Proposed are methods for manufacturing intermittently coated dry electrodes for energy storage devices and energy storage devices including the intermittently coated dry electrodes. In one embodiment, the method includes providing a metal layer and providing an electrochemically active free-standing film formed of a dry active material. The method also includes combining the electrochemically active free-standing film and the metal layer to form a combined layer. The method further includes removing a portion of the electrochemically active free-standing film from the combined layer so that the electrochemically active free-standing film is intermittently formed on the metal layer in a longitudinal direction of the metal layer.
H01M 4/13 - Électrodes pour accumulateurs à électrolyte non aqueux, p. ex. pour accumulateurs au lithiumLeurs procédés de fabrication
H01M 4/38 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'éléments simples ou d'alliages
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
2.
Intermittently coated dry electrode for energy storage device and method of manufacturing the same
Methods for manufacturing intermittently coated dry electrodes for energy storage devices and energy storage devices including the intermittently coated dry electrodes are disclosed. In one embodiment, the method includes providing a metal layer and providing an electrochemically active free-standing film formed of a dry active material. The method also includes combining the electrochemically active free-standing film and the metal layer to form a combined layer. The method further includes removing a portion of the electrochemically active free-standing film from the combined layer so that the electrochemically active free-standing film is intermittently formed on the metal layer in a longitudinal direction of the metal layer.
H01M 4/38 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'éléments simples ou d'alliages
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01G 11/26 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface
An energy storage device can include a cathode, an anode, and a separator between the cathode and the anode, and an electrolyte where the electrolyte includes one or more additives and/or solvent components selected from vinylene carbonate (VC), vinyl ethylene carbonate (VEC), dimethylacetamide (DMAc), hydro fluorinated ether branched cyclic carbonate, a hydro fluorinated ether ethylene carbonate (HFEEC), hydro fluorinated ether (HFE), and fluorinated ethylene carbonate (FEC). The electrolyte may include a carbonate based solvent and one or more solvent components and/or one or more of vinylene carbonate (VC), vinyl ethylene carbonate (VEC), dimethylacetamide (DMAc), hydro fluorinated ether branched cyclic carbonate, a hydro fluorinated ether ethylene carbonate (HFEEC), hydro fluorinated ether (HFE), and fluorinated ethylene carbonate (FEC).
H01G 11/50 - Électrodes caractérisées par leur matériau spécialement adaptées aux condensateurs lithium-ion, p. ex. pour doper le lithium ou pour intercalation
Provided herein are dry process electrode films, and energy storage devices incorporating the same, including an elastic polymer binder. In some embodiments, the dry process electrode films are PTFE-free or comprise an insubstantial amount of PTFE. The electrode films exhibit improved mechanical and processing characteristics. Also provided are methods for processing such elastic polymer binders, and for incorporating the elastic polymer binders in electrode films.
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
5.
COMPOSITIONS AND METHODS FOR MULTILAYER DRY COATED AND WET CAST FILM HYBRID ELECTRODE FILMS
Provided herein are energy storage device electrode films comprising a hybrid electrode film, and methods of forming such multilayer hybrid electrode films and energy storage devices comprising multilayer hybrid electrode films. Each hybrid electrode film may comprise a self-supporting dry coated active layer and a wet cast active layer, wherein each active layer comprises a binder and an active material. The binder and/or active material may be the same or different as any other active layer. The hybrid multilayer electrode film may further comprise at least one additional layer, and the hybrid multilayer electrode film may be laminated with a current collector to form an electrode.
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
Provided herein are multilayer dry films for electrode film fabrication, and electrode films, electrodes, and energy storage devices that implement the multilayer dry films. The multilayer dry film for electrode film fabrication comprises a dry free-standing active layer comprising a first dry active material and a first dry binder, and a dry prelithiating layer comprising lithium, such that the first dry free-standing active layer and the dry prelithiating layer are laminated to each other to form a free-standing multilayer dry film.
H01G 11/86 - Procédés de fabrication de condensateurs hybrides ou EDL ou de leurs composants spécialement adaptés pour les électrodes
H01G 11/84 - Procédés de fabrication de condensateurs hybrides ou EDL ou de leurs composants
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/26 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/50 - Électrodes caractérisées par leur matériau spécialement adaptées aux condensateurs lithium-ion, p. ex. pour doper le lithium ou pour intercalation
An energy storage device can include a cathode, an anode, and a separator between the cathode and the anode. At least one of the electrodes can include an electrode film prepared by a dry process. The electrode film and/or the electrode can comprise a prelithiating material. Processes and apparatuses used for fabricating the electrode and/or electrode film are also described.
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01M 4/136 - Électrodes à base de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFy
H01M 4/1391 - Procédés de fabrication d'électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 4/1397 - Procédés de fabrication d’électrodes à base de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFy
H01M 4/131 - Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 4/38 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'éléments simples ou d'alliages
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
8.
SYSTEM AND METHODS FOR MANUFACTURING A DRY ELECTRODE
A system and methods for manufacturing a dry electrode for an energy storage device are disclosed. The system includes a first dry electrode material delivery system configured to deliver a dry electrode material, a first calendering roll, a second calendering roll, and a controller. The second calendering roll is configured to form a first nip between the first calendering roll and the second calendering roll. The first nip is configured to receive the dry electrode material from the first dry electrode material delivery system, and form a dry electrode film from the dry electrode material. The controller is configured to control a rotational velocity of the second calendering roll to be greater than a rotational velocity of the first calendering roll.
B32B 37/00 - Procédés ou dispositifs pour la stratification, p. ex. par polymérisation ou par liaison à l'aide d'ultrasons
H01G 11/24 - Électrodes caractérisées par les propriétés structurelles des matériaux composant les électrodes ou inclus dans les électrodes, p. ex. forme, surface ou porositéÉlectrodes caractérisées par les propriétés structurelles des poudres ou particules utilisées à cet effet
B22F 7/04 - Fabrication de couches composites, de pièces ou d'objets à base de poudres métalliques, par frittage avec ou sans compactage de couches successives avec une ou plusieurs couches non réalisées à partir de poudre, p. ex. à partir de tôles
9.
INTERMITTENTLY COATED DRY ELECTRODE FOR ENERGY STORAGE DEVICE AND METHOD OF MANUFACTURING THE SAME
Methods for manufacturing intermittently coated dry electrodes for energy storage devices and energy storage devices including the intermittently coated dry electrodes are disclosed. In one embodiment, the method includes providing a metal layer and providing an electrochemically active free-standing film formed of a dry active material. The method also includes combining the electrochemically active free-standing film and the metal layer to form a combined layer. The method further includes removing a portion of the electrochemically active free-standing film from the combined layer so that the electrochemically active free-standing film is intermittently formed on the metal layer in a longitudinal direction of the metal layer.
An energy storage device can include a cathode, an anode, and a separator between the cathode and the anode. At least one of the electrodes can include an electrode film prepared by a dry process. The electrode film, the electrode and/or the separator can comprise a salt, improved porosity, increased density, be prelithiated, and/or a foam. Process and apparatuses used for fabricating the electrode and/or electrode film are also described.
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 10/056 - Accumulateurs à électrolyte non aqueux caractérisés par les matériaux utilisés comme électrolytes, p. ex. électrolytes mixtes inorganiques/organiques
11.
COMPOSITIONS AND METHODS FOR DRY ELECTRODE FILMS HAVING REDUCED BINDER CONTENT
Materials and methods for preparing dry cathode electrode film including reduced binder content are described. The cathode electrode film may be a self-supporting film including a single binder. The binder loading may be 3 weight % or less. In a first aspect, a method for preparing a dry free standing electrode film for an energy storage device is provided, comprising nondestructively mixing a cathode active material, a porous carbon, and optionally a conductive carbon to form an active material mixture, adding a single fibrillizable binder to the active material mixture, nondestructively mixing to form an electrode film mixture, and calendering the electrode film mixture to form a free standing electrode film.
H01M 4/1391 - Procédés de fabrication d'électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/32 - Électrodes caractérisées par leur matériau à base de carbone
H01G 11/42 - Poudres ou particules, p. ex. composition de ces poudres ou particules
H01G 11/50 - Électrodes caractérisées par leur matériau spécialement adaptées aux condensateurs lithium-ion, p. ex. pour doper le lithium ou pour intercalation
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
12.
COMPOSITIONS AND METHODS FOR SILICON CONTAINING DRY ANODE FILMS
Dry process electrode films, and energy storage devices incorporating the same are described, including a silicon active material. The films may be free standing anode electrode films. Also provided are methods for fabricating such anode electrode films.
Provided herein are dry process electrode films, and energy storage devices incorporating the same, including a microparticulate non-fibrillizable binder having certain particle sizes. The electrode films exhibit improved mechanical and processing characteristics. Also provided are methods for processing such microparticulate non-fibrillizable electrode film binders, and for incorporating the microparticulate non-fibrillizable binders in electrode films.
Electrolyte additives and formulations for energy storage devices are disclosed. The electrolyte additives include aromatic nitriles, combined carbonate and sulfur-containing additives, nitrogen-containing additives, or combinations thereof.
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01G 11/00 - Condensateurs hybrides, c.-à-d. ayant des électrodes positive et négative différentesCondensateurs électriques à double couche [EDL]Procédés de fabrication desdits condensateurs ou de leurs composants
H01M 10/0567 - Matériaux liquides caracterisés par les additifs
H01M 10/0569 - Matériaux liquides caracterisés par les solvants
15.
COMPOSITIONS AND METHODS FOR ENERGY STORAGE DEVICES HAVING IMPROVED PERFORMANCE
Provided herein are energy storage devices comprising at least one dry process, self-supporting electrode film having improved performance. The improved performance may be realized as improved electrode material loading, improved active material loading, improved active material density, improved areal capacity, improved specific capacity, improved areal energy density, improved energy density, improved specific energy density, or improved Coulombic efficiency.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/587 - Matériau carboné, p. ex. composés au graphite d'intercalation ou CFx pour insérer ou intercaler des métaux légers
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
C08L 1/00 - Compositions contenant de la cellulose, de la cellulose modifiée ou des dérivés de la cellulose
16.
NON-AQUEOUS SOLVENT ELECTROLYTE FORMULATIONS FOR ENERGY STORAGE DEVICES
Provided herein are improved electrolyte formulations. The improved performance may be realized as improved discharge rate cycling, improved capacity, improved Coulombic efficiency, or improved capacity upon cycling.
H01M 10/0569 - Matériaux liquides caracterisés par les solvants
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01G 11/60 - Électrolytes liquides caractérisés par le solvant
17.
COMPOSITIONS AND METHODS FOR MULTILAYER ELECTRODE FILMS
Provided herein are energy storage device electrode films comprising multiple active layers, and methods of forming such multiple active layer energy storage device electrode films. Each active layer may be a self-supporting active layer comprising a binder and an active material. The binder and/or active material may be the same or different as any other active layer. The active layers may be stacked to form an electrode film, and the electrode film may be laminated with a current collector to form an electrode.
Materials and methods for preparing electrode film mixtures and electrode films including reduced damage bulk active materials are provided. In a first aspect, a method for preparing an electrode film mixture for an energy storage device is provided, comprising providing an initial binder mixture comprising a first binder and a first active material, processing the initial binder mixture under high shear to form a secondary binder mixture, and nondestructively mixing the secondary binder mixture with a second portion of active materials to form an electrode film mixture.
Apparatuses and methods for forming an electrode film mixture are described. An apparatus for forming an electrode film mixture can have a first source including a solution comprising a polymer, for example, polytetrafluoroethylene and a critical or supercritical fluid, for example, supercritical carbon dioxide, a second source including a second component of the electrode film mixture, a mixer configured to receive the solution and the second component and to form a slurry comprising the solution and the second component. The apparatus can include a decompressor configured to receive the slurry and decompress the slurry to vaporize the critical or supercritical fluid and precipitate dry polymer.
H01M 4/1391 - Procédés de fabrication d'électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 4/1393 - Procédés de fabrication d’électrodes à base de matériau carboné, p. ex. composés au graphite d'intercalation ou CFx
H01M 4/1395 - Procédés de fabrication d’électrodes à base de métaux, de Si ou d'alliages
H01M 4/38 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'éléments simples ou d'alliages
H01M 4/485 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques d'oxydes ou d'hydroxydes mixtes pour insérer ou intercaler des métaux légers, p. ex. LiTi2O4 ou LiTi2OxFy
H01M 4/583 - Matériau carboné, p. ex. composés au graphite d'intercalation ou CFx
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
20.
SYSTEM AND METHOD FOR PROVIDING BIDIRECTIONAL TRANSIENT VOLTAGE SUPPORT AND POWER
An apparatus for storing energy includes a plurality of energy storage cells, a switching circuit configured to control a transient voltage support to a battery provided by the plurality of energy storage cells, a charging circuit configured to charge the plurality of energy storage cells, and a processing system. The processing system is configured to control the charging circuit to charge the plurality of energy storage cells, and control the switching circuit to control the transient voltage support of the plurality of energy storage cells to the battery. The switching circuit and the charging circuit provide parallel paths between the plurality of energy storage cells and the battery terminal.
One innovative aspect of the subject matter described herein comprises an energy storage module that comprises one or more energy storage cells, one or more sensor circuits, a network interface, and a first safety circuit. The sensor circuits detect a condition of the energy storage module indicative of a malfunction. The first safety circuit monitors the sensor circuits for detection of the condition indicative of a malfunction. The first safety circuit receives a pulsed signal. When the one or more sensor circuits detect the condition indicative of a malfunction, the first safety circuit interrupts the pulsed signal being conveyed. When the one or more sensor circuits does not detect the condition indicative of a malfunction, the first safety circuit conveys the pulsed signal. A unique network identifier of the network interface is determined based on an arbitration method using said network interface in conjunction with the first safety circuit.
H02J 7/00 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries
B60L 3/00 - Dispositifs électriques de sécurité sur véhicules propulsés électriquementContrôle des paramètres de fonctionnement, p. ex. de la vitesse, de la décélération ou de la consommation d’énergie
B60L 11/18 - utilisant de l'énergie fournie par des piles primaires, des piles secondaires ou des piles à combustibles
G01R 31/36 - Dispositions pour le test, la mesure ou la surveillance de l’état électrique d’accumulateurs ou de batteries, p. ex. de la capacité ou de l’état de charge
H01M 10/42 - Procédés ou dispositions pour assurer le fonctionnement ou l'entretien des éléments secondaires ou des demi-éléments secondaires
H01M 10/48 - Accumulateurs combinés à des dispositions pour mesurer, tester ou indiquer l'état des éléments, p. ex. le niveau ou la densité de l'électrolyte
22.
SYSTEMS AND METHODS COMPRISING OPEN CELL PACK MODULES
In one aspect, an embodiment of this invention comprises an energy-storage module for storing energy for electrical consumption. The module comprises a plurality of energy- storage cells and a set of parallel walls configured to mount the plurality of energy-storage cells between the parallel walls and having a plurality of through-holes. The module also comprises a bus bar arrangement configured to electrically couple each of the plurality of energy-storage cells to a first terminal and a second terminal and a wire routing device configured to mate with a plurality of the through-holes and configured to receive one or more wires that electrically connect components of the energy storage module.
Passivation methods and compositions for electrode binders are disclosed. A coated binder particle for use in an electrode film of an energy storage device is provided. The coated binder particle can comprise a coating over the surface of a binder particle, wherein the coating provides ionic insulation to the binder particle. In some embodiments, the coating covers the entire surface of the binder particle. In still further embodiments, a coated binder particle in an energy storage device blocks ionic contact between the binder and an electrolyte.
An energy storage device can include a first electrode, a second electrode and a separator between the first electrode and the second electrode wherein the first electrode includes an electrochemically active material and a porous carbon material, and the second electrode includes elemental lithium metal and carbon particles. A method for fabricating an energy storage device can include forming a first electrode and a second electrode, and inserting a separator between the first electrode and the second electrode, where forming the first electrode includes combining an electrochemically active material and a porous carbon material, and forming the second electrode includes combining elemental lithium metal and a plurality of carbon particles.
In one aspect, the invention comprises an apparatus for balancing cells in a series string of modules having cells. The apparatus comprises a processing system and a communication circuit. The processing circuit is configured to receive an average cell voltage value from each module. The processing circuit is further configured to determine an overall average cell voltage for all the cells. The processing circuit is also configured to cause each the modules to determine a relative capacitance for each of its cells and cause each of the modules to balance its cells based on the respective relative capacitances. The communication circuit is configured to receive the average cell voltage value from the modules.
In one aspect, an embodiment of this invention comprises an energy storage device balancing apparatus. The energy storage device balancing apparatus comprises a balancing circuit and an alarm circuit. Both the balancing circuit and the alarm circuit are coupled to the energy storage device. The balancing circuit is configured to monitor a voltage of the energy storage cell and dissipate energy from the energy storage cell if the voltage is at or above a first reference voltage. The alarm circuit is configured to generate an alarm when the voltage of the energy storage cell is at or above a second reference voltage and dissipate energy from the energy storage cell when the voltage is at or above the second reference voltage.
An apparatus (500) for forming an electrode film mixture can have a first source including a polymer dispersion comprising (501) a liquid and a polymer, a second source including a second component (502) of the electrode film mixture, and a fluidized bed coating apparatus including a first inlet (504) configured to receive from the first source the dispersion, and a second inlet configured to receive from the second source the second component. A corresponding method for preparing an energy storage device electrode film mixture comprises the steps of providing a polymer dispersion to a first inlet of a fluidized bed coating apparatus, the polymer dispersion comprising a liquid and a polymer, wherein the polymer is a first component of an energy storage device electrode film mixture; providing a second component of the energy storage device electrode film mixture to a second inlet of the fluidized bed coating apparatus; vaporizing the liquid portion of the polymer dispersion within the fluidized bed coating apparatus to form a dried polymer; and forming a fluidized bed of the dried polymer and the second component of the electrode mixture within the fluidized bed coating apparatus to form an electrode film mixture.
H01M 4/1391 - Procédés de fabrication d'électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 4/485 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques d'oxydes ou d'hydroxydes mixtes pour insérer ou intercaler des métaux légers, p. ex. LiTi2O4 ou LiTi2OxFy
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
B01J 2/16 - Procédés ou dispositifs pour la granulation de substances, en généralTraitement de matériaux particulaires leur permettant de s'écouler librement, en général, p. ex. en les rendant hydrophobes par suspension de la substance en poudre dans un gaz, p. ex. sous forme de "lits fluidisés" ou de rideau
B01J 8/18 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées
B01J 8/38 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées selon la technique du "lit fluidisé" le lit fluidisé comportant un dispositif rotatif ou étant soumis à une rotation
This disclosure provides systems, methods and apparatus for an energy storage system (300). In one aspect, the energy storage system (300) includes a controller (304) configured to connect a first capacitor system (CI) and a second capacitor system (C2) in series with an output (306) of a battery system (302) during a high current demand event such that the voltage of the output (306) of the battery system (302) is supported within the voltage constraints of the output of that battery system (302).
H02J 7/34 - Fonctionnement en parallèle, dans des réseaux, de batteries avec d'autres sources à courant continu, p. ex. batterie tampon
B60L 11/18 - utilisant de l'énergie fournie par des piles primaires, des piles secondaires ou des piles à combustibles
H02M 3/07 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des résistances ou des capacités, p. ex. diviseur de tension utilisant des capacités chargées et déchargées alternativement par des dispositifs à semi-conducteurs avec électrode de commande
B60R 16/033 - Circuits électriques ou circuits de fluides spécialement adaptés aux véhicules et non prévus ailleursAgencement des éléments des circuits électriques ou des circuits de fluides spécialement adapté aux véhicules et non prévu ailleurs électriques pour l'alimentation des sous-systèmes du véhicule en énergie électrique caractérisé par l'utilisation de cellules électriques ou de batteries
29.
ELECTROLYTE FORMULATIONS FOR LITHIUM ION CAPACITORS
An energy storage device, such as a lithium ion capacitor including a cathode, an anode, and a separator between the cathode and the anode, and an electrolyte comprising a lithium sail and one or more of vinylene carbonate (VC), vinyl ethylene carbonate (VF.C), dimethylacetamide (DMAc), hydro fluorinated ether branched cyclic carbonate, a hydro fluorinated ether ethylene carbonate (HFEEC), hydro fluorinated ether (HFE). and fluorinated ethylene carbonate (FEC). The electrolyte may include a carbonate based solvent and one or more solvent components and/or one or more of vinylene carbonate (VC), vinyl ethylene carbonate (VEC), dimethylacelamide (DMAc), hydro fluorinated ether branched cyclic carbonate, a hydro fluorinated ether ethylene carbonate (HFEEC), hydro fluorinated ether (IIFE), and fluorinated ethylene carbonate (FEC). An energy storage device, such as a lithium ion capacitor, having such an electrolyte formulation can facilitate improved capacitor electrical performance.
An energy storage device can include a cathode, an anode, and a separator between the cathode and the anode, where the anode can have a desired lithium pre-doping level to facilitate desired capacitor performance. Controlled anode pre-doping can include printing lithium powder or a mixture including lithium powder onto a surface of the anode. Controlled anode pre-doping can include electrochemically incorporating lithium ions into the anode. A duration of the pre-doping process can be selected such that desired anode pre- doping is achieved.
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/14 - Agencements ou procédés de réglage ou de protection des condensateurs hybrides ou EDL
H01G 11/50 - Électrodes caractérisées par leur matériau spécialement adaptées aux condensateurs lithium-ion, p. ex. pour doper le lithium ou pour intercalation
H01G 11/60 - Électrolytes liquides caractérisés par le solvant
H01G 11/62 - Électrolytes liquides caractérisés par le soluté, p. ex. sels, anions ou cations
31.
ELECTRODE FOR AN ENERGY STORAGE DEVICE AND METHOD FOR FABRICATING A DRY ENERGY STORAGE DEVICE ELECTRODE FILM
An energy storage device can include a cathode, an anode, and a separator between the cathode and the anode, where the anode and/or electrode includes an electrode film having a super-fibrillized binder material and carbon. The electrode film can have a reduced quantity of the binder material while maintaining desired mechanical and/or electrical properties. A process for fabricating the electrode film may include a fibrillization process using reduced speed and/or increased process pressure such that fibrillization of the binder material can be increased. The electrode film may include an electrical conductivity promoting additive to facilitate decreased equivalent series resistance performance. Increasing fibrillization of the binder material may facilitate formation of thinner electrode films, such as dry electrode films.
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/38 - Pâtes ou mélanges de carboneLiants ou additifs
H01G 11/86 - Procédés de fabrication de condensateurs hybrides ou EDL ou de leurs composants spécialement adaptés pour les électrodes
An energy storage device can include a first electrode, a second electrode and a separator between the first electrode and the second electrode wherein the first electrode or the second electrode includes elemental lithium metal and carbon particles. A method for fabricating an energy storage device can include forming a first electrode and a second electrode, and inserting a separator between the first electrode and the second electrode, where forming the first electrode or the second electrode can include combining elemental lithium metal and a plurality of carbon particles.
An energy storage system is disclosed. The energy storage system includes a first energy storage cell, a second energy storage cell, and a first interconnect connecting the first and second cells. The interconnect includes a support member and a plurality of protrusions extending away from the support member. At least two protrusions are spaced relative to each other along a longitudinal axis of the interconnect.
H01M 2/20 - Connexions conductrices du courant pour les éléments
H01R 11/28 - Pièces d'extrémité consistant en une bague ou un manchon
H01M 10/613 - Refroidissement ou maintien du froid
H01L 23/467 - Dispositions pour le refroidissement, le chauffage, la ventilation ou la compensation de la température impliquant le transfert de chaleur par des fluides en circulation par une circulation de gaz, p. ex. d'air
H01L 23/367 - Refroidissement facilité par la forme du dispositif
34.
SYSTEM AND METHOD FOR IMPROVED STARTING OF AN INTERNAL COMBUSTION ENGINE WITH AT LEAST ONE BATTERY AND ONE CAPACITOR
This disclosure provides systems, methods and apparatus for a combustion engine start system. In one aspect, the combustion engine start system includes a capacitor system and a controller configured to detect a battery voltage of an output of a battery system and receive an external input, wherein the controller is programmed to upon receiving the external input, if the battery voltage is below a first voltage threshold, connect an output of the capacitor system to the output of the battery system such that the battery voltage increases to a value that is at or above the first voltage threshold and below a second voltage threshold.
F02N 11/08 - Circuits spécialement adaptés pour le démarrage des moteurs
B60R 16/03 - Circuits électriques ou circuits de fluides spécialement adaptés aux véhicules et non prévus ailleursAgencement des éléments des circuits électriques ou des circuits de fluides spécialement adapté aux véhicules et non prévu ailleurs électriques pour l'alimentation des sous-systèmes du véhicule en énergie électrique
H02J 7/14 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries pour la charge de batteries par des générateurs dynamo-électriques entraînés à vitesse variable, p. ex. sur véhicule
H02J 9/00 - Circuits pour alimentation de puissance de secours ou de réserve, p. ex. pour éclairage de secours
B60L 11/00 - Propulsion électrique par source d’énergie intérieure au véhicule (B60L 8/00, B60L 13/00 ont priorité;agencements ou montage de moteurs primaires constitués de moteurs électriques et de moteurs à combustion interne pour une propulsion réciproque ou commune B60K 6/20)
35.
SYSTEMS AND METHODS FOR IMPROVING CELL BALANCING AND CELL FAILURE DETECTION
Disclosed are systems and methods for improved cell-balancing circuits, back-up failure detection circuits and alarm extension for cells and modules of an energy storage system. One aspect of the invention comprises an energy storage device cell balancing apparatus. The apparatus comprises a first and a second dissipative component connected in series. The first dissipative component and the second dissipative component are coupled to an energy storage cell. The second dissipative component monitors a voltage of the energy storage cell and, if the voltage is at or above a reference voltage, the second dissipative component conducts a discharging current through the first and second dissipative components. The first dissipative component maintains a voltage drop across the first dissipative component that is proportional to the voltage of the energy storage cell. The second dissipative component maintains a constant voltage drop across the second dissipative component when conducting the discharging current.
This disclosure provides systems, methods and apparatus for an energy storage system. In one aspect, the energy storage system includes a controller configured to connect a capacitor system (208) in series with an output of a battery system (220) during a regenerative event such that the voltage of the capacitor system is subtracted from the voltage of the battery system.
H02J 7/14 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries pour la charge de batteries par des générateurs dynamo-électriques entraînés à vitesse variable, p. ex. sur véhicule
H02J 7/34 - Fonctionnement en parallèle, dans des réseaux, de batteries avec d'autres sources à courant continu, p. ex. batterie tampon
37.
SYSTEM AND METHODS FOR IMPROVED STARTING OF COMBUSTION ENGINES
This disclosure provides systems, methods and apparatus for a engine start system. In one aspect, the engine start system includes: a booster battery selectively connected in parallel with the primary batteries of the engine. The booster battery is disconnected when the battery voltage of the primary batteries is below a first target voltage. The booster battery is connected when the battery voltage of the primary batteries is at or above the second target voltage, or in response to an external input.
F02N 11/08 - Circuits spécialement adaptés pour le démarrage des moteurs
B60W 10/24 - Commande conjuguée de sous-ensembles de véhicule, de fonction ou de type différents comprenant la commande des moyens de stockage d'énergie
H02J 7/14 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries pour la charge de batteries par des générateurs dynamo-électriques entraînés à vitesse variable, p. ex. sur véhicule
38.
DRY ENERGY STORAGE DEVICE ELECTRODE AND METHODS OF MAKING THE SAME
An energy storage device can include a cathode and an anode, where at least one of the cathode and the anode are made of a polytetrafluoroethylene (PTFE) composite binder material including PTFE and at least one of polyvinylidene fluoride (PVDF), a PVDF copolymer, and poly(ethylene oxide) (PEO). The energy storage device can be a lithium ion battery, a lithium ion capacitor, and/or any other lithium based energy storage device. The PTFE composite binder material can have a ratio of about 1:1 of PTFE to a non-PTFE component, such a PVDF, PVDF co-polymer and/or PEO.
An energy storage apparatus can include a plurality of energy storage sub-modules adjacent one another, each of the plurality of energy storage sub-modules including a plurality of prismatic energy storage devices positioned on a carrying tray. An insulator sleeve can surround the plurality of prismatic energy storage devices positioned on the carrying tray and a pair of side plates positioned around the insulator sleeve. A first of the pair of side plates can be placed adjacent a first side of the insulator sleeve and a second of the pair of side plates can be placed adjacent a second opposing side of the insulator sleeve, where at least one of the pair of side plates has a plurality of protrusions distributed across an exterior surface. An air flow generator can be at a distal end of the energy storage apparatus and configure to draw air into and propel air flow through the energy storage apparatus.
H01G 11/00 - Condensateurs hybrides, c.-à-d. ayant des électrodes positive et négative différentesCondensateurs électriques à double couche [EDL]Procédés de fabrication desdits condensateurs ou de leurs composants
H01G 11/82 - Fixation ou assemblage d’un élément capacitif dans un boîtier, p. ex. montage d’électrodes, de collecteurs de courant ou de bornes dans des récipients ou des encapsulations
H01M 2/10 - Montures; Dispositifs de suspension; Amortisseurs; Dispositifs de manutention ou de transport; Supports
B60K 6/28 - Agencement ou montage de plusieurs moteurs primaires différents pour une propulsion réciproque ou commune, p. ex. systèmes de propulsion hybrides comportant des moteurs électriques et des moteurs à combustion interne les moteurs primaires étant constitués de moteurs électriques et de moteurs à combustion interne, p. ex. des VEH caractérisés par des appareils, des organes ou des moyens spécialement adaptés aux VEH caractérisés par les moyens d'accumulation d'énergie électrique, p. ex. les batteries ou les condensateurs
H01M 10/6555 - Barres ou plaques disposées entre les éléments
H01M 10/613 - Refroidissement ou maintien du froid
40.
ENERGY STORAGE DEVICE, ANODE THEREOF, AND METHOD OF FABRICATING AN ENERGY STORAGE DEVICE
An energy storage device can include a cathode, an anode, and a separator between the cathode and the anode, where the anode comprises a first lithium, ion intercalating carbon component and a. second lithium ion intercalating carbon component. The first lithium ion intercalating carbon component can include hard carbon, and the second lithium ion intercalating component can include graphite or soft carbon. A ratio of the hard carbon to the graphite or of the hard carbon to the soft carbon can be between 1 : 19 to 19: 1. The anode may comprise a first lithium ion intercalating carbon component, a second lithium ion intercalating carbon component and a third lithium ion intercalating carbon component. The first, lithium ion intercalating carbon component can include hard carbon, the second lithium ion intercalating carbon component can include soft carbon, and the third lithium ion intercalating carbon component can include graphite.
H01M 4/133 - Électrodes à base de matériau carboné, p. ex. composés d'intercalation du graphite ou CFx
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/587 - Matériau carboné, p. ex. composés au graphite d'intercalation ou CFx pour insérer ou intercaler des métaux légers
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01G 11/38 - Pâtes ou mélanges de carboneLiants ou additifs
H01G 11/50 - Électrodes caractérisées par leur matériau spécialement adaptées aux condensateurs lithium-ion, p. ex. pour doper le lithium ou pour intercalation
H01G 11/86 - Procédés de fabrication de condensateurs hybrides ou EDL ou de leurs composants spécialement adaptés pour les électrodes
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
09 - Appareils et instruments scientifiques et électriques
Produits et services
Electrical apparatus, namely, energy storage devices,
batteries, capacitors, ultracapacitors, double-layer
capacitors, wound film capacitors, ceramic capacitors, high
voltage capacitors, and capacitive voltage dividers; lithium
ion capacitors; electrical capacitors as functional
substitute of an electric battery or other energy storage
device; hybrid energy storage devices including an
electrical capacitor in combination with an electric battery
or other energy storage device; energy storage devices for
vehicles; ionizing radiation hardened integrated circuits;
radiation hardened components, namely, radiation casing for
use in electronics; circuit breakers; condensers; voltage
regulators for electric power; voltage stabilizers.
Methods and apparatus are provided for a high voltage capacitor having a plurality of capacitor units connected in electrical series in a stacked configuration. An insulator element can be positioned between two adjacent capacitor units of the high voltage capacitor for providing separation between the adjacent capacitor units, where the insulator element has a first thickness at a first end of the insulator element and a second smaller thickness at a second end of the insulator element. The insulator element can have a wedge-shaped cross section.
H01G 11/10 - Condensateurs hybrides ou condensateurs EDL multiples, p. ex. réseaux ou modules
H01G 11/76 - Bornes, p. ex. extensions des collecteurs de courant spécialement adaptées pour être intégrées dans des condensateurs hybrides ou EDL multiples ou empilés
H01B 3/30 - Isolateurs ou corps isolants caractérisés par le matériau isolantEmploi de matériaux spécifiés pour leurs propriétés isolantes ou diélectriques composés principalement de substances organiques matières plastiquesIsolateurs ou corps isolants caractérisés par le matériau isolantEmploi de matériaux spécifiés pour leurs propriétés isolantes ou diélectriques composés principalement de substances organiques résinesIsolateurs ou corps isolants caractérisés par le matériau isolantEmploi de matériaux spécifiés pour leurs propriétés isolantes ou diélectriques composés principalement de substances organiques cires
Methods and apparatus are provided for a high voltage capacitor having a plurality of capacitor units connected in electrical series in a stacked configuration. An insulator element can be positioned between two adjacent capacitor units of the high voltage capacitor for providing separation between the adjacent capacitor units, where the insulator element has a first thickness at a first end of the insulator element and a second smaller thickness at a second end of the insulator element. The insulator element can have a wedge-shaped cross section.
H01B 3/30 - Isolateurs ou corps isolants caractérisés par le matériau isolantEmploi de matériaux spécifiés pour leurs propriétés isolantes ou diélectriques composés principalement de substances organiques matières plastiquesIsolateurs ou corps isolants caractérisés par le matériau isolantEmploi de matériaux spécifiés pour leurs propriétés isolantes ou diélectriques composés principalement de substances organiques résinesIsolateurs ou corps isolants caractérisés par le matériau isolantEmploi de matériaux spécifiés pour leurs propriétés isolantes ou diélectriques composés principalement de substances organiques cires
H01G 11/10 - Condensateurs hybrides ou condensateurs EDL multiples, p. ex. réseaux ou modules
H01G 11/76 - Bornes, p. ex. extensions des collecteurs de courant spécialement adaptées pour être intégrées dans des condensateurs hybrides ou EDL multiples ou empilés
H01G 4/232 - Bornes pour la connexion électrique d'au moins deux couches d'un condensateur à empilement ou à enroulement
H01B 3/44 - Isolateurs ou corps isolants caractérisés par le matériau isolantEmploi de matériaux spécifiés pour leurs propriétés isolantes ou diélectriques composés principalement de substances organiques matières plastiquesIsolateurs ou corps isolants caractérisés par le matériau isolantEmploi de matériaux spécifiés pour leurs propriétés isolantes ou diélectriques composés principalement de substances organiques résinesIsolateurs ou corps isolants caractérisés par le matériau isolantEmploi de matériaux spécifiés pour leurs propriétés isolantes ou diélectriques composés principalement de substances organiques cires résines vinyliquesIsolateurs ou corps isolants caractérisés par le matériau isolantEmploi de matériaux spécifiés pour leurs propriétés isolantes ou diélectriques composés principalement de substances organiques matières plastiquesIsolateurs ou corps isolants caractérisés par le matériau isolantEmploi de matériaux spécifiés pour leurs propriétés isolantes ou diélectriques composés principalement de substances organiques résinesIsolateurs ou corps isolants caractérisés par le matériau isolantEmploi de matériaux spécifiés pour leurs propriétés isolantes ou diélectriques composés principalement de substances organiques cires résines acryliques
44.
METHODS AND APPARATUSES FOR POLYMER FIBRILLIZATION UNDER ELECTRIC FIELD
A method of fibrillizing a fibrillizable binder component of an electrode film can include providing a negatively charged fibrillizable binder component, and applying an electric field upon the negatively charged binder component to fibrillize the negatively charged fibrillizable binder component. A system for fibrillizing a binder component of an electrode film can include a mixing container made of a material having an affinity to donate electron(s) to the binder component, and an actuator configured to apply a force upon the mixing container so as to contact the mixing container with the binder component and to move the mixing container and the binder component relative to each other within a speed and range of motion sufficient to create an electrostatic force on the binder component and fibrillize the binder component.
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 4/133 - Électrodes à base de matériau carboné, p. ex. composés d'intercalation du graphite ou CFx
H01M 4/1393 - Procédés de fabrication d’électrodes à base de matériau carboné, p. ex. composés au graphite d'intercalation ou CFx
H01M 4/587 - Matériau carboné, p. ex. composés au graphite d'intercalation ou CFx pour insérer ou intercaler des métaux légers
An energy storage device housing may include a first housing shell portion having a first protrusion on an internal surface of the first housing shell portion. The energy storage device may include a second opposing housing shell portion bonded to at least a portion of the first protrusion. The energy storage device may include an energy storage device component stack having an opening shaped and/or dimensioned to facilitate contact between the first protrusion and the second housing shell portion. A method of forming an energy storage device housing may include forming a first protrusion on a first surface of a first housing shell portion, the first surface being lined with a first polymer. The method may include heating the first protrusion on the first surface of the first housing shell portion to form an opening in the first polymer adjacent to the first protrusion such that the first protrusion extends through the opening.
H01G 11/00 - Condensateurs hybrides, c.-à-d. ayant des électrodes positive et négative différentesCondensateurs électriques à double couche [EDL]Procédés de fabrication desdits condensateurs ou de leurs composants
46.
ENERGY STORAGE DEVICE WITH ENHANCED ENERGY DENSITY
An energy storage device having improved energy density performance may include an electrolyte having a salt concentration of about 0.6 moles/L (M) to about 0.95M. A final energy storage device product having a total mass of electrolyte that is at least 100% of a saturation quantity of electrolyte sufficient to fully saturate one or more electrode(s) and separator(s) of the device, and below a threshold quantity above the saturation quantity.
H01G 11/82 - Fixation ou assemblage d’un élément capacitif dans un boîtier, p. ex. montage d’électrodes, de collecteurs de courant ou de bornes dans des récipients ou des encapsulations
H01G 11/60 - Électrolytes liquides caractérisés par le solvant
A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant current between the anode and the dopant source. A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant voltage across the anode and the dopant source. An energy storage device can include an anode having a lithium ion pre-doping level of about 60% to about 90%.
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01M 4/133 - Électrodes à base de matériau carboné, p. ex. composés d'intercalation du graphite ou CFx
H01G 11/50 - Électrodes caractérisées par leur matériau spécialement adaptées aux condensateurs lithium-ion, p. ex. pour doper le lithium ou pour intercalation
H01G 11/86 - Procédés de fabrication de condensateurs hybrides ou EDL ou de leurs composants spécialement adaptés pour les électrodes
H01M 4/1393 - Procédés de fabrication d’électrodes à base de matériau carboné, p. ex. composés au graphite d'intercalation ou CFx
48.
COLLECTOR PLATE FOR ENERGY STORAGE DEVICE AND METHODS OF MANUFACTURING
This disclosure provides collector plates for an energy storage device, energy storage devices with a collector plate, and methods for manufacturing the same. In one aspect, a collector plate includes a body. One or more apertures extend into the body. The apertures are configured to allow a portion of a free end of a spirally wound current collector of a spirally wound electrode for an energy storage device to extend into the one or more apertures.
H01G 11/72 - Collecteurs de courant spécialement adaptés pour être intégrés dans des condensateurs hybrides ou EDL multiples ou empilés
H01G 11/82 - Fixation ou assemblage d’un élément capacitif dans un boîtier, p. ex. montage d’électrodes, de collecteurs de courant ou de bornes dans des récipients ou des encapsulations
H01G 11/84 - Procédés de fabrication de condensateurs hybrides ou EDL ou de leurs composants
49.
COLLECTOR GRAPHITE FILM AND ELECTRODE DIVIDER RING FOR AN ENERGY STORAGE DEVICE
The energy storage device has a first graphite film (102), a second graphite film (104) and an electrode divider ring (106) between the first graphite film and the second graphite film, forming a sealed enclosure. The energy storage device may be compatible with an aqueous electrolyte or a non-aqueous electrolyte. A method of forming an energy storage device includes providing an electrode divider ring, a first graphite film and a second graphite film. The method can include pressing a first edge of the electrode divider ring into a surface of the first graphite film, and pressing a second opposing edge of the electrode divider ring into a surface of the second graphite film to form a sealed enclosure. The sealed enclosure may have as opposing surfaces the surface of the first graphite film and the surface of the second graphite film.
H01G 11/12 - Condensateurs hybrides ou EDL à empilement
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/68 - Collecteurs de courant caractérisés par leur matériau
An electric double-layer ultracapacitor configured to maintain desired operation at an operating voltage of three volts, where the capacitor includes a housing component, a first and a second current collector, a positive and a negative electrode electrically coupled to one of the first and second current collectors, and a separator positioned between the positive and the negative electrode. The capacitor may also include an electrolyte in ionic contact with the electrodes and the separator, the electrolyte having acetonitrile and a quaternary ammonium salt with a molarity of less than one.
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/34 - Électrodes caractérisées par leur matériau à base de carbone caractérisées par la carbonisation ou l’activation de carbone
H01G 11/38 - Pâtes ou mélanges de carboneLiants ou additifs
H01G 11/62 - Électrolytes liquides caractérisés par le soluté, p. ex. sels, anions ou cations
H01G 11/82 - Fixation ou assemblage d’un élément capacitif dans un boîtier, p. ex. montage d’électrodes, de collecteurs de courant ou de bornes dans des récipients ou des encapsulations
H01G 11/68 - Collecteurs de courant caractérisés par leur matériau
H01G 11/84 - Procédés de fabrication de condensateurs hybrides ou EDL ou de leurs composants
H01G 11/24 - Électrodes caractérisées par les propriétés structurelles des matériaux composant les électrodes ou inclus dans les électrodes, p. ex. forme, surface ou porositéÉlectrodes caractérisées par les propriétés structurelles des poudres ou particules utilisées à cet effet
H01G 11/32 - Électrodes caractérisées par leur matériau à base de carbone
H01G 11/14 - Agencements ou procédés de réglage ou de protection des condensateurs hybrides ou EDL
This disclosure provides systems, methods and apparatus for a combined battery/capacitor energy storage device. The device includes a first device terminal, a second device terminal, a battery connected between the first terminal and the second terminal, and a capacitor connected in parallel with the battery. In one aspect, a rectifier is connected between the first terminal and the capacitor, the rectifier configured to allow substantially unidirectional current flow from the first terminal to the capacitor, in another aspect, a switch is between the capacitor and the first terminal, in another aspect, a current limiter extends between the first terminal and the capacitor. In another aspect, the device includes a housing that includes an integrated battery housing portion and a capacitor housing portion, in another aspect, a bus bar system electrically connects the battery, the capacitor, and the terminals.
H01M 16/00 - Combinaisons structurelles de différents types de générateurs électrochimiques
H01G 9/28 - Combinaisons structurales de condensateurs électrolytiques, de redresseurs électrolytiques, de détecteurs électrolytiques, de dispositifs de commutation électrolytiques, avec d'autres composants électriques non couverts par la présente sous-classe
H02J 7/34 - Fonctionnement en parallèle, dans des réseaux, de batteries avec d'autres sources à courant continu, p. ex. batterie tampon
H01M 2/10 - Montures; Dispositifs de suspension; Amortisseurs; Dispositifs de manutention ou de transport; Supports
52.
SYSTEM AND METHODS FOR MANAGING A DEGRADED STATE OF A CAPACITOR SYSTEM
This disclosure provides systems, methods and apparatus for managing a capacitor system. In one aspect, an energy storage system includes a capacitor system, a charging circuit, and a controller. The capacitor system includes one or more capacitors. The charging circuit is configured to charge the capacitor system to a first target voltage. The controller is configured to detect a first condition and is programmed, in response to the first condition, to instruct the charging circuit to charge the capacitor system to a second target voltage that is less than the first target voltage. The controller is programmed to provide a notification that the capacitor system is operating in a degraded state.
This disclosure provides apparatus, methods and systems for error correction in multi processor systems. Some implementations include a plurality of computing modules, each computing module including a processor. Each processor may include processing state. In some other implementations, each computing module may also include a memory. Upon receiving a signal to perform a partial re-synchronization, a hash of each processor's state data may be performed. In some embodiments, a hash of at least a portion of each computing module's memory data may also be performed. The hashes for each processor are then compared to determine majority hashes and possible minority hashes. Upon identifying a minority hash, the computing module that produced the minority hash may receive new processing state data from one of the computing modules that produced a majority hash.
A device (1) monitors and/or balances an ultracapacitor (3) and/or a module (4) comprising a plurality of ultracapacitors (3) connected in series, the module (4) being connectable in series or in parallel with other modules (4). The device comprises an electronic board (2) comprising digital control and/or command means, such as a microcontroller (5), executing a program for monitoring and balancing the ultracapacitor (3) and/or the module (4). The relative capacitances of the capacitors are measured, and this information is employed to determine when to carry out a controlled discharge of particular capacitors. Temperature information is also employed to determine when to carry out a controlled discharge of particular capacitors. In this way the lifetime of any particular capacitor is, desirably, extended to be no shorter than the lifetime of other longer- lived capacitors in the module.
H02J 7/02 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries pour la charge des batteries par réseaux à courant alternatif au moyen de convertisseurs
H02J 7/34 - Fonctionnement en parallèle, dans des réseaux, de batteries avec d'autres sources à courant continu, p. ex. batterie tampon
The problem that a battery will have reduced function (both in ability to deliver energy and in ability to receive energy for storage) as a function of low temperature is addressed by cycling current out of the battery and into a capacitor, and from the capacitor back into the battery, all at sub-hertz frequencies. This warms the battery due to its own internal resistance, thereby warming the battery. The warmth is delivered exactly where it is needed. The currents can be smaller at first (when the battery's current-delivery abilities are limited due to cold) and can be larger as the battery warms up, until the battery is warm enough to deliver most of its capability. Such cycling of current can provide warming that is useful in cold terrestrial environments or in space.
In an energy storage system that includes a battery and an ultracapacitor, the state of charge (SOC) of the capacitor is the subject of a dynamic set-point. This dynamic set-point control is a function of the load regime to which the storage system is exposed, for example a hybrid automobile or electric automobile. The control may be based in part upon real-time fast Fourier transform analysis of load current, permitting real-time adjustment of control coefficients. In this way, it is possible to minimize the occurrence of the capacitor being fully charged at a time when it would be desired to be able to absorb high current, for example from regenerative braking. Likewise it is possible to minimize the occurrence of the capacitor being nearly discharged at a time when it would be desirable to have boost power available. A result is that even a relatively small ultracapacitor (having perhaps one two- hundredth the energy storage capacity of the battery) can permit greatly reducing waste heat dissipated in the battery, and can reduce otherwise unnecessary cycling of current into and out of the battery. This can extend battery life and battery performance.
B60L 11/18 - utilisant de l'énergie fournie par des piles primaires, des piles secondaires ou des piles à combustibles
B60L 7/10 - Freinage dynamo-électrique par récupération
B60L 7/02 - Freinage dynamo-électrique par résistance
B60L 11/00 - Propulsion électrique par source d’énergie intérieure au véhicule (B60L 8/00, B60L 13/00 ont priorité;agencements ou montage de moteurs primaires constitués de moteurs électriques et de moteurs à combustion interne pour une propulsion réciproque ou commune B60K 6/20)
B60L 3/00 - Dispositifs électriques de sécurité sur véhicules propulsés électriquementContrôle des paramètres de fonctionnement, p. ex. de la vitesse, de la décélération ou de la consommation d’énergie
Electrodes, electrode devices, and methods of producing electrodes and electrode devices are disclosed. An exemplary method may comprise positioning a current collector adjacent to a first electrode and, optionally, a second electrode. The method may also comprise coupling the first electrode and optional second electrode. The current collector comprises a plurality of conductive protrusions extending into the first electrode and optional second electrode to reduce the ESR of the electrode device. The first electrode and optional second electrode may, for example, comprise electrode films. The method may be used to produce electrodes and electrode devices including, but not limited to, double-layer capacitor devices, batteries, and other energy storage devices.
Electrodes, electrode devices, and methods of producing electrodes and electrode devices are disclosed. An exemplary method may comprise positioning a current collector between a first electrode film and a second electrode film. The method may also comprise coupling the first electrode film and the second electrode film through a plurality of openings formed in the current collector to secure the first electrode film and the second electrode film to the current collector without using an adhesive. The method may be used to produce electrodes and electrode devices including, but not limited to, double-layer and other compound capacitor devices such as ultra-capacitors and super-capacitors.
Particles of active electrode material are made by blending or mixing a mixture of activated carbon, optional conductive carbon, and binder. In selected implementations, iron level in the activated carbon is relatively low, a small amount of conductive carbon with low impurity levels and high conductivity is used, and the binder is inert. For one example, iron content of the activated carbon and the resultant mixture is below 20 ppm. The electrode material may be attached to a current collector to obtain an electrode for use in various electrical devices, including a double layer capacitor. The electrode decreases current leakage of the capacitor.
An electrode with a current collector having between about substantially no magnesium and less than about 0.7% magnesium by weight. The current collector may be connected to electrode material to obtain an electrode for use in various electrical devices, including a double layer capacitor. The reduced magnesium aluminum of the current collector and/or packaging decreases current leakage of the capacitor.
Particles of active electrode material are made by blending mixing a mixture of activated carbon and binder. In selected implementations, sulfur level in the activated carbon is relatively low and the binder is inert. For example, sulfur content of the activated carbon and the resultant mixture is below 300 ppm and in other implementations, below 50 ppm. The electrode material may be attached to a current collector to obtain an electrode for use in various electrical devices, including a double layer capacitor. The electrode decreases current leakage of the capacitor.
09 - Appareils et instruments scientifiques et électriques
Produits et services
Computers; computers, namely, single board computers for
extreme environments; computer hardware; computer hardware,
namely, compact peripheral component interconnect boards;
digital signal processors; satellite processors; system
boards (mother cards) and processors; computer firmware,
namely, boot code for resynchronization, error detection and
correction, and redundancy control.
64.
ACTIVE VOLTAGE MANAGEMENT SYSTEM FOR ENERGY STORAGE DEVICE
An active voltage management device and a method for actively managing a voltage level of an energy storage device are provided. The active voltage management device comprises: a pair of input terminals adapted to be connected to the energy storage device; a reverse polarity protection circuit coupled to the pair of input terminals; a voltage comparator circuit adapted to compare a second voltage associated with the voltage level of the energy storage device to a reference voltage and to provide an output based upon the comparison of the second voltage to the reference voltage; and a transistor adapted to operate in a linear mode to dissipate energy from the energy storage device at a substantially constant current level, wherein output of the voltage comparator circuit is adapted to activate the transistor when the second voltage is greater than or equal to the reference voltage. The method comprises: receiving an input voltage from the energy storage device; providing reverse polarity protection from the energy storage device; comparing the a second voltage associated with the input voltage from the energy storage device to a reference voltage; and conducting a transistor in a linear mode to dissipate energy from the energy storage device at a substantially constant current level when the second voltage is greater than or equal to the reference voltage.
H02J 7/02 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries pour la charge des batteries par réseaux à courant alternatif au moyen de convertisseurs
G01R 31/36 - Dispositions pour le test, la mesure ou la surveillance de l’état électrique d’accumulateurs ou de batteries, p. ex. de la capacité ou de l’état de charge
An energy storage device electrode product is provided. The product comprises: at least one current collector and at least one electrode film disposed adjacent to the at least one current collector. The at least one current collector comprises a plurality of voids extending through a thickness of the current collector, wherein the plurality of voids allow electrolyte to flow through the thickness of the current collector. The plurality of voids extending through the current collector is formed without reducing a surface area of a conductive material of the current collector disposed adjacent to the electrode by more than about fifty percent. A method of producing an electrode product and a double layer capacitor product are also disclosed.
A high voltage capacitor design is provided that provides improved performance. The high voltage capacitor includes a stack of mechanically bonded capacitor cells, which in one variant utilize a separator formed of two layers of paper. In one version, the high voltage capacitor may be used as a capacitative voltage divider.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
H01G 5/38 - Condensateurs multiples, p. ex. jumelés
Particles of active electrode material are made by blending or mixing a mixture of activated carbon, optional conductive carbon, and binder. In selected implementations, the activated carbon particles have between about 70 and 98 percent microporous activated carbon particles and between about 2 and 30 percent mesaporous activated carbon particles by weight. Optionally, a small amount of conductive particles, such as conductive carbon particles may be used. In one implementation, the binder is inert. The electrode material may be attached to a current collector to obtain an electrode for use in various energy storage devices, including a double layer capacitor.
In one embodiment, an energy storage device comprises a first electrode supported by a first collectors sheet; a second electrode supported by a second collector sheet; and a dielectric separator therebetween, all spirally would together. A container houses this spiral winding, with the first collector sheet having an end in contact with the base and the second collector sheet having an end oriented towards an opening opposite to the base. A collector plate is interposed between the second collector sheet and the opening and is restrained in position by a crimp in the container. A lid is positioned in the opening and has one side in electrical contact with the collector plate and an opposite side oriented outwardly of the container. The lid is restrained in position by rolling the one or more container walls over the lid.
It is desirable to be able to securely connect individual electrical components within an electrical module. An electrical module is provided in which a plurality of energy storage components are connected together using a clamp instead of wiring or bus bar connections. In one configuration, for example, a first energy storage component comprising a first terminal and second terminal is connected to a second energy storage component comprising a third terminal and a fourth terminal. The first terminal of the first energy storage component is electrically connected to a third terminal of the second energy storage component using a clamp comprising a recess. The recess of the clamp receives at least a portion of the first terminal of the first energy storage component and at least a portion of the third terminal of the second energy storage component. The clamp electrically connects the first terminal of the first energy storage component and the third terminal of the second energy storage component and secures the first energy storage component and the second energy storage component in a generally in line configuration.
F24H 7/00 - Appareils de chauffage à accumulation, c.-à-d. dans lesquels l'énergie est emmagasinée sous forme de chaleur dans des matériaux accumulateurs en vue d'une restitution ultérieure
H01R 3/00 - Connexions conductrices de l'électricité non prévues ailleurs
Systems and methods for screening capacitors are disclosed. An exemplary method may comprise charging at least one capacitor for time t1 and then implementing the following operations. After charging time t1, comparing a charge state of the at least one capacitor to thresholds th1-low and thl-high for a capacitance screening operation. After waiting time t2, comparing the charge state of the at least one capacitor to a threshold th2 for an Equivalent Series Resistance (ESR) screening operation. After waiting time t3, comparing a change in the charge state of the at least one capacitor to a threshold th3 for a Leakage Current (LC) and Self-Discharge (SD) screening operation. The screening operations may be implemented manually by a user and/or automatically by the exemplary system described herein.
H01G 13/00 - Appareils spécialement adaptés à la fabrication de condensateursProcédés spécialement adaptés à la fabrication de condensateurs non prévus dans les groupes
An ultracapacitor design (300) minimizes the internal pressure of the cell package (320) by using gas getters (350, 352), either alone or in combination with a resealable vent (308) in the package. Reducing pressure extends the life of the ultracapacitor (300). The primary gas types generated within a particular ultracapacitor are measured under multiple possible application conditions. Such conditions may include variables of temperature, application voltage, electrolyte type, length of use, and cycles of use. The primary gas components may be determined and suitable gas getters (350, 352) for different conditions may be formulated. The gas getters (350, 352) may be packed within the ultracapacitor packages (302), formulated as part of a negative electrode, doped into the negative current collector, or layered with the negative current collector.
Particles of active electrode material are made by blending or mixing a mixture of activated carbon, optional conductive carbon, and binder. In selected implementations, binder content in the electrode material is relatively low, typically the binder content of the mixture being between about 3 percent and about 10 percent by weight. The electrode material may be attached to a current collector to obtain an electrode for use in various electrical devices, including a double layer capacitor. The composition of the mixture increases the energy density and the integrity of the electrode.
An active electrode material is made by blending or mixing a mixture of activated carbon, optional conductive carbon, and binder; wherein the activated carbon has a high soakability to provide a reduced capacitance fade. The electrode material may be attached to a current collector to obtain an electrode for use in various electrical devices, including a double layer capacitor.
A transparent vacuum formed vessel 1 is filled with a liquid 3 at room temperature that will become a solid at freezing temperature and a low density float material 4. After freezing, the vessel is turned upside down so that upon thawing, the vivid colored float will move to the top of the vessel showing a thaw. The devise can be reused.
The same concept can be used as a cooking aid by using a transparent sealed tubular 1 assembly inserted in the food with a solid cylinder 3 that will melt at some critical temperature allowing the low density float to rise to the top of the indicator visibly protruding from the food. More than one meltable cylinder, 3 & 8 and float, 4 & 5 may be used as a warning and ready indicator.
Combinations of solid dense particulates and low density materials may also be used for color changing indicators. A permanent magnet attached to a float can be used to trigger an audible alarm, which can be incorporated in various cooking utensils to show cooking temperatures and times.
G01K 11/06 - Mesure de la température basée sur les variations physiques ou chimiques, n'entrant pas dans les groupes , , ou utilisant la fusion, la congélation ou le ramollissement
G01K 13/00 - Thermomètres spécialement adaptés à des fins spécifiques
G01K 3/00 - Thermomètres donnant une indication autre que la valeur instantanée de la température
A system comprising a plurality of particles supported by a fibrillized binder. In one embodiment, the plurality of particles comprises activated carbon that is admixed with a poly- tetra-fiuoro-ethylene binder by means of a jet-milling process and that forms an electrode within an energy storage device.
In one embodiment, a capacitor device comprises a housing and a cover, wherein on the cover there is deposited an isolator and on the isolator there is deposited a sealant. The cover and the housing may be disposed adjacent one another, wherein the isolator and the sealant are disposed between the housing and the cover. The isolator may be deposited on the cover by cataphoresis. The sealant may be applied as a spray. The cover may comprise a portion that is free of sealant and isolator. With cover and housing curled together, the isolator and the sealant are disposed between the housing and the cover. At the portion that is free of sealant and isolator, an electrical connection may be made to a capacitor cell.
A hybrid vehicle propulsion system with a double-layer capacitor is provided. A low-voltage double-layer capacitor energy storage system provides power to a hybrid vehicle propulsion system. A converter boosts the voltage of the double-layer capacitor system to a higher operating voltage to power at least one motor/generator of the propulsion system.
A high voltage capacitor design is provided that provides improved performance. The high voltage capacitor includes a stack of mechanically bonded capacitor cells, which in one variant utilize a separator formed of two layers of paper. In one version, the high voltage capacitor may be used as a capacitative voltage divider.
A high voltage capacitor design is provided that provides improved performance. The high voltage capacitor includes a stack of mechanically joined capacitor cells, which in one variant utilize a separator formed of two layers of paper. In one version, the high voltage capacitor may be used as a capacitative voltage divider.
09 - Appareils et instruments scientifiques et électriques
Produits et services
Machinery. Electrical and scientific apparatus, including capacitors, ultracapacitors, double-layer capacitors; power systems namely systems powered by capacitors; high energy electronic components, namely wound films capacitors, radiation hardened components, radiation hardened computers, fault tolerant computers and radiation shielding and packaging.