This invention relates to a sensor and sensor platform, for an autonomous system. The sensor and its platform sense, perform signal or data processing, and make the decision locally at the point of sensing. More specifically, the sensor along with its platform simulates the human-like or human capacity to make decisions by combing the data from several sensors that detect different data sets, and combine them in a series of data processes that allows autonomous decisions to be made. Additionally, the sensor platform combines multiple sensors in one metasensor with the functionality of multiple sensors placed on a common carrier or platform.
An apparatus and method for producing a perpetual energy harvester which harvests ambient near ultraviolet to infrared radiation and provides continual power regardless of the environment. The device seeks to harvest the largely overlooked blackbody radiation through use of a semiconductor thermal harvester, providing a continuous source of power. Additionally, increased power output is provided through a solar harvester. The solar and thermal harvesters are physically connected but electrically isolated. “Perpetual energy harvester” as mentioned in this invention is interpreted to mean an energy harvester which is configured to harvest energy during day and/or night and/or light and/or dark.
H01L 31/0352 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
H01L 31/054 - Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
H01L 31/075 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
H01L 31/076 - Multiple junction or tandem solar cells
This invention relates to smart bottle system that informs the user through a display, the time and date that the contents are to be taken. More specifically, the smart bottle system provides an information to the user/patient, the time to take medication and inform the caregiver, physician, pharmacy personnel, or patient/users of missed doses, the profile, and/or the health condition of the patient/user. The bottle system may track the dosses remaining in the bottle, and inform the caregiver or patient/user, or pharmacy personnel the time to get a refill of the medication. The system can able to compute the profile and/or health condition of the users, based on the medication intake, and/or missed, or users image, and can communicate with the persons located remotely by sending/receiving information.
A61J 7/04 - Arrangements for time indication or reminder for taking medicine, e.g. programmed dispensers
G16H 20/10 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
A61J 1/03 - Containers specially adapted for medical or pharmaceutical purposes for pills or tablets
B65D 51/24 - Closures not otherwise provided for combined with auxiliary devices for non-closing purposes
This invention relates to a sensor and sensor platform, for an autonomous system. The sensor and its platform sense, perform signal or data processing, and make the decision locally at the point of sensing. More specifically, the sensor along with its platform simulates the human-like or human capacity to make decisions by combing the data from several sensors that detect different data sets, and combine them in a series of data processes that allows autonomous decisions to be made. Additionally, the sensor platform combines multiple sensors in one metasensor with the functionality of multiple sensors placed on a common carrier or platform.
H04N 13/25 - Image signal generators using stereoscopic image cameras using two or more image sensors with different characteristics other than in their location or field of view, e.g. having different resolutions or colour pickup characteristicsImage signal generators using stereoscopic image cameras using image signals from one sensor to control the characteristics of another sensor
H04N 13/254 - Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
H04N 13/204 - Image signal generators using stereoscopic image cameras
H04N 13/271 - Image signal generators wherein the generated image signals comprise depth maps or disparity maps
G05D 1/00 - Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
This invention relates to the means for detection of molecular and chemical matter utilizing multiple techniques covering electronics, optics, and imaging techniques. More particularly, this invention is related to detecting levels of certain molecules inside the body through non-invasive contact or non-contact with the body. More specifically, this invention is related to the means to detect levels of molecules associated with metabolic diseases, more particularly the early diagnosis of the disease, especially diabetes. This invention also relates to a medical device that utilizes electromagnetic waves of varying wavelengths and detects waves returned to the device.
A61B 5/145 - Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
A61B 5/1455 - Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value using optical sensors, e.g. spectral photometrical oximeters
This invention provides a non-invasive diagnosis system that is not only capable of producing high-resolution, three-dimensional images of abnormalities of tissue growth inside the body but, it can also detect the type of abnormalities and their location using multispectral imaging techniques. It is possible to provide a portable, non-invasive device that is handheld and with which a person may use to screen themselves for early detection of skin cancer without the need to visit a physician. As the present invention uses broadband sources and/or multiple coherent sources, secondary factors such as oxygen metabolism or blood volume associated with the cancer tissues could also be detected to provide further verification of the type. This invention would raise the accuracy of diagnosis and reduce the rate of false positives and false negatives.
This invention relates to a sensor and sensor platform, for an autonomous system. The sensor and its platform sense, perform signal or data processing, and make the decision locally at the point of sensing. More specifically, the sensor along with its platform simulates the human-like or human capacity to make decisions by combing the data from several sensors that detect different data sets, and combine them in a series of data processes that allows autonomous decisions to be made. Additionally, the sensor platform combines multiple sensors in one metasensor with the functionality of multiple sensors placed on a common carrier or platform.
This invention relates to smart bottle system that informs the user through a display, the time and date that the contents are to be taken. More specifically, the smart bottle system provides an information to the user/patient, the time to take medication and inform the caregiver, physician, pharmacy personnel, or patient/users of missed doses, the profile, and/or the health condition of the patient/user. The bottle system may track the doses remaining in the bottle, and inform the caregiver or patient/user, or pharmacy personnel the time to get a refill of the medication. The system can able to compute the profile and/or health condition of the users, based on the medication intake, and/or missed, or users image, and can communicate with the persons located remotely by sending/receiving information.
A61J 7/04 - Arrangements for time indication or reminder for taking medicine, e.g. programmed dispensers
G16H 20/10 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
B65D 51/24 - Closures not otherwise provided for combined with auxiliary devices for non-closing purposes
A61J 1/03 - Containers specially adapted for medical or pharmaceutical purposes for pills or tablets
9.
IMAGING SYSTEM FOR SCREENING AND DIAGNOSIS OF BREAST CANCER
This invention provides a non-invasive diagnosis system that is not only capable of producing high-resolution, three-dimensional images of abnormalities of tissue growth inside the body but, it can also detect the type of abnormalities and their location using multispectral imaging techniques. It is possible to provide a portable, non-invasive device that is handheld and with which women may use to screen themselves for early detection of breast cancer without the need to visit a physician. As the present invention uses broadband sources and/or multiple coherent sources, secondary factors such as oxygen metabolism or blood volume associated with the cancer tissues could also be detected to provide further verification of the type. This invention would raise the accuracy of diagnosis and reduce the rate of false positives and false negatives.
This invention provides a non-invasive diagnosis system that is not only capable of producing high-resolution, three-dimensional images of abnormalities of tissue growth inside the body but, it can also detect the type of abnormalities and their location using multispectral imaging techniques. It is possible to provide a portable, non-invasive device that is handheld and with which women may use to screen themselves for early detection of breast cancer without the need to visit a physician. As the present invention uses broadband sources and/or multiple coherent sources, secondary factors such as oxygen metabolism or blood volume associated with the cancer tissues could also be detected to provide further verification of the type. This invention would raise the accuracy of diagnosis and reduce the rate of false positives and false negatives.
Novel structures of photovoltaic cells are provided. The cells are based on nanometer or micrometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators, and may be metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications such as in space, commercial, residential and industrial applications.
H01L 31/0352 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
H01L 31/068 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
H01L 51/44 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation - Details of devices
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
H01L 31/072 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
H01L 31/07 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the Schottky type
H01L 51/42 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
H01L 31/0735 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
H01L 31/073 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
H01L 31/0304 - Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
H01L 31/0296 - Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
12.
Process for creating high efficiency photovoltaic cells
A novel method to fabricate the high-efficiency solar cells are provided by this application. The cells are based on micro (or nano) structures that not only increase the surface area but also have the capability of self-concentrating the solar spectrum incident onto the cell. These photovoltaic cells have a larger power generation capability per unit physical area than conventional cells. These cells will have enormous applications in space, commercial, residential and industrial sectors.
H01L 31/072 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
H01L 31/0352 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
13.
High efficiency photovoltaic cells and manufacturing thereof
Novel structures of photovoltaic cells are provided. The cells are based on nanometer or micrometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators, and may be metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications such as in space, commercial, residential and industrial applications.
H01L 31/0352 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
H01L 31/068 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
An apparatus for perpetually harvesting ambient near ultraviolet to far infrared radiation to provide continual power regardless of the environment, incorporating a system for the harvesting electronics governing power management, storage control, and output regulation. The harvesting electronics address issues of efficiently matching the voltage and current characteristics of the different harvested energy levels, low power consumption, and matching the power output demand. The device seeks to harvest the largely overlooked blackbody radiation through use of a thermal harvester, providing a continuous source of power, coupled with a solar harvester to provide increased power output.
H02J 3/38 - Arrangements for parallelly feeding a single network by two or more generators, converters or transformers
G05F 1/56 - Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
H02M 3/07 - Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode
15.
High efficiency photovoltaic cells and manufacturing thereof
This invention relates to a novel structure of photovoltaic devices (e.g. photovoltaic cells also called as solar cells) are provided. The cells are based on the micro or nano scaled structures which could not only increase the surface area but also have the capability of reducing the reflection and increasing the absorption of incident light. More specifically, the structures are based on 3D structure which are made of electric materials covering semiconductors, insulators, dielectric, polymer, and metallic type materials. By using such structures reflection loss of the light from the cell is significantly reduced, increasing the absorption, which results in increasing the conversion efficiency of the solar cell, and reducing the usage of material while increasing the flexibility of the solar cell. The structures can be also used in other optical devices wherein the reflection loss and absorption are required to enhance significantly improve the device performances.
H01L 31/0352 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
H01L 51/44 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation - Details of devices
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
This invention relates to a system and methods including their manufacturing technologies for enhanced sensing capability of one or more bioagents covering from HIV, Pathogens, virus, to cells detection. More particularly, this invention is related to HIV and pathogen diagnosis system and methods which may increase its sensitivity and may reduce the diagnosis time. Furthermore, the diagnosis system and method may be applicable to all early stage patients with various age groups, where early and accuracy in diagnosis, are required.
This invention relates to a novel structure of photovoltaic devices (e.g. photovoltaic cells also called as solar cells) are provided. The cells are based on the micro or nano scaled structures which could not only increase the surface area but also have the capability of self-concentrating the light incident onto the photonics devices. More specifically, the structures are based on 3D structure including quintic or quintic-like shaped micor-nanostructures. By using such structures reflection loss of the light from the cell is significantly reduced, increasing the absorption, which results in increasing the conversion efficiency of the solar cell, and reducing the usage of material while increasing the flexibility of the solar cell. The structures can be also used in other optical devices wherein the reflection loss and absorption are required to enhanced to significantly improve the device performances.
H01L 31/0352 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
H01L 31/0296 - Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
This invention relates to the means for detection of molecular and chemical matter utilizing multiple techniques covering electronics, optics, and imaging techniques. More particularly, this invention is related to detecting levels of certain molecules inside the body through non-invasive contact or non-contact with the body. More specifically, this invention is related to the means to detect levels of molecules associated with metabolic diseases, more particularly the early diagnosis of the disease, especially diabetes. This invention also relates to a medical device that utilizes electromagnetic waves of varying wavelengths and detects waves returned to the device.
A61B 5/145 - Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
A61B 5/1455 - Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value using optical sensors, e.g. spectral photometrical oximeters
19.
Stackable optoelectronics chip-to-chip interconnects and method of manufacturing thereof
An optoelectronics chip-to-chip interconnects system is provided, including at least one packaged chip to be connected on the printed-circuit-board with at least one other packaged chip, optical-electrical (O-E) conversion mean, waveguide-board, and (PCB). Single to multiple chips interconnects can be interconnected provided using the technique disclosed in this invention. The packaged chip includes semiconductor die and its package based on the ball-grid array or chip-scale-package. The O-E board includes the optoelectronics components and multiple electrical contacts on both sides of the O-E substrate. The waveguide board includes the electrical conductor transferring the signal from O-E board to PCB and the flex optical waveguide easily stackable onto the PCB to guide optical signal from one chip-to-other chip. Alternatively, the electrode can be directly connected to the PCB instead of including in the waveguide board. The chip-to-chip interconnections system is pin-free and compatible with the PCB. The main advantages of this invention are to use the packaged chip for interconnection and the conventional PCB technology can be used for low speed electrical signal connection. Also, the part of the heat from the packaged chip can be transmitted to the PCB through the conductors, so that complex cooling system can be avoided.
G02B 6/42 - Coupling light guides with opto-electronic elements
G02B 6/12 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
H05K 1/14 - Structural association of two or more printed circuits
H05K 1/18 - Printed circuits structurally associated with non-printed electric components
H01L 23/00 - Details of semiconductor or other solid state devices
H01L 25/16 - Assemblies consisting of a plurality of individual semiconductor or other solid-state devices the devices being of types provided for in two or more different subclasses of , , , , or , e.g. forming hybrid circuits
H01S 5/183 - Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
Novel structures of photovoltaic cells (also called as solar cells) are provided. The cells are based on nanoparticles or nanometer-scaled wires, tubes, and/or rods, which are made of electrical materials covering semiconductors, insulators, and also metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications such as in space, commercial, residential and industrial applications.
H01L 31/0352 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
H01L 31/0384 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
H01L 31/0392 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates
H01L 31/04 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
An electronics interconnection system is provided with reduced capacitance between a signal line and the surrounding dielectric material. By using a non-homogenous dielectric, the effective dielectric loss of the material is reduced. This reduction results in less power loss from the signal line to the dielectric material, which reduces the number of buffers needed on the signal line. This increases the speed of the signal, and reduces the power consumed by the interconnection system. The fabrication techniques provided are advantageous because they can be fabricated using today's standard IC fabrication techniques.
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
H01L 23/00 - Details of semiconductor or other solid state devices
H01L 23/473 - Arrangements for cooling, heating, ventilating or temperature compensation involving the transfer of heat by flowing fluids by flowing liquids
H01L 23/522 - Arrangements for conducting electric current within the device in operation from one component to another including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
H01L 23/532 - Arrangements for conducting electric current within the device in operation from one component to another including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
H01L 21/768 - Applying interconnections to be used for carrying current between separate components within a device
An apparatus for perpetually harvesting ambient near ultraviolet to far infrared radiation to provide continual power regardless of the environment, incorporating a system for the harvesting electronics governing power management, storage control, and output regulation. The harvesting electronics address issues of efficiently matching the voltage and current characteristics of the different harvested energy levels, low power consumption, and matching the power output demand. The device seeks to harvest the largely overlooked blackbody radiation through use of a thermal harvester, providing a continuous source of power, coupled with a solar harvester to provide increased power output.
This invention relates to multiband detector and multiband image sensing devices, and their manufacturing technologies. The innovative detector (or image sensing) provides significant broadband capability covering the wavelengths from within ultra-violet (UV) to long-Infrared, and it is achieved in a single element. More particularly, this invention is related to the multiband or dual band detectors, which can not only detect the broad spectrum wavelengths ranges from within as low as UV to the wavelengths as high as 25 μm, but also band selection capability. This invention is also related to the multiband detector arrays or image sensing device for multicolor imaging, sensing, and advanced communication.
Autonomous/self-powering image detecting systems and their manufacturing technologies are disclosed. An antenna is used to communicate signals. A first energy harvester is used to harvest energy from blackbody radiation, RF signals, movement/vibration, or combination thereof. A power management system is used which controls the energy flow to and from the energy-storage. An image sensor to take the image, a lens, and a transmitter to transmit the images to an outside device are also used in this invention. According to this preferred embodiment, an energy harvester harnessing energy from blackbody radiation from and within the body, is used to extract enough energy to increase the operation time and also to make precision of the image detecting system.
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
25.
Energy harvesting devices and method of fabrication thereof
An apparatus and method pertaining to a perpetual energy harvester. The harvester absorbs ambient infrared radiation and provides continual power regardless of the environment. The device seeks to harvest the largely overlooked blackbody radiation through use of a semiconductor thermal harvester.
H01L 31/0352 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
H01L 31/0687 - Multiple junction or tandem solar cells
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
26.
Photovoltaic cells based on nano or micro-scale structures
Novel structures of photovoltaic cells (also treated as solar cells) are provided. The cells are based on nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications in space, commercial, residential, and industrial applications.
H01L 31/068 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
An apparatus for perpetually harvesting ambient near ultraviolet to far infrared radiation to provide continual power regardless of the environment, incorporating a system for the harvesting electronics governing power management, storage control, and output regulation. The harvesting electronics address issues of efficiently matching the voltage and current characteristics of the different harvested energy levels, low power consumption, and matching the power output demand. The device seeks to harvest the largely overlooked blackbody radiation through use of a thermal harvester, providing a continuous source of power, coupled with a solar harvester to provide increased power output.
This invention is related to energy scavenging device and in particular, to energy harvesting or scavenging from the environmental radiation covering from solar spectrum and thermal radiation. Energy harvesting device is an integrated device comprising the devices that capture the radiation and converted into electrons, and also energy management devices to manage the converted energy either to store, to operate the electronic devices, and/or recharge the batteries. The energy scavenging devices integrates several device capabilities such as energy conversion, management, and storing the energy, on a common platform. Herein a design of a device capable to scavenge or harvest the energy from environment radiation is disclosed. A primary objective of this invention is to provide a design of a scavenging device that harvests the energy from environment radiation, operates 24/7, thereby generate and store, manage the energy as required.
H01L 31/058 - including means to utilise heat energy, e.g. hybrid systems, or a supplementary source of electric energy
G05F 1/67 - Regulating electric power to the maximum power available from a generator, e.g. from solar cell
H02J 7/35 - Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
H01L 31/02 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof - Details
H01L 31/12 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
29.
High efficiency photovoltaic cells with self concentrating effect
Novel structures of photonics devices (e.g. photovoltaic cells also called as solar cells) are provided. The Cells are based on the micro (or nano) structures which could not only increase the surface area but also have the capability of self-concentrating the light incident onto the photonics devices. Using of such structures, it is possible to achieve significant performance improvement. For example, if such structures are used in the photovoltaic cells, large power generation capability per unit physical area is possible over the conventional cells, and have enormous applications such as in space, in commercial, residential and industrial applications. Such structures are also beneficial to other photonics devices such as photodetector to enhance the performance.
H01L 31/0296 - Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
H01L 31/0352 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
H01L 31/054 - Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
30.
Stackable optoelectronics chip-to-chip interconnects and method of manufacturing
The optoelectronics chip-to-chip interconnect system includes at least one packaged chip connected on the printed-circuit-hoard (PCB) with at least one other packaged chip, opticalelectrical (O-E) conversion means, and waveguide-board. Single to multiple chips can be interconnected using this technique. Packaged chip includes semiconductor die and package based on ball-grid array or chipscale-package. O-E board includes optoelectronics and multiple electrical contacts on both board sides. Waveguide board includes electrodes transferring signals from O-E board to PCB, and the flex optical waveguide, stackable onto the PCB, to guide optical signals chip-to-chip. Electrodes can be connected to the PCB instead of on waveguide hoard. The chip-to-chip interconnection system is pin-free, compatible with the PCB. Advantages are to use the packaged chip for interconnection, while conventional PCB can be used for low speed signal connection, and transmitting part of the heat from the packaged chip to the PCB through conductors, avoiding complex cooling systems.
3). The novel sensing system may be of great value to many industries, for example, medical, forensics, and military. The fundamental principles of this novel invention may be implemented in many variations and combinations of techniques.
An interconnection system is provided with reduced capacitance between a signal via and the surrounding dielectric material. By using a non-homogenous dielectric, the effective dielectric constant of the system is reduced. The signal vias are surrounded with some combination of open trenches and/or grounded vias to decrease the effective dielectric constant of the surrounding system, providing shielding from the interference of nearby signal lines and vias. The fabrication techniques provided are advantageous because they can be preformed using today's standard IC fabrication techniques.
Novel structures of photovoltaic cells (also treated as solar cells) are provided. The cells are based on nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications in space, commercial, residential, and industrial applications.
This invention relates to photodetector and its array in the form of a image sensor having multispectral detection capability covering the wavelengths from ultra-violet (UV) or near UV to shortwave infrared (over 1700 nm), ultra-violet (UV) or near UV to mid infrared (3500 nm), or ultra-violet (UV) or near UV to 5500 nm. More particularly, this invention is related to the multicolor detector, which can detect the light wavelengths ranges from as low as UV to the wavelengths over 1700 nm covering the most of the communication wavelength, and also from UV to as high as 5500 nm using of the single monolithic detector fabricated on the single wafer. This invention is also related to the multispectral photodetector arrays for multicolor imaging, sensing, and advanced communication. Our innovative approach utilizes surface incident type (either top- or bottom-illuminated type) photodiode structure having single absorption layer and consisting of more than micro-nano-scaled 3-dimensional (3-D) blocks which can provide broader spectral response than that of the absorption layer made from the same type of material having macro-scaled structure.
An apparatus and method for producing a perpetual energy harvester which harvests ambient near ultraviolet to infrared radiation and provides continual power regardless of the environment. The device seeks to harvest the largely overlooked blackbody radiation through use of a semiconductor thermal harvester, providing a continuous source of power. Additionally, increased power output is provided through a solar harvester. The solar and thermal harvesters are physically connected but electrically isolated.
H01L 31/0687 - Multiple junction or tandem solar cells
H01L 31/0352 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
H01L 31/076 - Multiple junction or tandem solar cells
H01L 31/075 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
An electronics interconnection system is provided with reduced capacitance between a signal line and the surrounding dielectric material. By using a non-homogenous dielectric, the effective dielectric constant of the material is reduced. This reduction results in less power loss from the signal line to the dielectric material, and therefore reduces the number of buffers needed on the signal line. This increases the speed of the signal, and reduces the power consumed by the interconnection system. The fabrication techniques provided are advantageous because they can be preformed using today's standard IC fabrication techniques.
An optoelectronics chip-to-chip interconnects system is provided, including at least one packaged chip to be connected on the printed-circuit-board with at least one other packaged chip, optical-electrical (O-E) conversion mean, waveguide-board, and (PCB). Single to multiple chips interconnects can be interconnected provided using the technique disclosed in this invention. The packaged chip includes semiconductor die and its package based on the ball-grid array or chip-scale-package. The O-E board includes the optoelectronics components and multiple electrical contacts on both sides of the O-E substrate. The waveguide board includes the electrical conductor transferring the signal from O-E board to PCB and the flex optical waveguide easily stackable onto the PCB to guide optical signal from one chip-to-other chip. Alternatively, the electrode can be directly connected to the PCB instead of including in the waveguide board. The chip-to-chip interconnections system is pin-free and compatible with the PCB. The main advantages of this invention are to use the packaged chip for interconnection and the conventional PCB technology can be used for low speed electrical signal connection. Also, the part of the heat from the packaged chip can be transmitted to the PCB through the conductors, so that complex cooling system can be avoided.
This invention relates to imaging device and its related transferring technologies to independent substrate able to attain significant broadband capability covering the wavelengths from ultra-violet (UV) to long-Infrared. More particularly, this invention is related to the broadband image sensor (along with its manufacturing technologies), which can detect the light wavelengths ranges from as low as UV to the wavelengths as high as 20 μm covering the most of the wavelengths using of the single monolithic image sensor on the single wafer. This invention is also related to the integrated circuit and the bonding technologies of the image sensor to standard integrated circuit for multicolor imaging, sensing, and advanced communication. Our innovative approach utilizes surface structure having more than micro-nano-scaled 3-dimensional (3-D) blocks which can provide broad spectral response. Utilizing multiple micro-nano scaled blocks help to increase the absorption spectra more than the material used as the absorption layer. In addition, utilizing the multiple nano-scaled 3-D blocks help to increase the absorption over the wavelength due to the multiple reflections and diffractions inside the 3-D structures. The absorption layers will be designed to achieve the required quantum efficiency and also required speed.
3). The novel sensing system may be of great value to many industries, for example, medical, forensics, and military. The fundamental principles of this novel invention may be implemented in many variations and combinations of techniques.
Described are methods for fabricating high speed metallic electrical interconnects for printed wiring board for high speed transmission of a data signal across an interconnect in a systems. The trench under electrical signal line is made using the separate dielectric layer having through holes opened through that said dielectric layer and aligned with electrical signal line. The layer with through holes aligned with electrical signal line sandwiched in between layer carrying the electrical signal line and a layer carrying ground conducting line for the case of microstrip-type transmission line. The two separate layers with the through-holes opened and aligned with the electrical signal line are needed for the stripline-type transmission line. Multi-layers board having high speed electrical signal lines can be made utilizing the configuration described.
It is highly desirable to design a monolithic image sensor (and array), which could offer high quantum efficiency over broad spectral ranges, and the possibility to rapidly and randomly address any element in the array. This invention utilizes the growth of semiconductor nanowires such as Si, Ge, Si:Ge, ZnO, or their alloys based nanowires on standard substrates to create multispectral image sensors and photovoltaic cells having these highly desirable features.
H01L 29/06 - Semiconductor bodies characterised by the shapes, relative sizes, or dispositions of the semiconductor regions
H01L 31/072 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
H01L 31/109 - Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
H01L 31/0328 - Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups
H01L 31/0336 - Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups in different semiconductor regions, e.g. Cu2X/CdX hetero-junctions, X being an element of Group VI of the Periodic System
42.
Stackable optoelectronics chip-to-chip interconnects and method of manufacturing
An optoelectronics chip-to-chip interconnects system is provided, including at least one packaged chip to be connected on the printed-circuit-board with at least one other packaged chip, optical-electrical (O-E) conversion mean, waveguide-board, and (PCB). Single to multiple chips interconnects can be interconnected provided using the technique disclosed in this invention. The packaged chip includes semiconductor die and its package based on the ball-grid array or chip-scale-package. The O-E board includes the optoelectronics components and multiple electrical contacts on both sides of the O-E substrate. The waveguide board includes the electrical conductor transferring the signal from O-E board to PCB and the flex optical waveguide easily stackable onto the PCB to guide optical signal from one chip-to-other chip. Alternatively, the electrode can be directly connected to the PCB instead of including in the waveguide board. The chip-to-chip interconnections system is pin-free and compatible with the PCB. The main advantages of this invention are to use the packaged chip for interconnection and the conventional PCB technology can be used for low speed electrical signal connection. Also, the part of the heat from the packaged chip can be transmitted to the PCB through the conductors, so that complex cooling system can be avoided.
H01L 27/15 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier, specially adapted for light emission
H01L 29/22 - Semiconductor bodies characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
43.
Stackable optoelectronics chip-to-chip interconnects and method of manufacturing
An optoelectronics chip-to-chip interconnects system is provided, including at least one packaged chip to be connected on the printed-circuit-board with at least one other packaged chip, optical-electrical (O-E) conversion mean, waveguide-board, and (PCB). Single to multiple chips interconnects can be interconnected provided using the technique disclosed in this invention. The packaged chip includes semiconductor die and its package based on the ball-grid array or chip-scale-package. The O-E board includes the optoelectronics components and multiple electrical contacts on both sides of the O-E substrate. The waveguide board includes the electrical conductor transferring the signal from O-E board to PCB and the flex optical waveguide easily stackable onto the PCB to guide optical signal from one chip-to-other chip. Alternatively, the electrode can be directly connected to the PCB instead of including in the waveguide board. The chip-to-chip interconnections system is pin-free and compatible with the PCB. The main advantages of this invention are to use the packaged chip for interconnection and the conventional PCB technology can be used for low speed electrical signal connection. Also, the part of the heat from the packaged chip can be transmitted to the PCB through the conductors, so that complex cooling system can be avoided.
An optoelectronics chip-to-chip interconnects system is provided, including at least one packaged chip to be connected on the printed-circuit-board with at least one other packaged chip, optical-electrical (O-E) conversion mean, waveguide-board, and (PCB). Single to multiple chips interconnects can be interconnected provided using the technique disclosed in this invention. The packaged chip includes semiconductor die and its package based on the ball-grid array or chip-scale-package. The O-E board includes the optoelectronics components and multiple electrical contacts on both sides of the O-E substrate. The waveguide board includes the electrical conductor transferring the signal from O-E board to PCB and the flex optical waveguide easily stackable onto the PCB to guide optical signal from one chip-to-other chip. Alternatively, the electrode can be directly connected to the PCB instead of including in the waveguide board. The chip-to-chip interconnections system is pin-free and compatible with the PCB. The main advantages of this invention are to use the packaged chip for interconnection and the conventional PCB technology can be used for low speed electrical signal connection. Also, the part of the heat from the packaged chip can be transmitted to the PCB through the conductors, so that complex cooling system can be avoided.
H01L 29/22 - Semiconductor bodies characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
H01L 31/0232 - Optical elements or arrangements associated with the device
45.
Multicolor photodiode array and method of manufacturing
Novel structures of the photodetector having broad spectral ranges detection capability are provided. The photodetector offers high quantum efficiency>95% over wide spectral ranges, high frequency response>10 GHz (@3 dB). The photodiode array of N×N (or M×N) elements is also provided. The array also offers wide spectral detection ranges ultraviolet to 2500 nm with high quantum efficiency>95% and high frequency response of >10 GHz, cross-talk of <0.1%. In the array, each photodiode is independently addressable and is made either as top-illuminated or as bottom illuminated type detector. The photodiode and its array provided in this invention, could be used in multiple purpose applications such as telecommunication, imaging, and sensing applications including surveillance, satellite tracking, advanced lidar systems, etc. The advantages of this photodetectors are that they are uncooled and performance will not be degraded under wide range of temperature variation.
H01L 31/105 - Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
46.
Multicolor photodiode array and method of manufacturing
Novel structures of the photodetector having broad spectral ranges detection capability are provided. The photodetector offers high quantum efficiency>95% over wide spectral ranges, high frequency response>10 GHz (@3 dB). The photodiode array of N×N (or M×N) elements is also provided. The array also offers wide spectral detection ranges ultraviolet to 2500 nm with high quantum efficiency>95% and high frequency response of >10 GHz, cross-talk of <0.1%. In the array, each photodiode is independently addressable and is made either as top-illuminated or as bottom illuminated type detector. The photodiode and its array provided in this invention, could be used in multiple purpose applications such as telecommunication, imaging, and sensing applications including surveillance, satellite tracking, advanced lidar systems, etc. The advantages of this photodetectors are that they are uncooled and performance will not be degraded under wide range of temperature variation.
H01L 25/16 - Assemblies consisting of a plurality of individual semiconductor or other solid-state devices the devices being of types provided for in two or more different subclasses of , , , , or , e.g. forming hybrid circuits
A hybrid photovoltaic device comprising a plurality of nanostructures embedded in a matrix of a photosensitive material including one or more layers. A combination of innovative structural aspects of the hybrid photovoltaic device results in significant improvements in collection of incident light from the solar spectrum, better absorption of light, and better collection of the photo-carriers generated in response to the incident light, thereby improving efficiency of the hybrid photovoltaic device.
Fundamental interconnect systems for connecting high-speed electronics elements are provided. The interconnect systems consists of signal line, dielectric system with open trench or slot filled up with air or lower dielectric loss material, and the ground plane. The signal line could be for example, microstripline, strip line, coplanar line, single line or differential pairs. The interconnect system can be used for on-chip interconnects or can also be used for off-chip interconnects. The fundamental techniques provided in this invention can also be used for high-speed connectors and high-speed cables.
3). The novel sensing system may be of great value to many industries, for example, medical, forensics, and military. The fundamental principles of this novel invention may be implemented in many variations and combinations of techniques.
Novel structures of photovoltaic cells (also called as solar cells) are provided. The Cells are based on the micro (or nano) structures which could not only increase the surface area but also have the capability of self concentrating the solar spectrum incident onto the cell. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications such as in space, in commercial, residential and industrial applications.
A delay line system able to reduce the microwave loss by reducing the effective dielectric loss and dielectric constant of the system including a signal line, dielectric system with opened trench or slot filled up with the air or lower dielectric loss material, a ground plane, and a system of switches if the line is to be variable. The delay line proposed in this invention could be made of any type of signal line configuration, for example: micro-strip line, strip line, or coplanar line. The signal line can also be made as single ended or differential pairs of any configurations. The delay line systems based on the fundamental techniques provided in this invention can be used for on-chip devices where the delay line is laid on the oxide or dielectric material, or in a traditional PCB implementation such as FR4.
Novel structures of photovoltaic cells (also treated as solar cells) are provided. The cells are based on nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications in space, commercial, residential, and industrial applications.
Novel structures of photovoltaic cells (also treated as solar cells) are provided. The cells are based on nanometer or micrometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators, and may be metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications such as in space, commercial, residential and industrial applications.
H01L 31/0352 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
H01L 31/068 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
H01L 51/44 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation - Details of devices
H01L 31/072 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
H01L 31/07 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the Schottky type
H01L 31/0296 - Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
H01L 51/42 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
H01L 31/0735 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
H01L 31/0304 - Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
H01L 31/073 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
Novel structures of photovoltaic cells (also called as solar cells) are provided. The cells are based on nanoparticles or nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators, and may be metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications such as in space, commercial, residential and industrial applications.
H01L 31/04 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices
H01L 31/0392 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
H01L 31/0384 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
H01L 31/0352 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
55.
High-speed flex printed circuit and method of manufacturing
Multilayer high speed flex printed circuit boards (FLEX-PCBs) are disclosed including a dielectrics systems with the back-side trenches, adhesives, signal lines and ground planes, wherein the signal line and ground plane lane are located on the dielectrics. Using of the open trenches in the substrate help to reduce the microwave loss and dielectric constant and thus increasing the signal carrying speed of the interconnects. Thus, according to the present invention, it is possible to provide a simply constructed multiplayer high speed FLEX-PCB using the conventional material and conventional FLEX-PCB manufacturing which facilitates the design of circuits with controlled bandwidth based on the trench opening in the dielectrics, and affords excellent connection reliability. As the effective dielectric constant is reduced, the signal width is required to make wider or the dielectric thickness is required to make thinner keeping fixed characteristics impedance. The fundamental techniques disclosed here can also be used for high-speed packaging.
Novel structures of photovoltaic cells (also treated as solar cells) are provided. The Cells are based on the nanometer-scaled wire, tubes, and/or rods, which are made of the electronics materials covering semiconductors, insulator or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells can have also high radiation tolerant capability. These cells will have enormous applications such as in space, in commercial, residential and industrial applications.
The invention is a method of producing an array, or multiple arrays of quantum dots. Single dots, as well as two or three-dimensional groupings may be created. The invention involves the transfer of quantum dots from a receptor site on a substrate where they are originally created to a separate substrate or layer, with a repetition of the process and a variation in the original pattern to create different structures.