A circuit board has a dielectric core, a foil top surface, and a thin foil bottom surface with a foil backing of sufficient thickness to absorb heat from a laser drilling operation to prevent the penetration of the thin foil bottom surface during laser drilling. A sequence of steps including a laser drilling step, removing the foil backing step, electroless plating step, patterned resist step, electroplating step, resist strip step, tin plate step, and copper etch step are performed, which provide dot vias of fine linewidth and resolution.
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
H05K 3/00 - Apparatus or processes for manufacturing printed circuits
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
C23C 18/16 - Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coatingContact plating by reduction or substitution, i.e. electroless plating
C23C 28/02 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and only coatings of metallic material
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
2.
CIRCUIT BOARD TRACES IN CHANNELS USING ELECTROLESS AND ELECTROPLATED DEPOSITIONS
A circuit layer is formed by drilling vias and forming channels in a circuit layer which has catalytic particles exposed on the surfaces, channels, and vias. A first flash electroless deposition is followed by application of dry film, followed by selective laser ablation of the dry film channels and vias. A second electroless solution is applied which provides additional deposition over the first flash electroless deposition but only on the vias and trace channel areas. An electrodeposition follows, using the first deposition as a cathode. The dry film is stripped and the first electroless layer is etched, leaving only depositions in the channels and vias.
A circuit layer is formed by drilling vias and forming channels in a circuit layer which has catalytic particles exposed on the surfaces, channels, and vias. A first flash electroless deposition is followed by application of dry film, followed by selective laser ablation of the dry film channels and vias. A second electroless solution is applied which provides additional deposition over the first flash electroless deposition but only on the vias and trace channel areas. An electrodeposition follows, using the first deposition as a cathode. The dry film is stripped and the first electroless layer is etched, leaving only depositions in the channels and vias.
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
C23C 18/16 - Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coatingContact plating by reduction or substitution, i.e. electroless plating
C25D 5/02 - Electroplating of selected surface areas
4.
Multi-layer circuit board with traces thicker than a circuit board
A multi-layer circuit board is formed multiple layers of a catalytic layer, each catalytic layer having an exclusion depth below a surface, where the cataltic particles are of sufficient density to provide electroless deposition in channels formed in the surface. A first catalytic layer has channels formed which are plated with electroless copper. Each subsequent catalytic layer is bonded or laminated to an underlying catalytic layer, a channel is formed which extends through the catalytic layer to an underlying electroless copper trace, and electroless copper is deposited into the channel to electrically connect with the underlying electroless copper trace. In this manner, traces may be formed which have a thickness greater than the thickness of a single catalytic layer.
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
H05K 3/38 - Improvement of the adhesion between the insulating substrate and the metal
H05K 3/10 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
H05K 1/09 - Use of materials for the metallic pattern
A process for making a circuit board modifies a catalytic laminate having a resin rich surface with catalytic particles dispersed below a surface exclusion depth. The catalytic laminate is subjected to a drilling and resin-rich surface removal operation to expose the catalytic particles, followed by an electroless plating operation which deposits a thin layer of conductive material on the surface. A photo-masking step follows to define circuit traces, after which an electro-plating deposition occurs, followed by a resist strip operation and a quick etch to remove electroless copper which was previously covered by photoresist.
H05K 3/02 - Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
H05K 3/00 - Apparatus or processes for manufacturing printed circuits
H05K 3/06 - Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
H05K 3/10 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
6.
Circuit board using non-catalytic laminate with catalytic adhesive overlay
A catalytic resin is formed by mixing a resin and either homogeneous or heterogeneous catalytic particles, the resin infused into a woven glass fabric to form an A-stage pre-preg, the A-stage pre-preg cured into a B-stage pre-preg, thereafter held in a vacuum and between pressure plates at a gel point temperature for a duration of time sufficient for the catalytic particles to migrate away from the resin rich surfaces of the pre-preg, thereby forming a C-stage pre-preg after cooling. The C-stage pre-preg subsequently has trenches formed by removing the resin rich surface, the trenches extending into the depth of the catalytic particles, optionally including drilled holes to form vias, and the C-stage pre-preg with trenches and holes placed in an electroless bath, whereby traces form in the trenches and holes where the surface of the cured pre-preg has been removed.
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
H05K 3/38 - Improvement of the adhesion between the insulating substrate and the metal
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
7.
Process for fabrication of a printed circuit board using a semi-additive process and removable backing foil
A method for forming a circuit board having a dielectric core, a foil top surface, and a thin foil bottom surface with a removable foil backing of sufficient thickness to absorb heat from a laser drilling operation to prevent the penetration of the thin foil bottom surface during laser drilling utilizes a sequence of steps including a laser drilling step, removing the foil backing step, electroless plating step, patterned resist step, electroplating step, resist strip step, tin plate step, and copper etch step, which provide dot vias of fine linewidth and resolution.
H05K 3/00 - Apparatus or processes for manufacturing printed circuits
H05K 3/06 - Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
A multi-layer circuit board is formed multiple layers of a catalytic layer, each catalytic layer having an exclusion depth below a surface, where the cataltic particles are of sufficient density to provide electroless deposition in channels formed in the surface. A first catalytic layer has channels formed which are plated with electroless copper. Each subsequent catalytic layer is bonded or laminated to an underlying catalytic layer, a channel is formed which extends through the catalytic layer to an underlying electroless copper trace, and electroless copper is deposited into the channel to electrically connect with the underlying electroless copper trace. In this manner, traces may be formed which have a thickness greater than the thickness of a single catalytic layer.
C23C 18/16 - Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coatingContact plating by reduction or substitution, i.e. electroless plating
H05K 1/09 - Use of materials for the metallic pattern
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
H05K 3/10 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
9.
Multi-layer circuit board with traces thicker than a circuit board layer
A multi-layer circuit board is formed multiple layers of a catalytic layer, each catalytic layer having an exclusion depth below a surface, where the cataltic particles are of sufficient density to provide electroless deposition in channels formed in the surface. A first catalytic layer has channels formed which are plated with electroless copper. Each subsequent catalytic layer is bonded or laminated to an underlying catalytic layer, a channel is formed which extends through the catalytic layer to an underlying electroless copper trace, and electroless copper is deposited into the channel to electrically connect with the underlying electroless copper trace. In this manner, traces may be formed which have a thickness greater than the thickness of a single catalytic layer.
H05K 1/09 - Use of materials for the metallic pattern
H05K 3/38 - Improvement of the adhesion between the insulating substrate and the metal
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
H05K 3/10 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
A multi-layer circuit board is formed by positioning a top sub having traces on at least one side to one or more pairs of composite layers, each composite layer comprising an interposer layer and a sub layer. Each sub layer which is adjacent to an interposer layer having an interconnection aperture, the interconnection aperture positioned adjacent to interconnections having a plated through via or pad on each corresponding sub layer. Each interposer aperture is filled with a conductive paste, and the stack of top sub and one or more pairs of composite layers are placed into a lamination press, the enclosure evacuated, and an elevated temperature and laminated pressure is applied until the conductive paste has melted, connecting the adjacent interconnections, and the boards are laminated together into completed laminated multi-layer circuit board.
H05K 1/09 - Use of materials for the metallic pattern
H05K 3/06 - Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
A circuit board is formed from a catalytic laminate having a resin rich surface with catalytic particles dispersed below a surface exclusion depth. Trace channels and apertures are formed into the catalytic laminate, electroless plated with a metal such as copper, filled with a conductive paste containing metallic particles, which are then melted to form traces. In a variation, multiple circuit board layers have channels formed into the surface below the exclusion depth, apertures formed, are electroless plated, and the channels and apertures filled with metal particles. Several such catalytic laminate layers are placed together and pressed together under elevated temperature until the catalytic laminate layers laminate together and metal particles form into traces for a multi-layer circuit board.
H05K 3/10 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
H05K 3/38 - Improvement of the adhesion between the insulating substrate and the metal
A circuit board is formed from a catalytic laminate having a resin rich surface with catalytic particles dispersed below a surface exclusion depth. Trace channels and apertures are formed into the catalytic laminate, electroless plated with a metal such as copper, filled with a conductive paste containing metallic particles, which are then melted to form traces. In a variation, multiple circuit board layers have channels formed into the surface below the exclusion depth, apertures formed, are electroless plated, and the channels and apertures filled with metal particles. Several such catalytic laminate layers are placed together and pressed together under elevated temperature until the catalytic laminate layers laminate together and metal particles form into traces for a multi-layer circuit board.
H05K 3/00 - Apparatus or processes for manufacturing printed circuits
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
C23C 18/16 - Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coatingContact plating by reduction or substitution, i.e. electroless plating
C23C 18/20 - Pretreatment of the material to be coated of organic surfaces, e.g. resins
H05K 3/10 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
A catalytic resin is formed by mixing a resin and either homogeneous or heterogeneous catalytic particles, the resin infused into a woven glass fabric to form an A-stage pre-preg, the A-stage pre-preg cured into a B-stage pre-preg, thereafter held in a vacuum and between pressure plates at a gel point temperature for a duration of time sufficient for the catalytic particles to migrate away from the resin rich surfaces of the pre-preg, thereby forming a C-stage pre-preg after cooling. The C-stage pre-preg subsequently has trenches formed by removing the resin rich surface, the trenches extending into the depth of the catalytic particles, optionally including drilled holes to form vias, and the C-stage pre-preg with trenches and holes placed in an electroless bath, whereby traces form in the trenches and holes where the surface of the cured pre-preg has been removed.
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
A method for making a circuit board uses a dielectric core, and at least one thin foil bottom surface with a foil backing of sufficient thickness to absorb heat from a laser drilling operation to prevent the penetration of the thin foil bottom surface during laser drilling. A sequence of steps including a laser drilling step, removing the foil backing step, electroless plating step, patterned resist step, electroplating step, resist strip step, tin plate step, and copper etch step are performed, which provide dot vias of fine linewidth and resolution.
H05K 3/00 - Apparatus or processes for manufacturing printed circuits
H05K 3/06 - Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
A process for making a circuit board from a catalytic laminate having a resin rich surface with catalytic particles dispersed below a surface exclusion depth includes drilling holes, etching the surface to expose the catalytic particles, electroless plating the unmasked areas, applying a mask to the etched surface, electroplating the exposed areas using the electroless plating to form a continuous conductor, then stripping the mask and etching away the electroless copper deposition.
H05K 3/02 - Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
H05K 3/00 - Apparatus or processes for manufacturing printed circuits
H05K 3/06 - Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
H05K 3/10 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
16.
Multi-layer circuit board using interposer layer and conductive paste
A multi-layer circuit board is formed by positioning a top sub having traces on at least one side to one or more pairs of composite layers, each composite layer comprising an interposer layer and a sub layer. Each sub layer which is adjacent to an interposer layer having an interconnection aperture, the interconnection aperture positioned adjacent to interconnections having a plated through via or pad on each corresponding sub layer. Each interposer aperture is filled with a conductive paste, and the stack of top sub and one or more pairs of composite layers are placed into a lamination press, the enclosure evacuated, and an elevated temperature and laminated pressure is applied until the conductive paste has melted, connecting the adjacent interconnections, and the boards are laminated together into completed laminated multi-layer circuit board.
H05K 1/09 - Use of materials for the metallic pattern
H05K 3/06 - Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
A catalytic resin is formed by mixing a resin and either homogeneous or heterogeneous catalytic particles, the resin infused into a woven glass fabric to form an A-stage pre-preg, the A-stage pre-preg cured into a B-stage pre-preg, thereafter held in a vacuum and between pressure plates at a gel point temperature for a duration of time sufficient for the catalytic particles to migrate away from the resin rich surfaces of the pre-preg, thereby forming a C-stage pre-preg after cooling. The C-stage pre-preg subsequently has trenches formed by removing the resin rich surface, the trenches extending into the depth of the catalytic particles, optionally including drilled holes to form vias, and the C-stage pre-preg with trenches and holes placed in an electroless bath, whereby traces form in the trenches and holes where the surface of the cured pre-preg has been removed.
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
18.
Method and apparatus for forming contacts on an integrated circuit die using a catalytic adhesive
A catalytic laminate is formed from a resin, a fiber reinforced layer, and catalytic particles such that the catalytic particles are disposed throughout the catalytic laminate but excluded from the outer surface of the catalytic laminate. The catalytic laminate has trace channels and vias formed to make a single or multi-layer catalytic laminate printed circuit board. Apertures with locations which match the locations of integrated circuit pads are formed in the laminate PCB. The integrated circuit is bonded to the catalytic laminate PCB, and the integrated circuit and laminate are both subjected to electroless plating, thereby electrically connecting the integrated circuit to the single or multi-layer catalytic laminate PCB.
C23C 18/16 - Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coatingContact plating by reduction or substitution, i.e. electroless plating
H01L 21/48 - Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups or
H01L 23/14 - Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
C23C 18/20 - Pretreatment of the material to be coated of organic surfaces, e.g. resins
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
H05K 3/32 - Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
A catalytic laminate is formed from a resin, a fiber reinforced layer, and catalytic particles such that the catalytic particles are disposed throughout the catalytic laminate but excluded from the outer surface of the catalytic laminate. The catalytic laminate has trace channels and vias formed to make a single or multi-layer catalytic laminate printed circuit board. Apertures with locations which match the locations of integrated circuit pads are formed in the laminate PCB. The integrated circuit is bonded to the catalytic laminate PCB, and the integrated circuit and laminate are both subjected to electroless plating, thereby electrically connecting the integrated circuit to the single or multi-layer catalytic laminate PCB.
H01L 21/48 - Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups or
H01L 21/56 - Encapsulations, e.g. encapsulating layers, coatings
A catalytic resin is formed by mixing a resin and either homogeneous or heterogeneous catalytic particles, the resin infused into a woven glass fabric to form an A-stage pre-preg, the A-stage pre-preg cured into a B-stage pre-preg, thereafter held in a vacuum and between pressure plates at a gel point temperature for a duration of time sufficient for the catalytic particles to migrate away from the resin rich surfaces of the pre-preg, thereby forming a C-stage pre-preg after cooling. The C-stage pre-preg subsequently has trenches formed by removing the resin rich surface, the trenches extending into the depth of the catalytic particles, optionally including drilled holes to form vias, and the C-stage pre-preg with trenches and holes placed in an electroless bath, whereby traces form in the trenches and holes where the surface of the cured pre-preg has been removed.
H05K 3/00 - Apparatus or processes for manufacturing printed circuits
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
H05K 3/38 - Improvement of the adhesion between the insulating substrate and the metal
A catalytic resin is formed by mixing a resin and either homogeneous or heterogeneous catalytic particles, the resin infused into a woven glass fabric to form an A-stage pre-preg, the A-stage pre-preg cured into a B-stage pre-preg, thereafter held in a vacuum and between pressure plates at a gel point temperature for a duration of time sufficient for the catalytic particles to migrate away from the resin rich surfaces of the pre-preg, thereby forming a C-stage pre-preg after cooling. The C-stage pre-preg subsequently has trenches formed by removing the resin rich surface, the trenches extending into the depth of the catalytic particles, optionally including drilled holes to form vias, and the C-stage pre-preg with trenches and holes placed in an electroless bath, whereby traces form in the trenches and holes where the surface of the cured pre-preg has been removed.
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
A via in a printed circuit board is composed of a patterned metal layer that extends through a hole in dielectric laminate material that has been covered with catalytic adhesive material on both faces of the dielectric laminate material. The layer of catalytic adhesive coats a portion of the dielectric laminate material around the hole. The patterned metal layer is placed over the catalytic adhesive material on both faces of the dielectric laminate material and within the hole.
++ to Cu. Metal traces are formed in trace channels within the first layer of catalytic adhesive. The trace channels extend below a surface of the first layer of the catalytic material. The trace metals traces are also in contact with integrated circuit pads on the surface of the wafer.
H05K 3/02 - Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
H05K 3/10 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
H01L 23/00 - Details of semiconductor or other solid state devices
A via in a printed circuit board is composed of a patterned metal layer that extends through a hole in dielectric laminate material. A layer of catalytic adhesive coats walls within the hole. The patterned metal layer is placed over the catalytic adhesive within the hole.
A printed circuit board includes a laminate substrate. The laminate substrate includes catalytic material that resists metal plating except where a surface of the catalytic material is ablated. Metal traces are formed within in trace channels within the laminate substrate. The channels extend below the surface of the catalytic material.
H05K 3/02 - Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
H05K 3/10 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
H05K 1/09 - Use of materials for the metallic pattern
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
H05K 3/08 - Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed by electric discharge, e.g. by spark erosion
H05K 3/40 - Forming printed elements for providing electric connections to or between printed circuits
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
H05K 3/00 - Apparatus or processes for manufacturing printed circuits
A via in a printed circuit board is composed of a patterned metal layer that extends through a hole in dielectric laminate material that has been covered with catalytic adhesive material on both faces of the dielectric laminate material. The layer of catalytic adhesive coats a portion of the dielectric laminate material around the hole. The patterned metal layer is placed over the catalytic adhesive material on both faces of the dielectric laminate material and within the hole.
A printed circuit board includes a laminate substrate. The laminate substrate includes catalytic core material that resists metal plating except where a surface of the catalytic material is ablated. Metal traces are formed within in trace channels within the laminate substrate. The channels extend below the surface of the catalytic material.
H05K 3/10 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
C23C 18/16 - Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coatingContact plating by reduction or substitution, i.e. electroless plating
C23C 18/20 - Pretreatment of the material to be coated of organic surfaces, e.g. resins
H05K 3/18 - Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material