de puissance
H02K 7/102 - Association structurelle avec des embrayages, des freins, des engrenages, des poulies ou des démarreurs mécaniques avec des freins à friction
H02K 7/116 - Association structurelle avec des embrayages, des freins, des engrenages, des poulies ou des démarreurs mécaniques avec des engrenages
H02K 7/18 - Association structurelle de génératrices électriques à des moteurs mécaniques d'entraînement, p. ex. à des turbines