A transport system including at least one guideway, at least one levitation generator, at least one lifting member, at least one drive generator, and at least one drive member is presented. The at least one guideway, at least one levitation generator, at least one lifting member, at least one drive generator, and at least one drive member can each be implemented with other systems. The at least one drive generator is configured to: generate a driving magnetic flux; move with a corresponding at least one drive member; and be driven relative to the at least one drive member by the driving magnetic flux. The at least one levitation generator can be configured to: generate a levitating magnetic flux; move within a corresponding at least one lifting member; and elevate above a rest position relative to the at least one lifting member in response to the levitating magnetic flux.
A method controlling a vehicle moving along a guideway for magnetic flight is provided. The method includes receiving, at a controller, data generated by one or more sensors. The controller receives data relating to a projected flight path of the vehicle. The controller determines an altitude of the vehicle relative to the guideway for magnetic flight and determines a speed of the vehicle relative to the guideway for magnetic flight. The controller then calculates a deviation of the vehicle from the projected flight path. The controller adjusts the altitude of the vehicle relative to the guideway for magnetic flight by changing certain aspects of a magnetic flight suspension system causing the vehicle to more closely track the projected flight path.
B60L 13/06 - Means to sense or control vehicle position or attitude with respect to railway
B60L 15/00 - Methods, circuits or devices for controlling the propulsion of electrically-propelled vehicles, e.g. their traction-motor speed, to achieve a desired performanceAdaptation of control equipment on electrically-propelled vehicles for remote actuation from a stationary place, from alternative parts of the vehicle or from alternative vehicles of the same vehicle train
G05D 1/08 - Control of attitude, i.e. control of roll, pitch, or yaw
G07C 5/00 - Registering or indicating the working of vehicles
3.
PATH CORRECTION OF A VEHICLE RELATIVE TO PROJECTED MAGNETIC FLIGHT PATH
Disclosed herein are techniques for guiding a vehicle over a flight path. The techniques include receiving guideway data, such as information corresponding to a track segment, generated by one or more guideway sensors associated with a metallic track, and receiving flight path data, such as a set of 3-D space coordinates for the vehicle. The method further includes determining an amount of deviation between one or more coordinates of the flight path data and a position of the vehicle based on the guideway data, and adjusting the position of the vehicle relative to the track segment to minimize the amount of deviation in at least one dimension in the 3-D space.
Method for controlling altitude of a vehicle moving along a segmented track. The method including receiving, at a controller, data generated by one or more sensors and determining, at the controller, an altitude of the vehicle relative to the segmented track. The method then receives, at the controller, data relating to the length of a track segment between two or more supports and the weight of the vehicle and determining, at the controller, a speed of the vehicle relative to the length of the track segment. The method also calculating, at the controller, the deflection of the segmented track between two supports based on the length of the track segment, the weight of the vehicle, and the speed of the vehicle. The controller adjusts the altitude of the vehicle relative to the segmented track by an offset equivalent to the deflection of the segmented track thereby maintaining a constant altitude.
A segmented track for a Maglev vehicle includes a structural support portion and a Maglev portion fastened to the structural support portion. Each segment of the structural support portion is formed by fusing together three cast metal components. Neighboring ones of the structural support segments are joined together end-to-end by fused metal, and neighboring ones of the reaction rail segments are joined together end-to-end by fused metal. The positioning and joining of the successive segments is done in the field using on site jigs and machines.
A transport system including at least one guideway, at least one levitation generator, at least one lifting member, at least one drive generator, and at least one drive member is presented. The at least one guideway, at least one levitation generator, at least one lifting member, at least one drive generator, and at least one drive member can each be implemented with other systems. The at least one drive generator is configured to: generate a driving magnetic flux; move with a corresponding at least one drive member; and be driven relative to the at least one drive member by the driving magnetic flux. The at least one levitation generator can be configured to: generate a levitating magnetic flux; move within a corresponding at least one lifting member; and elevate above a rest position relative to the at least one lifting member in response to the levitating magnetic flux.
Transport apparatus having at least one levitation generator and at least one drive generator. The at least one levitation generator configured to generate a levitating magnetic flux, move within a corresponding at least one lifting member, and elevate above a rest position relative to the at least one lifting member in response to the levitating magnetic flux. The at least one drive generator configured to generate a driving magnetic flux, move within a corresponding at least one drive member, and laterally move relative to the at least one drive member in response to the driving magnetic flux. At least a portion of the at least one levitation generator is movable relative to the at least one drive generator.
Method for controlling altitude of a vehicle moving along a segmented track. The method including receiving, at a controller, data generated by one or more sensors and determining, at the controller, an altitude of the vehicle relative to the segmented track. The method then receives, at the controller, data relating to the length of a track segment between two or more supports and the weight of the vehicle and determining, at the controller, a speed of the vehicle relative to the length of the track segment. The method also calculating, at the controller, the deflection of the segmented track between two supports based on the length of the track segment, the weight of the vehicle, and the speed of the vehicle. The controller adjusts the altitude of the vehicle relative to the segmented track by an offset equivalent to the deflection of the segmented track thereby maintaining a constant altitude.
A segmented track for a Maglev vehicle includes a structural support portion and a Maglev portion fastened to the structural support portion. Each segment of the structural support portion is formed by fusing together three cast metal components. Neighboring ones of the structural support segments are joined together end-to-end by fused metal, and neighboring ones of the reaction rail segments are joined together end-to-end by fused metal. The positioning and joining of the successive segments is done in the field using on site jigs and machines.
A method controlling a vehicle moving along a guideway for magnetic flight is provided. The method includes receiving, at a controller, data generated by one or more sensors. The controller receives data relating to a projected flight path of the vehicle. The controller determines an altitude of the vehicle relative to the guideway for magnetic flight and determines a speed of the vehicle relative to the guideway for magnetic flight. The controller then calculates a deviation of the vehicle from the projected flight path. The controller adjusts the altitude of the vehicle relative to the guideway for magnetic flight by changing certain aspects of a magnetic flight suspension system causing the vehicle to more closely track the projected flight path.
B60L 13/06 - Means to sense or control vehicle position or attitude with respect to railway
B60L 15/00 - Methods, circuits or devices for controlling the propulsion of electrically-propelled vehicles, e.g. their traction-motor speed, to achieve a desired performanceAdaptation of control equipment on electrically-propelled vehicles for remote actuation from a stationary place, from alternative parts of the vehicle or from alternative vehicles of the same vehicle train
G05D 1/08 - Control of attitude, i.e. control of roll, pitch, or yaw
G07C 5/00 - Registering or indicating the working of vehicles
11.
Path correction of a vehicle relative to projected magnetic flight path
Disclosed herein are techniques for guiding a vehicle over a flight path. The techniques include receiving guideway data, such as information corresponding to a track segment, generated by one or more guideway sensors associated with a metallic track, and receiving flight path data, such as a set of 3-D space coordinates for the vehicle. The method further includes determining an amount of deviation between one or more coordinates of the flight path data and a position of the vehicle based on the guideway data, and adjusting the position of the vehicle relative to the track segment to minimize the amount of deviation in at least one dimension in the 3-D space.
39 - Transport, packaging, storage and travel services
Goods & Services
Maglev track-bound transport services; magnetically driven transportation system services, namely, freight, cargo, and passenger transport; mass transit services for the general public; transportation services in the nature of leasing of vehicles and apparatus for maglev track-bound locomotion, namely, providing maglev track-bound vehicles and maglev tracks for others
A transport system including at least one guideway, at least one levitation generator, at least one lifting member, at least one drive generator, and at least one drive member is presented. The at least one guideway, at least one levitation generator, at least one lifting member, at least one drive generator, and at least one drive member can each be implemented with other systems. The at least one drive generator is configured to: generate a driving magnetic flux; move with a corresponding at least one drive member; and be driven relative to the at least one drive member by the driving magnetic flux. The at least one levitation generator can be configured to: generate a levitating magnetic flux; move within a corresponding at least one lifting member; and elevate above a rest position relative to the at least one lifting member in response to the levitating magnetic flux.
A method controlling a vehicle moving along a guideway for magnetic flight is provided. The method includes receiving, at a controller, data generated by one or more sensors. The controller receives data relating to a projected flight path of the vehicle. The controller determines an altitude of the vehicle relative to the guideway for magnetic flight and determines a speed of the vehicle relative to the guideway for magnetic flight. The controller then calculates a deviation of the vehicle from the projected flight path. The controller adjusts the altitude of the vehicle relative to the guideway for magnetic flight by changing certain aspects of a magnetic flight suspension system causing the vehicle to more closely track the projected flight path.
Disclosed herein are techniques for guiding a vehicle over a flight path. The techniques include receiving guideway data, such as information corresponding to a track segment, generated by one or more guideway sensors associated with a metallic track, and receiving flight path data, such as a set of 3-D space coordinates for the vehicle. The method further includes determining an amount of deviation between one or more coordinates of the flight path data and a position of the vehicle based on the guideway data, and adjusting the position of the vehicle relative to the track segment to minimize the amount of deviation in at least one dimension in the 3-D space.
Drive generator having a helical magnetic array. Additionally, a coupling portion is coupled to the drive generator and configured to be coupled to a vehicle. A drive member is configured to be at least partially located within the at least one drive generator, whereby the drive member is magnetically coupled to the at least one drive body. Furthermore, a prime mover is coupled to the drive member and configured to rotate the drive member, thereby imparting motion, when a portion of the drive member is located within the at least one drive generator, of the at least one drive generator relative to the drive member.
Method for controlling altitude of a vehicle moving along a segmented track. The method including receiving, at a controller, data generated by one or more sensors and determining, at the controller, an altitude of the vehicle relative to the segmented track. The method then receives, at the controller, data relating to the length of a track segment between two or more supports and the weight of the vehicle and determining, at the controller, a speed of the vehicle relative to the length of the track segment. The method also calculating, at the controller, the deflection of the segmented track between two supports based on the length of the track segment, the weight of the vehicle, and the speed of the vehicle. The controller adjusts the altitude of the vehicle relative to the segmented track by an offset equivalent to the deflection of the segmented track thereby maintaining a constant altitude.
Transport apparatus having at least one levitation generator and at least one drive generator. The at least one levitation generator configured to generate a levitating magnetic flux, move within a corresponding at least one lifting member, and elevate above a rest position relative to the at least one lifting member in response to the levitating magnetic flux. The at least one drive generator configured to generate a driving magnetic flux, move within a corresponding at least one drive member, and laterally move relative to the at least one drive member in response to the driving magnetic flux. At least a portion of the at least one levitation generator is movable relative to the at least one drive generator.
A track switch for a magnetic levitation transport system includes a trunk segment of track, an upper branch segment of track, a lower branch segment of track, and a divergent zone. The divergent zone has coextensive spaced rails extending from the trunk segment and splitting into upper rails extending to the upper branch segment, and lower rails extending to the lower branch segment, so that a vehicle engaging the rails and entering the switch at the trunk segment is guided and magnetically levitated to a selected one of either the upper branch segment or the lower branch segment.
A segmented track for a Maglev vehicle includes a structural support portion and a Maglev portion fastened to the structural support portion. Each segment of the structural support portion is formed by fusing together three cast metal components. Neighboring ones of the structural support segments are joined together end-to-end by fused metal, and neighboring ones of the reaction rail segments are joined together end-to-end by fused metal. The positioning and joining of the successive segments is done in the field using on site jigs and machines.
Drive generator having a helical magnetic array. Additionally, a coupling portion is coupled to the drive generator and configured to be coupled to a vehicle. A drive member is configured to be at least partially located within the at least one drive generator, whereby the drive member is magnetically coupled to the at least one drive body. Furthermore, a prime mover is coupled to the drive member and configured to rotate the drive member, thereby imparting motion, when a portion of the drive member is located within the at least one drive generator, of the at least one drive generator relative to the drive member.
Drive generator configured to provide motive force to a vehicle having at least one drive body having an inner surface and an outer surface. The drive body configured to receive a drive member within the inner surface and a plurality of magnets arranged so as to form a helix relative to the drive body and coupled to the inner surface. A coupling portion being coupled to the drive body and the vehicle.
B60G 15/04 - Resilient suspensions characterised by arrangement, location, or type of combined spring and vibration- damper, e.g. telescopic type having mechanical spring and mechanical damper
F03B 13/12 - Adaptations of machines or engines for special useCombinations of machines or engines with driving or driven apparatusPower stations or aggregates characterised by using wave or tide energy
F04D 25/06 - Units comprising pumps and their driving means the pump being electrically driven
F16F 6/00 - Magnetic springsFluid magnetic springs
12 - Land, air and water vehicles; parts of land vehicles
39 - Transport, packaging, storage and travel services
Goods & Services
Maglev track-bound vehicles. Maglev track-bound transport services; magnetically driven
transportation system services, namely, freight, cargo, and
passenger transport; mass transit services for the general
public; transportation services in the nature of leasing of
vehicles and apparatus for maglev track-bound locomotion,
namely, providing maglev track-bound vehicles and maglev
tracks for others.
24.
LEVITATION CONTROL SYSTEM FOR A TRANSPORTATION SYSTEM
Transport apparatus having at least one levitation generator and at least one drive generator. The at least one levitation generator configured to generate a levitating magnetic flux, move within a corresponding at least one lifting member, and elevate above a rest position relative to the at least one lifting member in response to the levitating magnetic flux. The at least one drive generator configured to generate a driving magnetic flux, move within a corresponding at least one drive member, and laterally move relative to the at least one drive member in response to the driving magnetic flux. At least a portion of the at least one levitation generator is movable relative to the at least one drive generator.
A track switch for a magnetic levitation transport system includes a trunk segment of track, an upper branch segment of track, a lower branch segment of track, and a divergent zone. The divergent zone has coextensive spaced rails extending from the trunk segment and splitting into upper rails extending to the upper branch segment, and lower rails extending to the lower branch segment, so that a vehicle engaging the rails and entering the switch at the trunk segment is guided and magnetically levitated to a selected one of either the upper branch segment or the lower branch segment.
A transport system including at least one guideway, at least one levitation generator, at least one lifting member, at least one drive generator, and at least one drive member is presented. The at least one guideway, at least one levitation generator, at least one lifting member, at least one drive generator, and at least one drive member can each be implemented with other systems. The at least one drive generator is configured to: generate a driving magnetic flux; move with a corresponding at least one drive member; and be driven relative to the at least one drive member by the driving magnetic flux. The at least one levitation generator can be configured to: generate a levitating magnetic flux; move within a corresponding at least one lifting member; and elevate above a rest position relative to the at least one lifting member in response to the levitating magnetic flux.
39 - Transport, packaging, storage and travel services
Goods & Services
Maglev track-bound transport services; magnetically driven transportation system services, namely, freight, cargo, and passenger transport; mass transit services for the general public; transportation services in the nature of leasing of vehicles and apparatus for maglev track-bound locomotion, namely, providing maglev track-bound vehicles and maglev tracks for others
28.
Fluid turbine modular electric generator including removable stator modules with integrated power electronics and magnetic bearing system
An electric power generation system may be constructed of multiple similar generator modules arranged between a rotor and a stator. The rotor may be coupled to and/or integrated with a turbine that is configured to rotate in the presence of a fluid stream such as wind or water. Each generator module may have a rotor portion configured to generate a magnetic field having at least one characteristic that changes with respect to the rotational speed of the rotor. Each generator module may further have a stator portion configured to generate an alternating electric current responsive to the magnetic field. The generated electric current may be controlled by the stator portion of the generator module in order to magnetically control the rotational speed of the rotor and the turbine. Separation between the rotor and stator portions of the generator module may be magnetically maintained.
H02P 9/04 - Control effected upon non-electric prime mover and dependent upon electric output value of the generator
H02P 9/48 - Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
B60L 13/04 - Magnetic suspension or levitation for vehicles
F03D 9/00 - Adaptations of wind motors for special useCombinations of wind motors with apparatus driven therebyWind motors specially adapted for installation in particular locations
H02K 7/09 - Structural association with bearings with magnetic bearings
H02P 25/22 - Multiple windingsWindings for more than three phases
H02K 7/18 - Structural association of electric generators with mechanical driving motors, e.g.with turbines
H02P 9/00 - Arrangements for controlling electric generators for the purpose of obtaining a desired output
H02K 16/00 - Machines with more than one rotor or stator
A transport system including at least one guideway, at least one levitation generator, at least one lifting member, at least one drive generator, and at least one drive member is presented. The at least one guideway, at least one levitation generator, at least one lifting member, at least one drive generator, and at least one drive member can each be implemented with other systems. The at least one drive generator is configured to: generate a driving magnetic flux; move with a corresponding at least one drive member; and be driven relative to the at least one drive member by the driving magnetic flux. The at least one levitation generator can be configured to: generate a levitating magnetic flux; move within a corresponding at least one lifting member; and elevate above a rest position relative to the at least one lifting member in response to the levitating magnetic flux.
A transport system (100) including at least one guideway (200), at least one levitation generator (410, 430), at least one lifting member (420), at least one drive generator (512,514), and at least one drive member (520) is presented.
An electric power generation system may be constructed of multiple similar generator modules arranged between a rotor and a stator. The rotor may be coupled to and/or integrated with a turbine that is configured to rotate in the presence of a fluid stream such as wind or water. Each generator module may have a rotor portion configured to generate a magnetic field having at least one characteristic that changes with respect to the rotational speed of the rotor. Each generator module may further have a stator portion configured to generate an alternating electric current responsive to the magnetic field. The generated electric current may be controlled by the stator portion of the generator module in order to magnetically control the rotational speed of the rotor and the turbine. Separation between the rotor and stator portions of the generator module may be magnetically maintained.
39 - Transport, packaging, storage and travel services
Goods & Services
Public transit services provided by means of lightweight vehicles which are suspended from a monorail track, namely, transportation of one or two people or goods from a beginning location to a specified location
33.
Guideway transportation system with integrated magnetic levitation suspension, stabilization and propulsion functions
A networked guideway transit system uses permanent magnet repulsion with induction-based repulsion within the networked guideway transport system, which can levitate passively with motion. Magnetic levitation technology is used to replace wheels as the primary means of vehicle suspension. The networked guideway transit system uses the permanent magnets to provide primary lift and uses electrodynamic repulsion to create centering forces at most operational speeds while integrating linear motor functions with the electrodynamic centering function. Further, the networked guideway transit system uses no moving parts in the guideways, which enhances reliability in the guideways.