06 - Common metals and ores; objects made of metal
Goods & Services
Steel Used for Die Blocks and Inserts in Drop Hammers and Forging Presses; Steel Used for Forging Machine and Upsetting Machine Dies, Punches, Headers and Grippers; Steel Used for Dies Used in Hot or Cold Stamping and Coining; and Steel Used for Hot and Cold Forming Rolls, Backup Rolls and Straightening Rolls
3.
PRE-HARDENED STEEL COMPOSITION AND MACHINE PARTS MADE THEREWITH
A mud pump with components manufactured from high strength and toughness steel is disclosed. The mud pump includes a power end and a fluid end. The power end includes a motor, crankshaft rotationally engaged with the motor and a connecting rod rotationally engaged with the crank shaft. The fluid end inclues a piston, a cylinder, a drilling fluid module, a discharge manifold, and a strainer cross. At least one of the plunger, the drilling fluid module, the discharge manifold, and the strainer cross has the following composition in weight percent: 0.25 - 0.55% carbon, 0.70 -1.50% manganese, a maximum of 0.025% phosphorous, a maximum of 0.050% sulfur, a maximum of 0.80% silicon, 0.10 - 0.80% nickel, 1.40 - 2.20% chromium, 0.10 - 0.55% molybdenum, a maximum of 0.030% vanadium, a maximum of 0.35% copper, a maximum of 0.040% aluminum, a balance of iron, and incidental impurities.
A mud pump with components manufactured from high strength and toughness steel is disclosed. The mud pump includes a power end and a fluid end. The power end includes a motor, crankshaft rotationally engaged with the motor and a connecting rod rotationally engaged with the crank shaft. The fluid end includes a piston, a cylinder, a drilling fluid module, a discharge manifold, and a strainer cross. At least one of the plunger, the drilling fluid module, the discharge manifold, and the strainer cross has the following composition in weight percent: 0.25-0.55% carbon, 0.70-1.50% manganese, a maximum of 0.025% phosphorous, a maximum of 0.050% sulfur, a maximum of 0.80% silicon, 0.10-0.80% nickel, 1.40-2.20% chromium, 0.10-0.55% molybdenum, a maximum of 0.030% vanadium, a maximum of 0.35% copper, a maximum of 0.040% aluminum, a balance of iron, and incidental impurities.
A mud pump with components manufactured from high strength and toughness steel is disclosed. The mud pump includes a power end and a fluid end. The power end includes a motor, crankshaft rotationally engaged with the motor and a connecting rod rotationally engaged with the crank shaft. The fluid end includes a piston, a cylinder, a drilling fluid module, a discharge manifold, and a strainer cross. At least one of the plunger, the drilling fluid module, the discharge manifold, and the strainer cross has the following composition in weight percent: 0.25-0.55% carbon, 0.70-1.50% manganese, a maximum of 0.025% phosphorous, a maximum of 0.050% sulfur, a maximum of 0.80% silicon, 0.10-0.80% nickel, 1.40-2.20% chromium, 0.10-0.55% molybdenum, a maximum of 0.030% vanadium, a maximum of 0.35% copper, a maximum of 0.040% aluminum, a balance of iron, and incidental impurities.
A core side of a plastic injection molding tooling set for use in conjunction with a cavity side of the tooling set is disclosed. The core side may have the following composition in percent by weight: .25 - .55% carbon, .70 - 1.50% manganese, a maximum of .80% silicon, 1.40 - 2.00% chromium, .10 - .55% molybdenum, a maximum of .040% aluminum, a maximum of .025% phosphorous, a maximum of .20% sulfur, a balance of iron, and incidental impurities.
A steel alloy composition is disclosed. The steel alloy composition may comprise 0.36% to 0.60% by weight carbon, 0.30% to 0.70% by weight manganese, between 0.001% to 0.017% by weight phosphorus, 0.15% to 0.60% by weight silicon, and 1.40% to 2.25% by weight nickel. The steel alloy composition may further comprise 0.85% to 1.60% by weight chromium, 0.70% to 1.10% by weight molybdenum, 0.010% to 0.030% by weight aluminum, 0.001% to 0.050% by weight zirconium, and a balance of iron.
A steel alloy composition is disclosed. The steel alloy composition may comprise 0.36% to 0.60% by weight carbon, 0.30% to 0.70% by weight manganese, between 0.001% to 0.017% by weight phosphorus, 0.15% to 0.60% by weight silicon, and 1.40% to 2.25% by weight nickel. The steel alloy composition may further comprise 0.85% to 1.60% by weight chromium, 0.70% to 1.10% by weight molybdenum, 0.010% to 0.030% by weight aluminum, 0.001% to 0.050% by weight zirconium, and a balance of iron.
This invention pertains to plastic injection mold tooling, and also large forgings, formed from a low carbon mold steel having markedly increased hardening and hardenability properties in large sections as contrasted to currently available commercial products. The above attributes are obtained together with equal or better machinability and improved mold parting line wear. When manufactured in conjunction with a double melt process, this invention can improve significantly polishing characteristics and other attributes of molded parts in tooling sets.
A reciprocating pump is disclosed. The reciprocating pump may comprise a power end, and a fluid end operatively connected to the power end. The fluid end may include a plunger, a cylinder configured to operatively engage the plunger, and an end block. The plunger, the cylinder, and the end block of the fluid end may each be fabricated from a high toughness martensitic stainless steel composition comprising between 11.50% and 17.00% by weight chromium, between 3.50% and 6.00% by weight nickel, between 0.30% and 1.50% by weight molybdenum, between 0.01% and 0.20% by weight vanadium, and iron.
C22C 38/02 - Ferrous alloys, e.g. steel alloys containing silicon
C22C 38/04 - Ferrous alloys, e.g. steel alloys containing manganese
C22C 38/06 - Ferrous alloys, e.g. steel alloys containing aluminium
C22C 38/44 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
C22C 38/46 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
C22C 38/48 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
F04B 53/16 - CasingsCylindersCylinder liners or headsFluid connections
C21D 9/00 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor
F04B 15/02 - Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
F04B 53/00 - Component parts, details or accessories not provided for in, or of interest apart from, groups or
C21D 1/18 - HardeningQuenching with or without subsequent tempering
C21D 1/25 - Hardening, combined with annealing between 300 °C and 600 °C, i.e. heat refining ("Vergüten")
F04B 9/04 - Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
F04B 35/01 - Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being mechanical
F04B 39/00 - Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups
A reciprocating pump is disclosed. The reciprocating pump may comprise a power end, and a fluid end operatively connected to the power end. The fluid end may include a plunger, a cylinder configured to operatively engage the plunger, and an end block. The plunger, the cylinder, and the end block of the fluid end may each be fabricated from a high toughness martensitic stainless steel composition comprising between 11.50 % and 17.00% by weight chromium, between 3.50 % and 6.00 % by weight nickel, between 0.30 % and 1.50 % by weight molybdenum, between 0.01 % and 0.20 % by weight vanadium, and iron.
This invention pertains to plastic injection mold tooling, and also large forgings, formed from a low carbon mold steel having markedly increased hardening and hardenability properties in large sections as contrasted to currently available commercial products. The above attributes are obtained together with equal or better machinability and improved mold parting line wear. When manufactured in conjunction with a double melt process, this invention can improve significantly polishing characteristics and other attributes of molded parts in tooling sets.
A blemish free surface is formed on the cavity side of a set of mold or die blocks, said set consisting of a core side and a cavity side, by use of a softer alloy on the core side as contrasted to the cavity side so that, during plastic injection molding, the core side will wear at the parting line in preference to the cavity side whereby erosion of the set occurs on the core side in preference to the cavity side leaving the cavity side erosion free.
A control system for a vacuum arc remelting (VAR) process for a metal includes a direct current (DC) power source, a ram drive, voltage drip short sensor, and a controller, which includes a processor. The drip short sensor may be configured to measure a drip short frequency of the electric arc over a period of time. The controller is configured to determine a real time arc gap length between the electrode tip and the melt pool based on a correlation between the drip short frequency and arc gap length. The controller is further configured to control power input to the electrode by the DC power supply by determining an input power level to input to the electrode based on the real time arc gap length, the input power level configured to generate a desired arc gap length, by the DC power supply, at the input power level.
H05B 3/60 - Heating arrangements wherein the heating current flows through granular, powdered or fluid material, e.g. for salt-bath furnace, electrolytic heating
F27B 3/08 - Hearth-type furnaces, e.g. of reverberatory typeElectric arc furnaces heated electrically, e.g. electric arc furnaces, with or without any other source of heat
H05B 7/156 - Automatic control of power by hydraulic or pneumatic means for positioning of electrodes
H05B 7/20 - Direct heating by arc discharge, i.e. where at least one end of the arc directly acts on the material to be heated, including additional resistance heating by arc current flowing through the material to be heated
F27B 14/04 - Crucible or pot furnacesTank furnaces adapted for treating the charge in vacuum or special atmosphere
A control system for a vacuum arc remelting (VAR) process for a metal includes a direct current (DC) power source, a ram drive, voltage drip short sensor, and a controller, which includes a processor. The drip short sensor may be configured to measure a drip short frequency of the electric arc over a period of time. The controller is configured to determine a real time arc gap length between the electrode tip and the melt pool based on a correlation between the drip short frequency and arc gap length. The controller is further configured to control power input to the electrode by the DC power supply by determining an input power level to input to the electrode based on the real time arc gap length, the input power level configured to generate a desired arc gap length, by the DC power supply, at the input power level.
An end block is disclosed. The end block may include a body extending between a front side, a back side, a left side, a right side, a top side and a bottom side. Furthermore, the body may include a first bore extending through the body between an inlet port and an outlet port and a cylinder bore extending between a cylinder port and the first bore. Moreover, the body may include a precipitation hardened martensitic stainless steel comprising between 0.08% and 0.18% by weight carbon, between 10.50% and 14.00% by weight chromium, between 0.65% and 1.15% by weight nickel, between 0.85% and 1.30% by weight copper, iron, and a first precipitate comprising the copper.
C22C 38/02 - Ferrous alloys, e.g. steel alloys containing silicon
C22C 38/04 - Ferrous alloys, e.g. steel alloys containing manganese
C22C 38/06 - Ferrous alloys, e.g. steel alloys containing aluminium
C22C 38/42 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
C22C 38/44 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
C22C 38/46 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
C22C 38/48 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
C22C 38/50 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
F04B 19/22 - Other positive-displacement pumps of reciprocating-piston type
F04B 1/04 - Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
F04B 1/053 - Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders
F04B 9/04 - Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
F04B 53/00 - Component parts, details or accessories not provided for in, or of interest apart from, groups or
F04B 53/14 - Pistons, piston-rods or piston-rod connections
C21D 9/00 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor
C21D 9/44 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for equipment for lining mine shafts, e.g. segments, rings or props
C22C 38/08 - Ferrous alloys, e.g. steel alloys containing nickel
C22C 38/12 - Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium or niobium
C22C 38/18 - Ferrous alloys, e.g. steel alloys containing chromium
C22C 38/20 - Ferrous alloys, e.g. steel alloys containing chromium with copper
C22C 38/22 - Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
C22C 38/24 - Ferrous alloys, e.g. steel alloys containing chromium with vanadium
C22C 38/40 - Ferrous alloys, e.g. steel alloys containing chromium with nickel
F04B 51/00 - Testing machines, pumps, or pumping installations
25.
PRECIPITATION HARDENED MARTENSITIC STAINLESS STEEL AND RECIPROCATING PUMP MANUFACTURED THEREWITH
An end block is disclosed. The end block may include a body extending between a front side, a back side, a left side, a right side, a top side and a bottom side. Furthermore, the body may include a first bore extending through the body between an inlet port and an outlet port and a cylinder bore extending between a cylinder port and the first bore. Moreover, the body may include a precipitation hardened martensitic stainless steel comprising between 0.08 % and 0.18 % by weight carbon, between10.50 % and 14.00 % by weight chromium, between 0.65 % and 1.15 % by weight nickel, between 0.85 % and 1.30 % by weight copper, iron, and a first precipitate comprising the copper.
Uniform hardenability is achieved in plastic injection mold and die block tooling of 20 inches and larger by the use of 0.05-0.20 vanadium in conjunction with low carbon steel in which ingots are hot worked to form mold and die blocks having cross sections of 20 inches and larger followed by water quenching and tempering.
Plastic injection mold tooling steel having uniform high hardenability in cross sections of 20 inches and larger, and a method of manufacturing plastic injection mold and die block tooling, are provided. An exemplary composition of the plastic injection mold tooling steel includes: C .15 - .40 Mn .60-1.10 Si .60 max Cr 1.00 - 2.00 Ni .15-1.00 Mo .20 - .55 V .05 - .20 Al .040 max P .025 max S .025 max
A blemish free surface is formed on the cavity side of a set of mold or die blocks, said set consisting of a core side and a cavity side, by use of a softer alloy on the core side as contrasted to the cavity side so that, during plastic injection molding, the core side will wear at the parting line in preference to the cavity side whereby erosion of the set occurs on the core side in preference to the cavity side leaving the cavity side erosion free.
In an electric arc furnace system for making steel, a method and structure (1) for eliminating teeming hang-ups and ensuring temperature homogeneity in a ladle which teems into an ingot mold by gas purging at all possible steps under both atmospheric and vacuum conditions, and (2) for preventing non-metallic inclusions from appearing in the final product by deflecting the granular material in the teeming ladle well block away from the ingot mold by a heat resistant but combustible deflector just prior to entry of the teeming stream into the ingot mold.
C21C 7/00 - Treating molten ferrous alloys, e.g. steel, not covered by groups
B22D 41/015 - Heating means with external heating, i.e. the heat source not being a part of the ladle
B22D 41/08 - Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like for bottom pouring
B22D 41/44 - Consumable closure means, i.e. closure means being used only once
B22D 1/00 - Treatment of fused masses in the ladle or the supply runners before casting
C21C 5/52 - Manufacture of steel in electric furnaces
F27B 3/08 - Hearth-type furnaces, e.g. of reverberatory typeElectric arc furnaces heated electrically, e.g. electric arc furnaces, with or without any other source of heat
F27B 3/19 - Arrangement of devices for discharging
A combined arc furnace, ladle metallurgical furnace and vacuum degassing system having the flexibility to produce at least non-vacuum arc remelt, vacuum arc remelt, vacuum oxygen decarburized non-vacuum arc remelt, and vacuum oxygen decarburized vacuum arc remelt steels from one off to continuous casting end uses in steady state or randomized order which utilizes only a minimum of energy attributable to preheating hot metal contacting components of the system followed by heat loss reduction of the components and use of a carryover heel in the arc furnace, in which the throughput of the system is limited solely by the melting capacity of the arc furnace.
H05B 7/20 - Direct heating by arc discharge, i.e. where at least one end of the arc directly acts on the material to be heated, including additional resistance heating by arc current flowing through the material to be heated
Providing a web site featuring goods and services price quotations and ordering of die steel, mold steel, stainless steel, tool steel, steel and aluminum forgings, real-time on-line tracking of shipment of goods, and customized order reports and purchasing volume reports between customers and suppliers
06 - Common metals and ores; objects made of metal
07 - Machines and machine tools
40 - Treatment of materials; recycling, air and water treatment,
Goods & Services
(1) Forged metal alloys; machines for refining and processing molten metal. (1) Molten metal treatment consulting services including educational seminars directed to the ordering and use of metal forgings.