A method and apparatus for the controlled splitting of a fluid flow into multiple channels, where an input command specifies the flow in each channel as a percentage of the total flow. The flow in each channel is controlled by a valve capable of moving to a specified position, where the position is determined as a function of the specified percentage, the pressure upstream of the valve, and the pressure downstream of the valve.
G05D 11/02 - Controlling ratio of two or more flows of fluid or fluent material
G01F 1/34 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
G01F 5/00 - Measuring a proportion of the volume flow
2.
METHOD AND APPARATUS FOR CONTROLLED SPLITTING OF FLUID FLOWS
A method and apparatus for the controlled splitting of a fluid flow into multiple channels, where an input command specifies the flow in each channel as a percentage of the total flow. The flow in each channel is controlled by a valve capable of moving to a specified position, where the position is determined as a function of the specified percentage, the pressure upstream of the valve, and the pressure downstream of the valve.
A valve arrangement for controlling gas flow. A gas block includes a gas inlet, a gas outlet, and a gas cavity fluidly connecting the gas inlet to the gas outlet. A diaphragm is configured for controlling gas flow between the gas inlet and the gas outlet. An actuator is configured to vary the position of the diaphragm so as to control the gas flow. The actuator comprises a tubular housing; a plunger positioned inside the housing and having an actuating extension extending outside of the housing and coupled to the diaphragm, the plunger configured to be slidable inside the housing; a piezoelectric body positioned inside the plunger; and a pre-loader applying force to the plunger so as to press the plunger against the piezoelectric body.
F16K 1/32 - Lift valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces Details
F16K 31/02 - Operating meansReleasing devices electricOperating meansReleasing devices magnetic
F16K 37/00 - Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
G05D 7/06 - Control of flow characterised by the use of electric means
4.
Preloaded piezo actuator and gas valve employing the actuator
A valve arrangement for controlling gas flow. A gas block includes a gas inlet, a gas outlet, and a gas cavity fluidly connecting the gas inlet to the gas outlet. A diaphragm is configured for controlling gas flow between the gas inlet and the gas outlet. An actuator is configured to vary the position of the diaphragm so as to control the gas flow. The actuator comprises a tubular housing; a plunger positioned inside the housing and having an actuating extension extending outside of the housing and coupled to the diaphragm, the plunger configured to be slidable inside the housing; a piezoelectric body positioned inside the plunger; and a pre-loader applying force to the plunger so as to press the plunger against the piezoelectric body.
A method and apparatus for self-calibrating control of gas flow. The gas flow rate is initially set by controlling, to a high degree of precision, the amount of opening of a flow restriction, where the design of the apparatus containing the flow restriction lends itself to achieving high precision. The gas flow rate is then measured by a pressure rate-of-drop upstream of the flow restriction, and the amount of flow restriction opening is adjusted, if need be, to obtain exactly the desired flow.
G05D 7/06 - Control of flow characterised by the use of electric means
F16K 7/16 - Diaphragm cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being mechanically actuated, e.g. by screw-spindle or cam
F16K 7/14 - Diaphragm cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
An apparatus for controlling the flow of a gas, containing a controllable valve, wherein the position of the valve and the gas pressure upstream of the valve are measured and used in conjunction with a first lookup table to determine the flow rate of the gas through the valve; and a flow restrictor upstream of the controllable valve, wherein the temperature of the flow restrictor and the gas pressure upstream and downstream of the flow restrictor are measured and used in conjunction with a second lookup table to determine the flow rate of the gas through the flow restrictor.
An apparatus for controlling the flow of a gas, containing a controllable valve, wherein the position of the valve and the gas pressure upstream of the valve are measured and used in conjunction with a first lookup table to determine the flow rate of the gas through the valve; and a flow restrictor upstream of the controllable valve, wherein the temperature of the flow restrictor and the gas pressure upstream and downstream of the flow restrictor are measured and used in conjunction with a second lookup table to determine the flow rate of the gas through the flow restrictor.
F16K 31/02 - Operating meansReleasing devices electricOperating meansReleasing devices magnetic
G01F 1/34 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
G05D 7/06 - Control of flow characterised by the use of electric means
A method and apparatus for self-calibrating control of gas flow. The gas flow rate is initially set by controlling, to a high degree of precision, the amount of opening of a flow restriction, where the design of the apparatus containing the flow restriction lends itself to achieving high precision. The gas flow rate is then measured by a pressure rate-of-drop upstream of the flow restriction, and the amount of flow restriction opening is adjusted, if need be, to obtain exactly the desired flow.
G05D 7/06 - Control of flow characterised by the use of electric means
F16K 7/16 - Diaphragm cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being mechanically actuated, e.g. by screw-spindle or cam
F16K 7/14 - Diaphragm cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
A method and apparatus for self-calibrating control of gas flow. The gas flow rate is initially set by controlling, to a high degree of precision, the amount of opening of a flow restriction, where the design of the apparatus containing the flow restriction lends itself to achieving high precision. The gas flow rate is then measured by a pressure rate-of-drop upstream of the flow restriction, and the amount of flow restriction opening is adjusted, if need be, to obtain exactly the desired flow.
F16K 7/14 - Diaphragm cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
G05D 7/06 - Control of flow characterised by the use of electric means
F16K 7/16 - Diaphragm cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being mechanically actuated, e.g. by screw-spindle or cam
13.
Method and apparatus for in situ testing of gas flow controllers
Methods and apparatus utilize a rate of drop in pressure upstream of a gas flow controller (GFC) to accurately measure a rate of flow through the GFC. Measurement of the gas flow through the many gas flow controllers in production use today is enabled, without requiring any special or sophisticated pressure regulators or other special components. Various provisions ensure that none of the changes in pressure that occur during or after the measurement perturb the constant flow of gas through the GFC under test. A pressure regulator is coupled to a gas source. The GFC is positioned downstream of the pressure regulator. A pressure transducer is measuring pressure in a volume between the pressure regulator and the GFC. Techniques are provided for increasing the pressure in the volume.
An apparatus to measure the transient response of a mass flow controller (MFC). The size of a variable orifice, upstream of the MFC, is controlled such that the pressure between the orifice and the MFC is held constant during the entire time that the MFC is going through its transient response. The known relationship between the size of the orifice and the flow through it allows a determination of the transient response of the MFC.
A method and system for intercepting and forwarding High-Speed SECS Message Services (HSMS) communication between at least two entities, includes a fail-safe bypass to ensure the communications link between the entities is not severed upon failure of the intercepting/forwarding agent. A “pass-through” agent is placed in between two entities communicating via an HSMS link, such that the pass-through agent is able to intercept messages from one entity and forward it to the other entity, and vice versa. The pass-through agent is able to see all messages between the two entities, and is also able to create HSMS messages and send them to one of the entities as if the message had come from the other entity, thereby conferring the ability to inject additional HSMS messages. Should the pass-through agent fail, a bypass mechanism ensures that the two entities can automatically resume HSMS communication without the pass-through agent.
3) delivered into the plasma, most of the emission peaks result from emission of individual atoms, thereby creating spectra conducive to simplifying the identification of the chemical composition of the gases under investigation. Such accurate identification of components of the gas may allow for the precise determination of the stage of the process being performed, and in particular for detection of process endpoint.
An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.
An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.
G01F 1/34 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
19.
Method and apparatus for enhancing in-situ gas flow measurement performance
An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.
G01F 1/34 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
Embodiments of the present invention relate to managing timestamps associated with received data. According to one embodiment, data is collected from a device that generates data at a specified rate, but which lacks a built-in clock. An accurate timestamp is assigned to the data by first taking an absolute timestamp from a reference clock, and then adding a calculated amount of time to each subsequent data point based on an estimate of the sampling frequency of the device. As the generated timestamp drifts from the actual reference clock time, the sampling frequency is re-estimated based on the amount of detected drift.
A method and apparatus for self-calibrating control of gas flow. The gas flow rate is initially set by controlling, to a high degree of precision, the amount of opening of a flow restriction, where the design of the apparatus containing the flow restriction lends itself to achieving high precision. The gas flow rate is then measured by a pressure rate-of-drop upstream of the flow restriction, and the amount of flow restriction opening is adjusted, if need be, to obtain exactly the desired flow.
G05D 7/06 - Control of flow characterised by the use of electric means
F16K 1/16 - Lift valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure members
22.
Method and apparatus for in situ testing of gas flow controllers
Methods and apparatus utilize a rate of drop in pressure upstream of a gas flow controller (GFC) to accurately measure a rate of flow through the GFC. Measurement of the gas flow through the many gas flow controllers in production use today is enabled, without requiring any special or sophisticated pressure regulators or other special components. Various provisions ensure that none of the changes in pressure that occur during or after the measurement perturb the constant flow of gas through the GFC under test.
An embodiment of a method in accordance with the present invention to determine the flow rate of a second gas relative to a first gas, comprises, setting a flow of a first gas to a known level, taking a first measurement of the first gas with a measurement technique sensitive to a concentration of the first gas, and establishing a flow of a second gas mixed with the first gas. A second measurement of the first gas is taken with a measurement technique that is sensitive to the concentration of the first gas, and the flow of the second gas is determined by a calculation involving a difference between the first measurement and the second measurement. In alternative embodiments, the first measurement may be taken of a flow of two or more gases combined, with the second measurement taken with one of the gases removed from the mixture. Certain embodiments of methods of the present invention may be employed in sequence in order to determine flow rates of more than two gases.
Method and system for detecting endpoint for a plasma etch process are provided. In accordance with one embodiment, the method provides a semiconductor substrate having a film to be processed thereon. The film is processed in a plasma environment during a time period to provide for device structures. Information associated with the plasma process is collected. The information is characterized by a first signal intensity. Information on a change in the first signal intensity is extracted. The change in the first signal intensity has a second signal intensity. The change in signal intensity at the second signal intensity is associated to an endpoint of processing the film in the plasma environment. The second signal intensity may be about 0.25% and less of the first signal intensity.
Embodiments of the present invention employ measurement of argon as the means to detect the presence of an atmospheric leak in a processing chamber. Argon detected inside the process chamber is conclusive evidence of a leak. Furthermore, the amount of detected argon provides information on the rate of air entering through the leak. In one embodiment, leak detection takes place in the main plasma inside the processing chamber. In another embodiment, leak detection takes place in the self-contained plasma generated in a remote plasma sensor. Additional measurements can be performed, such as measuring the amount of oxygen, and/or the presence of moisture to help in detecting and quantifying outgassing from the processing chamber.
Leaks in a processing chamber, including “virtual leaks” resulting from outgassing of material present within the chamber, may be detected utilizing an optical emission spectroscopy (OES) sensor configured to monitor light emitted from plasma of a sample from the chamber. According to certain embodiments, gas introduced into the chamber by the leak may be detected directly on the basis of its optical spectrum. Alternatively, gas introduced by the leak may be detected indirectly, based upon an optical spectrum of a material resulting from reaction of the gas attributable to the leak. According to one embodiment, data from the OES sensor is received by a processor that is configured to compute a leak detection index. The value of the leak detection index is compared against a threshold to determine if a leak is detected. If the value of the index crosses the threshold, a notification of the existence of a leak is sent.
Methods and apparatus utilize a rate of drop in pressure upstream of a gas flow controller (GFC) to accurately measure a rate of flow through the GFC. Measurement of the gas flow through the many gas flow controllers in production use today is enabled, without requiring any special or sophisticated pressure regulators or other special components. Various provisions ensure that none of the changes in pressure that occur during or after the measurement perturb the constant flow of gas through the GFC under test.
Methods and apparatus utilize a rate of drop in pressure upstream of a gas flow controller (GFC) to accurately measure a rate of flow through the GFC. Measurement of the gas flow through the many gas flow controllers in production use today is enabled, without requiring any special or sophisticated pressure regulators or other special components. Various provisions ensure that none of the changes in pressure that occur during or after the measurement perturb the constant flow of gas through the GFC under test. A pressure regulator is coupled to a gas source. The GFC is positioned downstream of the pressure regulator. A pressure transducer is measuring pressure in a volume between the pressure regulator and the GFC, wherein means are provided for increasing the pressure in the volume.
Methods and apparatus utilize a rate of drop in pressure upstream of a gas flow controller (GFC) to accurately measure a rate of flow through the GFC. Measurement of the gas flow through the many gas flow controllers in production use today is enabled, without requiring any special or sophisticated pressure regulators or other special components. Various provisions ensure that none of the changes in pressure that occur during or after the measurement perturb the constant flow of gas through the GFC under test.
3) delivered into the plasma, most of the emission peaks result from emission of individual atoms, thereby creating spectra conducive to simplifying the identification of the chemical composition of the gases under investigation. Such accurate identification of components of the gas may allow for the precise determination of the stage of the process being performed, and in particular for detection of process endpoint.
Embodiments of the present invention relate to the analysis of the components of one or more gases, for example a gas mixture sampled from a semiconductor manufacturing process such as plasma etching or plasma enhanced chemical vapor deposition (PECVD). Particular embodiments provide sufficient power to a plasma of the sample, to dissociate a large number of the molecules and molecular fragments into individual atoms. With sufficient power (typically a power density of between 3-40 W/cm3) delivered into the plasma, most of the emission peaks result from emission of individual atoms, thereby creating spectra conducive to simplifying the identification of the chemical composition of the gases under investigation. Such accurate identification of components of the gas may allow for the precise determination of the stage of the process being performed, and in particular for detection of process endpoint.
Embodiments in accordance with the present invention allow a second end-point determination (EPD) system to actively control the end-pointing of a semiconductor process chamber, by leveraging a legacy EPD system that is already integrated with the chamber. In one embodiment, the second EPD system controls a shutter that regulates the amount of light transmitted between a plasma light source and an optical emission spectroscopy (OES) sensor of the legacy OES EPD system. In this embodiment, the legacy OES EPD system is pre-configured to call end-point when an artificial end-point condition occurs, i.e. the intensity of light falls below a pre-set threshold. When the second EPD system determines an actual end-point condition has been reached, it closes the shutter which, causes the light intensity being read by the OES sensor to fall below the pre-set threshold. This in turn triggers an end-point command to the chamber from the legacy OES EPD system.
Embodiments in accordance with the present invention allow a second end-point determination (EPD) system to actively control the end-pointing of a semiconductor process chamber, by leveraging a legacy EPD system that is already integrated with the chamber. In one embodiment, the second EPD system controls a shutter that regulates the amount of light transmitted between a plasma light source and an optical emission spectroscopy (OES) sensor of the legacy OES EPD system. In this embodiment, the legacy OES EPD system is pre-configured to call end-point when an artificial end-point condition occurs, i.e. the intensity of light falls below a pre-set threshold. When the second EPD system determines an actual end-point condition has been reached, it closes the shutter which, causes the light intensity being read by the OES sensor to fall below the pre-set threshold. This in turn triggers an end-point command to the chamber from the legacy OES EPD system.