The present invention relates to the recovery of high purity litharge from spent lead acid battery paste at a low temperature which does not produce sulfur dioxide. In the process lead acetate or other lead salt is produced which is converted to high purity litharge by precipitation with a base.
High purity MnO and zinc oxide may be efficiently recovered from alkaline and/or carbon zinc batteries using a process involving the treatment of the crushed batteries with an alkali hydroxide to produce insoluble manganese oxides and an alkali zincate solution. Zinc oxide is obtained by reacting the zinc solution with carbon dioxide or an acid such as a mineral acid and furnacing. The manganese oxides are converted to MnO by furnacing under an inert atmosphere.
The present invention related to a method for the recycling of batteries by recovering and regenerating the cathode material. The method includes the steps of isolating the cathode particles and then regenerating the cathode particles for use in the same type of battery.
The invention relates to the recovery of manganese dioxide, zinc hydroxide/oxide and steel from metal cased alkaline dry cell batteries which have been wet crushed. There is also a process for recovery of the steel and high purity manganese dioxide which can be directly utilized in the electrode for alkaline dry cell batteries.
The invention relates to the low temperature recovery of lead oxide (PbO) from lead acid battery paste through the preparation of lead carboxylate from the battery paste and the conversion of the lead carboxylate to PbO.
The present invention provides a process for recovery of copper, aluminum, carbon and cathode material from spent lithium ion batteries having lithium metal oxide cathode material. The cathode material which is recovered can be regenerated with lithium hydroxide and reused as cathode material.
The present invention relates to a process for recycling alkaline batteries to recover metals and zinc and manganese compounds. The process provides for the separation of metal pieces and the chemical separation and recovery of zinc and manganese compounds.
The present invention relates to the recovery of high purity litharge from spent lead acid battery paste at a low temperature which does not produce sulfur dioxide. In the process lead acetate is produced which is converted to pure litharge.
A process for producing high purity lead oxide from impure lead compounds particularly from waste lead battery paste which includes an oxidation-reduction step. The process results in a reduction of impure lead compounds to the +2 valence state and metal particle contaminants are oxidized to the +2 state.
A process for recovering lead oxides from the spent paste of exhausted lead acid batteries. The process provides heating the spent paste with an alkali hydroxide solution at elevated temperatures prior to calcinations. Calcination is at various temperatures so that either lead mono-oxide, lead dioxide or red lead is obtained as the principal product. There is also provided the use of the lead oxide to prepare the paste for positive and negative electrodes or other lead compounds.