A method of manufacture of an integrated circuit packaging system includes: providing a die attach pad integrally connected to a connector portion and a lead; attaching an integrated circuit die to the die attach pad; connecting an internal interconnect to the integrated circuit die and the lead; forming an encapsulation over the integrated circuit die; removing the connector portion to separate the die attach pad and the lead; and forming an isolation cover between the die attach pad and the lead.
One or more electronic components can be mounted on the back side of a semiconductor die. The components can be passive components, active components, or combinations thereof. The components can be soldered to signal routes on the back side of the die, the signal routes being attached to the die using a metallization layer or using one or more dielectric layer sections. Placing components on the back side of the die can allow for incorporation of the components without necessarily increasing the form factor of the die's package.
A semiconductor package comprises a base substrate with a semiconductor die mounted on a top side of the base substrate and an interposer substrate mounted on top of the die. The bottom side of the interposer substrate can be electrically coupled to the top side of the base substrate through vertical connectors. The top side of the interposer substrate is substantially exposed and comprises input/output (I/O) terminals for the mounting of additional electronic components. The base and interposer substrates can be configured with I/O terminals such that components mounted on the substrates can be electrically coupled through the vertical connectors. The base substrate also can be electrically coupled to an additional electronic component, such as a printed circuit board. Electrical connections can be “wrapped around” from the base substrate to the top of the interposer substrate. The vertical connectors can be positioned along multiple sides of the package.
A semiconductor package can comprise a die stack attached to a substrate, with bond wires electrically connecting the two. Often multiple die stacks are adhered to a single substrate so that several semiconductor packages can be manufactured at once. A molding compound flow controller is optimally associated with the substrate or semiconductor package at one or more various locations. Flow controllers can control or direct the flow of the molding compound during the encapsulation process. Flow controllers can be sized, shaped, and positioned in order to smooth out the flow of the molding compound, such that the speed of the flow is substantially equivalent over areas of the substrate containing dies and over areas of the substrate without dies. In this manner, defects such as voids in the encapsulation, wire sweeping, and wire shorts can be substantially avoided during encapsulation.
A semiconductor package can comprise a die stack attached to a substrate, with bond wires electrically connecting the two. Often multiple die stacks are adhered to a single substrate so that several semiconductor packages can be manufactured at once. A molding compound flow controller is optimally associated with the substrate or semiconductor package at one or more various locations. Flow controllers can control or direct the flow of the molding compound during the encapsulation process. Flow controllers can be sized, shaped, and positioned in order to smooth out the flow of the molding compound, such that the speed of the flow is substantially equivalent over areas of the substrate containing dies and over areas of the substrate without dies. In this manner, defects such as voids in the encapsulation, wire sweeping, and wire shorts can be substantially avoided during encapsulation.
A semiconductor package can comprise a die stack attached to a substrate, with bond wires electrically connecting the two. Often multiple die stacks are adhered to a single substrate so that several semiconductor packages can be manufactured at once. A molding compound flow controller is optimally associated with the substrate or semiconductor package at one or more various locations. Flow controllers can control or direct the flow of the molding compound during the encapsulation process. Flow controllers can be sized, shaped, and positioned in order to smooth out the flow of the molding compound, such that the speed of the flow is substantially equivalent over areas of the substrate containing dies and over areas of the substrate without dies. In this manner, defects such as voids in the encapsulation, wire sweeping, and wire shorts can be substantially avoided during encapsulation.
H01L 23/488 - Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads or terminal arrangements consisting of soldered or bonded constructions
H01L 23/48 - Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads or terminal arrangements
H01L 21/56 - Encapsulations, e.g. encapsulating layers, coatings
A cavity semiconductor package has a pre-molded leadframe construction. The leadframe is formed by molding around a die pad, and plural terminal lands. The leadframe has a hole for an acoustic port, such that the package can be soldered on a back side of a printed circuit board and have air access to a sensor die in the package from a front side of the printed circuit board via the acoustic port. The leadframe may also have a hollow or concave recess that defines an acoustic cavity in conjunction with the sensor die or printed circuit board.
A semiconductor package comprises a base substrate with a semiconductor die mounted on a top side of the base substrate and an interposer substrate mounted on top of the die. The bottom side of the interposer substrate can be electrically coupled to the top side of the base substrate through vertical connectors. The top side of the interposer substrate is substantially exposed and comprises input/output (I/O) terminals for the mounting of additional electronic components. The base and interposer substrates can be configured with I/O terminals such that components mounted on the substrates can be electrically coupled through the vertical connectors. The base substrate also can be electrically coupled to an additional electronic component, such as a printed circuit board. Electrical connections can be “wrapped around” from the base substrate to the top of the interposer substrate. The vertical connectors can be positioned along multiple sides of the package, which can increase routing space between the substrates.
H01L 23/488 - Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads or terminal arrangements consisting of soldered or bonded constructions
H01L 23/48 - Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads or terminal arrangements
H01L 21/56 - Encapsulations, e.g. encapsulating layers, coatings
9.
Direct via wire bonding and method of assembling the same
A method for electrically connecting an integrated circuit to a via in a substrate is disclosed. The method can include deforming a ball over the via to form a bump and attaching a bond wire to the bump. The method also can include attaching the bond wire to the integrated circuit, such as by forming an end of the bond wire into a second ball and deforming the second ball over the integrated circuit. Alternatively, the method can include forming an end of the bond wire into a ball and deforming the ball over the via. Embodiments of a disclosed integrated circuit and substrate assembly can include, for example, a bump aligned with at least a portion of a via in a substrate and a bond wire attached to the integrated circuit and the bump. Other embodiments can include a via with a top metal cap and an upper plating.
Pick-up heads and systems are especially useful for picking up, transporting, and placing semiconductor dies at bond sites on packaging substrates. Alternatively, the heads and systems are useful for performing these tasks with any of various other planar objects. An exemplary head includes a shank and a body. The body includes a compliant end portion contactable by the shank, and the end portion includes a face. The shank is movable relative to the end portion such that, whenever the shank is retracted, the face has a substantially planar contour, and whenever the shank is extended, the shank contacts and urges the end portion to provide the face with a convex contour. The end portion desirably defines at least one vacuum orifice connected to an evacuation device (e.g., a vacuum pump) that evacuates the vacuum orifice sufficiently to cause the planar object to adhere to the face.
B65H 29/00 - Delivering or advancing articles from machinesAdvancing articles to or into piles
B65G 47/91 - Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers
B65G 1/133 - Storage devices mechanical with article supports or holders movable in a closed circuit to facilitate insertion or removal of articles the circuit being confined in a horizontal plane
B66C 1/00 - Load-engaging elements or devices attached to lifting, lowering, or hauling gear of cranes, or adapted for connection therewith for transmitting forces to articles or groups of articles
B66C 3/00 - Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith and intended primarily for transmitting lifting forces to loose materialsGrabs
A47J 45/00 - Devices for fastening or gripping kitchen utensils
11.
Fusible I/O interconnection systems and methods for flip-chip packaging involving substrate-mounted stud-bumps
Methods are disclosed for electrically connecting I/O bond-pads on a chip to corresponding I/O bond-pads on a substrate. In an exemplary method a respective stud-bump is formed on each I/O bond-pad on the substrate. The stud-bumps can be made of a fusible material, or a layer of fusible material can be formed on each I/O bond-pad on the chip. The chip is flipped and placed on the stud-bumps such that the I/O bond-pads on the chip are registered with the corresponding stud-bumps on the substrate. At each stud-bump, the fusible material is caused to fuse with and electrically connect the respective stud-bump to the respective I/O bond-pad on the chip. The method can include forming under-bump metallization (UBM) on each of the I/O bond-pads on the chip before placing the chip on the stud-bumps. The resulting structures provide robust I/O connections and can be fabricated using fewer process steps and using process steps that are compatible with other processes in wafer-fabrication and chip-assembly facilities.
H01L 21/603 - Attaching leads or other conductive members, to be used for carrying current to or from the device in operation involving the application of pressure, e.g. thermo-compression bonding
12.
Methods for manufacturing thermally enhanced flip-chip ball grid arrays
Methods for fabricating flip-chips are disclosed. In an exemplary method, a flip-chip is mounted, active-surface downward, onto a substrate such that a back-side of the flip-chip is facing upward and electrical connections are made between the chip and an upward-facing surface of the substrate. An adhesive is applied to selected regions not occupied by the flip-chip. A heat-spreader is applied to contact the applied adhesive without contacting the back-side of the flip-chip, leaving a gap between the heat-spreader and the back-side of the flip-chip. The heat-spreader defines at least one through-hole that, when the heat-spreader is placed, is within a perimeter of the flip-chip. The adhesive is cured, and a thermal-insulating material (TIM) is applied through the at least one through-hole so as to fill the gap with the TIM. The methods substantially reduce the probability of die damage that otherwise occurs during attachment of heat-spreaders.
H01L 23/10 - ContainersSeals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
H01L 23/34 - Arrangements for cooling, heating, ventilating or temperature compensation
H01L 21/00 - Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid-state devices, or of parts thereof
13.
Semiconductor assembly with component attached on die back side
One or more electronic components can be mounted on the back side of a semiconductor die. The components can be passive components, active components, or combinations thereof. The components can be soldered to signal routes on the back side of the die, the signal routes being attached to the die using a metallization layer or using one or more dielectric layer sections. Placing components on the back side of the die can allow for incorporation of the components without necessarily increasing the form factor of the die's package.
A package on package system (100) is provided including providing a first substrate (106) having a first integrated circuit (126) thereon and a second substrate (110) having a second integrated circuit (402) thereon, the second substrate (110) having a recess (112) provided therein. The first and second substrates (106) (110) are mounted having the first integrated circuit (126) at least partially nested in the recess (112).
A vacuum bonding tool for pick-and-place and bonding semiconductor chips onto a substrate or onto a previously mounted die to form a die stack includes a shank and a suction part. The shank has a vacuum conduit extending from a first end to a second end of the shank. The shank is adapted for cooperative engagement with the suction part at the second end, and the shank has a plate at the second end to support the suction part. The suction part has a surface for contacting a semiconductor chip during pick-and place operation. According to the invention, the suction part is made of an elastically deformable conductive or non-conductive material. In various embodiments, the chip contacting surface of the elastically deformable suction part flat overall, or is concave, of has a flat central region and concave regions.
B23P 19/00 - Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformationTools or devices therefor so far as not provided for in other classes