The variability of an etchant concentration in an immersion processes for treatment of semiconductor devices can be significantly lowered by continuously measuring the conductivity of an etchant solution and comparing against predetermined thresholds. The etchant concentration can be maintained by a feed and bleed process based on conductivity measurements of the etchant solution and the conductivity measurements being correlated with premeasured pH values of an etchant solution.
H01L 21/306 - Chemical or electrical treatment, e.g. electrolytic etching
H01L 21/66 - Testing or measuring during manufacture or treatment
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
The variability of an etchant concentration in an immersion processes for treatment of semiconductor devices can be significantly lowered by continuously measuring the conductivity of an etchant solution and comparing against predetermined thresholds. The etchant concentration can be maintained by a feed and bleed process based on conductivity measurements of the etchant solution and the conductivity measurements being correlated with premeasured pH values of an etchant solution.
H01L 21/306 - Chemical or electrical treatment, e.g. electrolytic etching
H01L 21/66 - Testing or measuring during manufacture or treatment
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
A system, apparatus, and method for processing substrates using acoustic energy. In one aspect, the invention can be a system for processing flat articles including a support for supporting the flat article and an acoustic energy treatment apparatus. The acoustic energy treatment apparatus may include a support arm and a plurality of transducer assemblies coupled thereto. The transducer assemblies may include a housing with a transducer coupled thereto, and the housings of the transducer assemblies may be arranged in an end-to-end manner. A trough may also be included that extends along at least a portion of a length of the transducer assemblies. The trough may serve as a reservoir that upon being filled and overflowed with a liquid allows the liquid to fluidly couple the transducer assemblies to the flat article.
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
5.
Method for selective under-etching of porous silicon
A method for making a solar cell is disclosed. In accordance with the method of the present invention a composite wafer is formed. The composite layer includes a single crystal silicon wafer, a silicon-based device layer and sacrificial porous silicon sandwiched therebetween. The composite wafer is treated to an aqueous etchant maintained below ambient temperatures to selectively etch the sacrificial porous silicon and release or undercut the silicon-based layer from the single crystal silicon wafer. The released silicon device layer is attached to a substrate to make a solar cell and the released single crystal silicon wafer is reused to make additional silicon device layer.
H01L 21/20 - Deposition of semiconductor materials on a substrate, e.g. epitaxial growth
H01L 31/068 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
H01L 21/306 - Chemical or electrical treatment, e.g. electrolytic etching
H01L 31/028 - Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
The variability of an etchant concentration in an immersion processes for treatment of semiconductor devices can be significantly lowered by continuously measuring the conductivity of an etchant solution and comparing against predetermined thresholds. The etchant concentration can be maintained by a feed and bleed process based on conductivity measurements of the etchant solution and the conductivity measurements being correlated with premeasured pH values of an etchant solution.
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/66 - Testing or measuring during manufacture or treatment
H01L 21/306 - Chemical or electrical treatment, e.g. electrolytic etching
An apparatus for processing articles with acoustic energy and a method of constructing a transducer that utilizes a composite of piezoelectric pillars. In one embodiment, the invention is a method of constructing a device for generating acoustic energy comprising: providing a layer of supporting material; positioning a piezoelectric material atop the layer of adhesive material; cutting the piezoelectric material into a plurality of pillars so that spaces exist between adjacent pillars; and filling the spaces with a resilient material to form a composite assembly.
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
A system, apparatus, and method for processing substrates using acoustic energy. In one aspect, the invention can be a system for processing flat articles including a support for supporting the flat article and an acoustic energy treatment apparatus. The acoustic energy treatment apparatus may include a support arm and a plurality of transducer assemblies coupled thereto. The transducer assemblies may include a housing with a transducer coupled thereto, and the housings of the transducer assemblies may be arranged in an end-to-end manner. A trough may also be included that extends along at least a portion of a length of the transducer assemblies. The trough may serve as a reservoir that upon being filled and overflowed with a liquid allows the liquid to fluidly couple the transducer assemblies to the flat article.
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
9.
Systems and methods for drying a rotating substrate
A system for drying a surface of a substrate is provided. The system for drying a surface of a substrate comprising: a rotary support; a first dispenser fluidly coupled to a source of liquid, the first dispenser positioned above the surface of the substrate so as to be capable of applying a film of the liquid to the surface of the substrate; a second dispenser fluidly coupled to a source of drying fluid with a supply line, the second dispenser positioned above the surface of the substrate so as to be capable of applying the drying fluid to the surface of the substrate; and a proportional valve operably coupled to the supply line between the second dispenser and the source of drying fluid, the proportional valve capable of being incrementally adjusted from a closed position to an open position.
F26B 19/00 - Machines or apparatus for drying solid materials or objects not covered by groups
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
C11D 11/00 - Special methods for preparing compositions containing mixtures of detergents
10.
Composite transducer apparatus and system for processing a substrate and method of constructing the same
An apparatus and method for processing articles utilizing acoustic energy. In one embodiment, the invention is an apparatus comprising a support; a conduit for applying a fluid to a surface of the article; and a transducer assembly comprising: a transmitting structure having a concave inner surface and a convex outer surface; a first acoustic transducer having a convex bottom surface bonded to the concave inner surface of the transmitting structure, wherein the first acoustic transducer is configured to create a first acoustically active area on the convex outer surface of the transmitting structure when the first acoustic transducer is energized; and a second acoustic transducer having a convex bottom surface bonded to the concave inner surface of the transmitting structure, wherein the second acoustic transducer is configured to create a second acoustically active area on the convex outer surface of the transmitting structure when the second acoustic transducer is energized.
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
B08B 7/00 - Cleaning by methods not provided for in a single other subclass or a single group in this subclass
B08B 7/04 - Cleaning by methods not provided for in a single other subclass or a single group in this subclass by a combination of operations
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
A method for processing flat articles with acoustical energy. The inventive system method can remove particles from both sides of a wafer more efficiently and effectively. In one aspect, the invention is a method for processing flat articles wherein a liquid is applied to both major surfaces of the flat article. A first transducer assembly is positioned adjacent to a first of the major surfaces of the flat article and a second member is positioned adjacent to a second of the major surfaces. The first transducer assembly generates and transmits acoustical energy to the first major surface of the flat article while the second member either: (1) reflects the acoustical energy generated by the first transducer assembly back to the second major surface of the flat article; and/or (2) generates and transmits acoustical energy to the second major surface of the flat article.
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
B08B 3/10 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
B08B 3/04 - Cleaning involving contact with liquid
H01L 21/02 - Manufacture or treatment of semiconductor devices or of parts thereof
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
12.
Systems and methods for drying a rotating substrate
A system for drying a surface of a substrate is provided. The system for drying a surface of a substrate comprising: a rotary support; a first dispenser fluidly coupled to a source of liquid, the first dispenser positioned above the surface of the substrate so as to be capable of applying a film of the liquid to the surface of the substrate; a second dispenser fluidly coupled to a source of drying fluid with a supply line, the second dispenser positioned above the surface of the substrate so as to be capable of applying the drying fluid to the surface of the substrate; and a proportional valve operably coupled to the supply line between the second dispenser and the source of drying fluid, the proportional valve capable of being incrementally adjusted from a closed position to an open position.
A method of drying a surface of a substrate is provided. The method includes supporting a substrate; rotating the substrate about a rotational center point; applying a liquid to the substrate via a liquid dispenser; applying a drying fluid to the substrate via a drying fluid dispenser; moving the drying fluid dispenser and the liquid dispenser in a direction toward an edge region of the substrate, the drying fluid being applied closer to the rotational center point than the fluid; upon the liquid being applied to the edge region of the substrate, discontinuing application of the liquid while continuing the manipulation of the drying fluid dispenser; and upon the drying fluid being applied to the edge region of the substrate, continuing to apply the drying fluid for a predetermined period of time.
F26B 11/02 - Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
14.
Method for cleaning substrates utilizing surface passivation and/or oxide layer growth to protect from pitting
A process/method for cleaning wafers that eliminates and/or reduces pitting caused by standard clean 1 by performing a pre-etch and then passivating the wafer surface prior to the application of the standard clean 1. The process/method may be especially useful for advanced front end of line post-CPM cleaning. In one embodiment, the invention is a method of processing a substrate comprising: a) providing at least one substrate; b) etching a surface of the substrate by applying an etching solution; c) passivating the etched surface of the substrate by applying ozone; and d) cleaning the passivated surface of the substrate by applying an aqueous solution comprising ammonium hydroxide and hydrogen peroxide.
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
B08B 3/08 - Cleaning involving contact with liquid the liquid having chemical or dissolving effect
15.
Method of manufacturing a solar cell using a pre-cleaning step that contributes to homogeneous texture morphology
A method of manufacturing a solar cell wherein a pre-cleaning step is completed prior to a saw damage removal step and prior to texturization, thereby resulting in the subsequently formed textured surface to have a more homogeneous textural morphology. In one aspect, the invention is a method comprising: a) applying a pre-cleaning solution to an as-cut surface of a crystalline silicon substrate to remove surface contaminants, thereby converting the as-cut surface to a pre-cleaned surface, the as-cut surface formed by a sawing process to create the crystalline silicon substrate; b) applying a first etching solution to the pre-cleaned surface to remove physical damage caused during the sawing process, thereby converting the pre-cleaned surface into a prepared surface; c) applying a second etching solution to the prepared surface to texturize the prepared surface, thereby converting the prepared surface into a texturized surface; and d) forming at least one solar cell on the texturized surface of the crystalline silicon substrate.
The present invention is directed to sonic-assisted systems mid methods of processing of substrates utilizing a sonic-treated liquid. In one embodiment, the sonic-treated liquid can be created by subjecting a desired processing liquid to sonic energy generated by a first sonic energy source prior to being applied So the substrate, The sonic-treated liquid is applied to the substrate where a second source of sonic energy applies sonic energy to the substrate. The sonic-treated liquid can be used as the coupling fluid between the second source of sonic energy and the substrate.
B08B 7/00 - Cleaning by methods not provided for in a single other subclass or a single group in this subclass
B08B 7/04 - Cleaning by methods not provided for in a single other subclass or a single group in this subclass by a combination of operations
B08B 3/00 - Cleaning by methods involving the use or presence of liquid or steam
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
17.
Acoustic energy system, method and apparatus for processing flat articles
A system, apparatus and method for processing flat articles with acoustical energy. The inventive system, apparatus and method can remove particles from both sides of a wafer more efficiently and effectively. In one aspect, the invention is a system and/or method for processing flat articles wherein a liquid is applied to both major surfaces of the flat article. A first transducer assembly is positioned adjacent to a first of the major surfaces of the flat article and a second member is positioned adjacent to a second of the major surfaces. The first transducer assembly generates and transmits acoustical energy to the first major surface of the flat article while the second member either: (1) reflects the acoustical energy generated by the first transducer assembly back to the second major surface of the flat article; and/or (2) generates and transmits acoustical energy to the second major surface of the flat article.
A system of drying a surface of a substrate is provided. The system includes a rotary support for supporting a substrate; and an assembly comprising a first dispenser, a second dispenser, and a third dispenser, the assembly positioned above the surface of the substrate, the second and third dispensers positioned on the assembly adjacent to and in contact with one another and spaced from the first dispenser, the second dispenser having an opening that is larger than an opening of the third dispenser, and the second dispenser being located between the first and third dispensers; and means for translating the assembly generally parallel to the surface of the substrate.
A method for making a solar cell is disclosed. In accordance with the method of the present invention a composite wafer is formed. The composite layer includes a single crystal silicon wafer, a silicon-based device layer and sacrificial porous silicon sandwiched therebetween. The composite wafer is treated to an aqueous etchant maintained below ambient temperatures to selectively etch the sacrificial porous silicon and release or undercut the silicon-based layer from the single crystal silicon wafer. The released silicon device layer is attached to a substrate to make a solar cell and the released single crystal silicon wafer is reused to make additional silicon device layer.
H01L 21/20 - Deposition of semiconductor materials on a substrate, e.g. epitaxial growth
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
H01L 31/068 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
A method of drying a surface of a substrate is provided. The method includes supporting and rotating a substrate; applying a liquid to the substrate surface at or near a rotational center point via a liquid dispenser (so that a film of the liquid is formed on the surface); applying a drying fluid to the substrate surface at a predetermined distance from the rotational center point via one or more drying fluid dispensers; and manipulating the drying fluid dispenser(s) so that the location at which the drying fluid is applied to the substrate is moved in a direction toward the rotational center point, while at the same time manipulating the liquid dispenser so that the location at which the liquid is applied to the substrate is moved in a direction outward from the rotational center point. The liquid dispenser and drying fluid dispenser(s) noted above can be located on and/or within an assembly. The assembly can include a first dispenser, a second dispenser, and a third dispenser. The first dispenser supplies liquid while the second and third dispensers supply drying fluid, where the second dispenser has a larger opening than the third dispenser. The second and third dispensers are positioned on the assembly next to one another and spaced from the first dispenser. Further, the second dispenser is located between the third dispenser and the first dispenser, such that the first dispenser is capable of linearly leading the second and third dispensers during movement.
F26B 11/02 - Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
Semiconductor manufacturing machines, semiconductor substrates manufacturing machines, semiconductor wafer processing machines, namely, wet stations for use to clean, etch, strip, rinse, and dry semiconductor wafers and integrated circuits, automated wet immersion surface preparation equipment for the manufacture of semiconductors, wet stations for manufacture of semiconductors, etch stations, dryers
22.
Composite transducer apparatus and system for processing a substrate and method of constructing the same
A transducer, system and method of constructing the same that utilizes a composite of piezoelectric pillars. In one embodiment, the invention is an apparatus for generating acoustic energy comprising: a plurality of pillars constructed of a piezoelectric material, the pillars arranged in a spaced-apart manner so that spaces exist between adjacent pillars; the pillars having a width and a height extending between a top surface and a bottom surface, wherein the height of the pillars is greater than the width of the pillars; and the spaces filled with a resilient material so as to form a composite assembly.
A transducer, system and method of constructing the same that utilizes a composite of piezoelectric pillars. In one embodiment, the invention is an apparatus for generating acoustic energy comprising: a plurality of pillars constructed of a piezoelectric material, the pillars arranged in a spaced- apart manner so that spaces exist between adjacent pillars; the pillars having a width and a height extending between a top surface and a bottom surface, wherein the height of the pillars is greater than the width of the pillars, and the spaces filled with a resilient material so as to form a composite assembly.
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
G10K 11/00 - Methods or devices for transmitting, conducting or directing sound in generalMethods or devices for protecting against, or for damping, noise or other acoustic waves in general
24.
SYSTEM AND METHOD FOR THE SONIC-ASSISTED CLEANING OF SUBSTRATES UTILIZING A SONIC-TREATED LIQUID
The present invention is directed to sonic-assisted systems mid methods of processing of substrates utilizing a sonic-treated liquid. In one embodiment, the sonic-treated liquid can be created by subjecting a desired processing liquid to sonic energy generated by a first sonic energy source prior to being applied So the substrate, The sonic-treated liquid is applied to the substrate where a second source of sonic energy applies sonic energy to the substrate. The sonic-treated liquid can be used as the coupling fluid between the second source of sonic energy and the substrate.
B24B 1/00 - Processes of grinding or polishingUse of auxiliary equipment in connection with such processes
B24B 31/00 - Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work or the abrasive material is looseAccessories therefor
25.
SYSTEM AND METHOD FOR PROCESSING A SUBSTRATE UTILIZING A GAS STREAM FOR PARTICLE REMOVAL
A system and method of processing a substrate. The method and system applies a liquid to a surface of the substrate so as to form a film of the liquid on the surface of the substrate, wherein a boundary layer exists at the interface of the surface and the film of the liquid. The cleaning system then applies a force that penetrates the boundary layer so as to create a localized area on the surface of the substrate that is substantially free of the liquid. The application of the force in combination with the liquid removes particles from the surface of the substrate.
A system (FIG. 5) and methods for selectively etching silicon nitride in the presence of silicon oxide that provide high selectivity while stabilizing silicon oxide etch rates. The invention comprises a processing chamber (10), dispense lines (20, 21, 22), feed lines (30, 31, 32), a recirculation line (40), a process controller (200), a concentration sensor (50), a particle counter (55), and a bleed line (90). The invention dynamically controls the concentration ratio of the components of the etchant being used and/or dynamically controls the particle count within the etchant during the processing of the at least one substrate. As a result etchant bath life is increased and etching process parameters are more tightly controlled.
An apparatus (100) and method for measuring the acoustical energy that will be applied to a substrate (14) during cleaning A substrate (14) is provided that has placed upon it a piezoelectric member (12) that is capable of sensing t acoustical power that is transmitted This enables the detection and calibration of transducer assemblies that are use the cleaning of substrates
G01C 25/00 - Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
28.
APPARATUS FOR EJECTING FLUID ONTO A SUBSTRATE AND SYSTEM AND METHOD INCORPORATING THE SAME
A fluid dispenser for use in the processing of substrates. The dispenser has a dome shaped body with a convex upper surface and has a number of conduits designed to supply fluid to the surface of a substrate at predetermined points.
An apparatus, system and method for processing a substrate utilizing sonic energy In one aspect, the invention utilizes a transmitter (104) having through holes (16) to dampen sonic energy that may damage the substrate In other aspects, the through holes of the transmitter (104) can be adapted to introduce a liquid solution having bubbles of a controlled size into the meniscus that couples the transmitter (104) to the surface of a substrate to be cleaned to further dampen the sonic energy IN one embodiment, the invention is a system for processing a substrate comprising a rotary support (108) for supporting a substrate in a substantially horizontal orientation, a transducer (140) assembly comprising a transmitter (104) and a transducer (140) adapted to generate sonic energy, the transducer (140) acoustically coupled to the transmitter (104) a plurality of internal passageways (16) extending through the transmitter from holes (16) in a first outer surface of the transmitter to holes (16) in a second outer surface of the transmitter (104), and the transducer (140) assembly positioned so that so that a portion of the vibration transmitter (104) is adjacent to and spaced from a surface of a substrate on the rotary support (16) so that when a liquid is applied to the surface of the substrate, a film of the liquid couples the portion of the transmitter (104) to the surface of the substrate
B08B 3/04 - Cleaning involving contact with liquid
B08B 3/10 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
G01V 1/38 - SeismologySeismic or acoustic prospecting or detecting specially adapted for water-covered areas
30.
A SPLASH SHEILD FOR A ROTARY SUBSTRATE SUPPORT TO PREVENT SPLASH BACK
A method and system for preventing the deposit of residues on a substrate Aspects of the system are modified in order to prevent deposit of residue of substrates In particular, gaps located within the system between the splash guard and the process chamber wall are closed, minimized and/or given non-linear shape so as to prevent the deposit of materials back onto the substrate In one aspect, the invention is a system for processing a substrate comprising a rotary support (322) for supporting a substrate in a substantially horizontal orientation, the rotary support (322) adapted to rotate about an axis o rotation, a wall (314) circumferentially surrounding the rotary support (322) about the axis of rotation, the wall extending above and below a top surface of a substrate positioned on the rotary support (322), a splash guard (312) circumferentially surrounding the rotary support (322) about the axis of rotation, the splash guard (312) positioned between the rotary support (322) and the wall (314) so that an annular gap (370) exists between an outer surface of the splash guard (312) and an inner surface of the wall structure (314), a structure extending upward from the outer surface of the splash guard (312) the structure (318a) adapted to prohibit droplets carried upward through the gap (370) by air flow from depositing on a substrate on the rotary support (322)
B08B 3/04 - Cleaning involving contact with liquid
B08B 3/10 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
31.
APPARATUS AND METHOD FOR PROCESSING A HYDROPHOBIC SURFACE OF A SUBSTRATE
A method of processing a substrate comprising a.) supporting a substrate having a hydrophilic surface in a substantially horizontal orientation, b) rotating the substrate, c) applying & film of an aqueous solution of HF to the hydrophilic surface of the substrate for a period of time sufficient to convert the hydrophilic surface into a hydrophobic surface, wherein the concentration of MF is between about 0.1 % to about 0.5 % by weight of HF in water and the period of time is between about 100 and about 300 seconds, d} applying DI water to the hydrophobic surface of the substrate, and e) applying a drying fluid to the hydrophobic surface of the substrate so as to substantially dry the hydrophobic surface. The invention also is an apparatus for processing a substrate comprising a chamber having at least one wall, a rotary support member located within the chamber for supporting the substrate in a substantially horizontal position and adapted to rotate the substrate, and a first exhaust exit located within the at least one wall, wherein the first exhaust exit is tangential to a rotational direction of the substrate.
B08B 3/04 - Cleaning involving contact with liquid
B08B 11/02 - Devices for holding articles during cleaning
B08B 15/02 - Preventing escape of dirt or fumes from the area where they are producedCollecting or removing dirt or fumes from that area using chambers or hoods covering the area
A spray cleaning device having an atomizing unit with at least one gas passage and at least one cleaning fluid passage converging Into a atomizing area. The gas flowing though the gas passage and the cleaning fluid flowing through the cleaning fluid passages combine to form a mixture at the atomizing area. The accelerating unit has an acceleration passage for spraying the mixture onto a substrate surface. The gas passages are preferably angled with respect to the cleaning acceleration passage.
A spray cleaning device having an atomizing unit with at least one gas passage and at least one cleaning fluid passage converging into a atomizing area. The gas flowing though the gas passage and the cleaning fluid flowing through the cleaning fluid passages combine to form a mixture at the atomizing area. The accelerating unit has an acceleration passage for spraying the mixture onto a substrate surface. The gas passages are preferably angled with respect to the cleaning acceleration passage.
A method of drying a surface of a substrate is provided. The method includes supporting and rotating a substrate; applying a liquid to the substrate surface at or near a rotational center point via a liquid dispenser (so that a film of the liquid is formed on the surface); applying a drying fluid to she substrate surface at a predetermined distance from the rotational center point via one or more drying fluid dispensers; and manipulating the drying fluid dispenser(s) so that the location at which the drying fluid is applied to the substrate is moved in a direction toward the rotational center point, while at the same time manipulating the liquid dispenser so that the location at which the liquid is applied to the substrate is moved in a direction outward from the rotational center point. The liquid dispenser and drying fluid dispensers) noted above can be located on and/or within an assembly. The assembly can include a first dispenser, a second dispenser, and a third dispenser. The first dispenser supplies liquid while the second and third dispensers supply drying fluid, where the second dispenser has a larger opening than the third dispenser. The second and third dispensers are positioned on the assembly next to one another and spaced from the first dispenser. Further, the second dispenser is located between the third dispenser and the first dispenser, such that the first dispenser is capable of linearly leading the second and third dispensers during movement.
A wafer cleaning system having a crystal or cersmic transducer assembly. The transducer assembly is adapted to convert electrical energy into sonic energy. The crystal or ceramic has a first conductive surface, The transducer assembly also has a transmitter made of an inert non-reactive plastic that transmits the sonic energy generated by the crystal or ceramic. The transmitter has a surface bonded directly to the conductive surface of the crystal or ceramic.
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
36.
Acoustic energy system, method and apparatus for processing flat articles
A system, apparatus and method for processing flat articles, such as semiconductor wafers, with acoustical energy. In a cleaning process, the inventive system, apparatus and method can remove particles from both sides of a wafer more efficiently and effectively. In one aspect, the invention is a system for processing flat articles comprising: a first dispenser for applying a liquid to a first surface of a flat article; a second dispenser for applying liquid to a second surface of a flat article; a first transducer assembly positioned so as to transmit acoustical energy to the first surface of the flat article; and a second transducer assembly positioned so as to transmit acoustical energy to the second surface of the flat article.
B08B 3/12 - Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
37.
ACOUSTIC ENERGY SYSTEM, METHOD AND APPARATUS FOR PROCESSING FLAT ARTICLES
A system, apparatus and method for processing this flat articles, such as semiconductor wafers, with acoustical energy. In a cleaning process, the inventive system, apparatus and method can remove particles from both sides of a wafer more efficiently and effectively in one aspect, the invention is a system for processing flat articles comprising: a rotatable support for supporting a flat article; a first dispenser for applying liquid to a first surface of a flat article on the rotatable support; a second dispenser for applying liquid to a second surface of a flat article on the rotatable support; a first transducer assembly comprising a first transducer for generating acoustic energy and a first transmitter acoustically coupled to the first transducer, the first transducer assembly positioned so that when the first dispenser applies liquid to the first surface of a flat article on the rotatable support, a first meniscus of liquid is formed between a portion of the first transmitter and the first surface of the flat article; and a second transducer assembly comprising a second transducer for generating acoustic energy and a second transmitter acoustically coupled to the second transducer, the second transducer assembly positioned so that when the second dispenser applies liquid to the second surface of the flat article on the rotatable support, a second meniscus of liquid is formed between a portion of the second transmitter and the second surface of the flat article.
A method and system for supplying an ultra-pure fluid to a substrate process chamber using point-of-use filtration and purification. The method and system provide ability to automatically monitor and control contamination levels in fluids in real time and to stop substrate processing when contamination levels exceed predetermined thresholds. In one aspect, the invention is a system comprising: a fluid supply line adapted to supply a fluid to the process chamber; filtration means operably coupled to the fluid supply line for removing positively and negatively charged particles from the fluid prior to the fluid passing into the process chamber; a purifier operably coupled to the fluid supply line in series with the filtration means for removing ionic contaminants from the fluid prior to the fluid passing into the process chamber; sensor means for repetitively measuring particle and ionic impurity levels in the fluid that has passed through the filtration means and the purifier, the sensor means producing signals indicative of the measured particle and ionic impurity levels; a controller electrically coupled to the sensor means for receiving the signals created by the sensor means, the controller adapted to respectively compare the measured particle level and the measured ionic impurity level indicated by the signals to a predetermined particle threshold and a predetermined ionic impurity threshold, wherein upon the controller determining that either the measured particle level is above the predetermined particle threshold and/or that the measured ionic impurity level is above the predetermined ionic impurity threshold, the controller further adapted to (1) activate means to alert a user, (2) cease processing of substrates in the process chamber, and/or (3) prohibit processing of substrates in the process chamber.
(1) Semiconductor manufacturing machines, semiconductor substrates manufacturing machines, semiconductor wafer processing machines, namely wet stations for use to clean, etch, strip, rinse, and dry semiconductor wafers and integrated circuits, automated wet immersion surface preparation equipment for the manufacture of semiconductors, wet stations for manufacture of semiconductors, etch stations, dryers.
Semiconductor manufacturing machines, semiconductor substrates manufacturing machines, semiconductor wafer processing machines, namely wet stations for use to clean, etch, strip, rinse, and dry semiconductor wafers and integrated circuits, automated wet immersion surface preparation equipment for the manufacture of semiconductors, wet stations for manufacture of semiconductor, etch stations, dryers.