Beijing Huashi United Energy Technology and Development Co., Ltd. (China)
Inventor
Li, Lin
Lin, Ke
Zhao, Gang
Guo, Lixin
Abstract
3 to 50 ppm or less by using a suspension bed, and further reduce the sulfur content to less than 10 ppm in conjunction with a fixed bed. The invention achieves high efficient desulfurization by combining the suspension bed with the fixed bed connected in series. The present invention has high regeneration efficiency, and the barren solution may be recycled for being used as the desulfurization slurry, without generating secondary pollution, which is very suitable for industrial promotion.
BEIJING HUASHI UNITED ENERGY TECHNOLOGY AND DEVELOPMENT CO. LTD (China)
Inventor
Li, Lin
Guo, Lixin
Lin, Ke
Zhao, Gang
Song, Jun
Abstract
3 to 50 ppm or less, and further reduces the sulfur content to less than 10 ppm in conjunction with a fixed bed. High efficient desulfurization is achieved by combining the crude desulfurization of the suspension bed with fine desulfurization of the fixed bed connected in series. The spent desulfurizer can be regenerated by reacting an oxygen-containing gas with the rich solution, and the barren solution obtained by the regeneration may be recycled for use as desulfurization slurry, without generating secondary pollution.
BEIJING HUASHI UNITED ENERGY TECHNOLOGY AND .DEVELOPMENT CO., LTD. (China)
Inventor
Lin, Ke
Li, Lin
Guo, Lixin
Zhao, Gang
Abstract
A desulfurization process which uses both a suspension bed and a fixed bed is disclosed herein. In particular, the desulfurization slurry is mixed with a hydrogen sulfide containing gas to obtain a first mixture, and the first mixture passed into a suspension bed reactor from bottom to top, while controlling the first mixture to have a dwell time of 5-60 minutes in the reactor. A second mixture obtained by the reaction is subjected to gas liquid separation to produce a gas phase, and the gas phase is feed into a fixed bed reactor for a second desulfurization which produces purified gas. Advantageously, sulfur content in the hydrogen sulfide containing gas may be reduced from 2.4-140 g/Nm3 to 50 ppm or less by using a suspension bed, and the sulfur content may be even further reduced to less than 10 ppm in conjunction with a fixed bed.
Beijing Huashi United Energy Technology and Development Co., Ltd. (China)
Inventor
Lin, Ke
Zhao, Gang
Li, Lin
Guo, Lixin
Abstract
3 to 50 ppm or less, so that the desulfurization efficiency is 98% or more. The process of the present invention is simple and reasonable, with high desulfurization and regeneration efficiency, simple equipment, little occupation of land and low investment, which is very suitable for industrial promotion.
C01B 17/05 - Preparation of sulfurPurification from gaseous sulfur compounds including gaseous sulfides by wet processes
C10L 3/10 - Working-up natural gas or synthetic natural gas
B01D 53/12 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents with dispersed adsorbents according to the "fluidised technique"
B01D 53/04 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
Beijing Huashi United Energy Technology and Development Co., Ltd. (China)
Inventor
Li, Lin
Lin, Ke
Zhao, Gang
Guo, Lixin
Abstract
3 to 50 ppm or less, so that the desulfurization efficiency is 98% or more. The present invention can achieve regeneration of a spent desulfurizer with a regeneration efficiency as high as 65%-83%, and the barren solution obtained by the regeneration may be recycled for being used as the desulfurization slurry, without generating secondary pollution, which is very suitable for industrial promotion.
B01D 53/12 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents with dispersed adsorbents according to the "fluidised technique"
B01D 53/04 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
6.
Integrated system for wet desulfurization using a suspension bed and regeneration
Beijing Huashi United Energy Technology and Development Co., Ltd. (China)
Inventor
Lin, Ke
Li, Lin
Guo, Lixin
Zhao, Gang
Song, Jun
Abstract
3 to 50 ppm or less by using a suspension bed, so that the desulfurization efficiency is 98% or more. The present invention is adapted to realize regeneration of a spent desulfurizer by reacting an oxygen-containing gas with the rich solution, and the barren solution may be recycled for being used as the desulfurization slurry, without generating secondary pollution. Therefore, a process using the integrated system is simple and reasonable, with high desulfurization and regeneration efficiency, simple equipment, little occupation of land and low investment, which is very suitable for industrial promotion.
Beijing Huashi United Energy Technology and Development Co., Ltd. (China)
Inventor
Li, Lin
Lin, Ke
Abstract
A process and device for hydrogenation of heavy oil using a suspension-bed are provided. In the process, a part of a raw oil is mixed with a suspension-bed hydrocracking catalyst to form a first mixture, the first mixture is subjected to first and second shear in sequence so as to realize high dispersion and mixing of the catalyst and the raw oil to obtain a catalyst slurry; through pretreatment of the raw oil, the device can prevent the raw oil from coking in the hydrogenation process; through the adoption of a suspension-bed reactor with a liquid phase self-circulation function or a cold-wall function; and light and heavy components are separated from the suspension-bed hydrogenated product in advance and only medium component is subjected to fixed-bed hydrogenation, thereby greatly reducing the load of the fixed-bed hydrogenation, prolonging the service life of the fixed-bed catalyst, improving the yield and quality of gasoline and diesel, and being beneficial for energy conservation and emission reduction of the system.
C10G 67/12 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including oxidation as the refining step in the absence of hydrogen
C10G 67/02 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
8.
Method and device for lightening heavy oil by utilizing a suspension-bed hydrogenation process
Beijing Huashi United Energy Technology and Development Co., Ltd. (China)
Inventor
Li, Lin
Lin, Ke
Li, Guoliang
He, Erxuan
Abstract
A method and device for lightening heavy oil by utilizing a suspension-bed hydrogenation process are provided. In the process, a part of a raw oil is mixed with a suspension-bed hydrocracking catalyst to form a first mixture, then the first mixture is subjected to first shear and second shear in sequence so as to realize high dispersion and mixing of the catalyst and the raw oil; through pretreatment of the raw oil, the device can prevent the raw oil from coking in the hydrogenation process; through the adoption of a suspension-bed reactor with a liquid phase self-circulation function or a cold-wall function; and light and heavy components are separated from the suspension-bed hydrogenated product in advance and only medium component is subjected to fixed-bed hydrogenation, thereby reducing the load of the fixed-bed hydrogenation, prolonging the service life of the fixed-bed catalyst, improving the yield and quality of gasoline and diesel, and being beneficial for energy conservation and emission reduction of the whole system.
C10G 67/12 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including oxidation as the refining step in the absence of hydrogen
C10G 67/02 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
B01J 8/02 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
B01J 8/22 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
B01J 19/24 - Stationary reactors without moving elements inside
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
B01J 8/34 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with stationary packing material in the fluidised bed, e.g. bricks, wire rings, baffles
Beijing Huashi United Energy Technology and Development Co., Ltd (China)
Inventor
Lin, Ke
Li, Lin
Guo, Lixin
Cui, Yongjun
Jiang, Lilong
Abstract
A one-pot liquefaction process for biomass is presented. The one-pot liquefaction process for biomass comprises the following steps: preparing a slurry containing a catalyst, a vulcanizing agent and a biomass, and introducing hydrogen into the slurry to carry out a reaction, thereby obtaining a bio-oil wherein the reaction is controlled to be carried out under a pressure of 13-25 MPa and a temperature of 300-500° C.; and the catalyst comprises amorphous alumina or biomass charcoal loading an active component, and the active component comprises one or more selected from oxides of metals of group VIB, group VIIB or group VIII in the periodic table of elements. The process provided by the present invention has high reaction efficiency, no coke formation and high liquid yield.
C10G 1/06 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
10.
Composition for biomass oil, and preparation method and use thereof
Beijing Huashi United Energy Technology and Development Co., Ltd. (China)
Inventor
Lin, Ke
Li, Lin
Guo, Lixin
Cui, Yongjun
Jiang, Lilong
Abstract
The present invention provides a composition for biomass oil, and a preparation method and use thereof. The composition comprises a biomass and a liquid oil, wherein, based on weight of the biomass, the biomass has a moisture content of 3 wt % to 18 wt %. The biomass is mixed with the liquid oil to obtain a liquid mixture, i.e., the composition for biomass oil. According to the use of the composition for biomass oil in preparation of biomass oil, high-pressure high-temperature hydrolysis is carried out by using water in the biomass, and the polycondensation of coke is avoided under the co-action of hydrogen gas and a catalyst, so that the yield of the coke is lowered, and the yield of the biomass oil is increased.
C10B 53/02 - Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
C10G 47/26 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions with moving solid particles suspended in the oil, e.g. slurries
C10G 1/08 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation with moving catalysts
Beijing Huashi United Energy Technology and Development Co., Ltd. (China)
Inventor
Lin, Ke
Li, Lin
Guo, Lixin
Cui, Yongjun
Jiang, Lilong
Abstract
The present invention discloses a method for direct liquefaction of biomass. The method comprises the following steps: (1) mixing a biomass, a hydrogenation catalyst and a hydrogen-donor solvent to prepare a biomass slurry; (2) carrying out a first liquefaction reaction with the biomass slurry and hydrogen gas to obtain a first reaction product; (3) carrying out a second liquefaction reaction with the first reaction product and hydrogen gas to obtain a second reaction product; (4) subjecting the second reaction product to a first gas-liquid separation at a temperature of 290-460 DEG C. to produce a first liquid phase and a first gas phase; (5) subjecting the first gas phase to a second gas-liquid separation at a temperature of 30-60 DEG C. to obtain a second liquid phase, and mixing the first liquid phase with the second liquid phase to obtain a liquid phase mixture; (6) carrying out a first distillation on the liquid phase mixture to obtain a light fraction and a heavy fraction; and (7) carrying out a second distillation on the heavy fraction to separate out a distillate oil and a residue, wherein the light fraction and the distillate oil are final liquid of the liquefaction. By utilizing the method for direct liquefaction of biomass, the obtained final liquid has a high yield and a low solid content of residue.
C10G 1/06 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
BEIJING HUASHI UNITED ENERGY TECHNOLOGY AND DEVELOPMENT CO., LTD (China)
Inventor
Lin, Ke
Li, Lin
Guo, Lixin
Cui, Yongjun
Jiang, Lilong
Abstract
The present invention relates to the field of biological energy, in particular to a biomass liquefaction process and fuel oil and chemical raw materials prepared by the same. The biomass liquefaction process comprises the following steps: preparing a slurry comprising a first catalyst and a biomass; performing a first hydrogenation reaction by introducing hydrogen to the slurry to obtain a first stage hydrogenation product; performing a second hydrogenation reaction by adding a second catalyst and introducing hydrogen into the first stage hydrogenation product to obtain a second stage hydrogenation product; and subjecting the second stage hydrogenation product to separation operation to obtain a fuel oil and chemical raw material; wherein the first hydrogenation reaction is controlled to have a reaction pressure of 13-25 MPa and a reaction temperature of 200-350° C., and the second hydrogenation reaction is controlled to have a reaction pressure of 13-25 MPa and a reaction temperature of 380-480° C. The present invention provides a biomass liquefaction process with high reaction efficiency and high liquid yield without coke generation.
C10G 1/06 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
13.
Cold-wall reactor for suspension-bed hydrogenation
Beijing Huashi United Energy Technology and Development Co., Ltd. (China)
Inventor
Li, Lin
Guo, Lixin
Li, Chuntao
Abstract
A cold-wall reactor for suspension-bed hydrogenation includes a reactor body including a reaction product outlet, cold hydrogen gas inlet and feed inlet. The reactor body includes a housing, surfacing layer and thermal insulation liner. An inner lining cylinder is fixedly arranged inside the reactor body with an outlet connected with the reaction product outlet. A side wall of the inner lining cylinder and an inner side wall of the reactor body define a cavity serving as a first circulation channel. A second circulation channel is arranged on the inner lining cylinder side wall. The inner lining cylinder communicates with the first circulation channel through the second circulation channel. In suspension-bed hydrogenation, material temperature is more uniform, reaction efficiency is improved, materials coking is reduced, thermal insulation liner issues are prevented, and the temperature of the outer wall of the reactor body is lower than the temperature of the medium.
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
B01J 8/20 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles with liquid as a fluidising medium
B01J 8/22 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
B01J 8/28 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations the one above the other
14.
Thermal barrier coating and an ultra-high-temperature cold-wall suspension bed hydrogenation reactor comprising the same
Beijing Huashi United Energy Technology and Development Co., Ltd. (China)
Inventor
Li, Lin
Guo, Lixin
Li, Zhenduo
Abstract
A thermal barrier coating and a cold-wall reactor including the coating are provided. A second ceramic layer is sandwiched between the conventional two-layer structures of the thermal barrier coating. The second ceramic layer is made of aluminum oxide stabilized zirconium oxide and the content of aluminum oxide does not exceed 30 wt %. The zirconium oxide in the first and second ceramic layer has a tetragonal crystal structure. A cold-wall reactor formed by applying the thermal barrier coating provides advantageous steel hydrogen corrosion resistance in ultra-high temperature. The effective volume of the hydrogenation reactor is fully used, overcoming the problem that the thermal insulation liner is easily damaged and causes local overheating of the reactor wall, as well as eliminating potential safety hazards of reactor wall local stress concentration caused by expansion and contraction of the liner cylinder attachment member.
B01J 19/02 - Apparatus characterised by being constructed of material selected for its chemically-resistant properties
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
C04B 35/48 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on zirconium or hafnium oxides or zirconates or hafnates
C04B 35/622 - Forming processesProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products
C09D 1/00 - Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
C09J 1/00 - Adhesives based on inorganic constituents
BEIJING HUASHI UNITED ENERGY TECHNOLOGY AND .DEVELOPMENT CO., LTD (China)
Inventor
Li, Lin
Lin, Ke
Li, Chuntao
Abstract
A suspended-bed hydrogenation catalyst and a regeneration method are disclosed. A composite support comprises a semi-coke pore-expanding material, a molecular sieve and a spent catalytic cracking catalyst. The hydrogenation catalyst for heavy oil is obtained through mixing the semi-coke pore-expanding material, the molecular sieve and the spent catalytic cracking catalyst, followed by molding, calcining and activating, and then loading an active metal oxide to the composite support. According to the composite support, a macropore, mesopore and micropore uniformly-distributed structure is formed, so that full contact between all ingredients in the heavy oil and active ingredients in a hydrogenation process is facilitated, and the conversion ratio of the heavy oil is increased. The hydrogenation catalyst integrates adsorption, cracking and hydrogenation properties. According to a regeneration method, the loading performance of an active-metal-loaded support in a spent hydrogenation catalyst cannot be destroyed.
B01J 29/16 - Crystalline aluminosilicate zeolitesIsomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
C10G 49/04 - Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups , , , , or characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
C10G 49/08 - Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups , , , , or characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves