System and method for improving braking efficiency by increasing the magnitude of a frictional force between a tire of a vehicle wheel and a road surface. Braking efficiency may be improved by controlling the normal force applied on the wheel, with an active suspension actuator, based on the wheel's slip ratio.
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60G 17/018 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
B60G 17/019 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
2.
METHODS AND SYSTEMS FOR TERRAIN-BASED LOCALIZATION OF A VEHICLE
Methods and systems are described for accurately determining the location of a vehicle traveling along a road. Methods include first locating the approximate position of a vehicle using techniques such as GNSS or dead reckoning from a know location, and then refining the position of the vehicle using terrain-based localization. This type of localization includes the use of the temporal and spatial variation of magnitude of the correlation between a current road surface profile, obtained while traveling along a road, and previously obtained reference profiles of the same road.
G01C 21/12 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning
3.
PILOT OPERATED BLOW-OFF VALVES FOR HYDRAULIC ACTUATORS
Disclosed herein are various embodiments of a hydraulic actuator that includes one or more check valves having a dynamically varying cracking pressure. In certain embodiments, a hydraulic actuator may be configured to vary the cracking pressure of a check valve based on an operating condition of a pump of the hydraulic actuator. The check valve may be located along a bypass path in the hydraulic actuator, thereby allowing for fluid flow to bypass a pump of the hydraulic actuator by passing through the check valve. The use of such hydraulic actuators is contemplated in, for example, an active suspension system of a vehicle. Additionally, various embodiments of suitable check valves are disclosed. Additionally, methods are disclosed for operation of the check valve and the hydraulic actuator.
A regenerative shock absorber that includes a housing and a piston that moves at least partially through the housing when the shock is compressed or extended from a rest position. When the piston moves, hydraulic fluid is pressurized and drives a hydraulic motor. The hydraulic motor, in turn, drives an electric generator that produced electric energy. The electric energy may be provided to a vehicle, among other things. The regenerative shock absorber may also provide ride performance that comparable to or exceeds that of conventional shock absorbers.
B60G 13/14 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers accumulating utilisable energy, e.g. compressing air
B60K 25/10 - Auxiliary drives directly from oscillating movements due to vehicle running motion, e.g. suspension movement
F03G 3/00 - Other motors, e.g. gravity or inertia motors
F03G 7/08 - Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching, or like movements, e.g. from the vibrations of a machine
F16F 9/18 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
F16F 15/02 - Suppression of vibrations of non-rotating, e.g. reciprocating, systemsSuppression of vibrations of rotating systems by use of members not moving with the rotating system
H02K 7/18 - Structural association of electric generators with mechanical driving motors, e.g.with turbines
5.
USING REFERENCE ROAD SEGMENTS TO CALIBRATE THE RESPONSE OF VEHICLE SENSOR SYSTEMS
Systems and methods described herein include implementations where performance of systems for measuring aspects of a road surface, such as sensor systems, on board a production vehicle may be improved by using data collected by the production vehicle while traveling on primary and/or secondary reference road segments. Primary reference road segments in a road network may be characterized by specially equipped vehicles.
A method of on-demand energy delivery to an active suspension system comprising an actuator body, hydraulic pump, electric motor, plurality of sensors, energy storage facility, and controller is provided. The method comprises disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
B60G 13/14 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers accumulating utilisable energy, e.g. compressing air
B60G 17/019 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
F03G 7/08 - Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching, or like movements, e.g. from the vibrations of a machine
09 - Scientific and electric apparatus and instruments
12 - Land, air and water vehicles; parts of land vehicles
42 - Scientific, technological and industrial services, research and design
Goods & Services
Actuators, electro-hydraulic actuators; linear
electro-hydraulic actuators; electric actuators. Downloadable computer software for monitoring and
controlling systems in vehicles, namely, electric actuators,
electro-hydraulic actuators, suspension systems, shock
absorbers, dampers, chassis systems, and actuators. Vehicle parts, namely, suspension system components in the
nature of actuators, chassis system components in the nature
of suspension systems for automobiles. Providing temporary use of on-line non-downloadable computer
software for monitoring and controlling systems in vehicles,
namely, electric actuators, electro-hydraulic actuators,
suspension systems, chassis systems, and actuators.
Disclosed herein are active hydraulic cylinders for use in active vehicle suspension systems, and methods for assembling active hydraulic cylinders for use in an active vehicle suspension system. In particular, in certain embodiments a manifold may encircle a portion of an outer tube of a twin tube assembly. The manifold may mechanically and fluidly couple a pump assembly to the twin tube assembly. In certain embodiments, the manifold may be welded onto the outer tube.
F16F 9/19 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder
F16F 9/18 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
F16F 9/34 - Special valve constructionsShape or construction of throttling passages
F16F 9/50 - Special means providing automatic damping adjustment
9.
SYSTEMS AND METHODS FOR VEHICLE CONTROL USING TERRAIN-BASED LOCALIZATION
Systems and methods described herein include implementation of road surface-based localization techniques for advanced vehicle features and control methods including confidence-based consumption, air suspension control systems and methods, end of travel management, road profile creation techniques, and others.
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
A method of on-demand energy delivery to an active suspension system comprising an actuator body, hydraulic pump, electric motor, plurality of sensors, energy storage facility, and controller is provided. The method comprises disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
B60G 13/14 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers accumulating utilisable energy, e.g. compressing air
B60G 17/019 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
F03G 7/08 - Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching, or like movements, e.g. from the vibrations of a machine
11.
SYSTEMS AND METHODS FOR GNSS AUGMENTATION VIA TERRAIN-BASED CLUSTERING INSIGHTS
Methods and systems related to determining the ordering and/or positioning of travel lanes on a road segment are disclosed. In some embodiments, this may include obtaining and clustering road surface profiles associated with a road segment using, for example, a degree of similarity or other appropriate metric. A lateral offset or position of the clustered profiles may be used in determining the lane ordering and/or position. The resulting lane specific information may be used to determine a travel lane for a vehicle by comparing a current road-profile obtained from the vehicle and the road profile information associated with the different lanes. In other embodiments, a method and/or system for augmenting a global navigation satellite system (GNSS) signal may include using a raw GNSS signal and a GNSS location associated with terrain-based data to determine a lateral offset for use in determining a corrected GNSS location of the vehicle.
Various systems and methods are disclosed for anticipating the occurrence and/or mitigating the severity and/or duration of kinetosis experienced by one or more occupants of a vehicle. This is especially while the vehicle is travelling over a road surface and one or more occupants are performing tasks that require visual focus. Also, disclosed are systems and methods for predicting or otherwise determining aspects of head motion and characteristics of the eye motion of an occupant of a vehicle and of using that information to mitigate kinetosis by controlling an aspect of vehicle motion.
B60G 17/0195 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60N 2/02 - Seats specially adapted for vehiclesArrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
13.
METHODS AND SYSTEMS FOR CONTROLLING VEHICLE BODY MOTION AND OCCUPANT EXPERIENCE
In one embodiment, one or more suspension systems of a vehicle may be used to mitigate motion sickness by limiting motion in one or more frequency ranges. In another embodiment, an active suspension may be integrated with an autonomous vehicle architecture. In yet another embodiment, the active suspension system of a vehicle may be used to induce motion in a vehicle. The vehicle may be used as a testbed for technical investigations and/or as a platform to enhance the enjoyment of video and/or audio by vehicle occupants. In some embodiments, the active suspensions system may be used to perform gestures as a means of communication with persons inside or outside the vehicle. In some embodiments, the active suspensions system may be used to generate haptic warnings to a vehicle operator or other persons in response to certain road situations.
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
B60G 17/019 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
B60G 17/0195 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
B60G 99/00 - Subject matter not provided for in other groups of this subclass
B60K 35/00 - Instruments specially adapted for vehiclesArrangement of instruments in or on vehicles
B60K 35/25 - Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using haptic output
B60K 35/28 - Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor characterised by the type of the output information, e.g. video entertainment or vehicle dynamics informationOutput arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor characterised by the purpose of the output information, e.g. for attracting the attention of the driver
B60N 2/02 - Seats specially adapted for vehiclesArrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
B60N 2/14 - Seats specially adapted for vehiclesArrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable rotatable, e.g. to permit easy access
In some embodiments, a rapid-response active suspension system controls suspension force and position for improving vehicle safety and drivability. The system may interface with various sensors that detect safety critical vehicle states and adjust the suspension of each wheel to improve safety. Pre-crash and collision sensors may notify the active suspension controller of a collision and the stance may be adjusted to improve occupant safety during an impact while maintaining active control of the wheels. Wheel forces may also be controlled to improve the effectiveness of vehicle safety systems such as ABS and ESP in order to improve traction. Also, bi-directional information may be communicated between the active suspension system and other vehicle safety systems such that each system may respond to information provided to the other.
B60G 17/0195 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
Vehicles traveling on a road surface may encounter a variety of road surface features and characteristics. Encounters with certain road surface features may lead to undesirable outcomes, including discomfort for passengers, potential damage to vehicle components, and safety concerns. Methods and apparatus are disclosed for detecting and characterizing such features and using onboard systems to mitigate their effect. These methods and apparatus also include using information about the interaction of a front wheel with a feature to implement a control strategy that mitigates the effects of the interaction of the rear wheel of the vehicle, with the same feature. Additionally, the disclosure introduces methods and equipment for collecting information about and assessing certain road surface characteristics, such as friction parameters.
B60Q 1/14 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
G06K 9/00 - Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
Methods and systems are presented for planning and commanding motions of a vehicle in the plane of a road and in the vertical direction, relative to the plane of a road, to enhance vehicle performance, as it may relate to, for example, vehicle safety, occupant comfort, wear and tear on the vehicle, and/or vehicle efficiency. One or more processors may be used to plan XYZ vehicle trajectories and to provide commands to systems such as, for example, active suspension systems, semi-active suspension systems, propulsion systems, braking systems (e.g. ABS), and/or steering systems. The one or more processors may also receive road information from, for example, look-ahead sensors (e.g. LiDAR), local or remote databases, and motion sensors (e.g. IMUs, accelerometers). The one or more processors may also exchange information with a driver and/or other vehicle occupants, various on-board or remote databases, and/or infrastructure systems (e.g. GPS) by means of one or more communication devices.
A method of on-demand energy delivery to an active suspension system is disclosed. The suspension system includes an actuator body, a hydraulic pump, an electric motor, a plurality of sensors, an energy storage facility, and a controller. The method includes disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60G 13/14 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers accumulating utilisable energy, e.g. compressing air
B60G 17/015 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
B60G 17/018 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
B60G 99/00 - Subject matter not provided for in other groups of this subclass
F16F 9/06 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
F16F 9/32 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details
F16F 9/46 - Means on or in the damper for manual or non-automatic adjustmentSprings, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details such means combined with temperature correction allowing control from a distance
H02K 7/06 - Means for converting reciprocating motion into rotary motion or vice versa
H02P 21/06 - Rotor flux based control involving the use of rotor position or rotor speed sensors
18.
METHOD AND APPARATUS FOR RESPONDING TO ROAD SURFACE DISCONTINUITIES
Disclosed embodiments are related to suspension systems including dampers and suspension actuators and related methods of control for mitigating the effects of potholes and other road surface discontinuities.
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
Systems and methods for determining the location of a vehicle are disclosed. In one embodiment, a method for localizing a vehicle includes driving over a first road segment, identifying by a first localization system a set of candidate road segments, obtaining vertical motion data while driving over the first road segment, comparing the obtained vertical motion data to reference vertical motion data associated with at least one candidate road segment, and identifying, based on the comparison, a location of the vehicle. The use of such localization methods and systems in coordination with various advanced vehicle systems such as, for example, active suspension systems or autonomous driving features, is contemplated.
A vehicle may include a chassis, four wheels, and an active suspension system operatively coupled to the four wheels and the chassis, where the active suspension system comprises at least one actuator configured to apply active forces to at least one of the four wheels. A processor may be configured to control the active suspension system by receiving a first force request for force to alter a first motion characteristic of the chassis, allocating a first force allocation to the first force request based on a force capacity, receiving a second force request for force to alter a second motion characteristic of the chassis, allocating a second force allocation to the second force request based on the first force allocation, and commanding the at least one actuator to apply force based on the first force allocation and the second force allocation.
B60G 17/018 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60G 17/015 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
B60G 21/00 - Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
B60G 17/019 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
A vehicle may include a chassis and/or vehicle body, a plurality of wheels or wheel assemblies, an active suspension system operatively coupled to the plurality of wheels or wheel assemblies and the chassis and/or vehicle body, and at least one processor configured to control the active suspension system. The at least one processor may be configured to obtain a tuning parameter, determine a first vehicle parameter, determine a second vehicle parameter, determine a blended vehicle parameter based at least partly on the tuning parameter, the first vehicle parameter, and the second vehicle parameter, and command the at least one actuator to apply force between at least one of the plurality of wheels or wheel assemblies and the chassis and/or vehicle body based at least partly on the blended vehicle parameter.
B60G 17/00 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
B60G 17/015 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
B60G 17/019 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
B60W 10/22 - Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
22.
DYNAMIC GROUNDHOOK CONTROL IN A VEHICLE USING AN ACTIVE SUSPENSION SYSTEM
A vehicle may include a vehicle body, a plurality of wheels, an active suspension system operatively coupled to the plurality of wheels and the vehicle body, and at least one processor configured to control the active suspension system. The at least one processor may be configured to determine a first force command based on a vehicle body parameter, determine a second force command based on the vehicle body parameter and a suspension parameter, determine a blend ratio based on the first force command, determine a third force command based at least partly on the blend ratio, the first force command, and the second force command, and command the at least one actuator to apply force between at least one of the plurality of wheels and the vehicle body based at least partly on the third force command.
B60G 17/018 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60G 17/015 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
B60G 21/00 - Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
B60G 17/019 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
Methods and systems for generating a map of road features are provided. A method may include obtaining a vehicle motion profile, inputting the vehicle motion profile to a trained statistical model, and outputting one or more road features from the trained statistical model. A method may include obtaining first vehicle motion profiles, obtaining second vehicle motion profiles, generating a trained statistical model using the first vehicle motion vehicle motion profiles and the second vehicle motion profiles, and storing the trained statistical model in non-volatile computer readable memory.
Hydraulic systems and methods for reducing the propagation of flow and/or pressure fluctuations within a hydraulic system with a differential buffer are described. A differential buffer may include a first internal volume, a second internal volume, and a barrier separating at least a portion of the first internal volume and at least a portion of the second internal volume. The barrier may move to mitigate pressure and/or flow fluctuations in the first internal volume and the second internal volume by passive destructive interference.
B60G 13/08 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
F15B 1/02 - Installations or systems with accumulators
A vehicle control system for a vehicle is provided. The vehicle control system may be configured to adjust a normal component of a wheel force at one or more wheels of the vehicle and steer one or more rear wheels of the vehicle to improve vehicle dynamics during a road event (e.g., braking event, steering event). The vehicle control system may generate cues to a user to provide an appropriate input based on reference road information, forward-looking road information, and/or vehicle sensor data.
09 - Scientific and electric apparatus and instruments
12 - Land, air and water vehicles; parts of land vehicles
42 - Scientific, technological and industrial services, research and design
Goods & Services
downloadable computer software for monitoring and controlling systems in vehicles, namely, electric actuators, electro-hydraulic actuators, suspension systems, shock absorbers, dampers, chassis systems, and actuators; electric actuators vehicle parts, namely, suspension system components in the nature of electro-hydraulic linear actuators for land vehicles, chassis system components in the nature of suspension systems for automobiles; hydraulic linear actuators for land vehicles; electro-hydraulic linear actuators for land vehicles providing temporary use of on-line non-downloadable computer software for monitoring and controlling systems in vehicles, namely, electric actuators, electro-hydraulic actuators, suspension systems, chassis systems, and actuators
A vehicle control system for a vehicle having a braking system and active suspension system is provided. The vehicle control system may be configured to adjust a normal component of a wheel force at one or more wheels of the vehicle to increase an average traction force at the one or more wheels during a braking event. The vehicle control system may adjust a normal component of a wheel force at one or more wheels based on reference road information, forward-looking road information, and/or vehicle sensor data.
B60T 7/12 - Brake-action initiating means for automatic initiationBrake-action initiating means for initiation not subject to will of driver or passenger
B60T 8/172 - Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
B60T 8/24 - Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle inclination or change of direction, e.g. negotiating bends
B60T 8/32 - Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
B60W 10/18 - Conjoint control of vehicle sub-units of different type or different function including control of braking systems
28.
ESTIMATION OF A COEFFICIENT OF FRICTION FOR A SURFACE RELATIVE TO ONE OR MORE TIRES IN CONTACT WITH THE SURFACE
A method for estimating a coefficient of friction for a surface relative to one or more tires in contact with the surface, the one or more tires mounted on a vehicle, is disclosed herein. One or more models may be selectively retrieved from data storage. At least one surface condition may be associated with each of the one or more models. Respective values corresponding to a coefficient of friction of the surface relative to the one or more tires in contact with the surface may be estimated based on at least the one or more models and at least one of the one or more operating events on, and a sensed motion of, at least one of the one or more tires. At least one output signal corresponding to the estimated coefficient of friction may be generated.
B60W 40/12 - Estimation or calculation of driving parameters for road vehicle drive control systems not related to the control of a particular sub-unit related to parameters of the vehicle itself
a prioria priori information about a road surface ahead of the vehicle obtained from a data base and real time information collected by one or more on-board sensors. Alternatively, in a second mode, such controllers may rely only on real time information collected by one or more on-board sensors. Systems controlled by such controllers may include, but are not limited to, active suspension actuators.
B60W 50/06 - Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
B60G 17/015 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
Integrated multiple actuator electro-hydraulic systems as well as their methods of use are described. Depending on the particular application, the integrated electro-hydraulic systems may exhibit different frequency responses and/or may be integrated into a single combined unit.
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
A linear energy harvesting device that includes a housing and a piston that moves at least partially through the housing when it is compressed or extended from a rest position. When the piston moves, hydraulic fluid is pressurized and drives a hydraulic motor. The hydraulic motor drives an electric generator that produces electricity. Both the motor and generator are central to the device housing. Exemplary configurations are disclosed such as monotube, twin-tube, tri-tube and rotary based designs that each incorporates an integrated energy harvesting apparatus. By varying the electrical characteristics on an internal generator, the kinematic characteristics of the energy harvesting apparatus can be dynamically altered. In another mode, the apparatus can be used as an actuator to create linear movement. Applications include vehicle suspension systems (to act as the primary damper component), railcar bogie dampers, or industrial applications such as machinery dampers and wave energy harvesters, and electro-hydraulic actuators.
F03G 7/08 - Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching, or like movements, e.g. from the vibrations of a machine
B60G 11/26 - Resilient suspensions characterised by arrangement, location, or kind of springs having fluid springs only, e.g. hydropneumatic springs
F01C 1/10 - Rotary-piston machines or engines of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
F01C 9/00 - Oscillating-piston machines or engines
F01C 13/00 - Adaptations of machines or engines for special useCombinations of engines with devices driven thereby
F03C 1/26 - Reciprocating-piston liquid engines adapted for special use or combined with apparatus driven thereby
B60G 13/14 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers accumulating utilisable energy, e.g. compressing air
32.
MAINTAINING VEHICLE ANONYMITY DURING CLOUD-SUPPORTED VEHICLE LOCALIZATION AND CONTROL
Methods related to the exchange of vehicle related information between a vehicle and a remote database are disclosed. In some implementations, data may be collected based on measurements with a sensor onboard a vehicle. A location of the vehicle may also be determined. If the location is within a data protection zone or in a data protection road segment, the exchange of the vehicle related information may be avoided or curtailed to protect the anonymity of the vehicle and/or its occupants. If the vehicle is outside of the data protection zone or road segment, vehicle data may be exchanged with the remote database. In some implementations, the data protection zone or road segment may be determined based on information received from a user interface in the vehicle.
G07C 5/00 - Registering or indicating the working of vehicles
H04L 67/125 - Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
G08G 1/0967 - Systems involving transmission of highway information, e.g. weather, speed limits
H04W 4/02 - Services making use of location information
33.
METHOD AND APPARATUS FOR OUTPUT SATURATION AVOIDANCE IN PREVIEW-BASED VEHICLE SYSTEM CONTROL
Methods related to the control of vehicle systems while a vehicle is traveling along a road surface are disclosed. In some implementations, data related to the road surface ahead of the vehicle is separated into first and second frequency ranges. Commands for a vehicle system may then be determined for the different frequency ranges and the vehicle system may be controlled based at least in part on the separate commands for the separate frequency ranges. This may include determining a combined system command based at least in part on the separate commands for the separate frequency ranges in some implementations.
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
B60G 17/018 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
B60G 17/019 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
B60W 40/12 - Estimation or calculation of driving parameters for road vehicle drive control systems not related to the control of a particular sub-unit related to parameters of the vehicle itself
Presented herein are systems and methods for attenuating certain pulsations in a hydraulic system comprising a pump and a hydraulic actuator. In certain aspects, an accumulator comprising an internal volume that is divided into a working chamber and a contained chamber may be utilized to at least partially attenuate propagation of certain pulsations in the system. The working chamber may be fluidically coupled to the pump via a first flow path and fluidically coupled to a chamber of the actuator via a second flow path. The system may be designed such that a first inertance of the first flow path is greater than a second inertance of the second flow path. Additionally or alternatively, the system may be designed such that a resonance associated with the first inertance and a compliance of the accumulator may occur at a resonance frequency of less than 90 Hz.
F15B 1/24 - Accumulators using a gas cushionGas charging devicesIndicators or floats therefor with rigid separating means, e.g. pistons
F15B 7/00 - Fluid-pressure actuator systems in which the movement produced is definitely related to the output of a volumetric pumpTelemotors
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
F04B 11/00 - Equalisation of pulses, e.g. by use of air vesselsCounteracting cavitation
Systems and methods described herein include implementation of road surface-based localization techniques for advanced vehicle features and control methods including advanced driver assistance systems (ADAS), lane drift detection, passing guidance, bandwidth conservation and caching based on road data, vehicle speed correction, suspension and vehicle system performance tracking and control, road estimation calibration, and others.
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
Systems and methods described herein include implementation of road surface-based localization techniques for advanced vehicle features and control methods including advanced driver assistance systems (ADAS), lane drift detection, passing guidance, bandwidth conservation and caching based on road data, vehicle speed correction, suspension and vehicle system performance tracking and control, road estimation calibration, and others.
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
Methods are provided for controlling various systems in a vehicle based on input signals from at least one physical sensor and at least one model of a vehicle or a portion of the vehicle. The controller a rely preferentially on one or the other inputs based on the frequency of a motion of the vehicle and the state of the vehicle or one or mor portions of the vehicle.
B60G 17/018 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
B60G 17/019 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
38.
METHODS AND SYSTEMS FOR TERRAIN-BASED LOCALIZATION OF A VEHICLE
Methods and systems are described for accurately determining the location of a vehicle traveling along a road. Methods include first locating the approximate position of a vehicle using techniques such as GNSS or dead reckoning from a know location, and then refining the position of the vehicle using terrain-based localization. This type of localization includes the use of the temporal and spatial variation of magnitude of the correlation between a current road surface profile, obtained while traveling along a road, and previously obtained reference profiles of the same road.
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60W 50/04 - Monitoring the functioning of the control system
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
Various systems and methods are disclosed for providing a broad range of tools for selecting a route based on road information, vehicle information, and vehicle occupant information. Also disclosed are costs and tradeoffs which may be associated with various choices including wear and tear on vehicle components, occupant discomfort, increased trip duration and efficiency losses.
Various systems and methods are disclosed for predicting, detecting or mitigating motion sickness of one or more occupants of a vehicle. Also, disclosed are systems and methods for measuring aspects of head motion and characteristics of at least one eye an occupant of a vehicle and using that information mitigate motion sickness.
B60W 40/08 - Estimation or calculation of driving parameters for road vehicle drive control systems not related to the control of a particular sub-unit related to drivers or passengers
B60W 10/22 - Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
B60W 50/00 - Details of control systems for road vehicle drive control not related to the control of a particular sub-unit
G06V 20/59 - Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
G06V 40/18 - Eye characteristics, e.g. of the iris
41.
USING REFERENCE ROAD SEGMENTS TO CALIBRATE THE RESPONSE OF VEHICLE SENSOR SYSTEMS
Systems and methods described herein include implementations where performance of systems for measuring aspects of a road surface, such as sensor systems, on board a production vehicle may be improved by using data collected by the production vehicle while traveling on primary and/or secondary reference road segments. Primary reference road segments in a road network may be characterized by specially equipped vehicles.
G05B 13/00 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
Method and apparatus for improving the performance, response, and durability of an electro-hydraulic active suspension system. The noise caused by hydraulic flow ripple is reduced and system response is improved.
F04C 2/10 - Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
Methods are provided for proactively controlling a component of a system. The system may comprise a vehicle and the component may comprise a suspension of the vehicle. According to various aspects, methods may include obtaining information regarding a travel surface along a travel path that the system will travel at a future time and, based on the information regarding the travel surface, controlling the component of the system to traverse the travel surface. Controlling the component based on the information regarding the travel surface may comprise comparing the information regarding the travel surface to information regarding at least one physical constraint of the system and/or comparing frequency content of the information regarding the travel surface to a threshold frequency. Proactive control methods may provide improved response to disturbances and improved tracking and isolation because a suspension may be controlled with reduced or substantially zero delay.
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
B60G 17/018 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
Methods and systems related to determining the ordering and/or positioning of travel lanes on a road segment are disclosed. In some embodiments, this may include obtaining and clustering road surface profiles associated with a road segment using, for example, a degree of similarity or other appropriate metric. A lateral offset or position of the clustered profiles may be used in determining the lane ordering and/or position. The resulting lane specific information may be used to determine a travel lane for a vehicle by comparing a current road- profile obtained from the vehicle and the road profile information associated with the different lanes. In other embodiments, a method and/or system for augmenting a global navigation satellite system (GNSS) signal may include using a raw GNSS signal and a GNSS location associated with terrain-based data to determine a lateral offset for use in determining a corrected GNSS location of the vehicle.
Embodiments related to methods and systems for localizing a vehicle on a road surface are described. In some embodiments, linked reference landmarks present on the road surface may be used to determine a location of a vehicle on the road surface and/or to predict a path of travel of the vehicle along the road surface.
In some embodiments, methods and systems may be used to control operation of various systems of the vehicle based on road features included in an upcoming portion of a road surface located along a path of travel of the vehicle. This control may either be based on a probability of encountering a road feature on the road surface 5 and/or frequency information related to the upcoming portion of the road surface.
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
B60G 17/019 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
Hydraulic systems and methods for reducing the propagation of flow and/or pressure pulsations within a hydraulic system are described. In one embodiment, a hydraulic system may include a hydraulic device and a differential buffer fluidly connected to the hydraulic device. The differential buffer may include a piston that is exposed to pressure pulsations that propagate along separate flow paths and that are at least partially out of phase with one another. Corresponding displacement of the piston due to the out of phase pulsations may at least partially mitigate propagation of the pulsations within the hydraulic system downstream from the differential buffer.
F15B 21/00 - Common features of fluid actuator systemsFluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
Various systems and methods are disclosed for anticipating the occurrence and/or mitigating the severity and/or duration of kinetosis experienced by one or more occupants of a vehicle. This is especially while the vehicle is travelling over a road surface and one or more occupants are performing tasks that require visual focus. Also, disclosed are systems and methods for predicting or otherwise determining aspects of head motion and characteristics of the eye motion of an occupant of a vehicle and of using that information to mitigate kinetosis by controlling an aspect of vehicle motion.
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60G 17/0195 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
49.
SYSTEMS AND METHODS FOR TERRAIN-BASED INSIGHTS FOR ADVANCED DRIVER ASSISTANCE SYSTEMS
The systems and methods described herein are related to terrain-based insights for advanced driver assistance systems (ADAS) in vehicles. Such terrain-based insights may be related to ADAS features such as adaptive cruise control, lane keep assist, automatic emergency braking, collision avoidance, and/or speed adaptation, among others.
B60T 7/22 - Brake-action initiating means for automatic initiationBrake-action initiating means for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle
B60W 10/18 - Conjoint control of vehicle sub-units of different type or different function including control of braking systems
B60W 30/09 - Taking automatic action to avoid collision, e.g. braking and steering
B60W 30/16 - Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
Active suspension systems including actuators with combinations of accumulators and flow restrictions, as well as their methods of operation, are described. In some embodiments, methods and constructions for mitigating pump ripple and/or resonances between different hydraulic components are also described.
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60G 13/08 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
Systems and methods described herein include implementation of road surface-based localization techniques for advanced vehicle features and control methods including advanced driver assistance systems (ADAS), lane drift detection, passing guidance, bandwidth conservation and caching based on road data, vehicle speed correction, suspension and vehicle system performance tracking and control, road estimation calibration, and others.
Disclosed herein are hydraulic actuators and methods for the operation of actuators having variable relative pressure ratios. Further disclosed are methods for designing and/or operating a hydraulic actuator such that the actuator exhibits a variable relative pressure ratio. In certain embodiments, the relative pressure ratio of the hydraulic actuator may be dependent on one or more characteristics (such as, for example, frequency or rate of change) of an oscillating input to the hydraulic actuator.
Systems and methods described herein include implementation of road surface-based localization techniques for advanced vehicle features and control methods including confidence-based consumption, air suspension control systems and methods, end of travel management, road profile creation techniques, and others.
B60W 40/12 - Estimation or calculation of driving parameters for road vehicle drive control systems not related to the control of a particular sub-unit related to parameters of the vehicle itself
Systems and methods described herein include implementation of road surface-based localization techniques for advanced vehicle features and control methods including lane drift detection, passing guidance, bandwidth conservation and caching based on road data, vehicle speed correction, suspension and vehicle system performance tracking and control, road estimation calibration, and others.
Methods and systems for generating a map of road features are provided. A method may include obtaining a vehicle motion profile, inputting the vehicle motion profile to a trained statistical model, and outputting one or more road features from the trained statistical model. A method may include obtaining first vehicle motion profiles, obtaining second vehicle motion profiles, generating a trained statistical model using the first vehicle motion profiles and the second vehicle motion profiles, and storing the trained statistical model in non-volatile computer readable memory.
The systems and methods described herein are related to terrain-based insights for advanced driver assistance systems (ADAS) in vehicles. Such terrain-based insights may be related to ADAS features such as adaptive cruise control, lane keep assist, automatic emergency braking, collision avoidance, and/or speed adaptation, among others.
G06V 20/58 - Recognition of moving objects or obstacles, e.g. vehicles or pedestriansRecognition of traffic objects, e.g. traffic signs, traffic lights or roads
G08G 1/0967 - Systems involving transmission of highway information, e.g. weather, speed limits
Methods and systems are described for establishing high-accuracy absolute landmarks that can be used to locate a vehicle's location during a vehicle/HAAL interaction event in some embodiments. Comparing that information with GNSS satellite data allows GNSS satellite errors to be determined and either used by a first vehicle and/or conveyed to other vehicles in the region in some embodiments. Methods and systems are also described for obtaining effectively continuous values of intermittently measured road surface parameters that are determined over time by discrete measurements by systems in a plurality of vehicles in some embodiments.
Systems and methods described herein include implementation of road surface-based localization techniques for advanced vehicle features and control methods including advanced driver assistance systems (ADAS), lane drift detection, passing guidance, bandwidth conservation and caching based on road data, vehicle speed correction, suspension and vehicle system performance tracking and control, road estimation calibration, and others.
G06V 20/58 - Recognition of moving objects or obstacles, e.g. vehicles or pedestriansRecognition of traffic objects, e.g. traffic signs, traffic lights or roads
G08G 1/0967 - Systems involving transmission of highway information, e.g. weather, speed limits
Methods and systems are described for establishing high-accuracy absolute landmarks that can be used to locate a vehicle's location during a vehicle/HAAL interaction event in some embodiments. Comparing that information with GNSS satellite data allows GNSS satellite errors to be determined and either used by a first vehicle and/or conveyed to other vehicles in the region in some embodiments. Methods and systems are also described for obtaining effectively continuous values of intermittently measured road surface parameters that are determined over time by discrete measurements by systems in a plurality of vehicles in some embodiments.
Localization systems, including road surface-based localization systems, are disclosed that may work in conjunction with less precise systems, such as GPS, to accurately locate a vehicle on a road segment. Methods and apparatus are disclosed for the identification and selection of landmarks, including road surface-based landmarks.
G08G 1/0967 - Systems involving transmission of highway information, e.g. weather, speed limits
G01C 21/14 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by recording the course traversed by the object
G01C 21/28 - NavigationNavigational instruments not provided for in groups specially adapted for navigation in a road network with correlation of data from several navigational instruments
G01C 21/36 - Input/output arrangements for on-board computers
61.
PRESSURE COMPENSATED ACTIVE SUSPENSION ACTUATOR SYSTEM
Active suspension actuator systems including an actuator with a compression volume and an extension volume are described. In some embodiments, the system includes one or more flow control devices in fluid communication with the compression volume and/or the extension volume of the actuator. In some instances, a flow control device may include a pressure balanced blow-off valve (PBOV). In some embodiments, the system includes a high capacity bidirectional base valve. In some embodiments, two or more flow control devices cooperate to, for example, damp low amplitude oscillations in the extension and/or compression volumes, and to allow the build-up of pump generated differential pressures while discharging rapid road induced differential pressure spikes between the extension and compression volumes.
B60G 15/06 - Resilient suspensions characterised by arrangement, location, or type of combined spring and vibration- damper, e.g. telescopic type having mechanical spring and fluid damper
A vehicle control system for a vehicle is provided. The vehicle control system may be configured to adjust a normal component of a wheel force at one or more wheels of the vehicle and steer one or more rear wheels of the vehicle to improve vehicle dynamics during a road event (e.g., braking event, steering event). The vehicle control system may generate cues to a user to provide an appropriate input based on reference road information, forward- looking road information, and/or vehicle sensor data.
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60G 17/0195 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
B60G 17/018 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
B60W 10/22 - Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
A method of terrain-based localization of a vehicle is provided. The method may include determining the vehicle is within a threshold distance of a road segment end point and comparing a measured road profile to a reference road profile associated with the road segment. A method of identifying a track (e.g., a lane) of a road segment road profile is provided. The method may include determining if a number of stored road profiles exceeds a threshold number of road profiles and identifying one or more clusters in the stored road profiles if the threshold number is exceeded.
Systems and methods described herein include implementation of road surface-based localization techniques for advanced vehicle features and control methods including lane drift detection, passing guidance, bandwidth conservation and caching based on road data, vehicle speed correction, suspension and vehicle system performance tracking and control, road estimation calibration, and others. According to one aspect, the disclosure provides a method including obtaining, from one or more sensors corresponding to a left wheel of a vehicle, left wheel data as the vehicle traverses a road segment. The method also includes obtaining, from one or more sensors corresponding to a right wheel of a vehicle, right wheel data as the vehicle traverses the road segment.
In one embodiment, one or more suspension systems of a vehicle may be used to mitigate motion sickness by limiting motion in one or more frequency ranges. In another embodiment, an active suspension may be integrated with an autonomous vehicle architecture. In yet another embodiment, the active suspension system of a vehicle may be used to induce motion in a vehicle. The vehicle may be used as a testbed for technical investigations and/or as a platform to enhance the enjoyment of video and/or audio by vehicle occupants. In some embodiments, the active suspensions system may be used to perform gestures as a means of communication with persons inside or outside the vehicle. In some embodiments, the active suspensions system may be used to generate haptic warnings to a vehicle operator or other persons in response to certain road situations.
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60G 17/015 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
B60G 17/019 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
B60G 99/00 - Subject matter not provided for in other groups of this subclass
B60N 2/14 - Seats specially adapted for vehiclesArrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable rotatable, e.g. to permit easy access
B60G 17/0195 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
B60K 35/00 - Instruments specially adapted for vehiclesArrangement of instruments in or on vehicles
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
B60N 2/02 - Seats specially adapted for vehiclesArrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
A method of on-demand energy delivery to an active suspension system is disclosed. The suspension system includes an actuator body, a hydraulic pump, an electric motor, a plurality of sensors, an energy storage facility, and a controller. The method includes disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
H02K 7/06 - Means for converting reciprocating motion into rotary motion or vice versa
H02P 21/06 - Rotor flux based control involving the use of rotor position or rotor speed sensors
B60G 13/14 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers accumulating utilisable energy, e.g. compressing air
B60G 17/015 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
B60G 17/018 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
B60G 99/00 - Subject matter not provided for in other groups of this subclass
F16F 9/32 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details
F16F 9/46 - Means on or in the damper for manual or non-automatic adjustmentSprings, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details such means combined with temperature correction allowing control from a distance
F16F 9/06 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
67.
Integrated multiple actuator electro-hydraulic units
Integrated multiple actuator electro-hydraulic systems as well as their methods of use are described. Depending on the particular application, the integrated electro-hydraulic systems may exhibit different frequency responses and/or may be integrated into a single combined unit.
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60G 17/033 - Spring characteristics characterised by regulating means acting on more than one spring
Methods and apparatus are disclosed for adjusting the front to rear ratio of roll damping and/or roll stiffness in a vehicle based on vehicle yaw rate and/or the rate of change of steering wheel angle. Also disclosed are methods and apparatus for dynamically adjusting one or more suspension system control parameters based on one or more of steering wheel angle, rate of change of steering wheel angle and yaw rate.
B60G 17/018 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
In some embodiments, a rapid-response active suspension system controls suspension force and position for improving vehicle safety and drivability. The system may interface with various sensors that detect safety critical vehicle states and adjust the suspension of each wheel to improve safety. Pre-crash and collision sensors may notify the active suspension controller of a collision and the stance may be adjusted to improve occupant safety during an impact while maintaining active control of the wheels. Wheel forces may also be controlled to improve the effectiveness of vehicle safety systems such as ABS and ESP in order to improve traction. Also, bi-directional information may be communicated between the active suspension system and other vehicle safety systems such that each system may respond to information provided to the other.
B60G 17/0195 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
A regenerative shock absorber that includes a housing and a piston that moves at least partially through the housing when the shock is compressed or extended from a rest position. When the piston moves, hydraulic fluid is pressurized and drives a hydraulic motor. The hydraulic motor, in turn, drives an electric generator that produced electric energy. The electric energy may be provided to a vehicle, among other things. The regenerative shock absorber may also provide ride performance that comparable to or exceeds that of conventional shock absorbers.
B60G 13/14 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers accumulating utilisable energy, e.g. compressing air
B60K 25/10 - Auxiliary drives directly from oscillating movements due to vehicle running motion, e.g. suspension movement
F03G 3/00 - Other motors, e.g. gravity or inertia motors
F03G 7/08 - Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching, or like movements, e.g. from the vibrations of a machine
F16F 9/18 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
F16F 15/02 - Suppression of vibrations of non-rotating, e.g. reciprocating, systemsSuppression of vibrations of rotating systems by use of members not moving with the rotating system
H02K 7/18 - Structural association of electric generators with mechanical driving motors, e.g.with turbines
A method of terrain-based localization of a vehicle is provided. The method may include determining the vehicle is within a threshold distance of a road segment end point and comparing a measured road profile to a reference road profile associated with the road segment. A method of identifying a track (e.g., a lane) of a road segment road profile is provided. The method may include determining if a number of stored road profiles exceeds a threshold number of road profiles and identifying one or more clusters in the stored road profiles if the threshold number is exceeded.
G01S 19/47 - Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
System and method for improving braking efficiency by increasing the magnitude of a frictional force between a tire of a vehicle wheel and a road surface. Braking efficiency may be improved by controlling the normal force applied on the wheel, with an active suspension actuator, based on the wheel's slip ratio.
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60G 17/018 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
B60G 17/019 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
Hydraulic systems and methods for reducing the propagation of flow and/or pressure fluctuations within a hydraulic system with a differential buffer are described. A differential buffer may include a first internal volume, a second internal volume, and a barrier separating at least a portion of the first internal volume and at least a portion of the second internal volume. The barrier may move to mitigate pressure and/or flow fluctuations in the first internal volume and the second internal volume by passive destructive interference.
B60G 13/08 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
B60G 11/56 - Resilient suspensions characterised by arrangement, location, or kind of springs having springs of different kinds not including leaf springs having helical, spiral or coil springs, and also fluid springs
F16F 9/18 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
F16F 9/08 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid in a chamber with a flexible wall
B60G 15/06 - Resilient suspensions characterised by arrangement, location, or type of combined spring and vibration- damper, e.g. telescopic type having mechanical spring and fluid damper
A vehicle control system for a vehicle having a braking system and active suspension system is provided. The vehicle control system may be configured to adjust a normal component of a wheel force at one or more wheels of the vehicle to increase an average traction force at the one or more wheels during a braking event. The vehicle control system may adjust a normal component of a wheel force at one or more wheels based on reference road information, forward-looking road information, and/or vehicle sensor data.
B60G 17/0195 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
B60W 10/22 - Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
B60T 8/175 - Brake regulation specially adapted to prevent excessive wheel spin during vehicle acceleration, e.g. for traction control
B60T 8/1763 - Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to the coefficient of friction between the wheels and the ground surface
75.
Method and apparatus for responding to road surface discontinuities
Disclosed embodiments are related to suspension systems including dampers and suspension actuators and related methods of control for mitigating the effects of potholes and other road surface discontinuities.
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
Methods are provided for controlling various systems in a vehicle based on input signals from at least one physical sensor and at least one model of a vehicle or a portion of the vehicle. The controller a rely preferentially on one or the other inputs based on the frequency of a motion of the vehicle and the state of the vehicle or one or mor portions of the vehicle.
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
A method of on-demand energy delivery to an active suspension system comprising an actuator body, hydraulic pump, electric motor, plurality of sensors, energy storage facility, and controller is provided. The method comprises disposing an active suspension system in a vehicle between a wheel mount and a vehicle body, detecting a wheel event requiring control of the active suspension; and sourcing energy from the energy storage facility and delivering it to the electric motor in response to the wheel event.
B60G 17/00 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
B60G 17/019 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
F03G 7/08 - Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching, or like movements, e.g. from the vibrations of a machine
B60G 13/14 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers accumulating utilisable energy, e.g. compressing air
78.
METHOD AND APPARATUS FOR MOTION SICKNESS MITIGATION IN A VEHICLE
Various systems and methods are disclosed for predicting, detecting or mitigating motion sickness of one or more occupants of a vehicle. Also, disclosed are systems and methods for measuring aspects of head motion and characteristics of at least one eye an occupant of a vehicle and using that information mitigate motion sickness..
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60G 17/0195 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
B60W 40/08 - Estimation or calculation of driving parameters for road vehicle drive control systems not related to the control of a particular sub-unit related to drivers or passengers
B60R 11/04 - Mounting of cameras operative during driveArrangement of controls thereof relative to the vehicle
B60R 16/037 - Electric or fluid circuits specially adapted for vehicles and not otherwise provided forArrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric for occupant comfort
Various systems and methods are disclosed for providing a broad range of tools for selecting a route based on road information, vehicle information, and vehicle occupant information. Also disclosed are costs and tradeoffs which may be associated with various choices including wear and tear on vehicle components, occupant discomfort, increased trip duration and efficiency losses.
Presented herein, inter alia, are suspension system components having tuned accumulator sizing and/or stiffness. Such suspension system components are envisioned for use in a distributed active suspension system of a vehicle. In particular, through appropriate sizing of accumulators of a suspension system component of a vehicle, ride quality of the vehicle may be improved and so called “rough ride” issues may be precluded. Alternatively or additionally, various valves or alternative compliant mechanisms may be included in the suspension system component, so that desirable performance may be obtained for a range of operating conditions.
B60G 13/08 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
F16F 9/06 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
F16F 9/512 - Means responsive to load action on the damper or fluid pressure in the damper
81.
Hydraulic actuator with a frequency dependent relative pressure ratio
Disclosed herein are hydraulic actuators and methods for the operation of actuators having variable relative pressure ratios. Further disclosed are methods for designing and/or operating a hydraulic actuator such that the actuator exhibits a variable relative pressure ratio. In certain embodiments, the relative pressure ratio of the hydraulic actuator may be dependent on one or more characteristics (such as, for example, frequency or rate of change) of an oscillating input to the hydraulic actuator.
Methods are provided for proactively controlling a component of a system. The system may comprise a vehicle and the component may comprise a suspension of the vehicle. According to various aspects, methods may include obtaining information regarding a travel surface along a travel path that the system will travel at a future time and, based on the information regarding the travel surface, controlling the component of the system to traverse the travel surface. Controlling the component based on the information regarding the travel surface may comprise comparing the information regarding the travel surface to information regarding at least one physical constraint of the system and/or comparing frequency content of the information regarding the travel surface to a threshold frequency. Proactive control methods may provide improved response to disturbances and improved tracking and isolation because a suspension may be controlled with reduced or substantially zero delay.
B60G 17/0165 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
B60G 17/00 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
B60G 17/015 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60G 17/018 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
B60G 17/0195 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
83.
Active hydraulic ripple cancellation methods and systems
Presented herein are systems and methods for attenuating flow ripple generated by a hydraulic pump. In certain aspects, a method and system for operating a hydraulic positive displacement pump according to a stabilized command profile are disclosed, such that flow ripple generated by operation of the pump according to the stabilized command profile is attenuated as compared to operation of the pump according to a corresponding nominal command profile. In other aspects, a pressure-balanced active buffer is disclosed that allow for at least partially cancelling flow ripple in a hydraulic circuit comprising a pump. In another aspect, a method for generating ripple maps for a pump is disclosed. Such ripple maps may be used, for example, to determine the stabilized command profile used to operate the pump, or may be used by the pressure-balanced active buffer to counteract ripple in the hydraulic circuit.
F04B 49/20 - Control of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for in, or of interest apart from, groups by changing the driving speed
F04C 28/08 - Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
84.
Apparatus and method for active vehicle suspension
Method and apparatus for improving the performance, response, and durability of an electro-hydraulic active suspension system. The noise caused by hydraulic flow ripple is reduced and system response is improved.
F15B 21/00 - Common features of fluid actuator systemsFluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
F04B 49/20 - Control of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for in, or of interest apart from, groups by changing the driving speed
B60G 15/08 - Resilient suspensions characterised by arrangement, location, or type of combined spring and vibration- damper, e.g. telescopic type having fluid spring
Hydraulic systems and methods for reducing the propagation of flow and/or pressure pulsations within a hydraulic system are described. In one embodiment, a hydraulic system may include a hydraulic device and a differential buffer fluidly connected to the hydraulic device. The differential buffer may include a piston that is exposed to pressure pulsations that propagate along separate flow paths and that are at least partially out of phase with one another. Corresponding displacement of the piston due to the out of phase pulsations may at least partially mitigate propagation of the pulsations within the hydraulic system downstream from the differential buffer.
B60G 13/08 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
B60G 15/12 - Resilient suspensions characterised by arrangement, location, or type of combined spring and vibration- damper, e.g. telescopic type having fluid spring and fluid damper
B60G 11/26 - Resilient suspensions characterised by arrangement, location, or kind of springs having fluid springs only, e.g. hydropneumatic springs
B60G 11/27 - Resilient suspensions characterised by arrangement, location, or kind of springs having fluid springs only, e.g. hydropneumatic springs wherein the fluid is a gas
B60G 13/14 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers accumulating utilisable energy, e.g. compressing air
B60G 11/56 - Resilient suspensions characterised by arrangement, location, or kind of springs having springs of different kinds not including leaf springs having helical, spiral or coil springs, and also fluid springs
F16F 9/18 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
F16F 9/46 - Means on or in the damper for manual or non-automatic adjustmentSprings, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details such means combined with temperature correction allowing control from a distance
F16F 9/08 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid in a chamber with a flexible wall
F16F 9/06 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
In some embodiments, methods and systems may be used to control operation of various systems of the vehicle based on road features included in an upcoming portion of a road surface located along a path of travel of the vehicle. This control may either be based on a probability of encountering a road feature on the road surface 5 and/or frequency information related to the upcoming portion of the road surface.
B60G 17/015 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
F03G 7/08 - Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching, or like movements, e.g. from the vibrations of a machine
87.
MULTI-LANE ROAD CHARACTERIZATION AND TRACKING ALGORITHMS
Embodiments related to methods and systems for localizing a vehicle on a road surface are described. In some embodiments, linked reference landmarks present on the road surface may be used to determine a location of a vehicle on the road surface and/or to predict a path of travel of the vehicle along the road surface.
Systems and methods for determining the location of a vehicle are disclosed. In one embodiment, a method for localizing a vehicle includes driving over a first road segment, identifying by a first localization system a set of candidate road segments, obtaining vertical motion data while driving over the first road segment, comparing the obtained vertical motion data to reference vertical motion data associated with at least one candidate road segment, and identifying, based on the comparison, a location of the vehicle. The use of such localization methods and systems in coordination with various advanced vehicle systems such as, for example, active suspension systems or autonomous driving features, is contemplated.
Disclosed herein are active hydraulic cylinders for use in active vehicle suspension systems, and methods for assembling active hydraulic cylinders for use in an active vehicle suspension system. In particular, in certain embodiments a manifold may encircle a portion of an outer tube of a twin tube assembly. The manifold may mechanically and fluidly couple a pump assembly to the twin tube assembly. In certain embodiments, the manifold may be welded onto the outer tube.
F16F 9/19 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder
F16F 9/18 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
F16F 9/34 - Special valve constructionsShape or construction of throttling passages
F16F 9/50 - Special means providing automatic damping adjustment
A linear energy harvesting device that includes a housing and a piston that moves at least partially through the housing when it is compressed or extended from a rest position. When the piston moves, hydraulic fluid is pressurized and drives a hydraulic motor. The hydraulic motor drives an electric generator that produces electricity. Both the motor and generator are central to the device housing. Exemplary configurations are disclosed such as monotube, twin-tube, tri-tube and rotary based designs that each incorporates an integrated energy harvesting apparatus. By varying the electrical characteristics on an internal generator, the kinematic characteristics of the energy harvesting apparatus can be dynamically altered. In another mode, the apparatus can be used as an actuator to create linear movement. Applications include vehicle suspension systems (to act as the primary damper component), railcar bogie dampers, or industrial applications such as machinery dampers and wave energy harvesters, and electro-hydraulic actuators.
F03G 7/08 - Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching, or like movements, e.g. from the vibrations of a machine
B60G 11/26 - Resilient suspensions characterised by arrangement, location, or kind of springs having fluid springs only, e.g. hydropneumatic springs
F01C 1/10 - Rotary-piston machines or engines of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
F01C 13/00 - Adaptations of machines or engines for special useCombinations of engines with devices driven thereby
B60G 13/14 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers accumulating utilisable energy, e.g. compressing air
F01C 9/00 - Oscillating-piston machines or engines
F03C 1/26 - Reciprocating-piston liquid engines adapted for special use or combined with apparatus driven thereby
09 - Scientific and electric apparatus and instruments
Goods & Services
Computer software and/or hardware for collection,
manipulation, and/or transfer of information related to the
operation of a vehicle on a road surface; computer hardware
and/or software for collection, manipulation, management,
and/or exchange of information about the interaction of a
vehicle with a road surface; computer hardware and/or
software for controlling systems in a vehicle including
suspension systems, braking systems, steering systems,
and/or propulsion systems; computer hardware and/or software
for route selection for a vehicle; computer hardware and/or
software for vehicle localization; computer hardware and/or
software for vehicle navigation; computer hardware and/or
software for storing, accessing, displaying, and/or using
digital maps for vehicle navigation; computer hardware
and/or software for vehicle diagnostics and/or prognostics;
computer hardware and/or software for determination of road
characteristics.
92.
Apparatus and method for active vehicle suspension
Method and apparatus for improving the performance, response, and durability of an electro-hydraulic active suspension system. The noise caused by hydraulic flow ripple is reduced and system response is improved.
F15B 21/00 - Common features of fluid actuator systemsFluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
F04B 49/20 - Control of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for in, or of interest apart from, groups by changing the driving speed
93.
VEHICULAR LOCALIZATION SYSTEMS, METHODS, AND CONTROLS
Localization systems, including road surface-based localization systems, are disclosed that may work in conjunction with less precise systems, such as GPS, to accurately locate a vehicle on a road segment. Methods and apparatus are disclosed for the identification and selection of landmarks, including road surface-based landmarks.
G05D 1/02 - Control of position or course in two dimensions
G01C 21/14 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by recording the course traversed by the object
G01C 21/20 - Instruments for performing navigational calculations
Active suspension actuator systems including an actuator with a compression volume and an extension volume are described. In some embodiments, the system includes one or more flow control devices in fluid communication with the compression volume and/or the extension volume of the actuator. In some instances, a flow control device may include a pressure balanced blow-off valve (PBOV). In some embodiments, the system includes a high capacity bidirectional base valve. In some embodiments, two or more flow control devices cooperate to, for example, damp low amplitude oscillations in the extension and/or compression volumes, and to allow the build-up of pump generated differential pressures while discharging rapid road induced differential pressure spikes between the extension and compression volumes.
09 - Scientific and electric apparatus and instruments
12 - Land, air and water vehicles; parts of land vehicles
42 - Scientific, technological and industrial services, research and design
Goods & Services
actuators, linear electro-hydraulic actuators, hydraulic regulating elements in the nature of electro-hydraulic actuators downloadable computer software for monitoring and controlling systems in vehicles, namely, electric actuators, electro-hydraulic actuators, suspension systems, chassis systems, and actuators; actuators, namely, electric actuators, and electro-hydraulic actuators; vehicle parts, namely, electric actuators vehicle parts, namely, suspension system components in the nature of actuators, chassis system components in the nature of suspension systems for automobiles providing temporary use of on-line non-downloadable computer software for monitoring and controlling systems in vehicles, namely, electric actuators, electro-hydraulic actuators, suspension systems, chassis systems, and actuators
97.
METHOD AND APPARATUS FOR THE DYNAMIC CONTROL OF THE SUSPENSION SYSTEM OF A VEHICLE
Methods and apparatus are disclosed for adjusting the front to rear ratio of roll damping and/or roll stiffness in a vehicle based on vehicle yaw rate and/or the rate of change of steering wheel angle. Also disclosed are methods and apparatus for dynamically adjusting one or more suspension system control parameters based on one or more of steering wheel angle, rate of change of steering wheel angle and yaw rate.
B60G 17/015 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
B60G 17/016 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
B60G 17/018 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
B60G 17/0195 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
98.
INDEPENDENT AND CROSS-LINKED HYDRAULIC ACTUATOR SYSTEMS
Apparatus and methods are described where multiple linear and/or rotary actuators operate cooperatively in, for example, cross-linked arrangements to control the motion of sprung and unsprung masses in a vehicle. The actuators may include linear primary suspension actuators, spring perch actuators and/or rotary roll-bar actuators that, in some operating modes, are driven directly or indirectly by one or more hydraulic machines.
B60G 15/06 - Resilient suspensions characterised by arrangement, location, or type of combined spring and vibration- damper, e.g. telescopic type having mechanical spring and fluid damper
B60G 13/08 - Resilient suspensions characterised by arrangement, location, or type of vibration-dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
B60G 17/027 - Mechanical springs regulated by fluid means
F16F 9/18 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
System and method for improving braking efficiency by increasing the magnitude of a frictional force between a tire of a vehicle wheel and a road surface. Braking efficiency may be improved by controlling the normal force applied on the wheel, with an active suspension actuator, based on the wheel's slip ratio.
B60G 17/015 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
B60G 17/0195 - Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
B60W 10/22 - Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
Systems and methods for determining the location of a vehicle are disclosed. In one embodiment, a method for localizing a vehicle includes driving over a first road segment, identifying by a first localization system a set of candidate road segments, obtaining vertical motion data while driving over the first road segment, comparing the obtained vertical motion data to reference vertical motion data associated with at least one candidate road segment, and identifying, based on the comparison, a location of the vehicle. The use of such localization methods and systems in coordination with various advanced vehicle systems such as, for example, active suspension systems or autonomous driving features, is contemplated.
B60G 21/08 - Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces characterised by use of gyroscopes
B60G 21/00 - Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces