A method and system for concrete monitoring calibration using truck-mounted mixer drum jump speed data selectively assimilated from previous deliveries. In preferred embodiments, the invention surprisingly employs data obtained using different concrete mix designs, as well as jump speed data obtained from high speed mixing after the trucks arrive at the construction delivery site and before pouring the concrete into place at the site. The method involves measuring energy (E) in terms of pressure or force associated with mixing the concrete (“E1”) at a first drum speed (“V1”) and measuring energy (E2) after a speed jump of +/−2.5 RPM or more to a second drum speed (V2). Slump is calculated using low speed energy/speed/slump curve data, or pre-stored equation wherein slump(S) is derived as a function of slope of the line defined by E1, V1 and E2, V2 and intercept of the plotted relationship (at E axis where V is zero). The E/V/S relationship in the provided concrete is compared to at least two pre-stored data curves across drum speed ranges of 0.5 RPM-6 RPM and 6 RPM-20 RPM, to ascertain whether the provided concrete matches any of the stored curve data (i.e., previous concrete E/V/S profiles); and either activating the monitoring system for all drum speed ranges where a match is confirmed or allowing the monitoring system to calculate slump only at low drum speeds (below 6 RPM) and alerting a system user or operator that the system is only active for low speed monitoring.
Described are a method and system for minimizing errors in the manufacture or management of aggregate-containing construction materials such as concrete. Aggregates used for making concrete are stored or weighed in dry bulk bin type hoppers, and conveyed from these hoppers into mixer drums which batching or mix the concrete. The hoppers or conveyor belts may contain sensor probes for measuring moisture levels in the aggregate. These sensor probes require calibration from time to time, but time and expense are required for proper calibration, leading to habitually erroneous moisture level data used in the industry on a daily basis. The present inventors believe that the smallest inaccuracies in aggregate moisture level readings can have profound effects on the properties of the resultant concrete product. To confront this long suffered problem, the present inventors surprisingly discovered that the inaccuracy of these aggregate moisture sensors, as used for evaluating the aggregate as a dry bulk material, can be detected and even addressed through the use of slump monitoring systems to evaluate the concrete slurry mix prepared from the aggregates.
A method and system for initiating a majority percentage of chemical admixture dosage into a delivered concrete load preferably just before arrival of the concrete delivery truck at the delivery pour site, such that a maximized slump (or slump flow, or other slump characteristic) increase occurs just before discharge/pour. The invention employs a concrete slump management system having a processor that is programed to consider time of pour (discharge) and stored data that includes dosage response (change of slump characteristic) of the concrete mix due to past additions in the same type of concrete mix, and thus maximizes pre-pour increase in slump characteristic while minimizing or avoiding the risk of overshooting the slump target as well as limiting the time required for adjusting concrete to attain the target slump value at the jobsite.
Process and system for managing a mix design catalog of a concrete producer that involves collecting slump curve data obtained during in-transit monitoring of delivered concrete loads made from a plurality of various mix designs, wherein each mix design is identified by a different identification code (regardless of whether components are different), clustering slump curve data having same movement characteristics according to assigned strength value, and selecting a mix design to produce, to display, or both to produce and to display, from among the two or more slump data curves of individual mix designs within the same data curve cluster. The selection is based on same movement characteristic and assigned strength value, and at least one factor relative to cost, performance, physical aspect, quality, or other characteristic of the concrete mix or its components. Exemplary methods for generating new mix designs are also set forth.
A method and system for concrete monitoring calibration using truck-mounted mixer drum jump speed data selectively assimilated from previous deliveries. The method involves measuring energy at a first drum speed and a second drum speed. Slump is calculated using low speed energy/speed/slump curve data, or pre-stored equation wherein slump is derived as a function of slope of the line. The energy, speed, slump relationship in the provided concrete is compared to at least two pre-stored data curves across drum speed ranges of 15 0.5 RPM-6 RPM and 6 RPM-20 RPM, to ascertain whether the provided concrete matches any of the stored curve data; either activating the monitoring system for all drum speed ranges where a match is confirmed or allowing the monitoring system to calculate slump only at low drum speeds.
Exemplary methods and systems of the invention minimize errors in the manufacture or management of aggregate-containing construction materials such as concrete. Aggregates used for making concrete are stored or weighed in dry bulk bin type hoppers, and conveyed from these hoppers into mixer drums which batching or mix the concrete. The hoppers or conveyor belts may contain sensor probes for measuring moisture levels in the aggregate. These sensor probes require calibration from time to time, but time and expense are required for proper calibration, leading to habitually erroneous moisture level data used in the industry on a daily basis. The present inventors believe that the smallest inaccuracies in aggregate moisture level readings can have profound effects on the properties of the resultant concrete product. To confront this long suffered problem, the present inventors surprisingly discovered that the inaccuracy of these aggregate moisture sensors, as used for evaluating the aggregate as a dry bulk material, can be detected and even addressed through the use of slump monitoring systems during delivery to evaluate the concrete slurry mix prepared from the aggregates.
Disclosed are dosing methods for mitigating the deleterious effect of clays, which are born or conveyed by sand aggregates, crushed rock, gravel, and other aggregates used in the manufacture of concrete, upon the dosage efficiency of cement dispersants added into concrete. Instead of introducing the entire clay mitigation agent (CMA) into the aggregate material before or during batching in the cement batch plant in a singular, upfront dose, the present invention comprises administering CMA doses on at least two instances in a rotatable truck-mounted mixer drum, wherein at least 21%-100% of the total CMA added into the concrete is added after initial batching of water, cement binder, and clay-bearing aggregates in the rotatable truck-mounted mixer drum during the transit portion of the delivery between initial batching at the cement batch plant and the pour event at the job site.
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
B28C 7/02 - Controlling the operation of the mixing
Disclosed are exemplary process and system for managing a mix design catalog of a concrete producer that involves collecting slump curve data obtained during in-transit monitoring of delivered concrete loads made from a plurality of various mix designs, wherein each mix design is identified by a different identification code (regardless of whether components are different), clustering slump curve data having same movement characteristics according to assigned strength value, and selecting a mix design to produce, to display, or both to produce and to display, from among the two or more slump data curves of individual mix designs within the same data curve cluster. The selection is based on same movement characteristic and assigned strength value, and at least one factor relative to cost, performance, physical aspect, quality, or other characteristic of the concrete mix or its components. Exemplary methods for generating new mix designs are also disclosed.
B28C 5/42 - Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
G05B 1/11 - Comparing elements, i.e. elements for effecting comparison directly or indirectly between a desired value and existing or anticipated values fluidic
Disclosed are exemplary process and system for managing a mix design catalog of a concrete producer that involves collecting slump curve data obtained during in-transit monitoring of delivered concrete loads made from a plurality of various mix designs, wherein each mix design is identified by a different identification code (regardless of whether components are different), clustering slump curve data having same movement characteristics according to assigned strength value, and selecting a mix design to produce, to display, or both to produce and to display, from among the two or more slump data curves of individual mix designs within the same data curve cluster. The selection is based on same movement characteristic and assigned strength value, and at least one factor relative to cost, performance, physical aspect, quality, or other characteristic of the concrete mix or its components. Exemplary methods for generating new mix designs are also disclosed.
B28C 5/42 - Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
G05B 1/11 - Comparing elements, i.e. elements for effecting comparison directly or indirectly between a desired value and existing or anticipated values fluidic
G06Q 10/06 - Resources, workflows, human or project managementEnterprise or organisation planningEnterprise or organisation modelling
The present invention provides a method and system for detecting hardened concrete buildup in a mixer drum which is substantially devoid of plastic concrete. An exemplary method involves monitoring the hydraulic pressure required to rotate the drum through at least two successive rotations at constant speed, using a hydraulic pressure sensor on hydraulic charge side, discharge side, or preferably both sides of the hydraulic motor which turns the mixer drum; and detecting when the pressure/time data curve indicates eccentric behavior of the mixer drum, whereby an alarm or other indication is provided to confirm that the hardened concrete buildup in the truck is not acceptable. The buildup detection method and system of the present invention does not require the use of an automated slump monitoring system, but can be implemented in combination with such systems with favorable results and advantages.
B28C 7/00 - Controlling the operation of apparatus for producing mixtures of clay or cement with other substancesSupplying or proportioning the ingredients for mixing clay or cement with other substancesDischarging the mixture
B28C 7/02 - Controlling the operation of the mixing
B28C 5/42 - Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
A system and process for detecting dynamic segregation in concrete rotated within a mixer drum, such as mounted on a delivery truck. A system processor is programmed to monitor an instantaneous and averaged rheology parameter and to deploy protocols for detecting segregation. A first protocol comprises monitoring the averaged slump during and immediately after a jump in drum speed of at least plus or minus four rotations per minute and detecting when a change in the averaged slump value meets or exceeds a threshold; and a second protocol comprises monitoring the instantaneous slump when the mixer drum is rotating at a constant speed for at least three successive rotations and detecting when the instantaneous slump value meets or exceeds a threshold limit. Once segregation is detected, one or more operations can be initiated, such as initiating an alarm or adjusting the mix.
E01C 19/10 - Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resinsApparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
Described are a method and system for minimizing errors in the manufacture or management of aggregate-containing construction materials such as concrete. Aggregates used for making concrete are stored or weighed in dry bulk bin type hoppers, and conveyed from these hoppers into mixer drums which batching or mix the concrete. The hoppers or conveyor belts may contain sensor probes for measuring moisture levels in the aggregate. These sensor probes require calibration from time to time, but time and expense are required for proper calibration, leading to habitually erroneous moisture level data used in the industry on a daily basis. The present inventors believe that the smallest inaccuracies in aggregate moisture level readings can have profound effects on the properties of the resultant concrete product. To confront this problem, the present inventors discovered that the inaccuracy of these aggregate moisture sensors, as used for evaluating the aggregate as a dry bulk material, can be detected and even addressed through the use of slump monitoring systems to evaluate the concrete slurry mix prepared from the aggregates.
B28C 5/42 - Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
B28C 7/00 - Controlling the operation of apparatus for producing mixtures of clay or cement with other substancesSupplying or proportioning the ingredients for mixing clay or cement with other substancesDischarging the mixture
B28C 7/02 - Controlling the operation of the mixing
B28C 7/04 - Supplying or proportioning the ingredients
13.
MINIMIZING VARIATION DUE TO CONSTRUCTION AGGREGATE MOISTURE PROBES
Described are a method and system for minimizing errors in the manufacture or management of aggregate-containing construction materials such as concrete. Aggregates used for making concrete are stored or weighed in dry bulk bin type hoppers, and conveyed from these hoppers into mixer drums which batching or mix the concrete. The hoppers or conveyor belts may contain sensor probes for measuring moisture levels in the aggregate. These sensor probes require calibration from time to time, but time and expense are required for proper calibration, leading to habitually erroneous moisture level data used in the industry on a daily basis. The present inventors believe that the smallest inaccuracies in aggregate moisture level readings can have profound effects on the properties of the resultant concrete product. To confront this problem, the present inventors discovered that the inaccuracy of these aggregate moisture sensors, as used for evaluating the aggregate as a dry bulk material, can be detected and even addressed through the use of slump monitoring systems to evaluate the concrete slurry mix prepared from the aggregates.
B28C 7/00 - Controlling the operation of apparatus for producing mixtures of clay or cement with other substancesSupplying or proportioning the ingredients for mixing clay or cement with other substancesDischarging the mixture
B28C 7/02 - Controlling the operation of the mixing
B28C 7/04 - Supplying or proportioning the ingredients
Described are a method and system for initiating a majority percentage of chemical admixture dosage into a delivered concrete load preferably just before arrival of the concrete delivery truck at the delivery pour site, such that a maximized slump (or slump flow, or other slump characteristic) increase occurs just before discharge/pour. The invention employs a concrete slump management system having a processor that is programed to consider time of pour (discharge) and stored data that includes dosage response (change of slump characteristic) of the concrete mix due to past additions in the same type of concrete mix, and thus maximizes pre-pour increase in slump characteristic while minimizing or avoiding the risk of overshooting the slump target as well as limiting the time required for adjusting concrete to attain the target slump value at the jobsite.
Described are a method and system for initiating a majority percentage of chemical admixture dosage into a delivered concrete load preferably just before arrival of the concrete delivery truck at the delivery pour site, such that a maximized slump (or slump flow, or other slump characteristic) increase occurs just before discharge/pour. The invention employs a concrete slump management system having a processor that is programed to consider time of pour (discharge) and stored data that includes dosage response (change of slump characteristic) of the concrete mix due to past additions in the same type of concrete mix, and thus maximizes pre-pour increase in slump characteristic while minimizing or avoiding the risk of overshooting the slump target as well as limiting the time required for adjusting concrete to attain the target slump value at the jobsite.
The present invention provides a method and system for detecting hardened concrete buildup in a mixer drum which is substantially devoid of plastic concrete. An exemplary method involves monitoring the hydraulic pressure required to rotate the drum through at least two successive rotations at constant speed, using a hydraulic pressure sensor on hydraulic charge side, discharge side, or preferably both sides of the hydraulic motor which turns the mixer drum; and detecting when the pressure/time data curve indicates eccentric behavior of the mixer drum, whereby an alarm or other indication is provided to confirm that the hardened concrete buildup in the truck is not acceptable. The buildup detection method and system of the present invention does not require the use of an automated slump monitoring system, but can be implemented in combination with such systems with favorable results a nd advantages.
The present invention provides a method and system for detecting hardened concrete buildup in a mixer drum which is substantially devoid of plastic concrete. An exemplary method involves monitoring the hydraulic pressure required to rotate the drum through at least two successive rotations at constant speed, using a hydraulic pressure sensor on hydraulic charge side, discharge side, or preferably both sides of the hydraulic motor which turns the mixer drum; and detecting when the pressure/time data curve indicates eccentric behavior of the mixer drum, whereby an alarm or other indication is provided to confirm that the hardened concrete buildup in the truck is not acceptable. The buildup detection method and system of the present invention does not require the use of an automated slump monitoring system, but can be implemented in combination with such systems with favorable results a nd advantages.
The invention relates to a method for adjusting concrete rheology requiring only that load size and target rheology value be selected initially rather than requiring inputs into and consultation of a lookup table of parameters such as water and hydration levels, mix components, temperature, humidity, aggregate components, and others. Dosage of particular rheology-modifying agent or combination of rheology-modifying agents is calculated based on a percentage of a nominal dose calculated with reference to a nominal dose response (“NDR”) curve or profile. The NDR profile is based on a correlation between a rheology value (e.g., slump, slump flow, yield stress) and the rheology-modifying agent(s) dose required to change rheology value by one unit (e.g., slump change from 2 to 3 inches) such that exemplary methods can employ corrective dosing based on the NDR and the measured deviation by the system.
B28C 7/00 - Controlling the operation of apparatus for producing mixtures of clay or cement with other substancesSupplying or proportioning the ingredients for mixing clay or cement with other substancesDischarging the mixture
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
B28C 7/02 - Controlling the operation of the mixing
G05D 21/02 - Control of chemical or physico-chemical variables, e.g. pH-value characterised by the use of electric means
A method and system for concrete monitoring calibration using truck-mounted mixer drum jump speed data selectively assimilated from previous deliveries. The method involves measuring energy at a first drum speed and a second drum speed. Slump is calculated using low speed energy/speed/slump curve data, or pre-stored equation wherein slump is derived as a function of slope of the line. The energy, speed, slump relationship in the provided concrete is compared to at least two pre-stored data curves across drum speed ranges of 15 0.5 RPM - 6 RPM and 6 RPM - 20 RPM, to ascertain whether the provided concrete matches any of the stored curve data; either activating the monitoring system for all drum speed ranges where a match is confirmed or allowing the monitoring system to calculate slump only at low drum speeds.
A method and system for concrete monitoring calibration using truck-mounted mixer drum jump speed data selectively assimilated from previous deliveries. The method involves measuring energy at a first drum speed and a second drum speed. Slump is calculated using low speed energy/speed/slump curve data, or pre-stored equation wherein slump is derived as a function of slope of the line. The energy, speed, slump relationship in the provided concrete is compared to at least two pre-stored data curves across drum speed ranges of 15 0.5 RPM - 6 RPM and 6 RPM - 20 RPM, to ascertain whether the provided concrete matches any of the stored curve data; either activating the monitoring system for all drum speed ranges where a match is confirmed or allowing the monitoring system to calculate slump only at low drum speeds.
Disclosed are method and system for treating concrete in mixing drums of delivery vehicles having automated rheology (e.g., slump) monitoring systems programmed to dose fluids into concrete based on the monitored rheology. The present invention takes into account a Revolution-To-Discharge value (“RTD”) which reflects drum rotations needed to move concrete towards and through the mixing drum opening from which concrete is discharged, and also takes into consideration a Volume-Per-Revolution-Upon-Discharge (“VPRUD”) value which reflects the relation between the rate of discharge and rheology (e.g., slump) of concrete upon discharge. The invention is especially useful for reclaiming concrete in the drum after delivery and can confirm rheology based upon peak (maximum) discharge pressure. The present inventors found surprisingly that discharge pressure readings are useful for recalibrating automated rheology monitoring systems as well as for reporting and/or treating the remainder concrete.
B28C 5/42 - Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
F24S 25/61 - Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing to the ground or to building structures
F24F 3/044 - Systems in which all treatment is given in the central station, i.e. all-air systems
F24F 13/32 - Supports for air-conditioning, air-humidification or ventilation units
G01N 11/00 - Investigating flow properties of materials, e.g. viscosity or plasticityAnalysing materials by determining flow properties
F24S 25/60 - Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
A system and process for detecting dynamic segregation in concrete rotated within a mixer drum, such as mounted on a delivery truck. A system processor is programmed to monitor an instantaneous and averaged rheology parameter and to deploy protocols for detecting segregation. A first protocol comprises monitoring the averaged slump during and immediately after a jump in drum speed of at least plus or minus four rotations per minute and detecting when a change in the averaged slump value meets or exceeds a threshold; and a second protocol comprises monitoring the instantaneous slump when the mixer drum is rotating at a constant speed for at least three successive rotations and detecting when the instantaneous slump value meets or exceeds a threshold limit. Once segregation is detected, one or more operations can be initiated, such as initiating an alarm or adjusting the mix.
G05B 21/00 - Systems involving sampling of the variable controlled
B28C 5/42 - Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
B28C 7/02 - Controlling the operation of the mixing
E01C 19/10 - Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resinsApparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
The present invention relates to mitigating the deleterious effect of clays, which are born or conveyed by sand aggregates, crushed rock, gravel, and other aggregates used in the manufacture of concrete, upon the dosage efficiency of cement dispersants or other admixtures which are added into concrete. Instead of introducing the entire cement mitigation agent (CMA) into the aggregate material at a quarry or upon batching in the mix plant in a singular, upfront dose, the present invention comprises combining at least 51% and up to 100%, and, most preferably, at least 75% and up to 100%, of the total dosage amount of the CMAs into a given concrete mix batch during the transit portion of the delivery between initial batching at the mix plant and the pour event at the job site.
Disclosed are dosing methods for mitigating the deleterious effect of clays, which are born or conveyed by sand aggregates, crushed rock, gravel, and other aggregates used in the manufacture of concrete, upon the dosage efficiency of cement dispersants added into concrete. Instead of introducing the entire cement mitigation agent (CMA) into the aggregate material at a quarry or upon batching in the mix plant in a singular, upfront dose, the present invention comprises combining at least 51% and up to 100%, and, most preferably, at least 75% and up to 100%, of the total dosage amount of the CMAs into a given concrete mix batch during the transit portion of the delivery between initial batching at the mix plant and the pour event at the job site.
C04B 24/26 - Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
C04B 103/30 - Water reducers, plasticisers, air-entrainers
The present invention relates to mitigating the deleterious effect of clays, which are born or conveyed by sand aggregates, crushed rock, gravel, and other aggregates used in the manufacture of concrete, upon the dosage efficiency of cement dispersants or other admixtures which are added into concrete. Instead of introducing the entire cement mitigation agent (CMA) into the aggregate material at a quarry or upon batching in the mix plant in a singular, upfront dose, the present invention comprises combining at least 51% and up to 100%, and, most preferably, at least 75% and up to 100%, of the total dosage amount of the CMAs into a given concrete mix batch during the transit portion of the delivery between initial batching at the mix plant and the pour event at the job site.
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
B28C 7/00 - Controlling the operation of apparatus for producing mixtures of clay or cement with other substancesSupplying or proportioning the ingredients for mixing clay or cement with other substancesDischarging the mixture
B28C 7/02 - Controlling the operation of the mixing
A system and process for detecting dynamic segregation in concrete rotated within a mixer drum, such as mounted on a delivery truck. A system processor is programmed to monitor an instantaneous and averaged rheology parameter (e.g., instantaneous and averaged slump values) and to deploy one or more protocols for detecting the occurrence of segregation. A first protocol comprises monitoring the averaged slump or other rheology value of concrete during and immediately after a jump in drum speed of at least plus or minus four rotations per minute and detecting when a change in the averaged slump value meets or exceeds a threshold limit pre-selected by the user or the system processor; and an optional second protocol comprises monitoring the instantaneous slump or other rheology value of the concrete when the mixer drum is rotating at a constant speed for at least three successive rotations.
B28C 5/22 - Mixing in containers to which motion is imparted to effect the mixing rotating about a horizontal or substantially horizontal axis during mixing, e.g. without independent stirrers with stirrers held stationary
B28C 7/02 - Controlling the operation of the mixing
A system and process for detecting dynamic segregation in concrete rotated within a mixer drum, such as mounted on a delivery truck. A system processor is programmed to monitor an instantaneous and averaged rheology parameter (e.g., instantaneous and averaged slump values) and to deploy one or more protocols for detecting the occurrence of segregation. A first protocol comprises monitoring the averaged slump or other rheology value of concrete during and immediately after a jump in drum speed of at least plus or minus four rotations per minute and detecting when a change in the averaged slump value meets or exceeds a threshold limit pre-selected by the user or the system processor; and an optional second protocol comprises monitoring the instantaneous slump or other rheology value of the concrete when the mixer drum is rotating at a constant speed for at least three successive rotations.
A gyroscopic rotational monitoring system may be utilized for monitoring one or more properties of rotatable container or vessel (2), and/or one or more properties of a displaceable material contained in the rotatable vessels. An exemplary aspect relates to the use of a gyroscope (22) and periodicity sensor (e.g., accelerometer) (24) to determine rotational speed of a concrete mixing drum, so that the slump or other property of the concrete can be monitored or adjusted such as by dosing with water, chemical admixtures, or mixture thereof.
A gyroscopic rotational monitoring system may be utilized for monitoring one or more properties of rotatable container or vessel, and/or one or more properties of a displaceable material contained in the rotatable vessels. An exemplary aspect relates to the use of a gyroscope and periodicity sensor (e.g., accelerometer) to determine rotational speed of a concrete mixing drum, so that the slump or other property of the concrete can be monitored or adjusted such as by dosing with water, chemical admixtures, or mixture thereof.
A gyroscopic rotational monitoring system may be utilized for monitoring one or more properties of rotatable container or vessel (2), and/or one or more properties of a displaceable material contained in the rotatable vessels. An exemplary aspect relates to the use of a gyroscope (22) and periodicity sensor (e.g., accelerometer) (24) to determine rotational speed of a concrete mixing drum, so that the slump or other property of the concrete can be monitored or adjusted such as by dosing with water, chemical admixtures, or mixture thereof.
A wireless temperature sensor for a concrete delivery vehicle senses temperatures of the drum, and wirelessly transmits this data to a central processor. The sensor implements power management methods to reduce power consumption and increase battery life, permitting the use of battery power in the sensor. Temperature readings from the sensor may be used qualify or evaluate a load.
G01K 13/04 - Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
G01K 13/08 - Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies in rotary movement
G01K 1/02 - Means for indicating or recording specially adapted for thermometers
G01K 7/24 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
Disclosed are method and system for treating concrete in mixing drums of delivery vehicles having automated rheology (e.g., slump) monitoring systems programmed to dose fluids into concrete based on the monitored rheology. The present invention takes into account a Revolution-To-Discharge value ("RTD") which reflects drum rotations needed to move concrete towards and through the mixing drum opening from which concrete is discharged, and also takes into consideration a Volume-Per-Revolution-Upon-Discharge ("VPRUD") value which reflects the relation between the rate of discharge and rheology (e.g., slump) of concrete upon discharge. The invention is especially useful for reclaiming concrete in the drum after delivery and can confirm rheology based upon peak (maximum) discharge pressure. The present inventors found surprisingly that discharge pressure readings are useful for recalibrating automated rheology monitoring systems as well as for reporting and/or treating the remainder concrete.
B28C 7/02 - Controlling the operation of the mixing
G01F 1/00 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
Disclosed are method and system for treating concrete in mixing drums of delivery vehicles having automated rheology (e.g., slump) monitoring systems programmed to dose fluids into concrete based on the monitored rheology. The present invention takes into account a Revolution-To-Discharge value ("RTD") which reflects drum rotations needed to move concrete towards and through the mixing drum opening from which concrete is discharged, and also takes into consideration a Volume-Per-Revolution-Upon-Discharge ("VPRUD") value which reflects the relation between the rate of discharge and rheology (e.g., slump) of concrete upon discharge. The invention is especially useful for reclaiming concrete in the drum after delivery and can confirm rheology based upon peak (maximum) discharge pressure. The present inventors found surprisingly that discharge pressure readings are useful for recalibrating automated rheology monitoring systems as well as for reporting and/or treating the remainder concrete.
The invention provides a method and system for detecting "sneak" additions of water or other fluid into the mixing drum of a concrete delivery vehicle having an automated rheology (e.g., slump) monitoring system. Sneak fluid additions are detected based on continuous rheology monitoring, even where valves and flow meters on the delivery vehicle are not used for the fluid addition. The invention is effective for monitoring additions by truck drivers who might add water from an undocumented water source (e.g., hose) along the delivery route or at the site, to hasten pouring, placement, and finishing at the time of delivery. Once sneak fluid addition is detected, the methods and system provide for reporting in the form of alerts, alarms, or other indications that sneak fluid addition has occurred, including monitor graphs or printouts confirming existence and/or extent of sneak fluid added into the vehicle mixing drum.
Disclosed are method and system for treating concrete in mixing drums of delivery vehicles having automated rheology (e.g., slump) monitoring systems programmed to dose fluids into concrete based on the monitored rheology. The present invention takes into account a Revolution-To-Discharge value ("RTD") which reflects drum rotations needed to move concrete towards and through the mixing drum opening from which concrete is discharged, and also takes into consideration a Volume-Per-Revolution-Upon-Discharge ("VPRUD") value which reflects the relation between the rate of discharge and rheology (e.g., slump) of concrete upon discharge. The invention is especially useful for reclaiming concrete in the drum after delivery and can confirm rheology based upon peak (maximum) discharge pressure. The present inventors found surprisingly that discharge pressure readings are useful for recalibrating automated rheology monitoring systems as well as for reporting and/or treating the remainder concrete.
B28C 7/02 - Controlling the operation of the mixing
G01F 22/02 - Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for involving measurement of pressure
G01N 11/02 - Investigating flow properties of materials, e.g. viscosity or plasticityAnalysing materials by determining flow properties by measuring flow of the material
36.
SNEAK WATER DETECTION FOR CONCRETE DELIVERY VEHICLES
The invention provides a method and system for detecting "sneak" additions of water or other fluid into the mixing drum of a concrete delivery vehicle having an automated rheology (e.g., slump) monitoring system. Sneak fluid additions are detected based on continuous rheology monitoring, even where valves and flow meters on the delivery vehicle are not used for the fluid addition. The invention is effective for monitoring additions by truck drivers who might add water from an undocumented water source (e.g., hose) along the delivery route or at the site, to hasten pouring, placement, and finishing at the time of delivery. Once sneak fluid addition is detected, the methods and system provide for reporting in the form of alerts, alarms, or other indications that sneak fluid addition has occurred, including monitor graphs or printouts confirming existence and/or extent of sneak fluid added into the vehicle mixing drum.
Disclosed are method and system for treating concrete in mixing drums of delivery vehicles having automated rheology (e.g., slump) monitoring systems programmed to dose fluids into concrete based on the monitored rheology. The present invention takes into account a Revolution-To-Discharge value (“RTD”) which reflects drum rotations needed to move concrete towards and through the mixing drum opening from which concrete is discharged, and also takes into consideration a Volume-Per-Revolution-Upon-Discharge (“VPRUD”) value which reflects the relation between the rate of discharge and rheology (e.g., slump) of concrete upon discharge. The invention is especially useful for reclaiming concrete in the drum after delivery and can confirm rheology based upon peak (maximum) discharge pressure. The present inventors found surprisingly that discharge pressure readings are useful for recalibrating automated rheology monitoring systems as well as for reporting and/or treating the remainder concrete.
A system for managing a concrete delivery vehicle having a mixing drum 14 and hydraulic drive 16 for rotating the mixing drum, including a rotational sensor 20 configured to sense a rotational speed of the mixing drum, a hydraulic sensor 22 coupled to the hydraulic drive and configured to sense a hydraulic pressure required to turn the mixing drum, a temperature sensor for sensing temperature of the drum, and a communications port 26 configured to communicate a slump calculation to a status system 28 commonly used in the concrete industry, wherein the sensing of the rotational speed of the mixing drum is used to qualify a calculation of current slump based on the hydraulic pressure required to turn the mixing drum. Temperature readings are further used to qualify or evaluate a load. Also, water purge connections facilitate cold weather operation.
The invention relates to a method and system for monitoring and adjusting both air content and rheology (e.g., slump, slump flow) properties of a hydratable concrete mix contained within a concrete mixer. The system simultaneously tracks dosage of both rheology-modifying admixture (e.g., polycarboxylate polymer cement dispersant) and air control agent or "ACA" (e.g., air entraining agent) by reference to at least four nominal dose response ("NDR") curves or profiles, which at least four NDR profiles are based on the respective behaviors of each of the ACA and rheology- modifying agent on air content and rheology.
The invention relates to a method and system for monitoring and adjusting both air content and rheology (e.g., slump, slump flow) properties of a hydratable concrete mix contained within a concrete mixer. The system simultaneously tracks dosage of both rheology-modifying admixture (e.g., polycarboxylate polymer cement dispersant) and air control agent or "ACA" (e.g., air entraining agent) by reference to at least four nominal dose response ("NDR") curves or profiles, which at least four NDR profiles are based on the respective behaviors of each of the ACA and rheology- modifying agent on air content and rheology.
B28C 7/12 - Supplying or proportioning liquid ingredients
B28C 7/00 - Controlling the operation of apparatus for producing mixtures of clay or cement with other substancesSupplying or proportioning the ingredients for mixing clay or cement with other substancesDischarging the mixture
41.
Multivariate management of entrained air and rheology in cementitious mixes
The invention relates to a method and system for monitoring and adjusting both air content and rheology (e.g., slump, slump flow) properties of a hydratable concrete mix contained within a concrete mixer. The system simultaneously tracks dosage of both rheology-modifying admixture (e.g., polycarboxylate polymer cement dispersant) and air control agent or “ACA” (e.g., air entraining agent) by reference to at least four nominal dose response (“NDR”) curves or profiles, which at least four NDR profiles are based on the respective behaviors of each of the ACA and rheology-modifying agent on air content and rheology.
System and method for dispensing liquids into concrete mixer drums, particularly suitable for use on concrete mix trucks, involve use of liquid admixtures nozzle that is separate from water conduit and water nozzle, the admixtures nozzle being aimed and focused to spray through drum opening with dispersion pattern substantially within air/concrete interface defined by minimal volume concrete contained within the drum; and the water conduit or nozzle having a dispersion pattern preferably whereby wash water hits a portion of the inner drum wall and a portion of the air/concrete interface defined by a maximum amount of concrete contained within the drum. In preferred embodiments, a check valve assembly is used to connect separate admixture and water lines, so that both admixture and water nozzles can be used simultaneously during purging operation.
A wireless temperature sensor for a concrete delivery vehicle senses temperatures of the drum, and wirelessly transmits this data to a central processor. The sensor implements power management methods to reduce power consumption and increase battery life, permitting the use of battery power in the sensor. Temperature readings from the sensor may be used qualify or evaluate a load.
Method and system for motoring and obtaining information about quantity and characteristics of cementitious material In a rotating mixing drum. The present invention involves analysis of a sequence of values corresponding to a waveform reflecting the hydraulic pressure required to turn a concrete mixing drum at successive instances during rotation. Preferred embodiments involve the conversion of this time-domain data into the frequency-domain. Behavior of multiple harmonics can be examined in real time and further information obtained regarding physical properties of the concrete. Rheology or other properties can be adjusted by introducing a liquid into the concrete, based on a comparison between time-domain and/or frequency-domain values derived from a sample concrete in the drum and previously stored time-domain and/or frequency-domain values, which are preferably correlated with physical characteristics of concrete, such as slump, slump flow, load weight, and other factors.
Method and system for monitoring slump flow of hydratable cementitious material such as wet concrete in a rotating mixing drum. Whereas prior art methods use a single value of the hydraulic pressure for turning the drum (such as the average value) and correlating with slump values using the vertical drop measurements of the standard slump test (e.g. ASTM C 143-05), the present invention involves analysis of values corresponding to slump flow of concrete samples, preferably having slump flow values of 16-36 inches when measured using standard slump flow tests (e.g., ASTM C1611-05).
The invention relates to a method for adjusting concrete rheology requiring only that load size and target rheology value be selected initially rather than requiring inputs into and consultation of a lookup table of parameters such as water and hydration levels, mix components, temperature, humidity, aggregate components, and others. Dosage of particular rheology-modifying agent or combination of rheology-modifying agents is calculated based on a percentage of a nominal dose calculated with reference to a nominal dose response ("NDR") curve or profile. The NDR profile is based on a correlation between a rheology value (e.g., slump, slump flow, yield stress) and the rheology-modifying agent(s) dose required to change rheology value by one unit (e.g., slump change from 2 to 3 inches) such that exemplary methods can employ corrective dosing based on the NDR and the measured deviation by the system.
The invention relates to a method for adjusting concrete rheology requiring only that load size and target rheology value be selected initially rather than requiring inputs into and consultation of a lookup table of parameters such as water and hydration levels, mix components, temperature, humidity, aggregate components, and others. Dosage of particular rheology-modifying agent or combination of rheology-modifying agents is calculated based on a percentage of a nominal dose calculated with reference to a nominal dose response ("NDR") curve or profile. The NDR profile is based on a correlation between a rheology value (e.g., slump, slump flow, yield stress) and the rheology-modifying agent(s) dose required to change rheology value by one unit (e.g., slump change from 2 to 3 inches) such that exemplary methods can employ corrective dosing based on the NDR and the measured deviation by the system.
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
The invention relates to a method for adjusting concrete rheology requiring only that load size and target rheology value be selected initially rather than requiring inputs into and consultation of a lookup table of parameters such as water and hydration levels, mix components, temperature, humidity, aggregate components, and others. Dosage of particular rheology-modifying agent or combination of rheology-modifying agents is calculated based on a percentage of a nominal dose calculated with reference to a nominal dose response (“NDR”) curve or profile. The NDR profile is based on a correlation between a rheology value (e.g., slump, slump flow, yield stress) and the rheology-modifying agent(s) dose required to change rheology value by one unit (e.g., slump change from 2 to 3 inches) such that exemplary methods can employ corrective dosing based on the NDR and the measured deviation by the system.
G05D 11/02 - Controlling ratio of two or more flows of fluid or fluent material
G05D 11/16 - Controlling mixing ratio of fluids having different temperatures, e.g. by sensing the temperature of a mixture of fluids having different viscosities
G01N 11/00 - Investigating flow properties of materials, e.g. viscosity or plasticityAnalysing materials by determining flow properties
G01N 11/14 - Investigating flow properties of materials, e.g. viscosity or plasticityAnalysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
B28C 7/04 - Supplying or proportioning the ingredients
B28C 5/18 - Mixing in containers to which motion is imparted to effect the mixing
A system for calculating and reporting slump in a delivery vehicle having a mixing drum 14 and hydraulic drive 16 for rotating the mixing drum, including a rotational sensor 20 configured to sense a rotational speed of the mixing drum, a hydraulic sensor 22 coupled to the hydraulic drive and configured to sense a hydraulic pressure required to turn the mixing drum, and a communications port 26 configured to communicate a slump calculation to a status system 28 commonly used in the concrete industry, wherein the sensing of the rotational speed of the mixing drum is used to qualify a calculation of current slump based on the hydraulic pressure required to turn the mixing drum.
Method and system for motoring and obtaining information about quantity and characteristics of cementitious material In a rotating mixing drum. The present invention involves analysis of a sequence of values corresponding to a waveform reflecting the hydraulic pressure required to turn a concrete mixing drum at successive instances during rotation. Preferred embodiments involve the conversion of this time-domain data into the frequency-domain. Behavior of multiple harmonics can be examined in real time and further information obtained regarding physical properties of the concrete. Rheology or other properties can be adjusted by introducing a liquid into the concrete, based on a comparison between time-domain and/or frequency-domain values derived from a sample concrete in the drum and previously stored time-domain and/or frequency-domain values, which are preferably correlated with physical characteristics of concrete, such as slump, slump flow, load weight, and other factors.
Method and system for motoring and obtaining information about quantity and characteristics of cementitious material0 In a rotating mixing drum. The present invention involves analysis of a sequence of values corresponding to a waveform reflecting the hydraulic pressure required to turn a concrete mixing drum at successive instances during rotation. Preferred embodiments involve the conversion of this time-domain data into the frequency-domain. Behavior of multiple harmonics can be examined in real time and further information obtained regarding physical properties of the concrete. Rheology or other properties can be adjusted by introducing a liquid into the concrete, based on a comparison between time-domain and/or frequency-domain values derived from a sample concrete in the drum and previously stored time-domain and/or frequency-domain values, which are preferably correlated with physical characteristics of concrete, such as slump, slump flow, load weight, and other factors.
A system for managing a concrete delivery vehicle having a mixing drum 14 and hydraulic drive 16 for rotating the mixing drum, including a rotational sensor 20 configured to sense a rotational speed of the mixing drum, a hydraulic sensor 22 coupled to the hydraulic drive and configured to sense a hydraulic pressure required to turn the mixing drum, a temperature sensor for sensing temperature of the drum, and a communications port 26 configured to communicate a slump calculation to a status system 28 commonly used in the concrete industry, wherein the sensing of the rotational speed of the mixing drum is used to qualify a calculation of current slump based on the hydraulic pressure required to turn the mixing drum. Temperature readings are further used to qualify or evaluate a load. Also, water purge connections facilitate cold weather operation.
H02H 7/00 - Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
B28C 5/42 - Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
B28B 23/00 - Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material
B28C 7/02 - Controlling the operation of the mixing
B28C 7/04 - Supplying or proportioning the ingredients
53.
Method and system for calculating and reporting slump in delivery vehicles
A system for managing a concrete delivery vehicle having a mixing drum 14 and hydraulic drive 16 for rotating the mixing drum, including a rotational sensor 20 configured to sense a rotational speed of the mixing drum, a hydraulic sensor 22 coupled to the hydraulic drive and configured to sense a hydraulic pressure required to turn the mixing drum, a temperature sensor for sensing temperature of the drum, and a communications port 26 configured to communicate a slump calculation to a status system 28 commonly used in the concrete industry, wherein the sensing of the rotational speed of the mixing drum is used to qualify a calculation of current slump based on the hydraulic pressure required to turn the mixing drum. Temperature readings are further used to qualify or evaluate a load. Also, water purge connections facilitate cold weather operation.
G01N 11/00 - Investigating flow properties of materials, e.g. viscosity or plasticityAnalysing materials by determining flow properties
B28C 7/00 - Controlling the operation of apparatus for producing mixtures of clay or cement with other substancesSupplying or proportioning the ingredients for mixing clay or cement with other substancesDischarging the mixture
54.
METHOD AND SYSTEM FOR CALCULATING AND REPORTING SLUMP IN DELIVERY VEHICLES
The present invention relates to a system for managing the mixing of construction material in a rotating mixing drum. A sensor is coupled to the mixing drum and or drive system therefor and is configured to sense rotation and/or torque applied to the mixing drum and/or the contents thereof A processor receives data from the sensor and utilizes the data in evaluating the condition of the material in the mixing drum. The processor compares data from the sensor to a stored curve or curve family to evaluate the condition of the material in the mixing drum.
The present invention relates to a system for a system for managing a concrete delivery vehicle having a mixing drum and a controller. A chemical additive supply is coupled to the controller and has two or more supply containers each containing a different chemical additive. A temperature sensor is mounted to the mixing drum. The controller obtains information on a condition of the concrete, and in response causes the chemical additive supply to selectively deliver chemical additive to the concrete. The controller collects data on the condition of the concrete from two or more of: a temperature measurement of the concrete; a rate or amount of measured temperature change of the concrete measured during a time period; a measured amount of energy required in mixing the concrete; and measured completion of mixing of the concrete.
A system for managing a concrete delivery vehicle having a mixing drum (14) and hydraulic drive (16) for rotatingthe mixing drum, including a rotational sensor (20) configured to sense a rotational speed of the mixing drum, a hydraulic sensor(22) coupled to the hydraulic drive and configured to sense a hydraulic pressure required to turn the mixing drum, a temperaturesensor for sensing temperature of the drum, and a communications port (26) configured to communicate a slump calculation to astatus system (28) commonly used in the concrete industry, wherein the sensing of the rotational speed of the mixing drum is usedto qualify a calculation of current slump based on the hydraulic pressure required to turn the mixing drum. Temperature readingsare further used to qualify or evaluate a load. Also, water purge connections facilitate cold weather operation.
09 - Scientific and electric apparatus and instruments
Goods & Services
system comprising computer hardware, software, and sensors in mobile delivery vehicles for monitoring, reporting, and tracking construction materials in the construction industry; a system comprising computer hardware, software, and sensors in mobile delivery vehicles for measuring and reporting the characteristics of concrete mixtures in delivery vehicles
09 - Scientific and electric apparatus and instruments
Goods & Services
(1) System comprising computer hardware, software, and sensors in mobile delivery vehicles for monitoring, reporting, and tracking construction materials, namely concrete mixtures, in the construction industry; a system comprising computer hardware, software, and sensors in mobile delivery vehicles for measuring and reporting the characteristics of concrete mixtures in delivery vehicles.
09 - Scientific and electric apparatus and instruments
Goods & Services
System comprising computer hardware, software and sensors in mobile delivery vehicles for monitoring, reporting and tracking construction materials in the construction industry; a system comprising computer hardware, software, and sensors in mobile delivery vehicles for measuring and reporting the characteristics of concrete mixtures in delivery vehicles.
09 - Scientific and electric apparatus and instruments
Goods & Services
System comprising computer hardware, software, and sensors in mobile delivery vehicles for monitoring, reporting, and tracking construction materials in the construction industry; a system comprising computer hardware, software, and sensors in mobile delivery vehicles for measuring and reporting the characteristics of concrete mixtures in delivery vehicles
61.
System for calculating and reporting slump in delivery vehicles
A system for calculating and reporting slump in a delivery vehicle having a mixing drum (14) and hydraulic drive (16) for rotating the mixing drum, including a rotational sensor (20) configured to sense a rotational speed of the mixing drum, a hydraulic sensor (22) coupled to the hydraulic drive and configured to sense a hydraulic pressure required to turn the mixing drum, and a communications port (26) configured to communicate a slump calculation to a status system (28) commonly used in the concrete industry, wherein the sensing of the rotational speed of the mixing drum is used to qualify a calculation of current slump based on the hydraulic pressure required to turn the mixing drum.
The present invention relates to a system for the delivery of concrete, a wireless rotational sensor and a device for determining the rotation of a concrete mixing drum on a concrete delivery truck. The wireless rotational sensor for detecting the rotation of a mixing drum on a concrete delivery vehicle includes an accelerometer mounted to the mixing drum. A wireless transmitter coupled to the accelerometer transmits a signal reflective of rotation of the mixing drum. A wireless receiver receives the signal reflective of drum rotation. A computer processor can also be included, coupled to the accelerometer and wireless transmitter and configured to determine angular motion of the concrete mixing drum from the accelerometer signal. Conversely, the computer can be coupled to the wireless receiver and configured to receive the signal reflective of rotational state from the wireless transmitter and determine angular motion of the concrete mixing drum therefrom.
A system for calculating and reporting slump in a delivery vehicle having a mixing drum (14) and hydraulic drive (16) for rotating the mixing drum, including a rotational sensor (20) configured to sense a rotational speed of the mixing drum, a hydraulic sensor (22) coupled to the hydraulic drive and configured to sense a hydraulic pressure required to turn the mixing drum, and a communications port (26) configured to communicate a slump calculation to a status system (28) commonly used in the concrete industry, wherein the sensing of the rotational speed of the mixing drum is used to qualify a calculation of current slump based on the hydraulic pressure required to turn the mixing drum.