Nanjing University of Aeronautics and Astronautics

Chine

Retour au propriétaire

1-100 de 401 pour Nanjing University of Aeronautics and Astronautics Trier par
Recheche Texte
Affiner par
Juridiction
        International 235
        États-Unis 164
        Canada 2
Date
Nouveautés (dernières 4 semaines) 1
2025 février (MACJ) 2
2025 janvier 2
2024 décembre 5
2024 novembre 7
Voir plus
Classe IPC
B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet 17
B33Y 10/00 - Procédés de fabrication additive 15
B62D 5/04 - Direction assistée ou à relais de puissance électrique, p. ex. au moyen d'un servomoteur relié au boîtier de direction ou faisant partie de celui-ci 15
B22C 9/02 - Moules en sable ou moules analogues pour pièces coulées 10
G06T 7/00 - Analyse d'image 10
Voir plus
Statut
En Instance 52
Enregistré / En vigueur 349
Résultats pour  brevets
  1     2     3     ...     5        Prochaine page

1.

VARIABLE-DIAMETER BLADE SUITABLE FOR TRANS-MEDIA AIRCRAFT

      
Numéro d'application 18799421
Statut En instance
Date de dépôt 2024-08-09
Date de la première publication 2025-02-13
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Chen, Xi
  • Zhao, Qijun
  • Yang, Fan
  • Lin, Muyang
  • Zhao, Guoqing
  • Zhang, Xiayang
  • Wang, Bo
  • Huang, Kaixuan

Abrégé

A variable-diameter blade suitable for a trans-media aircraft. The blade is divided into a blade root section, telescopic sections, and a blade tip section in a direction from the root to the tip. The blade further includes a telescopic rod, the blade root section and the blade tip section are fixed to the telescopic rod, respectively, and the telescopic rod is fixed to the trans-media aircraft; a spring arranged in the telescopic rod, the spring is used to drive the telescopic rod to extend; a pulley installed on the trans-media aircraft, the pulley is closer to the blade root section; a pull rope, an end of the pull rope passes through an inside of the blade and is fixed to the blade tip section, and the other end of the pull rope is wound on the pulley; and a driving device for driving the pulley to rotate.

Classes IPC  ?

  • B64C 3/54 - Variation de la surface alaire
  • B64C 35/00 - Hydravions à coqueHydravions à flotteurs

2.

DESIGN METHOD FOR WOVEN CMC FAN-SHAPED-CONVERGING SLOT SHAPED FILM COOLING STRUCTURE

      
Numéro d'application CN2024119519
Numéro de publication 2025/031512
Statut Délivré - en vigueur
Date de dépôt 2024-09-18
Date de publication 2025-02-13
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Tu, Zecan
  • Mao, Junkui
  • Zhu, Ailing
  • Zhao, Chenwei
  • Liang, Xuan

Abrégé

A design method for a woven CMC fan-shaped-converging slot shaped film cooling structure. The design method comprises: for 2.5D woven CMC structures, which are orderly arranged one above another, by means of staggering, moving a warp yarn of each layer to the right by a distance d on the basis of a warp yarn of a previous layer, and bending, connecting and hooking back woven weft yarns to form reserved spaces in the CMC structures; filling the reserved spaces with ablatable cores to construct forward-tilting fan-shaped film holes; removing one warp yarn that is located downstream of the forward-tilting fan-shaped film holes and is close to an upper wall surface to obtain a construction space; and forming, according to the construction space, a slot in the vertical upper wall surface from which the warp yarn is removed, and connecting the fan-shaped cross sections of the forward-tilting fan-shaped film holes to the constructed slot by means of UG straight grains to form a fan-shaped-converging slot shaped film cooling hole.

Classes IPC  ?

  • G06F 30/17 - Conception mécanique paramétrique ou variationnelle
  • G06F 30/28 - Optimisation, vérification ou simulation de l’objet conçu utilisant la dynamique des fluides, p. ex. les équations de Navier-Stokes ou la dynamique des fluides numérique [DFN]
  • G06F 113/26 - Composites
  • G06F 113/08 - Fluides
  • G06F 119/08 - Analyse thermique ou optimisation thermique

3.

REVOLVING CATHODE TOOL AND METHOD FOR CO-ROTATING ELECTROCHEMICAL MACHINING OF INNER WALL OF AERO-ENGINE CASING

      
Numéro d'application 18221622
Statut En instance
Date de dépôt 2023-07-13
Date de la première publication 2025-01-16
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Dengyong
  • Zhou, Shuofang
  • Zhu, Di
  • Cao, Wenjian
  • Zhang, Jun
  • Zhu, Zengwei

Abrégé

A revolving cathode tool and method for co-rotating electrochemical machining of an inner wall of an aero-engine casing are provided, and relates to the technical field of electrochemical machining. The co-rotating electrochemical machining revolving cathode tool comprises a power supply, a cathode shaft, an anode workpiece and a flexible cathode assembly. The cathode shaft is electrically connected with a cathode of the power supply. The anode workpiece is electrically connected with an anode of the power supply. One end of the cathode shaft is connected with the flexible cathode assembly. The problem that a non-array complex structure of the inner wall of the aero-engine casing cannot be machined through counter-rotating electrochemical machining is fundamentally solved. The diameter of the cathode tool is 1/n of the diameter of the anode workpiece.

Classes IPC  ?

  • B23H 3/04 - Électrodes spécialement adaptées à cet effet ou leur fabrication

4.

TURBINE TRANSITION STATE BLADE TIP CLEARANCE ESTIMATION METHOD BASED ON LONG SHORT-TERM MEMORY NEURAL NETWORK

      
Numéro d'application CN2023128911
Numéro de publication 2025/000798
Statut Délivré - en vigueur
Date de dépôt 2023-10-31
Date de publication 2025-01-02
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Yang, Chao
  • Mao, Junkui
  • Yang, Yue
  • Wang, Feilong
  • Guo, Naxian
  • Shao, Faning

Abrégé

Disclosed in the present invention is a turbine transition state blade tip clearance estimation method based on a long short-term memory neural network. The method comprises: first, using data concatenation and introduction of new parameters to construct multi-transition-state process transient data; then using sensitivity analysis to screen for feature parameters having a great influence on a blade tip clearance, and carrying out dimension reduction on the influence parameters; and on the basis of a long short-term memory neural network, constructing a mapping model between each feature parameter and the blade tip clearance, and building an efficient and high-precision turbine transition state blade tip clearance estimation model. By means of the turbine transition state blade tip clearance estimation model, turbine blade tip clearances of multiple transition state processes can be efficiently and accurately estimated.

Classes IPC  ?

  • G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]

5.

GRAPHICS PROCESSING UNIT (GPU)-BASED NUMERICAL SIMULATION SYSTEM AND METHOD FOR HELICOPTER FLOW FIELD (FF)

      
Numéro d'application 18702840
Statut En instance
Date de dépôt 2023-04-28
Date de la première publication 2024-12-19
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Hu, Zhiyuan
  • Shi, Yongjie
  • Xu, Guohua
  • Liu, Yang
  • Zhu, Jiahao

Abrégé

A graphics processing unit (GPU)-based numerical simulation system and method for a helicopter flow field (FF). The GPU-based system includes a central processing unit (CPU) and a GPU. The CPU is configured to initialize a moving overset grid according to a preset configuration file and the mesh files of a to-be-simulated helicopter; determine face batch information according to mesh blocks in the moving overset grid; determine an overset interpolation relationship between the mesh blocks and an interpolation mapping index according to the mesh files at a current simulation moment; and perform FF information exchanging between the mesh blocks according to the overset interpolation relationship, the interpolation mapping index, and FF information of the mesh blocks, to obtain to-be-simulated helicopter FF information. The GPU computes the FF information of the mesh blocks in the motion nested mesh according to surface batch information by using a computational fluid dynamics (CFD) method.

Classes IPC  ?

  • G06F 30/28 - Optimisation, vérification ou simulation de l’objet conçu utilisant la dynamique des fluides, p. ex. les équations de Navier-Stokes ou la dynamique des fluides numérique [DFN]
  • G06F 111/10 - Modélisation numérique
  • G06F 113/08 - Fluides
  • G06T 1/20 - Architectures de processeursConfiguration de processeurs p. ex. configuration en pipeline

6.

Multi-Modal and Multi-Degree-Of-Freedom Piezoelectric Active Vibration Isolation Platform and Working Method Therefor

      
Numéro d'application 18747394
Statut En instance
Date de dépôt 2024-06-18
Date de la première publication 2024-12-19
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Liang
  • Qi, Rui
  • Shen, Ziyu
  • Jin, Jiamei

Abrégé

Disclosed is a multi-modal and multi-degree-of-freedom piezoelectric active vibration isolation platform and a working method therefor. The piezoelectric active vibration isolation platform includes an upper platform, a lower platform, a control module, and four vibration isolation modules, where the vibration isolation module includes a passive vibration isolation unit and an active vibration isolation unit; the passive vibration isolation unit includes an upper connector, a lower connector, a cross Hooke hinge, and a first acceleration sensor; the active vibration isolation unit includes a fixed beam, a pre-tightening bolt, a second acceleration sensor, and a driving component; the platform can provide active vibration isolation for the longitudinal (axial) vibration and the bending vibration in any radial direction of a vibration isolation object, and has the advantages of fast response, resistance to electromagnetic interference, and light weight.

Classes IPC  ?

  • F16F 15/00 - Suppression des vibrations dans les systèmesMoyens ou dispositions pour éviter ou réduire les forces de déséquilibre, p. ex. dues au mouvement
  • B06B 1/06 - Procédés ou appareils pour produire des vibrations mécaniques de fréquence infrasonore, sonore ou ultrasonore utilisant l'énergie électrique fonctionnant par effet piézo-électrique ou par électrostriction
  • F16M 11/22 - Infrastructure avec ou sans roues à hauteur sensiblement constante, p. ex. avec colonne ou pieds de longueur constante

7.

WELDING METHOD FOR HIGH-STRENGTH WELDING WIRE BASED ON NANOPARTICLE IMPLANTATION AND TRACE ELEMENT COMPENSATION

      
Numéro d'application 18812756
Statut En instance
Date de dépôt 2024-08-22
Date de la première publication 2024-12-12
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zhan, Xiaohong
  • Wang, Jianfeng
  • Li, Yue
  • Zhao, Yanqiu

Abrégé

A high-strength welding wire includes, in weight percentage, 5.8% Cu, 0.2% Mn, 0.1% V, 0.2% Zr, 0.2% Si, 0.3% Fe, 0.1% Zn, 1.4% compensation element, 0.2% hydrogen evolution element, 1.2% nanoceramic particle, and Al for the balance. Various powdered raw materials are mixed, wrapped with an aluminum strip, rolled and subjected to wiredrawing to form the high-strength welding wire. In a welding method for the high-strength welding wire, a K-shaped groove is formed between a stringer and a panel, and an inclined angle of the welding gun and a distance between the welding gun and the weld are adjusted. Then the angle between the wire-feeding tube and the welding gun and the striking mechanism and the weld are adjusted. Protective gas is supplied to the welding pool, and a laser is activated to perform welding. A striking mechanism is started to strike the weld.

Classes IPC  ?

  • B23K 35/34 - Baguettes, électrodes, matériaux ou environnements utilisés pour le brasage, le soudage ou le découpage caractérisés par la composition ou la nature du matériau comprenant des corps qui facilitent le travail des métaux lorsqu'ils sont chauffés
  • B23K 26/14 - Travail par rayon laser, p. ex. soudage, découpage ou perçage en utilisant un écoulement de fluide, p. ex. un jet de gaz, associé au faisceau laserBuses à cet effet
  • B23K 35/30 - Emploi de matériaux spécifiés pour le soudage ou le brasage dont le principal constituant fond à moins de 1550 C

8.

VEHICLE-INFRASTRUCTURE COOPERATION LANE-CHANGING RISK ASSESSMENT METHOD BASED ON COORDINATE TRANSFORMATION

      
Numéro d'application CN2024103767
Numéro de publication 2024/251300
Statut Délivré - en vigueur
Date de dépôt 2024-07-05
Date de publication 2024-12-12
Propriétaire
  • NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
  • NANJING PANDA ELECTRONICS CO., LTD. (Chine)
Inventeur(s)
  • Wu, Honglan
  • Zhang, Yue
  • Guo, Xuzhou
  • Sun, Youchao

Abrégé

Disclosed in the present invention is a vehicle-infrastructure cooperation lane-changing risk assessment method based on a coordinate transformation. The method comprises: parsing vehicle platooning information parameters of a vehicle-infrastructure cooperation platform, so as to obtain traveling data of relevant vehicles; determining a two-dimensional coordinate system which uses a lane-changing vehicle as center coordinates; transforming a geographic coordinate system into a space coordinate system, and mapping the space coordinate system into the two-dimensional coordinate system, thereby completing a transformation from the geographic coordinate system into a real-time planar coordinate system; establishing a risk assessment model; inputting the traveling data of the relevant vehicles and an expected value during a lane-changing process into the risk assessment model, and performing operation analysis and simulation; exploring the impact of the traveling data of the vehicles on a lane-changing risk; and obtaining a factor that has the greatest impact on the risk during the lane-changing process of the vehicle. In the present invention, a collision risk caused by a vehicle changing lanes during traveling is calculated by means of a coordinate transformation algorithm and a lane-changing risk assessment model, such that a risk index is quantified, thereby ensuring the safety and effectiveness of the vehicle during a lane-changing process, and providing a new way of thought for lane-changing logic determination and lane-changing path planning.

Classes IPC  ?

9.

Methods for structural damage monitoring for whole-machine life test of small turboshaft engines

      
Numéro d'application 18811733
Numéro de brevet 12163860
Statut Délivré - en vigueur
Date de dépôt 2024-08-21
Date de la première publication 2024-12-10
Date d'octroi 2024-12-10
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Song, Yingdong
  • Zhao, Xu
  • Chen, Mofei
  • Niu, Xuming

Abrégé

Disclosed is a method for structural damage monitoring for whole-machine life test of small turboshaft engine, comprising: determining a failure mode based on load borne by typical components of the small turboshaft engine in a service process and common failure forms, screening a structural damage index of a non-major component based on a coupling relationship between structural damages, selecting a destructive damage of components in the small turboshaft engine and an indirect damage causing changes in material properties of key component, planning a structural damage monitoring means based on the failure mode, the structural damage index, the destructive damage, and the indirect damage, designing an accelerated mission test platform of the small turboshaft engine, and designing a torque automatic loading scheme of an eddy current dynamometer, and testing the small turboshaft engine, and performing damage monitoring of the small turboshaft engine based on the planned structural damage monitoring means.

Classes IPC  ?

  • G01M 15/14 - Test des moteurs à turbine à gaz ou des moteurs de propulsion par réaction
  • F01D 21/00 - Arrêt des "machines" ou machines motrices, p. ex. dispositifs d'urgenceDispositifs de régulation, de commande ou de sécurité non prévus ailleurs

10.

3D PRINTING HEAD WITH LASER PREHEATING AND IN-SITU COMPACTION AND METHOD THEREFOR OPERATING SAME

      
Numéro d'application CN2024083444
Numéro de publication 2024/239788
Statut Délivré - en vigueur
Date de dépôt 2024-03-25
Date de publication 2024-11-28
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Song, Wenzhe
  • Shan, Zhongde
  • Yu, Xiao
  • Zheng, Jinghua
  • Fan, Congze
  • Chen, Yiwei

Abrégé

The present invention provides a 3D printing head with laser preheating and in-situ compaction. The 3D printing head comprises a printing head mounting plate, wherein a pneumatic sliding block is mounted on a left upper portion of the printing head mounting plate; a wire feeding mechanism upper mount and a wire feeding mechanism lower mount are respectively mounted on the printing head mounting plate; a driving wire feeding wheel and a driven wire feeding wheel are mounted between the wire feeding mechanism upper mount and the wire feeding mechanism lower mount; a laser mounting bracket is mounted on a right side of the printing head mounting plate; a laser is mounted on the laser mounting bracket; the wire feeding mechanism lower mount is connected to a Teflon tube and an anvil block by means of a preimpregnated wire, wherein a nozzle is mounted on the anvil block; and a pneumatic wire shearing structure is mounted below the pneumatic sliding block. The present invention uses a high-energy laser beam to preheat the deposited preimpregnated wire in real time, so that the interlayer heating efficiency in a printing process is increased, the interface temperature during interlayer fusion is increased, and the interlayer bonding of a workpiece is enhanced.

Classes IPC  ?

  • B29C 64/165 - Procédés de fabrication additive utilisant une combinaison de matériaux solides et liquides, p. ex. une poudre avec liaison sélective par liant liquide, catalyseur, inhibiteur ou absorbeur d’énergie
  • B29C 64/295 - Éléments de chauffage

11.

PRINTING METHOD BASED ON HIGH-TEMPERATURE AND LOW-TEMPERATURE BI-MATERIAL SPATIAL DISTRIBUTION

      
Numéro d'application CN2024083443
Numéro de publication 2024/239787
Statut Délivré - en vigueur
Date de dépôt 2024-03-25
Date de publication 2024-11-28
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Chen, Yiwei
  • Shan, Zhongde
  • Song, Yaxing
  • Fan, Congze
  • Zheng, Jinghua
  • Song, Wenzhe

Abrégé

The present invention provides a printing method based on high-temperature and low-temperature bi-material spatial distribution. By means of setting of a filling element body type, the continuous fiber pre-impregnated wire part in a product is stereoscopically coated by a resin or short-fiber reinforced resin wire part in spatial distribution, so that the performance uniformity regulation of the rigidity and the energy absorbency of a printed product is realized. Moreover, a high-temperature resin material and a low-temperature resin material are cooperatively printed to form a high-temperature resin frame of the product, and directional heat treatment is performed on the low-temperature resin material in the printed product, such that pores in the product can be bridged without affecting the final forming precision of the product, thereby optimizing the interface binding effect, improving the continuous fiber impregnation degree, and improving the mechanical property.

Classes IPC  ?

  • B29C 64/118 - Procédés de fabrication additive n’utilisant que des matériaux liquides ou visqueux, p. ex. dépôt d’un cordon continu de matériau visqueux utilisant un matériau filamentaire mis en fusion, p. ex. modélisation par dépôt de fil en fusion [FDM]
  • B33Y 10/00 - Procédés de fabrication additive

12.

Multi-robot collaborative planning method for machining large capsule member of spacecraft

      
Numéro d'application 18701229
Numéro de brevet 12197196
Statut Délivré - en vigueur
Date de dépôt 2023-07-25
Date de la première publication 2024-11-21
Date d'octroi 2025-01-14
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Tian, Wei
  • Lin, Jiamei
  • Li, Bo
  • Liao, Wenhe
  • Li, Pengcheng

Abrégé

A multi-robot collaborative planning method for machining a large capsule member of a Spacecraft is described. The method comprises: first, planning the number of instances of rotational displacement of a capsule, and the angle of each rotation; then, planning a multi-robot station layout and station switching strategy; and finally, when the position of the capsule and robot stations are fixed, planning a multi-robot machining task time sequence. The machining process for a large capsule is efficiently planned by selecting optimal rotation schemes and robot station positions, enhancing the rigidity of robot collaboration. This planning also streamlines the machining timeline, making the multi-robot task more compact and reducing idle time, thus boosting overall machining efficiency.

Classes IPC  ?

  • G05B 19/42 - Systèmes d'enregistrement et de reproduction, c.-à-d. dans lesquels le programme est enregistré à partir d'un cycle d'opérations, p. ex. le cycle d'opérations étant commandé à la main, après quoi cet enregistrement est reproduit sur la même machine
  • B25J 9/00 - Manipulateurs à commande programmée
  • B25J 9/16 - Commandes à programme
  • B25J 11/00 - Manipulateurs non prévus ailleurs
  • G05B 19/40 - Systèmes à boucle ouverte, p. ex. utilisant un moteur pas à pas
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

13.

EXTREMELY HIGH-TEMPERATURE IN-SITU FRETTING FATIGUE EXPERIMENTAL DEVICE FOR THE MORTISE-TENON JOINT

      
Numéro d'application 18772228
Statut En instance
Date de dépôt 2024-07-14
Date de la première publication 2024-11-07
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Han, Qinan
  • Fang, Jianwen
  • Cui, Haitao
  • Su, Yue
  • Zhang, Hongjian
  • Shi, Huiji

Abrégé

The present disclosure discloses an extremely high-temperature in-situ fretting fatigue experimental device for the mortise-tenon joint. The device includes: a loading member configured to support a tenon specimen and a mortise specimen, and apply a fatigue load; a heating member to heat the tenon specimen and the mortise specimen; a thermal insulation sleeve wrapping the heating member; a thermal insulation shield with an observation hole; and a control member configured to control opening or closing of the loading. Various measures including the using of heat-resistant materials for the gasket, thermal insulation shield and sleeve, reducing and shielding the thermal electrons, and decreasing the temperature in non-critical areas are adopted to improve the high-temperature imaging quality of the in-situ Scanning Electron Microscope (in-situ SEM) and enhance an upper limit of the in-situ SEM experimental temperature.

Classes IPC  ?

  • G01N 3/06 - Adaptations particulières des moyens d'indication ou d'enregistrement
  • G01N 3/10 - Recherche des propriétés mécaniques des matériaux solides par application d'une contrainte mécanique par application d'efforts permanents de traction ou de compression engendrés par pression pneumatique ou hydraulique

14.

Multi-arm forming device for space on-orbit composite braiding

      
Numéro d'application 18776250
Numéro de brevet 12186970
Statut Délivré - en vigueur
Date de dépôt 2024-07-18
Date de la première publication 2024-11-07
Date d'octroi 2025-01-07
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zheng, Jinghua
  • Chen, Yiwei
  • Fan, Congze
  • Song, Wenzhe
  • Song, Yaxing
  • Shan, Zhongde

Abrégé

A multi-arm forming device for space on-orbit composite braiding is provided. Through the rotary movement of a combination of circularly arranged mechanical arm-type laying apparatuses relative to a mold, a plurality of hot press laying heads are controlled together to implement high-efficiency and high-freedom winding and braiding formation of a composite member. The retraction and expansion deformation of the gasbag mold is achieved by inflating and deflating based on design, and the overall device is lightened by switching its structural volume in an operating/non-operating state, thereby achieving the purpose of facilitating the lift-off of rockets and the demolding, repair and weight reduction of winding and braiding structural members for operation in space. Additionally, gas in a gasbag can be used as emergency kinetic energy for the movement and attitude adjustment of the overall device in space. High-quality and efficient winding and braiding formation of composites in space are achieved ultimately.

Classes IPC  ?

  • B29C 53/80 - Éléments constitutifs, détails ou accessoiresOpérations auxiliaires
  • B29C 33/00 - Moules ou noyauxLeurs détails ou accessoires
  • B29C 53/56 - Enroulement et assemblage, p. ex. enroulement en spirale

15.

METHOD OF GENERATING CONVECTIVE WEATHER AVOIDANCE STRATEGY FOR TERMINAL FLIGHT

      
Numéro d'application 18640182
Statut En instance
Date de dépôt 2024-04-19
Date de la première publication 2024-11-07
Propriétaire
  • The Boeing Company (USA)
  • Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Sui, Dong
  • Wang, Shijin
  • Wei, Bo
  • Yang, Wei
  • Han, Yangxue
  • Lee, Helen H.

Abrégé

A determination method for a weather avoidance strategy of flights includes collecting historical radar trajectory data and historical weather data of various flights in a predetermined airport terminal area, and collecting weather forecast data in real time; determining an arrival and departure typical flight route of each flight in the predetermined airport terminal area on the basis of the historical radar trajectory data and the historical weather data; acquiring deviation information indicating deviation of each flight due to severe convective weather on the basis of the historical weather data, the arrival and departure typical flight route, and the historical radar trajectory data; determining flight deviation probabilities under different weather conditions on the basis of the historical weather data, the arrival and departure typical flight route and the deviation information, to generate a flight deviation probability chart; constructing a weather avoidance probability figure of the predetermined airport terminal area on the basis of the weather forecast data and the flight deviation probability chart; and formulating a weather avoidance strategy of each flight in the predetermined airport terminal area on the basis of the arrival and departure typical flight route and the weather avoidance probability figure.

Classes IPC  ?

  • G08G 5/00 - Systèmes de contrôle du trafic aérien
  • G01S 13/95 - Radar ou systèmes analogues, spécialement adaptés pour des applications spécifiques pour la météorologie
  • G06F 18/23213 - Techniques non hiérarchiques en utilisant les statistiques ou l'optimisation des fonctions, p. ex. modélisation des fonctions de densité de probabilité avec un nombre fixe de partitions, p. ex. K-moyennes

16.

On-orbit composite filament forming device for space 3D printing

      
Numéro d'application 18777503
Numéro de brevet 12134221
Statut Délivré - en vigueur
Date de dépôt 2024-07-18
Date de la première publication 2024-11-05
Date d'octroi 2024-11-05
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Song, Wenzhe
  • Fan, Congze
  • Zheng, Jinghua
  • Chen, Yiwei
  • Wang, Jingxuan
  • Shan, Zhongde

Abrégé

An on-orbit composite filament forming device for space 3D printing includes a constant tension unwinding module, a replaceable resin filament rotary wrapping module, a melt preheating chamber, a curved channel impregnation chamber, a variable aperture resin recovery device, a heat protective housing, a convective cooling device, a traction device, and a winding device. The replaceable resin filament rotary wrapping module wraps a resin filament on a surface of a carbon fiber by circumferential rotation and is provided with an active unwinding reel placed on a circular rail centered on the carbon fiber; the melt preheating chamber is used for melting resin to wrap the surface of the fiber, and is equipped with a lifting device for automatic opening and closing; the curved channel impregnation chamber is formed with a wedge-shaped high-pressure impregnation zone by mutual extrusion of upper and lower pressure blocks, thereby improving the quality of fiber impregnation.

Classes IPC  ?

  • B29C 48/05 - Moulage par extrusion, c.-à-d. en exprimant la matière à mouler dans une matrice ou une filière qui lui donne la forme désiréeAppareils à cet effet caractérisées par la forme à l’extrusion de la matière extrudée filamentaire, p. ex. fils
  • B29B 15/14 - Revêtement ou imprégnation d'agents de renforcement de longueur indéfinie de filaments ou de fils
  • B29C 48/28 - Stockage de la matière extrudée, p. ex. par enroulement ou empilement
  • B29C 48/88 - Traitement thermique de l’écoulement de matière extrudée, p. ex. refroidissement
  • B29C 48/885 - Traitement externe, p. ex. par utilisation d’anneaux étanches à l’air pour le refroidissement des pellicules tubulaires
  • B29C 64/314 - Préparation
  • B29C 70/52 - Pultrusion, c.-à-d. façonnage et compression par traction continue à travers une matrice
  • B29K 105/08 - Présentation, forme ou état de la matière moulée contenant des agents de renforcement, charges ou inserts de grande longueur, p. ex. ficelles, mèches, mats, tissus ou fils
  • B29K 307/04 - Carbone
  • B33Y 40/10 - Prétraitement
  • B33Y 70/10 - Composites de différents types de matériaux, p. ex. mélanges de céramiques et de polymères ou mélanges de métaux et de biomatériaux
  • B29K 71/00 - Utilisation de polyéthers comme matière de moulage

17.

Ventilation structure of core chamber of turbofan engine having large bypass ratio and ventilation method therefor

      
Numéro d'application 18579495
Numéro de brevet 12196134
Statut Délivré - en vigueur
Date de dépôt 2022-04-22
Date de la première publication 2024-10-03
Date d'octroi 2025-01-14
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Yong
  • Yin, Huali
  • Liu, Hao
  • Deng, Ming
  • Zhao, Qiang
  • Tan, Xiaoming
  • Zhang, Jingzhou

Abrégé

A ventilation structure of a core chamber of a turbofan engine having a large bypass ratio, said structure comprising: an outer bypass wall surface (1), a core chamber wall surface (4) and a core casing (7). An outer bypass flow channel (2) is formed between the outer bypass wall surface (1) and the core chamber wall surface (4). A core chamber (6) is formed between the core chamber wall surface (4) and the core casing (7). An air intake annular cavity (3) is provided in the core casing and is located at the upstream position. The air intake annular cavity (3) is used to put the outer bypass flow channel (2) and the core chamber (6) in communication. An exhaust grille (5) is further provided on the core chamber wall surface (4) and is located at a tail position.

Classes IPC  ?

  • F02C 7/18 - Refroidissement des ensembles fonctionnels caractérisé par l'agent refroidisseur l'agent refroidisseur étant gazeux, p. ex. l'air
  • F02C 9/18 - Commande du débit du fluide de travail par prélèvement, par bipasse ou par action sur des raccordements variables du fluide de travail entre des turbines ou des compresseurs ou entre leurs étages

18.

ON-ORBIT COMPOSITE FILAMENT FORMING APPARATUS FOR SPACE 3D PRINTING

      
Numéro d'application CN2024079232
Numéro de publication 2024/183601
Statut Délivré - en vigueur
Date de dépôt 2024-02-29
Date de publication 2024-09-12
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Chen, Yiwei
  • Fan, Congze
  • Song, Wenzhe
  • Zheng, Jinghua
  • Wang, Jingxuan

Abrégé

The present invention provides an on-orbit composite filament forming apparatus for space 3D printing, comprising a constant tension filament unwinding module, a replaceable resin filament rotary coating module, a melting and preheating chamber, a bent flow channel impregnation chamber, a variable-aperture resin recycle apparatus, a heat-insulation protective housing, a convection type cooling apparatus, a traction apparatus and a winding apparatus. The replaceable resin filament rotary coating module annularly rotates to enable a resin filament to wrap the surface of a carbon fiber, and is provided with at least one active filament unwinding roll; the filament unwinding roll is provided on a circular track centering on the carbon fiber; the melting and preheating chamber is used for melting the resin to wrap the surface of the fiber, and a lifting apparatus is provided for automatic opening and closing; the bent flow channel impregnation chamber forms a wedge-shaped high-pressure impregnation area by means of mutual pressing of an upper pressing block and a lower pressing block, so that the fiber impregnation quality is improved; and the variable-aperture resin recycle apparatus uses a gradient-adjustable blocking plate to scrape off redundant resin on the surface of the filament and store the resin in the recycle apparatus.

Classes IPC  ?

  • B29C 70/52 - Pultrusion, c.-à-d. façonnage et compression par traction continue à travers une matrice

19.

MULTI-ARM FORMING APPARATUS FOR IN-SPACE ON-ORBIT WEAVING OF COMPOSITE MATERIAL

      
Numéro d'application CN2024079233
Numéro de publication 2024/183602
Statut Délivré - en vigueur
Date de dépôt 2024-02-29
Date de publication 2024-09-12
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Zheng, Jinghua
  • Fan, Congze
  • Song, Wenzhe
  • Chen, Yiwei
  • Song, Yaxing

Abrégé

The present invention provides a multi-arm forming apparatus for in-space on-orbit weaving of a composite material. The apparatus cooperatively controls a plurality of hot-pressing laying heads by means of rotary motion of a combination of annularly arranged mechanical arm type laying devices relative to a mold, thereby achieving efficient and high-degree-of-freedom winding, weaving and forming of a composite material component. Additionally, on the basis of the design of an air bag mold, contraction and expansion deformation of the air bag mold are achieved by means of inflation and deflation, and by means of switching of the structural size of the whole apparatus in an operating/non-operating state, the whole apparatus can be lightweighted, and the objective of facilitating rocket carrying and lifting-off, and demolding, repairing and weight reduction of a wound and weaved structural member under space environment operation is achieved. In addition, air in the air bag can also serve as emergency kinetic energy for motion and attitude adjustment of the whole apparatus in the space. Finally, the in-space on-orbit high-quality and high-efficiency winding, weaving and forming of the composite material are achieved.

Classes IPC  ?

  • B29C 70/32 - Façonnage par empilage, c.-à-d. application de fibres, de bandes ou de feuilles larges sur un moule, un gabarit ou un noyauFaçonnage par pistolage, c.-à-d. pulvérisation de fibres sur un moule, un gabarit ou un noyau sur un moule, un gabarit ou un noyau rotatifs

20.

MULTI-MATERIAL ADDITIVE MANUFACTURING SYSTEM AND METHOD FOR SPACE ON-ORBIT MANUFACTURING

      
Numéro d'application CN2024079234
Numéro de publication 2024/183603
Statut Délivré - en vigueur
Date de dépôt 2024-02-29
Date de publication 2024-09-12
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Fan, Congze
  • Zheng, Jinghua
  • Chen, Yiwei
  • Song, Wenzhe
  • Yu, Xiao

Abrégé

The present invention provides a multi-material additive manufacturing system for space on-orbit manufacturing, comprising an automatic material replacement tray device, a consumable bin, a master control center, and a forming bin. The master control center controls the overall operation of the system; a first tray, a second tray, and a third tray are provided inside the consumable bin; an automatic material replacement ring, a main wire feeding device, an induction heating nozzle, and a substrate are sequentially arranged on the forming bin; a first wire on the first tray sequentially passes through a first wire following device and a first auxiliary wire feeding device to be fed into the automatic material replacement ring; a second wire on the second tray sequentially passes through a second wire following device and a second auxiliary wire feeding device to be fed into the automatic material replacement ring; and a third wire on the third tray sequentially passes through a third wire following device and a third auxiliary wire feeding device to be fed into the automatic material replacement ring. According to the present invention, in order to achieve the miniaturization and intelligence of space on-orbit manufacturing equipment, the automatic material replacement tray device and the wire following devices are used, thereby achieving automatic material replacement and following after printing wires are used up.

Classes IPC  ?

21.

FROZEN SAND MOLD HOLLOWED CONFORMAL DESIGN AND LOW-TEMPERATURE MEDIUM TRANSMISSION FREEZE FORMING METHOD

      
Numéro d'application CN2023116011
Numéro de publication 2024/178932
Statut Délivré - en vigueur
Date de dépôt 2023-08-31
Date de publication 2024-09-06
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Yang, Haoqin
  • Shan, Zhongde
  • Liu, Qinjiang

Abrégé

A frozen sand mold hollowed conformal design and low-temperature medium transmission freeze forming method, comprising: designing a corresponding frozen sand mold model according to a three-dimensional model of a casting, and arranging a cooling line (2) along the contour of the wall surface of a cavity (6) inside a frozen sand mold; performing hollowed design on the frozen sand mold provided with the cooling line; checking the strength of an established sand mold model by using finite element analysis software, and optimizing the design of the cooling line and a hollowed structure (5); generating contour information of each layer of printing section; printing a designed normal-temperature sand mold; and inserting a copper cooling pipe (7) into a preset complex cooling line to form a cooling channel, and introducing a low-temperature medium into the cooling channel for constant-time and constant-temperature heat exchange flowing to perform low-temperature freezing and curing on the frozen sand mold. According to the method, a hollowed sand mold provided with a conformal cooling channel is integrally formed by means of additive manufacturing technology, and heat is taken away in the form of effective heat exchange mainly based on heat conduction and heat convection in a cooling line by using a low-temperature medium and a normal-temperature sand mold, so as to form strong cold to make the frozen sand mold freeze quickly. Thus, the service life of a printing device is prolonged while the freezing efficiency is improved, the precision loss problem caused by sand block assembly is effectively prevented, the operation is simple, and the costs are low.

Classes IPC  ?

  • B22C 9/02 - Moules en sable ou moules analogues pour pièces coulées
  • B33Y 10/00 - Procédés de fabrication additive
  • B33Y 50/02 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
  • B22C 9/12 - Traitement des moules ou noyaux, p. ex. séchage, étuvage
  • B33Y 40/20 - Posttraitement, p. ex. durcissement, revêtement ou polissage

22.

DESIGN METHOD FOR HIGH-DEGREE-OF-FREEDOM PARAMETERIZED FREQUENCY MODULATION CODING WAVEFORM

      
Numéro d'application CN2024089203
Numéro de publication 2024/179616
Statut Délivré - en vigueur
Date de dépôt 2024-04-22
Date de publication 2024-09-06
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Jin, Guodong
  • Zhang, Xifeng
  • Zhu, Daiyin
  • Huang, Jingkai

Abrégé

Disclosed in the present invention is a design method for a high-degree-of-freedom parameterized frequency modulation coding waveform. The method comprises the following steps: S1, inputting a frequency modulation coding vector; S2, selecting a coding model order to be used; and S3, outputting a corresponding coding parameter value under the given frequency modulation coding vector and coding model order, and generating a frequency modulation coding waveform. Further disclosed in the present invention is a high-degree-of-freedom parameterized frequency modulation coding waveform. The waveform has a continuous phase function, accurate spectrum control and a parameterizable coding structure, can provide a smaller mismatch loss, higher in-band energy and lower autocorrelation sidelobes, and has wide application prospects in the field of radar.

Classes IPC  ?

  • G01S 7/02 - Détails des systèmes correspondant aux groupes , , de systèmes selon le groupe
  • G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques

23.

MELT IMPREGNATION DEVICE WITH AUTOMATIC LIFTING CHANNEL FOR ADDITIVE MANUFACTURING FILAMENTS

      
Numéro d'application 18572780
Statut En instance
Date de dépôt 2022-07-23
Date de la première publication 2024-08-29
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Fan, Congze
  • Chen, Yiwei
  • Zheng, Jinghua
  • Song, Wenzhe
  • Wang, Jingxuan

Abrégé

A composite filament melt impregnation device with an automatic lifting channel for additive manufacturing includes a mechanical lifting device, a heating device, a curved resin impregnation channel, a filament guide block, a single screw extruder, a replaceable combination die nozzle, and a resin riser. The composite filament melt impregnation device can significantly improve the efficiency of replacing filaments and treating broken filaments in a forming process of continuous fiber filaments, reduce the operation difficulty of a production process, and ensure the safety of operators. The design of the resin riser can achieve slight dynamic adjustment of pressure in a melt cavity in the production process, improve the stability of product quality, and ultimately achieve continuous production and rapid replacement of high-performance continuous fiber composites.

Classes IPC  ?

  • B29B 11/10 - Moulage par extrusion
  • B29B 11/16 - Fabrication de préformes caractérisées par la structure ou la composition comprenant des charges ou des agents de renforcement
  • B29B 15/14 - Revêtement ou imprégnation d'agents de renforcement de longueur indéfinie de filaments ou de fils
  • B29C 64/314 - Préparation
  • B33Y 40/10 - Prétraitement

24.

Apparatus and method for measuring and drawing wide-area spatial channel map through multi-unmanned aerial vehicle (UAV) cooperation

      
Numéro d'application 18227988
Numéro de brevet 12092478
Statut Délivré - en vigueur
Date de dépôt 2023-07-31
Date de la première publication 2024-08-15
Date d'octroi 2024-09-17
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Zhu, Qiuming
  • Mao, Kai
  • Qiu, Yanheng
  • Chen, Xiaomin
  • Hua, Boyu
  • Lin, Zhipeng
  • Ye, Xuchao
  • Zhong, Weizhi
  • Duan, Fuqiao
  • Wu, Qihui

Abrégé

According to a surveying and mapping instrument and method for a wide-area spatial channel map through multi-unmanned aerial vehicle (UAV) cooperation, a measurement signal emission unit generates and emits a measurement signal, a measurement signal multi-UAV cooperative receiving unit receives the measurement signal transmitted through a wireless channel, extracts an effective multipath component from the measurement signal, and frames the effective multipath component and corresponding time and location information for storage, and transmits stored channel data to a channel data fusion processing unit offline, and the channel data fusion processing unit fuses the channel data in terms of space, time, and frequency dimensions, and completes missing channel data to construct a complete wide-area spatial channel map.

Classes IPC  ?

  • G01C 21/00 - NavigationInstruments de navigation non prévus dans les groupes

25.

ROTOR CRAFT AND NEGATIVE TORSION VARIABLE PADDLE THEREOF

      
Numéro d'application 18430816
Statut En instance
Date de dépôt 2024-02-02
Date de la première publication 2024-08-15
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Chen, Zhe
  • Zhou, Xu
  • Zhao, Qijun
  • Cui, Zhuangzhuang
  • Ren, Binwu
  • Lin, Muyang

Abrégé

The present disclosure provides a negative torsion variable paddle and a control assembly thereof. The paddle includes rigid first paddles and rigid second paddles. When a driver pushes a root railing edge, the first paddle is not flexibly deformed, and the second paddle is torsionally deformed with a laminated elastomer structure between cascades to realize relative rotation at both ends of the second paddle, so that a flexible skin maintains airfoil contours, and the whole torsional degree of the paddle is changed. The present disclosure also provides a rotor craft including the negative torsion variable paddle.

Classes IPC  ?

26.

METHOD AND SYSTEM FOR RECOGNIZING HUMAN ACTION IN APRON BASED ON THERMAL INFRARED VISION

      
Numéro d'application 18007599
Statut En instance
Date de dépôt 2021-12-06
Date de la première publication 2024-08-08
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Ding, Meng
  • Ding, Yuanyuan
  • Kong, Xianghao
  • Xu, Yiming
  • Wu, Yi
  • Lu, Wei

Abrégé

The present disclosure discloses a method and system for recognizing human action in an apron based on thermal infrared vision, the method comprises: acquiring a plurality of video sequences from an infrared monitoring video; labeling a set target in each image frame in each video sequence with a target box to obtain a target tracking result; intercepting, for each image frame in the video sequence, a target-box enlarged area according to the labeled target box; adding, for each image frame in the video sequence, the position information of the image labeled with target box to the target-box enlarged area to obtain a three-channel sub-image; training an action recognition model by using three-channel sub-image sequences corresponding to a plurality of video sequences as a training set, to obtain a trained action recognition model; obtaining a to-be-recognized video sequence from another infrared monitoring video, and obtaining a three-channel sub-image sequence corresponding to the to-be-recognized video sequence; inputting the three-channel sub-image sequence corresponding to the to-be-recognized video sequence into the trained action recognition model to output a target action type.

Classes IPC  ?

  • G06V 20/52 - Activités de surveillance ou de suivi, p. ex. pour la reconnaissance d’objets suspects
  • G06V 10/77 - Traitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source
  • G06V 10/774 - Génération d'ensembles de motifs de formationTraitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source méthodes de Bootstrap, p. ex. "bagging” ou “boosting”
  • G06V 20/40 - ScènesÉléments spécifiques à la scène dans le contenu vidéo
  • G06V 20/70 - Étiquetage du contenu de scène, p. ex. en tirant des représentations syntaxiques ou sémantiques
  • G06V 40/20 - Mouvements ou comportement, p. ex. reconnaissance des gestes

27.

ELECTROWETTING EFFECT-BASED SOLAR-DRIVEN HIGH EFFICIENCY HUMIDIFIER SYSTEM AND WORKING METHOD

      
Numéro d'application 18575818
Statut En instance
Date de dépôt 2022-12-19
Date de la première publication 2024-07-25
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • He, Weifeng
  • Gao, Yanfei
  • Han, Dong
  • Pu, Wenhao
  • Yao, Zhaohui
  • Shi, Qile

Abrégé

An electrowetting effect-based solar-driven high efficiency humidification system and a working method. A photovoltaic power generation module and an electrowetting high efficiency humidification module are combined, which conform to a solar energy transfer principle in a PV/T device, while liquid droplets are also sprayed at regular intervals on an upper surface of a heat exchange flow channel in the PV/T device, the principles of acceleration of liquid droplet internal flow and a change to surface hydrophilicity/hydrophobicity by electrowetting technology are used, liquid drop evaporation is accelerated, and highly efficient humidification of air is achieved. By means of coupled utilization of electrowetting technology and a PV/T system, water is saved while a large amount of moist air and clean electric energy which can be used for actual production are obtained.

Classes IPC  ?

  • B01B 1/00 - ÉbullitionAppareils à ébullition en vue d'applications physiques ou chimiques
  • F28D 5/02 - Appareils échangeurs de chaleur comportant des ensembles de canalisations fixes pour une seule des sources de potentiel calorifique, les deux sources étant en contact chacune avec un côté de la paroi de la canalisation, utilisant l'effet réfrigérant de l'évaporation naturelle ou forcée dans lesquels la source de potentiel calorifique soumise à évaporation s'écoule sous forme de pellicule continue ou ruisselle librement sur les canalisations
  • H02S 40/44 - Moyens pour utiliser l’énergie thermique, p. ex. systèmes hybrides produisant de l’eau chaude et de l’électricité en même temps

28.

HEATED-BED DEFORMATION TOLERANCE STRUCTURE FOR LARGE-SIZED CONTINUOUS FIBER HIGH-TEMPERATURE 3D PRINTER

      
Numéro d'application CN2023077083
Numéro de publication 2024/145980
Statut Délivré - en vigueur
Date de dépôt 2023-02-20
Date de publication 2024-07-11
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Chen, Yiwei
  • Zhang, Hao
  • Shan, Zhongde
  • Fan, Congze
  • Song, Wenzhe
  • Zheng, Jinghua

Abrégé

Provided in the present invention is a heated-bed deformation tolerance structure for a large-sized continuous fiber high-temperature 3D printer. Changes in size caused by thermal expansion of a heated bed are compensated for by means of motion cooperation of a fixed heated-bed supporting assembly and a motion device, especially for a large-sized aluminum alloy material with a high coefficient of thermal expansion. A Z-direction motion structure of the structure is fixedly mounted on a frame and is located in a working environment at room temperature. A compensating motion module is fixedly mounted on a Z-axis and is not completely fixedly mounted on the heated-bed supporting assembly. The compensating motion module and the Z-axis are located in the working environment at room temperature. The heated-bed supporting assembly is not completely fixedly mounted and is partially located in a high-temperature cavity, with the highest working temperature being 300°C. The heated-bed supporting assembly retains motion redundancy in a thermal expansion deformation direction, tolerates thermal deformation, and compensates for metal deformation by means of a linear motion module and horizontal motion cooperation.

Classes IPC  ?

  • B29C 64/20 - Appareil pour la fabrication additiveDétails ou accessoires à cet effet
  • B29C 64/295 - Éléments de chauffage
  • B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet

29.

NOZZLE-REPLACEABLE PRINTING HEAD FOR CONTINUOUS FIBER PRINTING AND PRINTING METHOD

      
Numéro d'application 18552909
Statut En instance
Date de dépôt 2022-07-23
Date de la première publication 2024-07-11
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Fan, Congze
  • Chen, Yiwei
  • Zheng, Jinghua
  • Song, Wenzhe
  • Song, Yaxing

Abrégé

A nozzle-replaceable printing head for continuous fiber printing and a printing method are provided. The printing head includes a fixed bracket, a wire feeding module located at an upper part of the structure, an upper guide pipe, a shearing module located at a middle part of the structure, a lower guide pipe, a heat dissipation sleeve, a throat pipe, a heating coil, and a nozzle module located at a bottom of the structure, where a continuous fiber reinforced thermoplastic resin matrix pre-impregnated composite wire coaxially penetrates through the other side of the printing head from top to bottom and is fed for printing. An adjustment groove with scales is configured to standardize adjustment on clamping and feeding states of pre-impregnated composite wires of different specifications.

Classes IPC  ?

  • B29C 64/209 - TêtesBuses
  • B29C 64/118 - Procédés de fabrication additive n’utilisant que des matériaux liquides ou visqueux, p. ex. dépôt d’un cordon continu de matériau visqueux utilisant un matériau filamentaire mis en fusion, p. ex. modélisation par dépôt de fil en fusion [FDM]
  • B29C 64/393 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
  • B33Y 10/00 - Procédés de fabrication additive
  • B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet
  • B33Y 50/02 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive

30.

SPATIAL CURVED SURFACE PRINTING PATH PLANNING METHOD BASED ON DYNAMIC CONTOUR OFFSETTING AND DISCRETIZATION

      
Numéro d'application CN2023077082
Numéro de publication 2024/145979
Statut Délivré - en vigueur
Date de dépôt 2023-02-20
Date de publication 2024-07-11
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Chen, Yiwei
  • Song, Yaxing
  • Shan, Zhongde
  • Fan, Congze
  • Song, Wenzhe
  • Zheng, Jinghua

Abrégé

The present invention provides a spatial curved surface printing path planning method based on dynamic contour offsetting and discretization. The method comprises: first, transversely and equally slicing a target model, and marking a single/double contour; second, performing central slicing on the model, discretizing a curvature contour, and calculating a contour offset feature value of each slice layer on the basis of a surface contour curvature of the model, so as to achieve dynamic contour offset filling in each horizontal slice; then longitudinally and equally cutting the slices to obtain spatial discrete points of the target model; and finally, constructing a virtual double contour for the single contour, and performing discrete point marking processing to obtain a discretized three-dimensional space equidistant lattice [n, j, m, 0/1, r] of the target model. Discrete points marked with the same r value within a single cutting plane are sequentially connected to obtain a spatial curve within the single cutting plane; the spatial curves within cutting planes are connected end to end in the order of the m value of the cutting plane to form single-layer spatial curved surfaces; and the single-layer spatial curved surfaces are sequentially connected end to end in the order of the r value, and are superimposed layer by layer to obtain an overall spatial curved surface path of the target model.

Classes IPC  ?

  • B29C 64/386 - Acquisition ou traitement de données pour la fabrication additive
  • B33Y 50/00 - Acquisition ou traitement de données pour la fabrication additive

31.

BEND ANGLE MEASURING METHOD AND SYSTEM FOR BENT PIPE MACHINING, AND ELECTRONIC DEVICE

      
Numéro d'application CN2023079724
Numéro de publication 2024/124707
Statut Délivré - en vigueur
Date de dépôt 2023-03-06
Date de publication 2024-06-20
Propriétaire
  • ZHEJIANG CHANGXING HELIANG INTELLIGENT EQUIPMENT CO., LTD. (Chine)
  • NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Li, Liangyou
  • Zhou, Zhengdong
  • Peng, Chunyan
  • Zhang, Lingwei
  • Zhang, Liang
  • Wang, Yuanbin
  • Xi, Weijiang
  • Song, Zefeng
  • Lu, Bing
  • Xu, Yunfei
  • Ji, Wentao
  • Wang, Jiawen
  • Zhou, Yifan

Abrégé

Disclosed in the present invention is a bend angle measuring method for bent pipe machining. The measuring method comprises the following steps: carrying out binarization and region-of-interest extraction on an image to be recognized, so as to obtain binarized images of two straight line segment regions, the image to be recognized being an image of a machined bent pipe; and, according to the binarized images of the two straight line segment regions, calculating a bend angle. The image-based online bend angle measuring method and system provided by the present invention have the advantages of low cost, high efficiency and high universality.

Classes IPC  ?

  • G06V 10/28 - Quantification de l’image, p. ex. seuillage par histogramme visant à discriminer entre les formes d’arrière-plan et d’avant-plan

32.

METHOD AND APPARATUS FOR PLANNING MISSION FORWARDING PATH FOR A MEGA-CONSTELLATION, AND NON-TRANSITORY STORAGE MEDIUM

      
Numéro d'application 18522718
Statut En instance
Date de dépôt 2023-11-29
Date de la première publication 2024-06-20
Propriétaire
  • Nanjing University of Aeronautics and Astronautics (Chine)
  • Harbin Institute of Technology (Chine)
Inventeur(s)
  • Wu, Yunhua
  • Mao, Yuhe
  • Cao, Xibin
  • Qiu, Shi
  • Chen, Xueqin
  • Li, Ning

Abrégé

Disclosed are a method, an apparatus and a non-transitory storage medium. The method includes: dividing satellites of the mega-constellation into satellite topology groups, so as to construct corresponding space-time grids, obtaining a dynamic matching relationship in time domain between the space-time grids and the satellite topology groups, setting a path weight for each space-time grid, acquiring a static grid path for forwarding a mission, where the static grid path is determined by an order of the space-time grids that need to be passed sequentially to forward the mission, adjusting the static grid path according to the satellite node currently receiving the mission and the dynamic matching relationship, so as to acquire the next satellite node to which the mission is forwarded from the satellite node currently receiving the mission.

Classes IPC  ?

  • G05D 1/646 - Suivi d’une trajectoire prédéfinie, p. ex. d’une ligne marquée sur le sol ou d’une trajectoire de vol
  • G05D 1/644 - Optimisation des paramètres de parcours, p. ex. consommation d’énergie, réduction du temps de parcours ou de la distance

33.

Path planning method based on dynamic contour offset discretization and for spatial curved-surface printing

      
Numéro d'application 18520581
Numéro de brevet 12011882
Statut Délivré - en vigueur
Date de dépôt 2023-11-28
Date de la première publication 2024-06-18
Date d'octroi 2024-06-18
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Fan, Congze
  • Song, Wenzhe
  • Shan, Zhongde
  • Chen, Yiwei
  • Zheng, Jinghua
  • Song, Yaxing

Abrégé

A path planning method based on dynamic contour offset discretization and for spatial curved-surface printing is provided. Firstly, transversal equal slicing is carried out on a target model, and single/double contours are labeled; secondly, central slicing is carried out on the model, curvature contours are discretized, feature values of contour offsets of slice layers are calculated on the basis of a surface contour curvature of the model, and dynamic offset filling for inner contours of horizontal slices is realized; then longitudinal equal slicing is carried out on the slices, and spatial discrete points of the target model are obtained; and finally, virtual double contours are constructed for the single contours, and labeling processing for the discrete points is carried out, so that a discretized three-dimensional spatial equidistant lattice of the target model is obtained.

Classes IPC  ?

  • G06T 15/00 - Rendu d'images tridimensionnelles [3D]
  • B29C 64/393 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
  • B33Y 50/02 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
  • G06F 30/10 - CAO géométrique
  • G06F 113/10 - Fabrication additive, p. ex. impression en 3D

34.

NANOCOMPOSITE DIELECTRIC FILM MATERIAL FOR ENERGY STORAGE PREPARED BY VERTICAL SELF-ASSEMBLY OF LEAD ZIRCONATE TITANATE AND MAGNESIUM OXIDE, AND PREPARATION METHOD THEREOF

      
Numéro d'application 18520764
Statut En instance
Date de dépôt 2023-11-28
Date de la première publication 2024-06-13
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Li, Weiwei
  • Liu, Yajing

Abrégé

Provided are a nanocomposite dielectric film material for energy storage prepared by vertical self-assembly of lead zirconate titanate (PZT) and magnesium oxide (MgO), and a preparation method thereof. The method includes: 1, preparing a PZT powder; 2, mixing the PZT powder with an MgO powder to obtain a uniformly mixed PM composite powder; and mixing the PM composite powder with a binder, and subjecting a resulting mixture to tableting and cold isostatic pressing to obtain a PM composite target blank; 3, sintering the PM composite target blank at a temperature of not higher than 900° C. to obtain a PM composite target; and 4, subjecting the PM composite target to pulsed laser deposition to form an epitaxial vertical self-assembly composite dielectric film; and subjecting the epitaxial vertical self-assembly composite dielectric film to annealing to obtain the film material.

Classes IPC  ?

  • C23C 14/08 - Oxydes
  • C23C 14/28 - Évaporation sous vide par énergie éléctromagnétique ou par rayonnement corpusculaire
  • C23C 14/58 - Post-traitement

35.

INTEGRATED BRAIDING AND NEEDLE PUNCHING PREFORM FORMING METHOD AND PREFORM FORMING DEVICE

      
Numéro d'application 18587731
Statut En instance
Date de dépôt 2024-02-26
Date de la première publication 2024-06-13
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Sun, Zheng
  • Zhou, Zhengxi
  • Wang, Yaoyao
  • Wang, Weihao
  • Liu, Jiale

Abrégé

The present invention discloses an integrated braiding and needle punching preform forming method, comprising the following steps: arranging gripping devices at both ends of a braiding machine, allowing a mandrel to move in a certain direction along the axis of the braiding machine while forming a first layer of fabric on a surface of the mandrel; then laying felt on top of the first layer of fabric by using an automatic felt laying device, and employing a needle punching device to perform pre-needle punching on the felt layer to ensure the felt adheres to the braided fabric surface; restarting the braiding machine, moving the mandrel in an opposite direction while forming a second layer of fabric on a surface of the felt; repeating the above steps to achieve multiple layers of braided fabric and felt in alternate adhesion; finally, performing main needle punching on the preform.

Classes IPC  ?

  • D04C 3/48 - Dispositifs auxiliaires
  • D04C 1/02 - Tresses ou dentelles, p. ex. dentelles aux fuseauxLeurs procédés de fabrication faites avec des matériaux particuliers
  • D04C 3/46 - Métiers à tresses ou à dentelles pour la fabrication de tresses tubulaires par systèmes d'alimentation des fils tournant autour et à même distance du centre de tressage avec bobines montées sur galets

36.

METHOD FOR CONSTRUCTING START PERFORMANCE MODEL FOR NAVAL-SHIP GAS TURBINE

      
Numéro d'application CN2023136731
Numéro de publication 2024/120432
Statut Délivré - en vigueur
Date de dépôt 2023-12-06
Date de publication 2024-06-13
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zhou, Wenxiang
  • Du, Jinshi
  • Zhou, Lei
  • Zhang, Ke

Abrégé

A method for constructing a start performance model for a naval-ship gas turbine. The method comprises: firstly, establishing a gas turbine aerothermodynamics performance computation model on the basis of C++; establishing a gas turbine high-temperature component heat transfer model, a temperature sensor model and a control rule model on the basis of m language; then, on the basis of gas turbine start process test data, analyzing change rules of the pressure ratio and efficiency of a typical component of a gas turbine during a start process along with the physical rotation speed of a gas generator; and generating corresponding low-rotation-speed characteristics of a rotating component of the gas turbine and correcting same, so as to realize high-precision real-time simulation for the start performance of the gas turbine. In the method, the heat exchange between both high-temperature gas and the atmosphere of an external environment and a gas turbine body is taken into consideration, such that the precision of performance simulation for the start process of a gas turbine is improved, and a simulation test tool can be provided for the design and optimization of the start control rule of the gas turbine.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G06F 119/08 - Analyse thermique ou optimisation thermique

37.

Endogenous dynamic defense architecture-based multi-objective service function chain deployment method

      
Numéro d'application 18581424
Numéro de brevet 12003528
Statut Délivré - en vigueur
Date de dépôt 2024-02-20
Date de la première publication 2024-06-04
Date d'octroi 2024-06-04
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Ran
  • Wu, Qiang
  • Zhu, Qi
  • Hao, Jie
  • Yu, Xue

Abrégé

An endogenous dynamic defense architecture-based multi-objective service function chain deployment method solves a problem of multi-objective deployment by constructing an endogenous dynamic defense architecture, in which a basic mode includes using moving target defense to ensure the security of VNFs, and an enhanced mode includes using mimic defense to perform security protection on the VNFs; in a construction module, a sub-pool division algorithm is proposed to divide a heterogeneous replica pool into a plurality of sub-pools, and VNFs are selected from the sub-pools so as to constitute a heterogeneous replica set; in a scheduling module, a replica VNF dynamic scheduling deployment algorithm is proposed, a deployment set is selected from the heterogeneous replica set for deployment, and is sent to a processing module; the input module replicas an input and distributes same to the processing module.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité

38.

HYPERSONIC LARGE INTERNAL CONTRACTION RATIO AIR INLET CHANNEL HAVING STEPLESS ADJUSTABLE AIR RELEASE VALVE AND CONTROL METHOD

      
Numéro d'application 18556356
Statut En instance
Date de dépôt 2022-03-21
Date de la première publication 2024-05-30
Propriétaire
  • NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
  • BEIJING AEROSPACE TECHNOLOGY INSTITUTE (Chine)
Inventeur(s)
  • Huang, Hexia
  • Lin, Zhengkang
  • Tang, Xuebin
  • Qin, Yuan
  • Tan, Huijun
  • Zhang, Hang
  • Wang, Ziren
  • Li, Chao
  • Xu, Xiru

Abrégé

The present invention provides a hypersonic large internal contraction ratio air inlet channel having stepless adjustable air release valve, including an air inlet channel front body, an air-discharging slit cover plate, sidewalls, a lip cover, air-discharging cavities, valve plates, partition plates, a rotatable shaft, an expansion section and a driver. The valve plates are rotated through the driver according to the actual working conditions of air inlet channel, the minimum cross-section of the air discharging flow path is thus changed, and a stepless dynamic adjustment of the air discharging flow of the air inlet channel can be realized, so that the aerodynamic performance of the air inlet channel is improved, and the air discharging resistance of the air vehicle is reduced.

Classes IPC  ?

  • B64D 33/02 - Aménagement sur les aéronefs des éléments ou des auxiliaires des ensembles fonctionnels de propulsion, non prévu ailleurs des entrées d'air de combustion

39.

Signal processing system and method for inductive oil abrasive particle sensor

      
Numéro d'application 18508648
Numéro de brevet 12092627
Statut Délivré - en vigueur
Date de dépôt 2023-11-14
Date de la première publication 2024-05-16
Date d'octroi 2024-09-17
Propriétaire
  • Suzhou Renzheng Zhitan Technology Co., Ltd. (Chine)
  • Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Qian, Zhenghua
  • Wang, Mingming
  • Li, Peng
  • Wu, Xianwei
  • Liu, Hairui
  • Qian, Zhi
  • Li, Qi
  • Xu, Zelin

Abrégé

A signal processing system and method for inductive oil abrasive particle sensor, comprising a sensor, an excitation signal generator, an analog signal processing circuit, a MCU signal acquisition module and a computer signal processing module is disclosed. The sensor is provided with two groups of induction coils, the excitation signal generator generates excitation signals and drives the excitation coils of the sensor to output induction signals containing abrasive particle information, and the analog signal processing circuit receives the induction signals output by the sensor and demodulates and amplifies the induction signals. The signal processing system of the sensor applied to online monitoring of oil abrasive particles is simple in structure and convenient to apply, has a complete signal statistics and monitoring interface, and can be used to effectively monitor the size, concentration and other information of the metal abrasive particles in oil in real time.

Classes IPC  ?

  • G01N 33/28 - Huiles
  • G01N 27/02 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant l'impédance

40.

MULTI-PATH INTERNALLY-MICROPOROUS EFFICIENT REFRIGERATION METHOD AND DEVICE FOR FROZEN SAND MOLD

      
Numéro d'application CN2023074059
Numéro de publication 2024/093033
Statut Délivré - en vigueur
Date de dépôt 2023-02-01
Date de publication 2024-05-10
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Shi, Jianpei
  • Yang, Haoqin

Abrégé

A multi-path internally-microporous efficient refrigeration method and device for a frozen sand mold. The device comprises a frozen sand mold forming chamber (1), an electric lifting platform (2), a Teflon porous liner (3), a removable porous aluminum plate (4), a frozen sand mold refrigeration device box (5), a sealing cover plate (6), an ultrasonic piezoelectric plate (7), a U-shaped condensing tube (8), an ultrasonic generator (9), and a low-temperature refrigeration system (10), wherein the Teflon porous liner (3) and the removable porous aluminum plate (4) are provided with through hole structures with the same size and shape, and are configured for rapid cooling from a surface to a core of molding sand. By activating the electric lifting platform (2), the Teflon porous liner (3) rises to the highest point for ease of demolding. The ultrasonic piezoelectric plate (7) with a high-low frequency dual mode can be used not only to vibrate and compact the frozen sand mold, but also to assist cutting and forming. The device can realize quick freezing, easy demolding and low-cost digital forming of a frozen sand mold.

Classes IPC  ?

  • B22C 9/02 - Moules en sable ou moules analogues pour pièces coulées
  • B22D 18/06 - Coulée par le vide, c.-à-d. utilisant le vide pour remplir le moule
  • B33Y 10/00 - Procédés de fabrication additive
  • B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet

41.

TRUSS ADDITIVE MANUFACTURING DEVICE FOR AEROSPACE

      
Numéro d'application CN2023077080
Numéro de publication 2024/087420
Statut Délivré - en vigueur
Date de dépôt 2023-02-20
Date de publication 2024-05-02
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Fan, Congze
  • Shan, Zhongde
  • Liu, Kai
  • Chen, Yiwei
  • Zheng, Jinghua
  • Song, Wenzhe

Abrégé

Disclosed in the present invention is a truss additive manufacturing device for aerospace. The whole device comprises five units: a raw material input unit, a longitudinal beam forming unit, a longitudinal beam traction unit, a transverse beam forming unit and a truss support unit, wherein the raw material input unit stores prepreg wires and prepreg tapes; rollers are driven by means of an electric motor to transmit the prepreg wires and the prepreg tapes forwards; the longitudinal beam forming unit consists of three sets of forming dies; V-shaped longitudinal beams are formed on the prepreg tapes by means of heating dies; the longitudinal beam traction unit uses a stepping motor to drive three sets of roller traction devices by means of a steering gear to pull the formed longitudinal beams; the transverse beam forming unit consists of a motion module and a printing module; and truss transverse beams are printed by means of fused deposition 3D printing.

Classes IPC  ?

  • B29C 64/171 - Procédés de fabrication additive spécialement adaptés à la fabrication d'objets multiples en 3D
  • B33Y 10/00 - Procédés de fabrication additive

42.

WIRE FEEDING MECHANISM SUITABLE FOR FUSED DEPOSITION ADDITIVE MANUFACTURING OF FLEXIBLE WIRE

      
Numéro d'application CN2023077081
Numéro de publication 2024/087421
Statut Délivré - en vigueur
Date de dépôt 2023-02-20
Date de publication 2024-05-02
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Luo, Linlin
  • Song, Wenzhe
  • Fan, Congze
  • Zheng, Jinghua
  • Chen, Yiwei

Abrégé

Disclosed in the present invention is a wire feeding mechanism suitable for fused deposition additive manufacturing of a flexible wire. The wire feeding mechanism comprises a supporting housing, wherein the lower end of the supporting housing is provided with a fusion spray head; a hook is connected to an inner wall of the top end of the supporting housing; a connecting rod is connected to an inner wall of one side of the supporting housing; a wire drawing mechanism is connected to one end of the connecting rod, and is located at the lower end of the hook; a limiting mechanism and a wire guiding mechanism are connected to the inner wall of one side of the supporting housing; the limiting mechanism is located at the lower end of the wire drawing mechanism; the wire guiding mechanism is located at the lower end of the limiting mechanism; the wire drawing mechanism comprises a supporting seat; the supporting seat is connected to the connecting rod; an inner wall of the top end of the supporting seat is provided with an electric sliding groove; an electric slider is movably engaged with an inner wall of the electric sliding groove; and a sixth support is connected to an outer wall of the top end of the electric slider. The wire feeding mechanism suitable for fused deposition additive manufacturing of a flexible wire disclosed in the present invention has the effect of reducing the risk of agglomeration at a joint between a wire and the hook.

Classes IPC  ?

  • B29C 64/321 - Alimentation
  • B29C 64/118 - Procédés de fabrication additive n’utilisant que des matériaux liquides ou visqueux, p. ex. dépôt d’un cordon continu de matériau visqueux utilisant un matériau filamentaire mis en fusion, p. ex. modélisation par dépôt de fil en fusion [FDM]
  • B33Y 40/00 - Opérations ou équipements auxiliaires, p. ex. pour la manipulation de matériau

43.

ULTRASONIC-ASSISTED PERMEATION AND HOMOGENIZATION MOLDING DEVICE AND METHOD FOR FROZEN PRINTING LIQUID DROPS

      
Numéro d'application 18031012
Statut En instance
Date de dépôt 2022-09-05
Date de la première publication 2024-05-02
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Yang, Haoqin
  • Shi, Jianpei
  • Liu, Qinjiang
  • Dai, Yufeng
  • Liao, Wanneng

Abrégé

An ultrasonic-assisted permeation and homogenization molding device and method for frozen printing liquid drops are provided. The device includes an ultrasonic generator, a transducer and an amplitude-change pole. The ultrasonic generator generates 20 KHz low-frequency ultrasonic waves, and a flange plate is arranged on a pitch surface of the amplitude-change pole and connected with an outer cavity wall of the low-temperature molding chamber by threads. According to the ultrasonic-assisted permeation and homogenization molding method for frozen printing liquid drops, pre-paved molding sand particles are homogenized and distributed under ultrasonic vibration by adjusting the frequency of the ultrasonic generator in a sand paving process. When a pure water binder is sprayed, liquid drops are sprayed to the surface of premixed molding sand, and then permeate to the bottom of pre-cooled molding sand under the assistance of low-frequency ultrasonic waves to freeze and solidify.

Classes IPC  ?

  • B22C 9/02 - Moules en sable ou moules analogues pour pièces coulées
  • B33Y 10/00 - Procédés de fabrication additive
  • B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet
  • B33Y 80/00 - Produits obtenus par fabrication additive

44.

Hot bed deformation tolerance structure for large-sized continuous fiber high-temperature 3D printer

      
Numéro d'application 18536236
Numéro de brevet 11969943
Statut Délivré - en vigueur
Date de dépôt 2023-12-12
Date de la première publication 2024-04-30
Date d'octroi 2024-04-30
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Chen, Yiwei
  • Zheng, Jinghua
  • Shan, Zhongde
  • Song, Wenzhe
  • Fan, Congze
  • Zhang, Hao

Abrégé

A hot bed deformation tolerance structure for a large-sized continuous fiber high-temperature 3D printer is provided. Size changes caused by thermal expansion of a hot bed are compensated through motion coordination of a secured hot bed support assembly and a motion device, especially for an aluminum alloy material. A Z-direction motion structure of this structure is fixedly mounted with a frame and works at room temperature. A compensation motion module is fixedly mounted with a Z axis and incompletely secured with the hot bed support assembly, and works at room temperature with the Z axis. The hot bed support assembly is incompletely secured and partially in a high-temperature chamber, with a maximum working temperature of 300° C. The hot bed support assembly retains motion redundancy in a direction of thermal expansion deformation, tolerates thermal deformation through a linear motion module, and compensates for metal deformation through horizontal motion coordination.

Classes IPC  ?

  • B29C 64/295 - Éléments de chauffage
  • B29C 64/232 - Moyens d’entraînement pour un mouvement le long de l'axe orthogonal au plan d’une couche
  • B29C 64/245 - Plates-formes ou substrats
  • B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet
  • B33Y 70/10 - Composites de différents types de matériaux, p. ex. mélanges de céramiques et de polymères ou mélanges de métaux et de biomatériaux

45.

NUMERICAL SIMULATION OPTIMIZATION METHOD OF IMPACT DAMAGE BASED ON LASER MAPPED SOLID MESH

      
Numéro d'application 18275730
Statut En instance
Date de dépôt 2022-12-29
Date de la première publication 2024-04-18
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Jia, Xu
  • Song, Yingdong
  • Jiang, Rong
  • Wang, Dawei

Abrégé

A numerical simulation optimization method of impact damage based on a laser mapped solid mesh is provided, including: measuring an impact damage size, a damage profile, a surface residual strain and a surface residual stress of a solid mesh element around the damage after firing a bullet by a light gas gun to impact a mesh area of a sample and obtaining the impact damage; establishing a parameterized impact finite element model to obtain a numerically simulated impact damage size, a numerically simulated impact damage profile, a numerically simulated surface residual strain and the surface residual stress of the surface solid mesh element; and calculating relative errors between the experimental measurements and the numerically simulated impact damage size, damage profile, surface residual strain and residual stress; and determining whether the relative errors are all less than expected values until a numerical simulation result meeting the accuracy requirements are obtained.

Classes IPC  ?

  • G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]
  • G06T 17/20 - Description filaire, p. ex. polygonalisation ou tessellation
  • G06F 111/10 - Modélisation numérique
  • G06F 119/02 - Analyse de fiabilité ou optimisation de fiabilitéAnalyse de défaillance, p. ex. performance dans le pire scénario, analyse du mode de défaillance et de ses effets [FMEA]

46.

Air-ground joint trajectory planning and offloading scheduling method and system for distributed multiple objectives

      
Numéro d'application 18522311
Numéro de brevet 11961409
Statut Délivré - en vigueur
Date de dépôt 2023-11-29
Date de la première publication 2024-04-16
Date d'octroi 2024-04-16
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Huang, Yang
  • Dong, Miaomiao
  • Zhu, Xinyu
  • Wang, Wei
  • Liu, Wenqiang

Abrégé

An air-ground joint trajectory planning and offloading scheduling method and system for distributed multiple objectives is provided. At the beginning of each timeslot, an unmanned aerial vehicle (UAV) selects a flight direction based on a total energy consumption of all devices and a total amount of unprocessed data of all the devices in the current system, and flies a fixed distance towards a certain direction. Before the UAV reaches a new location, each terrestrial user independently selects a task data offloading scheduling strategy based on the total energy consumption of all the devices and the total amount of the unprocessed data of all the devices in the current system. In order to improve an expected long-term average energy efficiency and data processing capability, the present disclosure also provides average feedbacks for an energy consumption and unprocessed data.

Classes IPC  ?

  • G08G 5/00 - Systèmes de contrôle du trafic aérien

47.

Multi-path internal microporous efficient refrigeration method and device for frozen sand mold

      
Numéro d'application 18523890
Numéro de brevet 11945026
Statut Délivré - en vigueur
Date de dépôt 2023-11-30
Date de la première publication 2024-04-02
Date d'octroi 2024-04-02
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Yang, Haoqin
  • Shi, Jianpei

Abrégé

A multi-path internal microporous efficient refrigeration method and device for a frozen sand mold is provided. The device includes a frozen sand molding chamber, an electric lifting platform, a teflon porous lining, a removable porous aluminum plate, a frozen sand mold refrigeration device box, a sealing cover plate, an ultrasonic piezoelectric sheet, a U-shaped condenser tube, an ultrasonic generator, and a low-temperature refrigeration system. The teflon lining and the removable porous aluminum plate are provided with through hole structures of the same size and shape for rapid cooling from the surface to core of molding sand. The lifting platform is opened and the bumpy-ridge teflon lining rises to a highest point to facilitate demolding. The high- and low-frequency dual mode of the ultrasonic piezoelectric sheet can be used for vibrating and compacting the frozen sand mold, and can also assist in cutting forming.

Classes IPC  ?

  • B22C 9/12 - Traitement des moules ou noyaux, p. ex. séchage, étuvage
  • B22C 9/02 - Moules en sable ou moules analogues pour pièces coulées

48.

MULTI-ROBOT COLLABORATIVE PLANNING METHOD FOR MACHINING LARGE CAPSULE MEMBER OF SPACECRAFT

      
Numéro d'application CN2023109023
Numéro de publication 2024/060822
Statut Délivré - en vigueur
Date de dépôt 2023-07-25
Date de publication 2024-03-28
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Tian, Wei
  • Lin, Jiamei
  • Li, Bo
  • Liao, Wenhe
  • Li, Pengcheng

Abrégé

A multi-robot collaborative planning method for machining a large capsule member of a spacecraft. The method comprises: for a multi-robot collaborative machining process of a large capsule member of a spacecraft, first, planning the number of instances of rotational displacement of a capsule, and the angle of each rotation; then, planning a multi-robot station layout and station switching strategy; and finally, when the position of the capsule and robot stations are fixed, planning a multi-robot machining task time sequence. By means of the method, the machining process of the large capsule member can be rapidly and systematically planned, and a scheme for the rotational displacement of the capsule and a scheme for the robot stations are rationally selected, thereby improving the rigidity of the collaborative operation of robots; and a machining time sequence is rationally planned, such that a multi-robot machining task process is more compact, and the idle time of the robots can be shortened, thereby improving the multi-robot collaborative machining efficiency.

Classes IPC  ?

49.

PIEZOELECTRIC COMPOSITE MATERIAL, ACTUATOR, AND PREPARATION METHOD OF ACTUATOR

      
Numéro d'application 18140251
Statut En instance
Date de dépôt 2023-04-27
Date de la première publication 2024-03-28
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Ji, Hongli
  • Qiu, Jinhao
  • Zhang, Chao
  • Tao, Congchong
  • Du, Yuemin
  • Qu, Jiao

Abrégé

Provided are a piezoelectric composite material, an actuator, and a preparation method of the actuator, relating to the technical field of piezoelectric composite material actuators. The piezoelectric composite material includes an upper interdigital electrode layer, a piezoelectric fiber composite layer and a lower interdigital electrode layer which are arranged in sequence from top to bottom. The upper interdigital electrode layer, the piezoelectric fiber composite layer and the lower interdigital electrode layer each are of a parallelogram structure. A piezoelectric ceramic fiber array is embedded on the piezoelectric fiber composite layer; and the piezoelectric ceramic fiber array is of a parallelogram structure. By arranging the piezoelectric ceramic fiber array of the parallelogram structure, the effective area of an actuator can be increased, and then the actuation performance of the actuator can be improved.

Classes IPC  ?

  • H10N 30/00 - Dispositifs piézo-électriques ou électrostrictifs
  • H10N 30/06 - Formation d’électrodes ou d’interconnexions, p. ex. de connections électriques ou de bornes
  • H10N 30/092 - Formation de matériaux composites
  • H10N 30/20 - Dispositifs piézo-électriques ou électrostrictifs à entrée électrique et sortie mécanique, p. ex. fonctionnant comme actionneurs ou comme vibrateurs
  • H10N 30/853 - Compositions céramiques
  • H10N 30/87 - Électrodes ou interconnexions, p. ex. connexions électriques ou bornes

50.

WEAVING AND NEEDLING INTEGRATED PREFORM FORMATION METHOD AND PREFORM FORMATION DEVICE

      
Numéro d'application CN2022128612
Numéro de publication 2024/055392
Statut Délivré - en vigueur
Date de dépôt 2022-10-31
Date de publication 2024-03-21
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Sun, Zheng
  • Zhou, Zhengxi
  • Wang, Yaoyao
  • Wang, Weihao
  • Liu, Jiale

Abrégé

A weaving and needling integrated preform formation method, comprising the following steps: moving a core mold (21) in a certain direction along an axis of a weaving machine (1) by arranging grabbing devices at two ends of the weaving machine (1), and at the same time, performing weaving to form a first layer of fabric (25) on the surface of the core mold (21); laying a mesh tire (26) above the first layer of fabric (25) by means of a mesh tire automatic laying device, and performing pre-needling on a mesh tire (26) layer by means of a needling device, so that the mesh tire (26) can fit the surface of woven fabric; activating the weaving machine (1) again, moving the core mold (21) in the opposite direction, and at the same time, performing weaving to form a second layer of fabric (28) on the surface of the mesh tire (26); repeating the above steps to realize alternate fitting of the multiple layers of woven fabric and the mesh tires (26); and finally, performing main-needling on a preform by means of the automatic needling device to realize Z-directional enhancement of the preform. Further provided is a preform formation device used to realize the weaving and needling integrated preform formation method.

Classes IPC  ?

  • D04C 1/00 - Tresses ou dentelles, p. ex. dentelles aux fuseauxLeurs procédés de fabrication
  • D04C 3/00 - Métiers à tresses ou à dentelles
  • D04C 3/48 - Dispositifs auxiliaires
  • D04H 1/46 - Non-tissés formés uniquement ou principalement de fibres coupées ou autres fibres similaires relativement courtes à partir de voiles ou couches composés de fibres ne possédant pas des propriétés cohésives réelles ou potentielles les voiles ou couches étant renforcées par des moyens mécaniques, p. ex. par roulage par aiguilletage ou opérations similaires pour provoquer l'enchevêtrement des fibres
  • D04H 18/02 - Machines à aiguilleter avec des aiguilles

51.

Efficient parallelization and deployment method of multi-objective service function chain based on CPU + DPU platform

      
Numéro d'application 18485205
Numéro de brevet 11936758
Statut Délivré - en vigueur
Date de dépôt 2023-10-11
Date de la première publication 2024-03-19
Date d'octroi 2024-03-19
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Ran
  • Wu, Qiang
  • Hao, Jie
  • Yu, Xue

Abrégé

An efficient parallelization and deployment method of a multi-objective service function chain based on a CPU+DPU platform solves the problem of multi-objective deployment by constructing a heterogeneous computing architecture composed of an orchestrator and a server based on a CPU+DPU structure; the orchestrator is responsible for receiving an SFC request from a network operator; an SFC deployment algorithm based on deep reinforcement learning is operated, including a parallel strategy, a VNF topological order strategy and a DPU processing strategy to obtain an optimal deployment scheme of each request; then a resource management module is invoked to manage resources; and finally, a driver module is invoked to transmit the deployment scheme to a server for placement, and the server completes the deployment of SFC by using the CPU or the DPU respectively according to the deployment scheme.

Classes IPC  ?

  • H04L 67/61 - Ordonnancement ou organisation du service des demandes d'application, p. ex. demandes de transmission de données d'application en utilisant l'analyse et l'optimisation des ressources réseau requises en tenant compte de la qualité de service [QoS] ou des exigences de priorité
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • H04L 41/14 - Analyse ou conception de réseau
  • H04L 41/16 - Dispositions pour la maintenance, l’administration ou la gestion des réseaux de commutation de données, p. ex. des réseaux de commutation de paquets en utilisant l'apprentissage automatique ou l'intelligence artificielle

52.

Wire feeding mechanism suitable for fused deposition Additive Manufacturing (AM) of flexible wire

      
Numéro d'application 18243651
Numéro de brevet 11926098
Statut Délivré - en vigueur
Date de dépôt 2023-09-07
Date de la première publication 2024-03-12
Date d'octroi 2024-03-12
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Fan, Congze
  • Song, Wenzhe
  • Chen, Yiwei
  • Zheng, Jinghua
  • Luo, Linlin

Abrégé

A wire feeding mechanism suitable for fused deposition Additive Manufacturing (AM) of a flexible wire is provided, which includes a support housing. A melting nozzle is arranged at the lower end of the support housing, a hook is connected to the inner wall of the top end of the support housing, a connecting rod is connected to the inner wall of one side of the support housing, a wire drawing mechanism is connected to one end of the connecting rod, the wire drawing mechanism is located at the lower end of the hook, a limiting mechanism and a wire guide mechanism are connected to the inner wall of one side of the support housing, the limiting mechanism is located at the lower end of the wire drawing mechanism, the wire guide mechanism is located at the lower end of the limiting mechanism.

Classes IPC  ?

  • B29C 64/321 - Alimentation
  • B29C 64/118 - Procédés de fabrication additive n’utilisant que des matériaux liquides ou visqueux, p. ex. dépôt d’un cordon continu de matériau visqueux utilisant un matériau filamentaire mis en fusion, p. ex. modélisation par dépôt de fil en fusion [FDM]
  • B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet

53.

ELASTIC COOPERATIVE INFERENCE ARCHITECTURE AND METHOD FOR UAV CLUSTER

      
Numéro d'application 17979008
Statut En instance
Date de dépôt 2022-11-02
Date de la première publication 2024-03-07
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Dong, Chao
  • Qu, Yuben
  • Sun, Hao
  • Wu, Feiyu
  • Ren, Weiqing
  • Wu, Qihui
  • Zhang, Lei

Abrégé

An elastic cooperative inference architecture and method for UAV cluster can dynamically update the scheduling policy according to the status of each node, and can deal with the failure of some nodes. In addition, the elastic cooperative inference architecture and method can process larger scale complex models on the embedded devices with limited performance carried by UAVs by means of cooperative inference, so as to improve the accuracy of intelligent applications. At the same time, the elastic cooperative inference architecture and method can adaptively update the allocation strategy when some nodes are unavailable or recovered, and improve the survivability of UAV cluster through elastic coordination.

Classes IPC  ?

  • H04W 16/26 - Amplificateurs de cellules, p. ex. pour tunnels ou effet d'écran créé par des immeubles

54.

Additive manufacturing device for aerospace truss

      
Numéro d'application 18242529
Numéro de brevet 11911961
Statut Délivré - en vigueur
Date de dépôt 2023-09-06
Date de la première publication 2024-02-27
Date d'octroi 2024-02-27
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Fan, Congze
  • Zheng, Jinghua
  • Song, Wenzhe
  • Chen, Yiwei
  • Liu, Kai

Abrégé

An additive manufacturing device for an aerospace truss includes a raw material input unit, a longitudinal beam forming unit, a longitudinal beam traction unit, a cross beam forming unit and a truss support unit. The raw material input unit stores pre-impregnated wires and pre-impregnated tapes, and a motor drives rollers to convey the pre-impregnated wires and the pre-impregnated tapes forward; the longitudinal beam forming unit is composed of three sets of forming molds, and the pre-impregnated tapes form V-shaped longitudinal beams through heating molds; a stepper motor used in the longitudinal beam traction unit drives three sets of roller traction devices through steering gears to pull formed longitudinal beams; the cross beam forming unit is composed of a motion module and a printing module, and a truss cross beam is printed through a 3D printing method of molten deposition.

Classes IPC  ?

  • B29C 64/218 - Rouleaux
  • B29C 64/236 - Moyens d’entraînement pour un mouvement dans une direction dans le plan d’une couche
  • B29C 64/295 - Éléments de chauffage
  • B29L 31/30 - Véhicules, p. ex. bateaux ou avions, ou éléments de leur carrosserie
  • B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet
  • B33Y 80/00 - Produits obtenus par fabrication additive

55.

HELICOPTER ACTIVE NOISE SUPPRESSION DEVICE INTEGRATING SOUND ARRAY AND ON-PROPELLER CONTROL

      
Numéro d'application 18257610
Statut En instance
Date de dépôt 2022-01-25
Date de la première publication 2024-02-01
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shi, Yongjie
  • Ma, Taihang
  • Hu, Zhiyuan
  • Xu, Guohua
  • Liu, Yang

Abrégé

A helicopter active noise suppression device integrating a sound array and on-propeller control, which relates to the technical field of helicopter noise reduction, includes an annular loudspeaker array, a plurality of force exciters, an error microphone, an Active Noise Cancellation (ANC) controller, a cockpit sensor, and an airborne computer. The annular loudspeaker array is arranged at a rotor hub and unsteady force exciters are arranged at each blade trailing edge to construct a sound field in an reversed phase to the sound wave of an original sound field with an ANC principle, thereby counteracting the noise and realizing the noise reduction of all-domain and all-type helicopter noise.

Classes IPC  ?

  • B64C 27/00 - GiravionsRotors propres aux giravions
  • G10K 11/178 - Procédés ou dispositifs de protection contre le bruit ou les autres ondes acoustiques ou pour amortir ceux-ci, en général utilisant des effets d'interférenceMasquage du son par régénération électro-acoustique en opposition de phase des ondes acoustiques originales

56.

LOW-TEMPERATURE AIRFLOW FOLLOW-UP AUXILIARY SAND DISCHARGE APPARATUS AND METHOD FOR CUTTING FROZEN SAND MOLD

      
Numéro d'application 18008979
Statut En instance
Date de dépôt 2022-06-15
Date de la première publication 2024-01-25
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Yang, Haoqin
  • Liu, Qinjiang

Abrégé

A low-temperature airflow follow-up auxiliary sand discharge apparatus for cutting a frozen sand mold includes a frozen sand mold to be machined, a hollow cutter, a spindle mounted on the hollow cutter, an air pipe, and a refrigeration apparatus connected to one end of the air pipe. The refrigeration apparatus is fixed to an air pump by a valve. An inner cavity of the hollow cutter is provided with a cutter through hole along an axis. An inner cavity of the spindle is provided with a spindle through hole along the axis. An upper end of the spindle is provided with a bearing seat hole for placing a bearing. An outer circle of the bearing matches the bearing seat hole, and an inner circle of the bearing is mounted with an air pipe connector. The air pipe is connected and fixed to the air pipe connector.

Classes IPC  ?

  • B23B 27/10 - Outils de coupe avec une disposition particulière pour le refroidissement
  • B23B 51/04 - Outils pour machines à percer pour trépaner

57.

Trans-media unmanned aerial vehicle device and control method thereof

      
Numéro d'application 17778911
Numéro de brevet 12110138
Statut Délivré - en vigueur
Date de dépôt 2021-06-04
Date de la première publication 2024-01-18
Date d'octroi 2024-10-08
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Deng, Feng
  • Sun, Xiaoyuan

Abrégé

The present disclosure discloses a trans-media unmanned aerial vehicle device and a control method thereof. The trans-media unmanned aerial vehicle device includes a housing, and a piston which is arranged in the housing and is capable of moving in a reciprocating manner in the housing; one end of the housing is provided with an opening; several flying wings are uniformly arranged in a circumferential direction of the piston; the flying wings are rotatably connected to a side of the piston facing the opening and are spread or retracted like an umbrella; and under the pushing of the piston, the flying wings can be spread to the outside of the housing and retracted back into the housing.

Classes IPC  ?

  • B64U 20/50 - Véhicules aériens sans pilote pliables ou repliables
  • B64U 10/10 - Giravions
  • B64U 20/75 - Caractéristiques de construction du corps du véhicule aérien sans pilote le corps étant formé par des plaques assemblées ou par une plaque superposée à un châssis
  • B64U 70/00 - Dispositions pour le lancement, le décollage ou l'atterrissage

58.

UNMANNED AERIAL VEHICLE CONFLICT DETECTION METHOD AND APPARATUS OF AIRSPACE DIGITAL GRID AND STORAGE MEDIUM

      
Numéro d'application CN2022104396
Numéro de publication 2024/007256
Statut Délivré - en vigueur
Date de dépôt 2022-07-07
Date de publication 2024-01-11
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Xie, Hua
  • Zhu, Yongwen
  • Su, Fangzheng
  • Yin, Jianan
  • Yuan, Ligang
  • Yang, Lei
  • Yang, Zhao
  • Bao, Jie
  • Tang, Zhili
  • Wang, Changchun
  • Pu, Fan

Abrégé

The present invention provides an unmanned aerial vehicle conflict detection method and apparatus of an airspace digital grid and a storage medium. The method comprises: establishing an airspace discrete subdivision grid model; constructing a grid coding rule and a conversion relationship of the longitude and latitude coordinates and grid codes; establishing an unmanned aerial vehicle safety protection area to perform gridding representation on an unmanned aerial vehicle in the airspace; establishing a coordinate system to convert the grid codes of the unmanned aerial vehicle into coordinates; utilizing a GJK algorithm to calculate a Minkowski difference set of two blocks; and determining whether the unmanned aerial vehicle conflicts or not according to the Minkowski difference set. By combining airspace grid codes with the GJK algorithm, compared with the traditional paired coordinate operation, the complexity of conflict detection can be effectively reduced, a large amount of calculation time can be saved, and the efficiency of unmanned aerial vehicle conflict detection can be effectively improved, to satisfy rapid real-time conflict detection requirements for the unmanned aerial vehicle in the airspace.

Classes IPC  ?

  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu
  • G01C 21/22 - Tables traçantes
  • G06F 119/02 - Analyse de fiabilité ou optimisation de fiabilitéAnalyse de défaillance, p. ex. performance dans le pire scénario, analyse du mode de défaillance et de ses effets [FMEA]

59.

METHOD FOR EXTRACTING FEATURE PATH SIGNALS OF PIPELINE ULTRASONIC HELICAL GUIDED WAVES

      
Numéro d'application 18176432
Statut En instance
Date de dépôt 2023-02-28
Date de la première publication 2024-01-04
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Qian, Zhenghua
  • Qian, Zhi
  • Li, Peng
  • Yang, Chen

Abrégé

The present disclosure belongs to the technical field of ultrasonic non-destructive testing, and discloses a method for extracting feature path signals of pipeline ultrasonic helical guided waves. The method includes: transforming a nonlinear wave number relationship of a pipe wall into a linear form by first order Taylor expansion, the approximation being reasonable under narrow band excitation; on this basis, establishing multimodal and multipath guided wave propagation over-complete data sets, and obtaining a modal weight factor and a path weight factor through a single-layer neural network algorithm; and multiplying the modal weight factor by the multimodal data set to separate a plurality of groups of unimodal signals from a whole signal, and multiplying the path weight factor by the multipath data set to extract unimodal feature path signals. The present disclosure can effectively extract unimodal unipath guided wave feature signals and improve the signal identification, and has broad prospects.

Classes IPC  ?

  • G01N 29/46 - Traitement du signal de réponse détecté par analyse spectrale, p. ex. par analyse de Fourier
  • G01N 29/04 - Analyse de solides

60.

METHOD AND SYSTEM FOR DETECTING STRUCTURAL DEFECT IN ADDITIVE MANUFACTURING

      
Numéro d'application 18050656
Statut En instance
Date de dépôt 2022-10-28
Date de la première publication 2023-12-28
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zhang, Chao
  • Wang, Zhaomin
  • Ji, Hongli
  • Qiu, Jinhao
  • Tao, Chongcong
  • Wang, Jun

Abrégé

The present disclosure relates to a method and system for detecting a structural defect in additive manufacturing. The method includes: layering a three-dimensional model of an additive manufacturing test piece to obtain a two-dimensional contour of an interface of each layer, and generating a machining path; arranging a non-contact sensor at a fixed measuring point of the additive manufacturing test piece, and acquiring an ultrasonic signal at each machining point when a pulse laser conducts machining point by point along the machining path; forming a visual ultrasonic field based on all the ultrasonic signals, and determining ultrasonic field data; determining, based on the ultrasonic field data, a curve of a peak of an incident wave changing with the machining path; and determining whether a machining defect exists at the machining points based on the curve of the peak of the incident wave changing with the machining path.

Classes IPC  ?

  • G01N 29/06 - Visualisation de l'intérieur, p. ex. microscopie acoustique
  • G01N 29/46 - Traitement du signal de réponse détecté par analyse spectrale, p. ex. par analyse de Fourier
  • G01N 29/22 - Recherche ou analyse des matériaux par l'emploi d'ondes ultrasonores, sonores ou infrasonoresVisualisation de l'intérieur d'objets par transmission d'ondes ultrasonores ou sonores à travers l'objet Détails
  • B33Y 40/00 - Opérations ou équipements auxiliaires, p. ex. pour la manipulation de matériau
  • B33Y 50/00 - Acquisition ou traitement de données pour la fabrication additive

61.

MULTI-VIEW OUTLIER DETECTION FOR POTENTIAL RELATIONSHIP CAPTURE WITH PAIRED COMPARISON AVOIDANCE

      
Numéro d'application 17846149
Statut En instance
Date de dépôt 2022-06-22
Date de la première publication 2023-12-28
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Chen, Songcan
  • Zhong, Yingyu

Abrégé

A multi-view outlier detection algorithm based on the tensor representation is provided. Specifically, the multi-view data are firstly transformed into a set of tensors, and then its low-rank representation is learned. Finally, an outlier function is designed in the case of tensor representation to realize detection.

Classes IPC  ?

  • G06F 17/16 - Calcul de matrice ou de vecteur
  • G06F 17/11 - Opérations mathématiques complexes pour la résolution d'équations

62.

MULTI-DEGREE-OF-FREEDOM ADDITIVE MANUFACTURING BASED PRINTING METHOD FOR HELMET

      
Numéro d'application CN2022107548
Numéro de publication 2023/240747
Statut Délivré - en vigueur
Date de dépôt 2022-07-23
Date de publication 2023-12-21
Propriétaire
  • NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
  • SHANDONG ZHONGKANG GUOCHUANG RESEARCH INSTITUTE OF ADVANCED DYEING & FINISHING TECHNOLOGY CO., LTD. (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Zheng, Jinghua
  • Song, Yaxing
  • Fan, Congze
  • Song, Wenzhe
  • Li, Rong
  • Zhang, Xinlei
  • Zhang, Lei
  • Sha, Qiankun

Abrégé

A multi-degree-of-freedom additive manufacturing based printing method for a helmet. The method comprises: first printing a helmet supporting mold (2) on the basis of the inner surface of a target helmet and by using water-soluble resin; on the basis of the thickness of a feature layer, performing curved-surface equidistant offset layering on a model of the target helmet from inside to outside starting from the inner surface; on the basis of the integrity of a curved-surface layer and by taking a substrate and protrusions as segmentation targets, performing region-by-region traversal and segmentation from inside to outside, and storing slice information; performing shaping processing for an inward shrinking wall thickness on all protruding regions which have been subjected to traversal and segmentation; on the basis of the settings of filling parameters, obtaining filling information of each layer of series curved surfaces of a target workpiece; by means of a multi-degree-of-freedom printing device, performing layer-by-layer filling on a supporting mold along a path setting, so as to complete printing of the target helmet; and finally, placing the helmet and the supporting mold together into a water tank, such that after the mold is dissolved, a final target helmet workpiece (1) is obtained. In the method, a new idea and a new method are provided for realizing additive manufacturing of a helmet workpiece which is of a complex curved-surface structure.

Classes IPC  ?

  • B29C 64/106 - Procédés de fabrication additive n’utilisant que des matériaux liquides ou visqueux, p. ex. dépôt d’un cordon continu de matériau visqueux
  • B29C 64/386 - Acquisition ou traitement de données pour la fabrication additive
  • B29C 64/393 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive

63.

STEPLESS-ADJUSTMENT EFFICIENT ADDITIVE MANUFACTURING METHOD AND DEVICE FOR SPECIALLY SHAPED ROTARY BODY SAND MOLD

      
Numéro d'application CN2022117064
Numéro de publication 2023/240806
Statut Délivré - en vigueur
Date de dépôt 2022-09-05
Date de publication 2023-12-21
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Yang, Haoqin
  • Shan, Zhongde
  • Hu, Yangyang
  • Shi, Jianpei
  • Yan, Dandan
  • Dong, Shijie

Abrégé

A stepless-adjustment efficient additive manufacturing device for a specially shaped rotary body sand mold, the device comprising an aluminum alloy frame (1), and an ink jet system, a shakeout device, a sand scraping device and a Z-axis rotary lifting movement system, which are arranged on the aluminum alloy frame. In the device, quantitative shakeout and uniform sand spreading are implemented on a rotary printing platform by keeping a shakeout box (7), a printing nozzle (3) and a sand scraping plate fixed, and the rotary printing platform can descend accurately and controllably by means of a ball screw (21) device, thereby spreading sand layer by layer and performing printing layer by layer; in addition, the height by which the rotary platform descends is adjusted steplessly, and resin saturation between molding sand particles is adjusted according to a micro-droplet jet printing grayscale, thereby improving the overall printing speed and strength of a sand mold. Further disclosed is a stepless-adjustment efficient additive manufacturing method for a specially shaped rotary body sand mold. The device achieves, with stepless heightwise adjustment, 3D printing of a specially shaped rotary body sand mold. When manufacturing specially shaped rotary bodies, the specially shaped rotary body sand mold has a high forming efficiency and can manufacture specially shaped rotary bodies with a good quality; in addition, the process cost and waste are reduced.

Classes IPC  ?

  • B22C 9/02 - Moules en sable ou moules analogues pour pièces coulées
  • B33Y 10/00 - Procédés de fabrication additive
  • B22C 19/04 - Dispositifs de commande particuliers pour machines à mouler
  • B22C 19/02 - Tables de moulage

64.

Method for preparing negative pressure film-covering frozen sand mold

      
Numéro d'application 18037783
Numéro de brevet 12128474
Statut Délivré - en vigueur
Date de dépôt 2022-09-05
Date de la première publication 2023-12-14
Date d'octroi 2024-10-29
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Yang, Haoqin
  • Shan, Zhongde
  • Liu, Qinjiang
  • Shi, Jianpei
  • Yan, Dandan
  • Dong, Shijie

Abrégé

A method for preparing a negative pressure film-covering frozen sand mold includes: directly obtaining a mold cavity of a sand mold through numerically controlled machining of a frozen sand blank; covering a surface, brushed with a thermal insulation coating, of the mold cavity of the sand mold with a softened thin film, and covering an outer surface of the sand mold with a back film to seal a sand box; fixing the frozen sand mold in an air extraction sand box with a vacuum chamber, and extracting air through a vacuum pump, so that the thin film tightly adheres to the sand mold through vacuum suction force; and closing the box to obtain an integral sand mold, and pouring a casting at room temperature or low temperature under negative pressure. The method is environment-friendly, and the prepared frozen sand mold has high strength and is convenient for sand cleaning.

Classes IPC  ?

  • B22C 9/12 - Traitement des moules ou noyaux, p. ex. séchage, étuvage
  • B22C 9/03 - Moules en sable ou moules analogues pour pièces coulées formés par moulage sous vide

65.

LOW-LIGHT IMAGE ENHANCEMENT METHOD BASED ON REINFORCEMENT LEARNING AND AESTHETIC EVALUATION

      
Numéro d'application CN2023074843
Numéro de publication 2023/236565
Statut Délivré - en vigueur
Date de dépôt 2023-02-07
Date de publication 2023-12-14
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Liang, Dong
  • Li, Ling
  • Huang, Shengjun
  • Chen, Songcan

Abrégé

Disclosed in the present invention is a low-light image enhancement method based on reinforcement learning and aesthetic evaluation. The method comprises: firstly, generating images of an abnormal brightness in different illumination scenes, and constructing a training data set of a reinforcement learning system on the basis of the images; then initializing the training data set, a policy network and a value network in the reinforcement learning system, and updating the policy network and the value network on the basis of a non-reference reward value and an aesthetic evaluation reward value; and outputting an enhanced image result after training is completed. By means of the present invention, an action space range which is defined in reinforcement learning is expanded, such that an enhancement operation which is obtained by an input low-light image has a larger dynamic range, thereby achieving higher flexibility for a real scene, and low-light image enhancement requirements in the real scene can thus be better satisfied. In addition, scores of aesthetic quality evaluations are introduced as a part of a loss function, so that an enhanced image has a better visual effect and a better subjective user evaluation score.

Classes IPC  ?

  • G06T 5/00 - Amélioration ou restauration d'image
  • G06T 7/90 - Détermination de caractéristiques de couleur
  • G06N 20/00 - Apprentissage automatique

66.

EXTREME HIGH-TEMPERATURE IN-SITU TENON JOINT FRETTING FATIGUE EXPERIMENTAL APPARATUS

      
Numéro d'application CN2022115526
Numéro de publication 2023/226224
Statut Délivré - en vigueur
Date de dépôt 2022-08-29
Date de publication 2023-11-30
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Han, Qinan
  • Fang, Jianwen
  • Cui, Haitao
  • Su, Yue
  • Zhang, Hongjian
  • Shi, Huiji

Abrégé

An extreme high-temperature in-situ tenon joint fretting fatigue experimental apparatus, comprising: a loading member (100) used for supporting a tenon test piece (001) and a mortise test piece (002), and applying periodic reciprocating horizontal fatigue load to the tenon test piece (001); a heating member (200) provided below the tenon test piece (001) and the mortise test piece (002) and used for heating the tenon test piece (001) and the mortise test piece (002); a thermal insulation sleeve (300) wrapping the heating member (200); and a control member (400) used for controlling on or off of the loading member (100) and the heating member (200) to apply horizontal fatigue load to the tenon test piece (001) and heating the tenon test piece (001) and the mortise test piece (002). Hot electrons entering a detector are reduced by using a variety of measures, thereby improving the imaging quality of an in-situ scanning electron microscope in an extreme high-temperature environment, and improving the upper limit of experimental temperature. The problem that the high-temperature imaging quality is degraded, the image is whitened, and effective information cannot be observed and the like due to the fact that hot electrons generated by a heating apparatus or a sample in a high-temperature environment interfere with collection of signal electrons performed by the detector is solved.

Classes IPC  ?

  • G01N 3/36 - Recherche des propriétés mécaniques des matériaux solides par application d'une contrainte mécanique en appliquant des efforts répétés ou pulsatoires engendrés par des moyens pneumatiques ou hydrauliques
  • G01N 3/02 - Recherche des propriétés mécaniques des matériaux solides par application d'une contrainte mécanique Parties constitutives
  • G01N 3/04 - Mandrins
  • G01N 1/44 - Traitement d'échantillons mettant en œuvre un rayonnement, p. ex. de la chaleur
  • G01N 23/2251 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en mesurant l'émission secondaire de matériaux en utilisant des microsondes électroniques ou ioniques en utilisant des faisceaux d’électrons incidents, p. ex. la microscopie électronique à balayage [SEM]

67.

THREE-DIMENSIONAL SPECTRUM SITUATION COMPLETION METHOD AND DEVICE BASED ON GENERATIVE ADVERSARIAL NETWORK

      
Numéro d'application 18032573
Statut En instance
Date de dépôt 2022-01-25
Date de la première publication 2023-11-30
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Huang, Yang
  • Zhu, Qiuming
  • Hu, Tianyu
  • Wu, Qihui
  • Gong, Zhiren
  • Wu, Xuan
  • Zhong, Weizhi
  • Mao, Kai
  • Zhang, Xiaofei
  • Lu, Yiwei

Abrégé

A three-dimensional (3D) spectrum situation completion method and device based on a generative adversarial network includes performing graying and coloring preprocessing based on incomplete 3D spectrum situations from historical or empirical spectrum data obtained by a UAV through sampling a target region, obtaining three-channel incomplete 3D spectrum situation maps displayed in colors, forming a training set based on the incomplete 3D spectrum situation maps; training the generative adversarial network based on the training set and obtaining a trained generator network in the generative adversarial network, performing graying and coloring preprocessing based on a measured incomplete 3D spectrum situation obtained by the UAV through sampling a specified measurement region, obtaining a three-channel measured incomplete 3D spectrum situation map displayed in colors, and using the measured incomplete 3D spectrum situation map as input data to the generator network to obtain a three-channel measured complete 3D spectrum situation map displayed in colors.

Classes IPC  ?

  • G06T 11/00 - Génération d'images bidimensionnelles [2D]
  • G06T 7/90 - Détermination de caractéristiques de couleur

68.

METHOD FOR PREPARING NEGATIVE-PRESSURE FILM-COATED FROZEN SAND MOLD

      
Numéro d'application CN2022117063
Numéro de publication 2023/221341
Statut Délivré - en vigueur
Date de dépôt 2022-09-05
Date de publication 2023-11-23
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Yang, Haoqin
  • Shan, Zhongde
  • Liu, Qinjiang
  • Shi, Jianpei
  • Yan, Dandan
  • Dong, Shijie

Abrégé

The present invention provides a method for preparing a negative-pressure film-coated frozen sand mold. The method for preparing the frozen sand mold comprises the following steps: numerical control processing is directly performed on a frozen sand blank to obtain a sand mold cavity; a softened thin film is coated on the surface of the sand mold cavity coated with a heat insulation coating, and meanwhile, a back film is coated on the outer surface of the sand mold to close a sand box; an air extraction sand box provided with a vacuum air chamber is used for fixing the frozen sand mold, air extraction is performed by means of a vacuum pump, and the thin film is tightly attached to the sand mold by means of vacuum suction force; and the whole sand mold is obtained after boxes are combined, negative pressure is kept, and a casting is poured in a normal-temperature or low-temperature environment. The method is environment-friendly and green, and the prepared frozen sand mold is high in strength and convenient to clear sand; the volume of gas generated in the pouring process is small, metal is rapidly solidified, and castings having good internal quality, high size precision, and excellent surface quality can be produced.

Classes IPC  ?

  • B22D 18/06 - Coulée par le vide, c.-à-d. utilisant le vide pour remplir le moule

69.

HIGH-FLEXIBILITY MULTI-REGION SAND-SPREADING METHOD AND DEVICE FOR MULTI-MATERIAL SAND-MOLD PRINTING

      
Numéro d'application CN2022117060
Numéro de publication 2023/221340
Statut Délivré - en vigueur
Date de dépôt 2022-09-05
Date de publication 2023-11-23
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Yang, Haoqin
  • Shan, Zhongde
  • Qiang, Hui
  • Shi, Jianpei
  • Ren, Hongwen
  • Luo, Lei

Abrégé

A high-flexibility multi-region sand-spreading device for multi-material sand-mold printing. The sand-spreading device comprises a printing mechanism (1), a compaction mechanism (2), a vibratory sand-spreading mechanism (3), a machine base ball-screw mechanism (4), a supporting plate (5), a machine base (6) and a ball-screw mechanism (17), wherein the vibratory sand-spreading mechanism, the compaction mechanism and the printing mechanism are mounted on the supporting plate, and jointly slide on the machine base ball-screw mechanism during printing, so as to sequentially complete sand-spreading, compaction and printing operations in a printing region; a sand-spreading box (13) of the vibratory sand-spreading mechanism and a follow-up sand-spreading mechanism are connected to the ball-screw mechanism by means of a moving slide table to achieve two-dimensional movement, and a pressing plate (22) of the compaction mechanism controls lifting by using an electric pushing cylinder (19), a lifting guide column (20) and a bearing (23), so as to achieve a compaction operation after sand-spreading; and the printing mechanism comprises a nozzle transverse beam component (24), a drag chain (25), a transverse base (26) and a print head component (27), and the print head component is driven by the transverse base and the drag chain to achieve two-dimensional movement printing. Further provided is a high-flexibility multi-region sand-spreading method for multi-material sand-mold printing. By means of the device and the method, the printing precision and the flexibility manufacturing capability of multi-material sand-mold integral printing and forming equipment can be improved.

Classes IPC  ?

  • B22C 9/02 - Moules en sable ou moules analogues pour pièces coulées
  • B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet

70.

HELICOPTER FLOW FIELD NUMERICAL SIMULATION SYSTEM AND METHOD BASED ON GRAPHICS PROCESSING UNIT

      
Numéro d'application CN2023091413
Numéro de publication 2023/216915
Statut Délivré - en vigueur
Date de dépôt 2023-04-28
Date de publication 2023-11-16
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Hu, Zhiyuan
  • Shi, Yongjie
  • Xu, Guohua
  • Liu, Yang
  • Zhu, Jiahao

Abrégé

The present invention relates to the field of computer numerical simulation, and provides a helicopter flow field numerical simulation system and method based on a graphics processing unit (GPU). The helicopter flow field numerical simulation system comprises a central processing unit (CPU) (1) and a GPU (2); the CPU (1) is used to: initialize a motion nested grid according to a preset configuration file and a helicopter grid file to be simulated (S1); determine surface batch information according to grid blocks in the motion nested grid (S2); and determine a nested interpolation relationship and an interpolation mapping index between the grid blocks according to the helicopter grid file to be simulated at a current simulation moment, and perform flow field information interaction among the grid blocks according to the nested interpolation relationship, the interpolation mapping index, and flow field information of the grid blocks to obtain flow field information of the helicopter to be simulated (S4); and the GPU (2) is used to calculate the flow field information of the grid blocks in the motion nested grid according to the surface batch information by using a computational fluid dynamics (CFD) method (S3). The CPU and the GPU are combined, such that the simulation efficiency of a helicopter flow field is improved.

Classes IPC  ?

  • G06F 30/28 - Optimisation, vérification ou simulation de l’objet conçu utilisant la dynamique des fluides, p. ex. les équations de Navier-Stokes ou la dynamique des fluides numérique [DFN]

71.

NOZZLE-REPLACEABLE PRINT HEAD FOR CONTINUOUS FIBER PRINTING, AND PRINTING METHOD

      
Numéro d'application CN2022107549
Numéro de publication 2023/216420
Statut Délivré - en vigueur
Date de dépôt 2022-07-23
Date de publication 2023-11-16
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Song, Wenzhe
  • Song, Yaxing
  • Zheng, Jinghua
  • Fan, Congze

Abrégé

A nozzle-replaceable print head for continuous fiber printing, and a printing method. The print head comprises a fixing support (0200), a wire feeding module (0300) located on the upper part of a structure, an upper guide tube (0400), a shearing module (0500) located at the middle of the structure, a lower guide tube (0600), a heat dissipation sleeve (0700), a throat tube (0800), a heating coil (0900), and a nozzle module (1000) located at the bottom of the structure, wherein a continuous fiber-reinforced thermoplastic resin-based pre-impregnated composite wire (0100) coaxially passes through the print head from the other side from top to bottom and is fed for printing. By providing an adjusting groove having a scale indicator, clamping and feeding states of pre-impregnated composite wires (0100) of different specifications are standardized and adjusted; and by providing the upper guide tube (0400) and the half-wrapped lower guide tube (0600), the shearability of the pre-impregnated wires and the subsequent feeding of the broken wires are improved, so that high-efficiency and high-quality formation of a workpiece is achieved, and heterogeneous multi-layer forming printing of a workpiece having a specific application requirement can be achieved.

Classes IPC  ?

  • B29C 64/209 - TêtesBuses
  • B29C 64/118 - Procédés de fabrication additive n’utilisant que des matériaux liquides ou visqueux, p. ex. dépôt d’un cordon continu de matériau visqueux utilisant un matériau filamentaire mis en fusion, p. ex. modélisation par dépôt de fil en fusion [FDM]
  • B33Y 50/02 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive

72.

FILAMENT MELT IMPREGNATION DEVICE HAVING AUTOMATICALLY-LIFTABLE FLOW CHANNEL USED FOR ADDITIVE MANUFACTURING

      
Numéro d'application CN2022107550
Numéro de publication 2023/216421
Statut Délivré - en vigueur
Date de dépôt 2022-07-23
Date de publication 2023-11-16
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Song, Wenzhe
  • Wang, Jingxuan
  • Fan, Congze
  • Zheng, Jinghua

Abrégé

Disclosed in the present invention is a composite material filament melt impregnation device having an automatically-liftable flow channel used for additive manufacturing, which comprises a mechanically lifting device, a heating device, a curved resin impregnation flow channel, a filament-guiding block, a single-screw extruder, a replaceable combined mold nozzle and a resin riser. The present invention can greatly improve the efficiency of replacing filaments and dealing with broken filaments during a continuous fiber filament forming process, thereby reducing the operation difficulty in the production process and guaranteeing the safety of operators. By designing the resin riser, the internal pressure of a melt cavity can be dynamically adjusted within a small range during the production process, so that the product quality stability is improved, and finally, the continuous production and rapid replacement of high-performance continuous fiber composite material filaments are achieved.

Classes IPC  ?

  • B29B 11/10 - Moulage par extrusion
  • B29B 11/16 - Fabrication de préformes caractérisées par la structure ou la composition comprenant des charges ou des agents de renforcement
  • B29C 64/314 - Préparation
  • B33Y 40/10 - Prétraitement

73.

Electrochemical machining device and method for blisk using electrode array

      
Numéro d'application 18347260
Numéro de brevet 11878360
Statut Délivré - en vigueur
Date de dépôt 2023-07-05
Date de la première publication 2023-11-09
Date d'octroi 2024-01-23
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zhu, Di
  • Duan, Shuanglu
  • Liu, Jia
  • Zhu, Dong

Abrégé

The present disclosure provides an electrochemical machining device and a method for a blisk using an electrode array, which relate to the technical field of electrochemical machining. The electrochemical machining device comprises an outer ring-shaped rotating ring, an inner ring-shaped base and a plurality of cathode rods. An inner diameter of the outer ring-shaped rotating ring is larger than an outer diameter of the inner ring-shaped base, and an inner diameter of the inner ring-shaped base is larger than an outer diameter of the blisk. The outer ring-shaped rotating ring and the inner ring-shaped base are coaxially arranged. Middle parts of the cathode rods are connected with the inner ring-shaped base, outer ends of the cathode rods are rotatably connected with the outer ring-shaped rotating ring, and inner ends of the cathode rods are provided with trepanning cathode pieces or radial feeding electrodes.

Classes IPC  ?

  • B23H 9/10 - Usinage d'aubes de turbine ou de buses
  • B23H 3/04 - Électrodes spécialement adaptées à cet effet ou leur fabrication
  • B23H 7/12 - Disques-électrodes tournants

74.

Multi-channel electrochemical machining device and method for blisk

      
Numéro d'application 18138610
Numéro de brevet 12023750
Statut Délivré - en vigueur
Date de dépôt 2023-04-24
Date de la première publication 2023-10-26
Date d'octroi 2024-07-02
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Liu, Jia
  • Duan, Shuanglu
  • Zhu, Di

Abrégé

Disclosed are a multi-channel electrochemical machining device and method for a blisk, and relate to the technical field of blisk electrochemical machining. The multi-channel electrochemical machining device for a blisk comprises an electrolytic bath used for accommodating an electrolyte, a blisk workpiece, a tube electrode and a top cover plate. The top cover plate is located above the blisk workpiece. An electrolysis chamber used for the tube electrode to electrolyze the blisk workpiece is formed between the lower surface of the top cover plate and the surface of the blisk workpiece. The electrolysis chamber communicates with the electrolytic bath. A drainage seam communicating the electrolysis chamber and the electrolytic bath along the axial direction of the blisk workpiece is formed in the upper surface of the top cover plate.

Classes IPC  ?

  • B23H 3/04 - Électrodes spécialement adaptées à cet effet ou leur fabrication
  • B23H 3/10 - Alimentation en milieu d'usinage ou régénération de celui-ci
  • B23H 9/10 - Usinage d'aubes de turbine ou de buses
  • B23H 11/00 - Appareils auxiliaires ou détails non prévus ailleurs

75.

POROUS SEALING PLATE AND PREPARATION METHOD THEREFOR

      
Numéro d'application CN2022125799
Numéro de publication 2023/197548
Statut Délivré - en vigueur
Date de dépôt 2022-10-18
Date de publication 2023-10-19
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Chen, Zhaofeng
  • Yang, Lixia

Abrégé

Provided in the present invention are a porous sealing plate and a preparation method therefor, which belong to the technical field of sealing plates. The porous sealing plate comprises an enclosure frame, a core material, a getter and a membrane material, wherein the getter is located in the core material, and the core material has an aperture and is an inorganic powder and/or fiber; the enclosure frame has a continuous outline structure, is made of an engineering plastic, and is located at the periphery of the core material, the aperture of the core material or both the periphery and the inner aperture of the core material; the membrane material is an aluminum-plastic composite membrane, a polyimide composite membrane, a metallized membrane or an inorganic non-metal coated plastic composite membrane; and the membrane material wraps the surface of the core material. By controlling the enclosure frame structure of an engineering plastic, the free design of the appearance and the inner aperture structure of a porous sealing plate having a complex structure is achieved, a breakthrough is made to the single and unchanged structural appearance characteristic caused by vacuum sealing of a traditional porous sealing plate, the porous sealing plate can adapt to the heat preservation and heat insulation of a complex structure, and the application range thereof is widened; moreover, the flatness of the appearance or the inner aperture of the porous sealing plate is improved by the enclosure frame of the engineering plastic, and the porous sealing plate is not prone to deformation.

Classes IPC  ?

  • F16L 59/065 - Dispositions utilisant une couche d'air ou le vide utilisant le vide

76.

Semantic segmentation method for aircraft point cloud based on voxelization and three views

      
Numéro d'application 18320280
Numéro de brevet 11836896
Statut Délivré - en vigueur
Date de dépôt 2023-05-19
Date de la première publication 2023-10-12
Date d'octroi 2023-12-05
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Xiao, Kun
  • Li, Zikuan
  • Zhong, Tianchi

Abrégé

A semantic segmentation method for aircraft point cloud based on voxelization and three views, including: filtering a collected point cloud followed by centralization to obtain a centralized point cloud; inputting the centralized point cloud into a T-Net rotation matrix network; rotating the centralized point cloud to a front side followed by voxelization to obtain a voxelized point cloud; subjecting the voxelized point cloud to voxel filling to obtain a voxel-filled point cloud; calculating thickness maps of three views of the voxel-filled point cloud, followed by sequentially stitching and inputting to the point cloud semantic segmentation network to train the point cloud semantic segmentation network; inputting the collected point cloud into the trained point cloud semantic segmentation network; and predicting a result semantic segmentation of a 3D point cloud of the aircraft.

Classes IPC  ?

  • G06T 3/60 - Rotation d’images entières ou de parties d'image
  • G06T 3/40 - Changement d'échelle d’images complètes ou de parties d’image, p. ex. agrandissement ou rétrécissement

77.

Method for implementing fault diagnosis by means of spread spectrum carrier

      
Numéro d'application 18005974
Numéro de brevet 11990951
Statut Délivré - en vigueur
Date de dépôt 2021-10-19
Date de la première publication 2023-10-12
Date d'octroi 2024-05-21
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Li
  • Chen, Weijia

Abrégé

A method for implementing fault diagnosis by means of a spread spectrum carrier includes the following steps: designing incident signal parameters, selecting a spread spectrum sequence for fault detection, determining a center frequency and a sequence length of a spread spectrum code, and segmenting and transforming a power carrier source signal; using the fault detection spread spectrum sequence as a carrier spread spectrum code, and performing spread spectrum modulation on the transformed power carrier source signal to generate an SSPLCR sequence; coupling the SSPLCR sequence to a cable to be tested, and when the cable works normally without failure, transmitting the SSPLCR signal to the receiving terminal via the cable; when the cable fails, reflecting the SSPLCR signal back to the transmitting terminal.

Classes IPC  ?

  • H04B 3/46 - SurveillanceTests
  • H04B 1/7087 - Aspects de la synchronisation de la porteuse
  • H04B 3/54 - Systèmes de transmission par lignes de réseau de distribution d'énergie

78.

Feature-guided scanning trajectory optimization method for three-dimensional measurement robot

      
Numéro d'application 18321840
Numéro de brevet 11938636
Statut Délivré - en vigueur
Date de dépôt 2023-05-23
Date de la première publication 2023-10-05
Date d'octroi 2024-03-26
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Zeng, Hangbin
  • Liu, Yuanpeng
  • Kang, Zhengshui
  • Yang, Jianping

Abrégé

A feature-guided scanning trajectory optimization method for a 3D measurement robot, including: building a 3D digital model of an aircraft surface; obtaining a size of the 3D digital model; extracting features to be measured; classifying the features to be measured; calculating a geometric parameter of each type of features to be measured; generating an initial scanning trajectory of each type of features to be measured; building a constraint model of the 3D measurement robot; optimizing the initial scanning trajectory into a local optimal scanning trajectory; and planning a global optimal scanning trajectory of each type of features to be measured on the aircraft surface by using a modified ant colony optimization algorithm.

Classes IPC  ?

  • B25J 9/16 - Commandes à programme
  • G01B 21/20 - Dispositions pour la mesure ou leurs détails, où la technique de mesure n'est pas couverte par les autres groupes de la présente sous-classe, est non spécifiée ou est non significative pour mesurer des contours ou des courbes, p. ex. pour déterminer un profil
  • B25J 19/02 - Dispositifs sensibles

79.

METHOD FOR FEATURE DETECTION OF COMPLEX DEFECTS BASED ON MULTIMODAL DATA

      
Numéro d'application 17972942
Statut En instance
Date de dépôt 2022-10-25
Date de la première publication 2023-10-05
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Wu, Yuxiang
  • Li, Dawei
  • Zhang, Yuan

Abrégé

The present disclosure disclose a method for feature detection of complex defects based on multimodal data, including feature extraction of multimodal data, multimodal feature cross-guided learning, multimodal feature fusion, and defect classification and regression. Feature extraction networks for multimodal two-dimensional data are constructed first, and a defect data set is sent to the networks for training; during training, cross-guided learning is implemented by using a multimodal feature cross-guidance network; then feature fusion is performed by using a weight adaptive method; and finally a defect detection task is implemented by using a classification subnetwork and a regression subnetwork. In the present disclosure, fusion of the multimodal data in a process of feature detection of the complex defects can be implemented efficiently, a capability of detecting the complex defects in an industrial environment can be improved more effectively, and production efficiency in an industrial manufacturing process is ensured.

Classes IPC  ?

  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06V 10/774 - Génération d'ensembles de motifs de formationTraitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source méthodes de Bootstrap, p. ex. "bagging” ou “boosting”
  • G06V 10/80 - Fusion, c.-à-d. combinaison des données de diverses sources au niveau du capteur, du prétraitement, de l’extraction des caractéristiques ou de la classification

80.

VARIABLE TRACK-BASED BLOCKAGE-RESISTANT SCHEDULING POLICY FOR OHT TRANSPORT SYSTEM

      
Numéro d'application CN2022103600
Numéro de publication 2023/184770
Statut Délivré - en vigueur
Date de dépôt 2022-07-04
Date de publication 2023-10-05
Propriétaire
  • NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
  • MIRACLE AUTOMATION ENGINEERING CO., LTD. (Chine)
Inventeur(s)
  • Qian, Xiaoming
  • Lou, Peihuang
  • Guo, Dahong
  • Zhai, Jingjing

Abrégé

A variable track-based blockage-resistant scheduling policy for an OHT transport system. The policy comprises: according to a task scheduling method, allocating a policy to an OHT trolley, and determining the shortest path and track change points in the path according to a path planning method; according to a travel time prediction method, predicting the time at which the trolley passes each track change point, and sorting the times. The trolley executes a task according to a planned path, and a variable track changes tracks in advance according to the passing sequence and trolley status, and waits for the trolley to pass; when the trolley reaches a target station point, a station track moves to a working state, a stopper block operates, and the trolley starts loading or unloading; after the trolley completes loading or unloading and a preparation track of the station track has no trolley, the stopper block is released, and the station track moves to an idle state; finally, when the trolley completes the task, the system state is updated. According to the method, a variable track and a station track are employed, solving the problems in the existing technology of the utilization rate of fixed track resources being low and station points being blocked.

Classes IPC  ?

  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"

81.

Semantic learning-based down-sampling method of point cloud data of aircraft

      
Numéro d'application 18316317
Numéro de brevet 11830164
Statut Délivré - en vigueur
Date de dépôt 2023-05-12
Date de la première publication 2023-09-28
Date d'octroi 2023-11-28
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Shan, Zhongde
  • Zhang, Kaijun
  • Li, Zikuan
  • Li, Chao

Abrégé

This application discloses a semantic learning-based down-sampling method of point cloud data of an aircraft, including: (S1) constructing a multi-input encoder based on feature learning according to point cloud semantic learning principle; inputting the point cloud data of the aircraft and feature point data into the multi-input encoder for feature fusion followed by decoding using a decoder the multi-input feature fused data to obtain to-be-measured data; (S2) constructing and training a point cloud feature weight calculation network based on semantic learning to acquire a feature weight of each point in the to-be-measured data; and (S3) performing spatial weighted sampling on the feature weight of each point in the to-be-measured data followed by down-sampling based on Gaussian distribution-based spatial sampling principle.

Classes IPC  ?

  • G06T 3/40 - Changement d'échelle d’images complètes ou de parties d’image, p. ex. agrandissement ou rétrécissement

82.

CROSS-SCALE DEFECT DETECTION METHOD BASED ON DEEP LEARNING

      
Numéro d'application 18321527
Statut En instance
Date de dépôt 2023-05-22
Date de la première publication 2023-09-28
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Shan, Zhongde
  • Dai, Li
  • Li, Dawei

Abrégé

A cross-scale defect detection method based on deep learning, including: (S1) building a vision data acquisition system to acquire a surface image of a part to be processed; and building a defect dataset; (S2) building a deep learning-based cross-scale defect detection model; and inputting the defect dataset obtained in the step (S1) into the deep learning-based cross-scale defect detection model for model training; and (S3) building a defect detection system according to the deep learning-based cross-scale defect detection model and the vision data acquisition system; and detecting a defect of the surface image of the part to be processed.

Classes IPC  ?

  • G06T 7/00 - Analyse d'image
  • G06V 20/70 - Étiquetage du contenu de scène, p. ex. en tirant des représentations syntaxiques ou sémantiques
  • G06V 10/77 - Traitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source
  • G06V 10/80 - Fusion, c.-à-d. combinaison des données de diverses sources au niveau du capteur, du prétraitement, de l’extraction des caractéristiques ou de la classification

83.

POINT CLOUD DENOISING METHOD BASED ON MULTI-LEVEL ATTENTION PERCEPTION

      
Numéro d'application 18049203
Statut En instance
Date de dépôt 2022-10-24
Date de la première publication 2023-09-28
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Huang, Anyi
  • Wang, Zhoutao
  • Liu, Yuanpeng

Abrégé

The present disclosure provides a point cloud denoising method based on multi-level attention perception, including the following steps: constructing a data set of point cloud denoising; constructing a point cloud denoising neural network, including a patch feature encoder, a global level perception module, a global level attention module, and a multi-offset decoder module, and training a network model by using the data set of point cloud denoising; for input point cloud, separately obtaining a neighborhood patch of a point of each original data point, and inputting coordinates of each data point in the neighborhood patch of a point to a trained denoising neural network to obtain a location offset of each original point; and separately adjusting, based on the obtained location offset, a location corresponding to each original data point in the input point cloud, to complete point cloud denoising.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06T 5/00 - Amélioration ou restauration d'image

84.

Method for ultrasonic guided wave quantitative imaging in form of variable array

      
Numéro d'application 18176439
Numéro de brevet 11768180
Statut Délivré - en vigueur
Date de dépôt 2023-02-28
Date de la première publication 2023-09-26
Date d'octroi 2023-09-26
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Qian, Zhenghua
  • Qian, Zhi
  • Li, Peng
  • Wu, Xianwei
  • Yang, Chen
  • Zhang, Yinghong

Abrégé

k to be solved. According to the present disclosure, by adjusting the arrays, the number of probes and appropriate solution algorithm can be selected based on the testing accuracy; and the method can achieve quantitative evaluation of non-destructive testing, and can be widely used in practical guided wave testing applications of industrial non-destructive testing.

Classes IPC  ?

85.

METHOD FOR ANALYZING MINOR DEFECT BASED ON PROGRESSIVE SEGMENTATION NETWORK

      
Numéro d'application 18049202
Statut En instance
Date de dépôt 2022-10-24
Date de la première publication 2023-09-21
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Tu, Qifan
  • Li, Dawei
  • Yi, Cheng

Abrégé

The present disclosure provides a method for analyzing a minor defect based on a progressive segmentation network, including: acquiring an original image for a surface of a component, and cropping the original image into a plurality of patches; inputting each of the patches to a minor defect feature extraction network to extract an image feature; classifying the patch into a defective image or a non-defective background image according to an extracted image feature; inputting an extracted image feature of the defective image to a defect segmentation network to obtain a segmentation mask image of a corresponding defect; and quantitatively analyzing the defect according to the segmentation mask image to obtain information such as an area, a length and a width of the defect.

Classes IPC  ?

  • G06T 7/00 - Analyse d'image
  • G06T 7/194 - DécoupageDétection de bords impliquant une segmentation premier plan-arrière-plan
  • G06T 7/12 - Découpage basé sur les bords

86.

METHOD FOR MULTI-VIEW POINT CLOUD REGISTRATION FOR WHOLE AIRCRAFT BASED ON SPHERICAL HARMONIC FEATURE (SHF)

      
Numéro d'application 18169985
Statut En instance
Date de dépôt 2023-02-16
Date de la première publication 2023-09-21
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Zhang, Yuan
  • Li, Hu
  • Li, Zuikuan

Abrégé

The present disclosure discloses a method for multi-view point cloud registration for a whole aircraft based on a spherical harmonic feature (SHF). Gaussian sphere projection is mainly performed on a local point cloud. An SHF of each point is obtained by using a spherical harmonic transform technology. A constraint correspondence between feature points is found based on an SHF of each point in the point cloud. Multi-view point cloud data registration is performed according to an optimization graph method under a constraint of the SHF. A key of multi-view point cloud registration is to search for feature constraint relationships between different observation stations and perform non-linear solution based on these relationships, so as to obtain a pose parameter of a point cloud in each viewing angle.

Classes IPC  ?

  • G06T 19/20 - Édition d'images tridimensionnelles [3D], p. ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties
  • G06T 3/00 - Transformations géométriques de l'image dans le plan de l'image
  • G06T 5/00 - Amélioration ou restauration d'image
  • G06T 7/64 - Analyse des attributs géométriques de la convexité ou de la concavité

87.

Few-shot defect detection method based on metric learning

      
Numéro d'application 18316326
Numéro de brevet 11823425
Statut Délivré - en vigueur
Date de dépôt 2023-05-12
Date de la première publication 2023-09-07
Date d'octroi 2023-11-21
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Shan, Zhongde
  • Hua, Shiyan
  • Li, Dawei

Abrégé

2N) based on metric learning; and performing target feature extraction and metric learning in sequence to realize rapid identification and location of defects.

Classes IPC  ?

  • G06V 10/774 - Génération d'ensembles de motifs de formationTraitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source méthodes de Bootstrap, p. ex. "bagging” ou “boosting”
  • G06T 7/00 - Analyse d'image
  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06T 7/73 - Détermination de la position ou de l'orientation des objets ou des caméras utilisant des procédés basés sur les caractéristiques
  • G06V 10/77 - Traitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux

88.

ULTRASOUND-ASSISTED PENETRATION AND UNIFORM FORMING DEVICE AND METHOD FOR FREEZING AND PRINTING LIQUID DROP

      
Numéro d'application CN2022117061
Numéro de publication 2023/165106
Statut Délivré - en vigueur
Date de dépôt 2022-09-05
Date de publication 2023-09-07
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Yang, Haoqin
  • Shi, Jianpei
  • Liu, Qinjiang
  • Dai, Yufeng
  • Liao, Wanneng

Abrégé

An ultrasound-assisted penetration and uniform forming device for freezing and printing a liquid drop. The ultrasound-assisted penetration and uniform forming device for freezing and printing a liquid drop comprises an array nozzle (2), a sand spreading device (1), an ultrasonic generator (3), a transducer (4), an amplitude transformer (5) and a low-temperature forming chamber (6). The ultrasonic generator uses a low-frequency ultrasonic wave of 20 KHz, and a nodal surface of the amplitude transformer is provided with a flange plate and is connected to an outer cavity wall of the low-temperature forming chamber by means of threads. An ultrasound-assisted penetration and uniform forming method for freezing and printing a liquid drop. In a sand spreading process, a frequency of an ultrasonic generator is adjusted to uniformly distribute pre-spread molding sand particles subjected to ultrasonic vibration; and when a pure water binder is sprayed, a liquid drop is sprayed to a surface of pre-mixed molding sand, and the liquid drop penetrates to the bottom of pre-cooled molding sand to freeze and solidify under the assistance of a low-frequency ultrasonic wave. By means of the method, sand mold freezing and 3D printing is carried out, the sand spreading is compact and uniform, liquid drop penetration is sufficient, and the forming precision of sand mold freezing and printing is accurate and controllable.

Classes IPC  ?

  • B22C 9/02 - Moules en sable ou moules analogues pour pièces coulées
  • B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet
  • B33Y 10/00 - Procédés de fabrication additive
  • B33Y 40/00 - Opérations ou équipements auxiliaires, p. ex. pour la manipulation de matériau

89.

Method for analyzing fuselage profile based on measurement data of whole aircraft

      
Numéro d'application 18313410
Numéro de brevet 11941329
Statut Délivré - en vigueur
Date de dépôt 2023-05-08
Date de la première publication 2023-08-31
Date d'octroi 2024-03-26
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Zhong, Tianchi
  • Shan, Zhongde
  • Zhang, Yuan
  • Xiao, Kun

Abrégé

l median curve-skeleton concept of point cloud, extracting a medial axis from the point-cloud data of the fuselage component; uniformly sampling the medial axis into a plurality of skeleton points; extracting a discrete point set of a cross-section contour of the fuselage component; performing circle fitting on the discrete point set to obtain a fitted circle and parameters thereof; calculating a deformation displacement measurement indicator μ of the cross-section of the fuselage component to evaluate cross-section contour of the fuselage.

Classes IPC  ?

  • G06F 30/15 - Conception de véhicules, d’aéronefs ou d’embarcations
  • B64C 1/00 - FuselagesCaractéristiques structurales communes aux fuselages, voilures, surfaces stabilisatrices ou organes apparentés

90.

Method and device for measuring four-dimensional (4D) radiation pattern of outdoor antenna based on unmanned aerial vehicle (UAV)

      
Numéro d'application 18025681
Numéro de brevet 11783713
Statut Délivré - en vigueur
Date de dépôt 2021-05-06
Date de la première publication 2023-08-31
Date d'octroi 2023-10-10
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wu, Qihui
  • Zhu, Qiuming
  • Lan, Tianxu
  • Huang, Yang
  • Li, Jie
  • Du, Xiaofu
  • Zhong, Weizhi
  • Han, Lu
  • Bai, Yunpeng
  • Zhang, Junjie
  • Mao, Kai

Abrégé

A method and a device for measuring a four-dimensional (4D) radiation pattern of an outdoor antenna based on an unmanned aerial vehicle (UAV) are provided. The device includes a measurement path planning unit, a UAV platform unit, a radiation signal acquisition unit, a data command processing unit, and a ground data processing unit. The measurement path planning unit, the radiation signal acquisition unit, and the data command processing unit each are suspended from the UAV platform unit by using a pod. The present disclosure applies to the radiation pattern measurement of an outdoor antenna.

Classes IPC  ?

  • G08G 5/00 - Systèmes de contrôle du trafic aérien
  • G05D 1/10 - Commande de la position ou du cap dans les trois dimensions simultanément
  • G05D 1/00 - Commande de la position, du cap, de l'altitude ou de l'attitude des véhicules terrestres, aquatiques, aériens ou spatiaux, p. ex. utilisant des pilotes automatiques

91.

ELECTROWETTING EFFECT-BASED SOLAR-DRIVEN HIGH EFFICIENCY HUMIDIFIER SYSTEM AND WORKING METHOD

      
Numéro d'application CN2022140004
Numéro de publication 2023/160161
Statut Délivré - en vigueur
Date de dépôt 2022-12-19
Date de publication 2023-08-31
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • He, Weifeng
  • Gao, Yanfei
  • Han, Dong
  • Pu, Wenhao
  • Yao, Zhaohui
  • Shi, Qile

Abrégé

An electrowetting effect-based solar-driven high efficiency humidification system and a working method. A photovoltaic power generation module and an electrowetting high efficiency humidification module are combined, which conform to a solar energy transfer principle in a PV/T device, while liquid droplets are also sprayed at regular intervals on an upper surface of a heat exchange flow channel in the PV/T device, the principles of acceleration of liquid droplet internal flow and a change to surface hydrophilicity/hydrophobicity by electrowetting technology are used, liquid drop evaporation is accelerated, and highly efficient humidification of air is achieved. By means of coupled utilization of electrowetting technology and a PV/T system, water is saved while a large amount of moist air and clean electric energy which can be used for actual production are obtained.

Classes IPC  ?

  • F24F 6/08 - Humidification de l'air par évaporation d'eau dans l'air en utilisant des éléments humides chauffés
  • F24F 3/14 - Systèmes de conditionnement d'air dans lesquels l'air conditionné primaire est fourni par une ou plusieurs stations centrales aux blocs de distribution situés dans les pièces ou enceintes, blocs dans lesquels il peut subir un traitement secondaireAppareillage spécialement conçu pour de tels systèmes caractérisés par le traitement de l'air autrement que par chauffage et refroidissement par humidificationSystèmes de conditionnement d'air dans lesquels l'air conditionné primaire est fourni par une ou plusieurs stations centrales aux blocs de distribution situés dans les pièces ou enceintes, blocs dans lesquels il peut subir un traitement secondaireAppareillage spécialement conçu pour de tels systèmes caractérisés par le traitement de l'air autrement que par chauffage et refroidissement par déshumidification

92.

Subtle defect detection method based on coarse-to-fine strategy

      
Numéro d'application 18306166
Numéro de brevet 11790517
Statut Délivré - en vigueur
Date de dépôt 2023-04-24
Date de la première publication 2023-08-17
Date d'octroi 2023-10-17
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Shan, Zhongde
  • Jia, Shuyi
  • Li, Dawei
  • Wu, Yuxiang

Abrégé

A subtle defect detection method based on coarse-to-fine strategy, including: (S1) acquiring data of an image to be detected via a charge-coupled device (CCD) camera; (S2) constructing a defect area location network and preprocessing the image to be detected to initially determine a defect position; (S3) constructing a defect point detection network; and training the defect point detection network by using a defect segmentation loss function; and (S4) subjecting subtle defects in the image to be detected to quantitative extraction and segmentation via the defect point detection network.

Classes IPC  ?

  • G06T 7/00 - Analyse d'image
  • G06T 7/73 - Détermination de la position ou de l'orientation des objets ou des caméras utilisant des procédés basés sur les caractéristiques

93.

VIRTUAL STRAIN ENERGY-BASED METAL MATERIAL MULTI-AXIS FATIGUE LIFE PREDICTION METHOD AND SYSTEM

      
Numéro d'application CN2022107269
Numéro de publication 2023/151233
Statut Délivré - en vigueur
Date de dépôt 2022-07-22
Date de publication 2023-08-17
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Yingyu
  • Wang, Wenxuan
  • Gong, Shuai
  • Zhang, Xiaofan
  • Yao, Weixing

Abrégé

A virtual strain energy-based metal material multi-axis fatigue life prediction method and system, belonging to the field of life prediction of metal materials for additive manufacturing. The method comprises: carrying out finite element analysis on a metal component, determining a dangerous point, and solving a stress-strain load-time history at the dangerous point; calculating shear strain energy in each plane passing the dangerous point, taking the plane having the maximum shear strain energy as a critical plane, and obtaining the shear strain energy and a multi-axis stress ratio on the critical plane; and calculating virtual strain energy at the dangerous point and using a shear strain energy life curve under a torsion load to perform life prediction, the virtual strain energy being strain energy obtained after normalization processing is performed on shear strain energy in the shear strain energy life curve under a single-axis tension-compression load and the torsion load. The method considers the influences of a load path on damage parameter coefficients and exponents at the same time, simply determines parameters, and can be suitable for fatigue life analysis of low-cycle and high-cycle fatigues under different load paths at the same time.

Classes IPC  ?

  • G06F 30/17 - Conception mécanique paramétrique ou variationnelle

94.

SWITCHED CAPACITOR CONVERTER (SC) AND ELECTRONIC DEVICE

      
Numéro d'application CN2022141582
Numéro de publication 2023/142820
Statut Délivré - en vigueur
Date de dépôt 2022-12-23
Date de publication 2023-08-03
Propriétaire
  • HUAWEI TECHNOLOGIES CO., LTD. (Chine)
  • NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Ruan, Xinbo
  • Ye, Gang
  • Yao, Kai
  • Shao, Fanguang
  • Hou, Qinghui

Abrégé

The embodiments of the present application relate to the technical field of electronics. Provided are a switched capacitor converter (SC) and an electronic device, which can freely switch various buck ratios. In the SC, a first end of a first switched circuit is connected to a power supply end, a second end of the first switched circuit is connected to a first end of a third capacitor, a third end of the first switched circuit is connected to a first end of a second switched circuit and a first end of a first capacitor, a fourth end of the first switched circuit is connected to a first end of a second capacitor, and a fifth end of the first switched circuit is connected to a first end of a third switched circuit, a first end of a fourth switched circuit and a first end of a fourth capacitor; a second end of the third capacitor is connected to a second end of the second switched circuit, and a third end of the second switched circuit is grounded; and a second end of the second capacitor is connected to a second end of the third switched circuit, a third end of the third switched circuit is grounded, a second end of the first capacitor is connected to a second end of the fourth switched circuit, a third end of the fourth switched circuit is grounded, and a second end of the fourth capacitor is grounded.

Classes IPC  ?

  • H02M 3/158 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs avec commande automatique de la tension ou du courant de sortie, p. ex. régulateurs à commutation comprenant plusieurs dispositifs à semi-conducteurs comme dispositifs de commande finale pour une charge unique

95.

HELICOPTER ROTOR MANIPULATION DEVICE BASED ON PITCH VARYING OF HYDRAULIC TORSION TUBE

      
Numéro d'application CN2022077064
Numéro de publication 2023/142204
Statut Délivré - en vigueur
Date de dépôt 2022-02-21
Date de publication 2023-08-03
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Gao, Yadong
  • Huang, Dawei

Abrégé

Provided in the present invention is a helicopter rotor manipulation device based on the pitch varying of a hydraulic torsion tube. The helicopter rotor manipulation device comprises a blade structure, a variable-pitch clamp system and a hydraulic system. The blade structure comprises blades, clamps and a rotor hub, which are connected in sequence by fasteners, wherein the rotor hub is connected to a rotor spindle. In the variable-pitch clamp system, a variable-pitch sleeve is located between a fixed rotor clamp and a rotating rotor clamp, an outer end face of the variable-pitch sleeve is fixedly connected to the rotating rotor clamp, and an inner end face of the variable-pitch sleeve is fixedly connected to the fixed rotor clamp. When the pressure inside the variable-pitch sleeve changes, a torsion angle generated at two ends of the variable-pitch sleeve drives the rotating rotor clamp to be angularly displaced, such that the angle of attack of the blades is controlled. The present invention uses a design having no auto-bank unit, such that the structure is simplified, and the reliability of a rotor system is improved. Meanwhile, the number of manipulation structures can also be reduced, thereby reducing the weight of the structure and maintenance costs, and further improving the reliability of a helicopter.

Classes IPC  ?

  • B64C 11/38 - Mécanismes de changement de pas des pales par fluide, p. ex. hydrauliques

96.

DISTRIBUTED PUMPED TWO-PHASE COOLING SYSTEM FOR AIRCRAFT

      
Numéro d'application CN2022093801
Numéro de publication 2023/142314
Statut Délivré - en vigueur
Date de dépôt 2022-05-19
Date de publication 2023-08-03
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Xu, Yu
  • Wang, Jiale
  • Duan, Xuwen

Abrégé

The present invention relates to a distributed pumped two-phase cooling system for an aircraft. In the cooling system, a liquid storage tank, a precooling device, a pump, a flow meter, a preheater, a first valve group, a heat source group, a condensing device, a reheater, and the liquid storage tank are successively connected, and a first sensor group is arranged on the liquid storage tank; a second sensor group is arranged between the precooling device and the pump, and a third sensor group is arranged between the preheater and the first valve group; a fifth sensor group is arranged on the heat source group; a sixth sensor group and a seventh sensor group are both arranged between the heat source group and the condensing device; a fourth sensor group is arranged between the reheater and the liquid storage tank, and a controller is connected to the sensor groups, the precooling device, the pump, the preheater, the reheater, the first valve group, and the condensing device, respectively. The present invention can solve the problem of collaborative heat dissipation of aircraft-borne apparatuses.

Classes IPC  ?

  • H05K 7/20 - Modifications en vue de faciliter la réfrigération, l'aération ou le chauffage

97.

Method for calculating gaseous diffusion and oxidation evolution of ceramic matrix composite (CMC) structure

      
Numéro d'application 17586384
Numéro de brevet 12060300
Statut Délivré - en vigueur
Date de dépôt 2022-01-27
Date de la première publication 2023-07-27
Date d'octroi 2024-08-13
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Gao, Xiguang
  • Song, Yingdong
  • Yu, Guoqiang
  • Zhang, Sheng
  • Shi, Xiaoting
  • Ni, Zheng

Abrégé

A method is provided for calculating gaseous diffusion and oxidation evolution of a ceramic matrix composite (CMC) structure, which includes determining temperature and load distribution in a structural member; determining matrix crack distribution in the structure; establishing an equivalent diffusion coefficient model of a fiber bundle scale to predict a gas flow channel in a fiber bundle: averaging a total amount of gaseous diffusion in the channel to establish the equivalent diffusion coefficient model of the fiber bundle composite scale related to the matrix crack distribution; establishing a representative volume element (RVE) model; establishing an equivalent diffusion coefficient model of a RVE scale; calculating the distribution of the gas concentration and oxidation products in the structure; calculating a growth thickness of an oxide at cracks and pores in each element; and updating sealing conditions of the gas channel, and calculating a new equivalent diffusion coefficient field and the distribution of the oxidation products again.

Classes IPC  ?

  • G01N 33/38 - BétonChauxMortierPlâtreBriquesProduits céramiquesVerre
  • C03C 10/00 - Verre dévitrifié ou vitrocéramiques, c.-à-d. verre ou céramiques ayant une phase cristalline dispersée dans la phase vitreuse et constituant au moins 50% en poids de la composition
  • C04B 35/52 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbone, p. ex. graphite
  • C04B 35/80 - Fibres, filaments, "whiskers", paillettes ou analogues

98.

MAGNETIC INTEGRATED MATRIX TRANSFORMER AND ISOLATED DC/DC CONVERTER

      
Numéro d'application CN2023072555
Numéro de publication 2023/138564
Statut Délivré - en vigueur
Date de dépôt 2023-01-17
Date de publication 2023-07-27
Propriétaire
  • NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
  • JIANGSU ZHANXIN SEMICONDUCTOR TECHNOLOGY CO. LTD (Chine)
Inventeur(s)
  • Chen, Qianhong
  • Chen, Junjie
  • Zhu, Junhui
  • Xu, Xingcan
  • Zhang, Bin
  • Ke, Guangjie
  • Xu, Ligang
  • Wen, Zhenlin
  • Ren, Xiaoyong
  • Zhang, Zhiliang

Abrégé

The present invention belongs to the technical field of power electronics. Disclosed are a magnetic integrated matrix transformer and an isolated DC/DC converter. The magnetic integrated matrix transformer comprises a magnetic core, a primary winding, a secondary winding and a rectification unit, wherein the magnetic core is provided with a base; a middle column and at least three side columns are formed on the base; at least one secondary winding is wound on the magnetic core; each secondary winding is at least wound on two adjacent side columns; and the middle column is used for winding the primary winding. By means of the present invention, a secondary winding structure of a transformer is flexibly configured without changing a magnetic core, and any turn ratio of the transformer and the output of any number of paths of secondary sides are realized, such that the volume and weight of the transformer can be reduced, thereby increasing the power density of a converter; and the requirements of the converter for frequency ranges in different operating occasions can also be met, such that a magnetic part has flexibility and universality. Moreover, secondary windings of the transformer also have a current equalization effect when being arranged in an orthogonal manner, and a good heat dissipation effect can also be achieved using a metal shell wrapping the magnetic core.

Classes IPC  ?

  • H01F 27/24 - Noyaux magnétiques
  • H01F 27/30 - Fixation ou serrage de bobines, d'enroulements ou de parties de ceux-ci entre euxFixation ou montage des bobines ou enroulements sur le noyau, dans l'enveloppe ou sur un autre support
  • H02M 3/22 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu avec transformation intermédiaire en courant alternatif

99.

Multipath suppression method based on steepest descent method

      
Numéro d'application 18041711
Numéro de brevet 11716106
Statut Délivré - en vigueur
Date de dépôt 2021-07-09
Date de la première publication 2023-07-20
Date d'octroi 2023-08-01
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zeng, Qinghua
  • Qiu, Wenqi
  • Liu, Jianye
  • Xu, Rui
  • Sun, Yongrong
  • Li, Rongbing
  • Lyu, Pin
  • Zhao, Wei
  • Xiong, Zhi
  • Lai, Jizhou

Abrégé

A multipath suppression method based on a steepest descent method includes stripping, according to carrier Doppler shift information fed back by a phase-locked loop, a carrier from an intermediate-frequency signal input into a tracking loop; constructing, on the basis of the autocorrelation characteristics of a ranging code, a quadratic cost function related to a measurement deviation of the ranging code, the cost function being not affected by a multipath signal; and finally, designing a new tracking loop of the ranging code according to the quadratic cost function and the principle of the steepest descent method, such that the loop has a multipath suppression function without increasing the computational burden. Compared with a narrow-distance correlation method, the current method reduces computing resources by ⅓, the design and adjustment of parameters are simple and feasible, a multipath suppression effect is superior, and a high engineering application value is obtained.

Classes IPC  ?

  • H04B 1/18 - Circuits d'entrée, p. ex. pour le couplage à une antenne ou à une ligne de transmission
  • H04B 1/10 - Dispositifs associés au récepteur pour limiter ou supprimer le bruit et les interférences
  • G01S 19/30 - Acquisition ou poursuite des signaux émis par le système lié au code
  • G01S 19/25 - Acquisition ou poursuite des signaux émis par le système faisant intervenir des données d'assistance reçues en provenance d'un élément coopérant, p. ex. un GPS assisté
  • G01S 19/22 - Problèmes liés aux multitrajets

100.

IMPACT DAMAGE NUMERICAL SIMULATION OPTIMIZATION METHOD BASED ON LASER MAPPING OF ENTITY GRID

      
Numéro d'application CN2022143082
Numéro de publication 2023/131035
Statut Délivré - en vigueur
Date de dépôt 2022-12-29
Date de publication 2023-07-13
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Jia, Xu
  • Wang, Dawei
  • Song, Yingdong
  • Jiang, Rong

Abrégé

The present invention relates to an impact damage numerical simulation optimization method based on laser mapping of an entity grid, which method relates to the field of impact damage reproduction, impact damage tolerance and maintainability assessment of aero-engine blades. The method comprises: after a light-gas gun is used to fire a bullet to impact a sample grid area to obtain an impact damage, measuring an impact damage size, a damage contour, and a surface residual strain and a surface residual stress of an entity grid unit around the damage; establishing a parameterized impact finite element model, so as to obtain a numerically simulated impact damage size, a numerically simulated impact damage contour, and a numerically simulated surface residual strain and surface residual stress of the surface entity grid unit; calculating the relative errors between the impact damage size, the damage contour, the surface residual strain and the residual stress, which are actually measured in a test, and the impact damage size, the damage contour, the surface residual strain and the residual stress, which are numerically simulated; and determining whether each relative error is smaller than an expected value until a numerical simulation result meeting a precision requirement is obtained. By means of the present invention, the numerical simulation precision problem of impact damage geometry and internal residual stress is solved.

Classes IPC  ?

  • G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]
  1     2     3     ...     5        Prochaine page