Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.
A process for production of biofuels from algae can include cultivating an oil-producing algae by promoting sequential photoautotrophic and heterotrophic growth. The method can further include producing oil by heterotrophic growth of algae wherein the heterotrophic algae growth is achieved by introducing a sugar feed to the oil-producing algae. An algal oil can be extracted from the oil-producing algae, and can be converted to form biodiesel.
C11C 3/04 - Fats, oils or fatty acids obtained by chemical modification of fats, oils or fatty acids, e.g. by ozonolysis by esterification of fats or fatty oils
C12M 1/00 - Apparatus for enzymology or microbiology
C12P 7/64 - FatsFatty oilsEster-type waxesHigher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl groupOxidised oils or fats
A process for production of biofuels from algae can include cultivating an oil-producing algae by promoting sequential photoautotrophic and heterotrophic growth. The method can further include producing oil by heterotrophic growth of algae wherein the heterotrophic algae growth is achieved by introducing a sugar feed to the oil-producing algae. An algal oil can be extracted from the oil-producing algae, and can be converted to form biodiesel.
C12P 7/64 - FatsFatty oilsEster-type waxesHigher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl groupOxidised oils or fats
C10L 1/02 - Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
C10L 1/08 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
C10G 45/00 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
C12M 1/00 - Apparatus for enzymology or microbiology
C11C 3/04 - Fats, oils or fatty acids obtained by chemical modification of fats, oils or fatty acids, e.g. by ozonolysis by esterification of fats or fatty oils
C12P 7/649 - Biodiesel, i.e. fatty acid alkyl esters
A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.
C10G 33/06 - De-watering or demulsification of hydrocarbon oils with mechanical means, e.g. by filtration
C11B 1/00 - Production of fats or fatty oils from raw materials
C10G 1/06 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
C10G 3/00 - Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
5.
System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system
A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.
Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.
C01B 3/50 - Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
C01B 3/06 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
C10L 3/06 - Natural gasSynthetic natural gas obtained by processes not covered by , or
The present invention provides aquatic biomass having enhanced growth and methods for selecting and growing a mix of aquatic organisms to maximize production of such a biomass. In one aspect, for example, a method of enhancing aquatic biomass growth is provided. Such a method can include preselecting at least two organisms selected from the group consisting of an algae mixture, a cyanobacteria mixture, and a diatom mixture, combining the at least two organisms at a growth enhancing ratio in a growth environment, and growing the at least two organisms as an aquatic biomass under environmental conditions in the growth environment that further enhance biomass growth, wherein the aquatic biomass growth is synergistic.
C12N 1/00 - Microorganisms, e.g. protozoaCompositions thereofProcesses of propagating, maintaining or preserving microorganisms or compositions thereofProcesses of preparing or isolating a composition containing a microorganismCulture media therefor
C12N 1/12 - Unicellular algaeCulture media therefor
9.
Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass
Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
B09B 3/00 - Destroying solid waste or transforming solid waste into something useful or harmless
C10B 53/02 - Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
B01J 23/78 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups with alkali- or alkaline earth metals or beryllium
Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.
Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
C01B 3/24 - Production of hydrogen or of gaseous mixtures containing hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
A process for production of biofuels from algae can include cultivating an oil-producing algae by promoting sequential photoautotrophic and heterotrophic growth. The method can further include producing oil by heterotrophic growth of algae wherein the heterotrophic algae growth is achieved by introducing a sugar feed to the oil-producing algae. An algal oil can be extracted from the oil-producing algae, and can be converted to form biodiesel.
Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.
A process for production of biofuels from algae can include cultivating an oil-producing algae, extracting the algal oil, and converting the algal oil to form biodiesel. Extracting the algal oil from the oil-producing algae can include biologically rupturing cell wall and oil vesicles of the oil-producing algae using at least one enzyme such as a cellulose or glycoproteinase, a structured enzyme system such as a cellulosome, a virus, or combination of these materials.
A process for production of biofuels from biomass can include depolymerizing a biomass to form a feed. The feed can be formed by autotrophically growing algal biomass and extracting the feed therefrom. The algal feed can be converted to an algal oil by introducing the algal feed to an oil-producing algae under growth conditions sufficient to encourage formation of algal oil within the oil-producing algae. The algal oil can be extracted from the oil-producing algae and can further be converted to biodiesel.
A process for production of biofuels from algae can include cultivating an oil- producing algae by promoting sequential photoautotrophic and heterotrophic growth. The method can further include producing oil by heterotrophic growth of algae wherein the heterotrophic algae growth is achieved by introducing a sugar feed to the oil- producing algae. An algal oil can be extracted from the oil-producing algae, and can be converted to form biodiesel.
A method for cultivating algae can include providing a body of water in a substantially enclosed system. The enclosed system can have a length of channel and a cover. The method can optionally include circulating the body of water through the enclosed system under positive pressure conditions. The positive pressure should prevent ingress of any external atmosphere or material. Further, the method can include cultivating the algae in the body of water at conditions which promote growth. Likewise, a system for cultivating algae can include a channel with a cover, water in the channel, and a pump to introduce positive pressure into the system.
A method for cultivating algae can include providing a body of water in a substantially enclosed system. The enclosed system can have a length of channel and a cover. The method can optionally include circulating the body of water through the enclosed system under positive pressure conditions. The positive pressure should prevent ingress of any external atmosphere or material. Further, the method can include cultivating the algae in the body of water at conditions which promote growth. Likewise, a system for cultivating algae can include a channel with a cover, water in the channel, and a pump to introduce positive pressure into the system.
A process for production of biofuels from algae can include cultivating an oil-producing algae by promoting sequential photoautotrophic and heterotrophic growth. The method can further include producing oil by heterotrophic growth of algae wherein the heterotrophic algae growth is achieved by introducing a sugar feed to the oil-producing algae. An algal oil can be extracted from the oil-producing algae, and can be converted to form biodiesel.
01 - Chemical and biological materials for industrial, scientific and agricultural use
04 - Industrial oils and greases; lubricants; fuels
40 - Treatment of materials; recycling, air and water treatment,
Goods & Services
Chemicals used in industry; chemicals used in the fuel industry; biological products, organisms and micro-organisms used in the fuel industry; cultures of micro-organisms for fuel treatment; chemicals for fuel treatment; organisms for use in fuel reactions; biological products for use in fuel reactions; biological products for fuel treatment. Industrial oils and greases; lubricants; dust absorbing, wetting and binding compositions; fuels (including motor spirit) and illuminants; candles and wicks for lighting; biofuels and processed byproducts of biofuels; electrical energy; additives, non-chemical, to motor-fuel. Treatment of materials; fuel processing services; fuel treatment services; material treatment information; production of energy; water treating.