A filter screen for cross-flow filtration includes a cross-sectional thickness measured from an outer surface to an inner surface, the outer surface configured to exclude particles; and a plurality of slots that are evenly spaced apart. Each of the slots have a length along a longest axis at the outer surface; a width measured from a perpendicular axis relative to the length at the outer surface that is less than the length; and a depth along the cross-sectional thickness that is tapered.
B01D 69/02 - Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or propertiesManufacturing processes specially adapted therefor characterised by their properties
A device includes a housing having an inlet; a waste outlet; a channel that extends from the inlet to the waste outlet; and a filter outlet that is separated from the channel. The device includes a filter assembly disposed within the channel and connected with the filter outlet, and the filter assembly includes a permeable structure; and a screen that overlays the permeable structure and allows fluids to traverse the filter assembly from the inlet to the filter outlet. The device includes a rotation assembly that includes a rotor positioned at a top of the filter assembly and that rotates as the fluids move from the inlet and through the channel. The rotation assembly includes two or more cleaning members that are rotatable and in contact with an external surface of the screen and extend from the rotor to a bottom of the filter assembly.
B01D 29/11 - Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
B01D 29/15 - Supported filter elements arranged for inward flow filtration
B01D 29/64 - Regenerating the filter material in the filter by scrapers, brushes or the like, acting on the cake side of the filtering element
either wherein L is 800 micrometers or less and XP is 350 micrometers or less, or wherein L is 1600 μm or less and XP is 180 μm or less.
Also provided is a method of filtering feed water using such a filter screen.
B01D 69/02 - Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or propertiesManufacturing processes specially adapted therefor characterised by their properties
A hydroclone comprising: a tank (12) including a fluid inlet (14), a filtered fluid outlet (16) and an inner peripheral wall (22) enclosing at least one chamber (24); a filter assembly (26) located within the chamber (24) and comprising a circular filter screen (27) centered about an axis (X); and a cleaning assembly (48) comprising at least one cleaning member (52) biased against and adapted to rotate about the periphery (29) of the filter screen (27); and at least one of: a) the filter screen (27) is reversibly deformable a radial distance (D) of from 0.1 to 10 times the average pore size by the cleaning member (52) biased against the periphery (29) of the filter screen (27); and b) a compressive member (58) providing a continuous radially inward force that biases the cleaning member (52) against the periphery (29) of the filter screen (27).
B04C 5/12 - Construction of the overflow ducting, e.g. diffusing or spiral exits
B01D 29/01 - Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups Filtering elements therefor with flat filtering elements
B01D 29/64 - Regenerating the filter material in the filter by scrapers, brushes or the like, acting on the cake side of the filtering element
A hydroclone (10) including a tank (12) having a fluid inlet (14), a filtered fluid outlet (16), an effluent outlet (18), a process fluid outlet (20) and an inner peripheral wall (22) positioned about an axis (X) and enclosing a plurality of aligned chambers including: i) a vortex chamber (24) in fluid communication with the fluid inlet (14), a filter assembly (26) located within the vortex chamber (24) and enclosing a filtrate chamber (46), a fluid pathway (28) extending from the fluid inlet (14) and about the filter assembly (26) which is adapted to generate a vortex fluid flow about the filter assembly (26), wherein the filtrate chamber (46) is in fluid communication with the filtered fluid outlet (16) such that fluid passing through the filter assembly (26) enters the filtrate chamber (46) and may exit the tank (12) by way of the filtered fluid outlet (16), and ii) an effluent separation chamber (30) in fluid communication with the vortex chamber (24) and which is adapted for receiving unfiltered fluid therefrom, wherein the effluent separation chamber (30) is in fluid communication with the process fluid outlet (20) and an effluent outlet (18); wherein the hydroclone (10) further includes a vortex flow barrier (34) located between the vortex and effluent separation chambers (24, 30) which is adapted to disrupts vortex fluid flow as fluid flows from the vortex chamber (24) to the effluent separation chamber (30).
A hydroclone including: a vortex chamber (24) in fluid communication with the inlet (14), a process fluid chamber (32) in fluid communication with the process fluid outlet (20), an effluent separation chamber (30) located between the vortex chamber (24) and process fluid chamber (32) and including an outer circumferential surface (23), a vortex flow barrier (34) located between the vortex chamber (24) and the effluent separation chamber (30), an effluent barrier (36) located between the effluent separation chamber (30) and the process fluid chamber (32) including at least one opening (42′) near the outer circumferential surface (23), and an effluent opening (38) centrally located within the effluent separation chamber (30) in fluid communication with the effluent outlet (18); wherein the effluent separation chamber (30) has a median distance (80) between the vortex flow barrier (34) and effluent barrier (36) which is adjustable.
Cross-flow filtration systems and corresponding methods for separation particulate matter from liquids. A representative system includes a cross-flow filtration zone (24) in fluid communication with a particulate settling zone (30) and further includes a fluid inlet (14) in fluid communication with one of the zones and a process fluid outlet (20) and in fluid communication with the other zone. A fluid treatment pathway (28) extends from the fluid inlet (14), through the cross-flow filtration and particulate settling zones (24, 30) to the process fluid outlet (20). A filter assembly (26) is located within the cross-flow filtration zone (24) and comprises a membrane surface (44) that isolates a filtrate chamber (46) from the fluid treatment pathway (28), and the filtrate chamber (46) is in fluid communication with a filtered fluid outlet (16). A recirculation pump (Z) in fluid communication with the process fluid outlet (20) and fluid inlet (14). A pressurizable recirculation loop (A) comprises the fluid treatment pathway (28) and recirculation pump (Z) and the recirculation pump (Z) is adapted for driving pressurized through the recirculation loop (A). A feed pump (Y) is adapted to introduce feed liquid into the system (10); and an effluent outlet (18) in fluid communication with the particulate settling zone (30). The feed pump (Y), effluent outlet (18) and filtered fluid outlet (16) reside outside of the recirculation loop (A).
B01D 29/90 - Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups Filtering elements therefor having feed or discharge devices for feeding
B01D 29/64 - Regenerating the filter material in the filter by scrapers, brushes or the like, acting on the cake side of the filtering element
B01D 21/26 - Separation of sediment aided by centrifugal force
B01D 21/00 - Separation of suspended solid particles from liquids by sedimentation
B01D 21/24 - Feed or discharge mechanisms for settling tanks
B01D 21/34 - Controlling the feed distributionControlling the liquid level
B01D 29/33 - Self-supporting filtering elements arranged for inward flow filtration
A hydrocyclone (10) having a tank (12) including a fluid inlet (14), a filtered fluid outlet (16), an effluent outlet (18), a process fluid outlet (20) and an inner peripheral wall (22) enclosing three vertically aligned chambers (24, 30, 32) including a vortex chamber (24) in fluid communication with the fluid inlet through a fluid pathway (28) adapted for receiving an incoming fluid flow and generating a vortex fluid flow about a filter assembly (26) which is located within the vortex chamber which encloses a filtrate chamber (66) which is in fluid communication with the filtered fluid outlet (16). An effluent separation chamber (30) is located bellow the vortex chamber and is in fluid communication with the vortex chamber and the effluent outlet. A process fluid chamber is located bellow the effluent separation chamber and is in fluid communication with the effluent separation chamber and the process fluid outlet.
A variety of improved hydroclone based fluid filtering systems are described. The hydroclones generally include a tank having an internal chamber and a filter (preferably a surface filter) that is positioned within the internal chamber. The filter defines a filtered fluid chamber within the internal chamber of the tank. The hydroclone may be operated such that a vortex of flowing fluid is formed between the chamber wall and the filter with the filter being located in the center of the vortex. With this arrangement, the filter acts as a cross-flow filter. In one aspect of the invention, a circulating cleaning assembly is provided in the hydroclone region. In yet another aspect of the invention, improved hydroclone intake structures are described.
B04C 9/00 - Combinations with other devices, e.g. fans
B04C 3/06 - Construction of inlets or outlets to the vortex chamber
B01D 29/90 - Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups Filtering elements therefor having feed or discharge devices for feeding
B01D 29/11 - Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
B01D 29/62 - Regenerating the filter material in the filter
B04C 5/22 - Apparatus in which the axial direction of the vortex is reversed with cleaning means
B04C 3/00 - Apparatus in which the axial direction of the vortex remains unchanged
C02F 1/38 - Treatment of water, waste water, or sewage by centrifugal separation
10.
Apparatus and method for implementing hydroclone based fluid filtration systems with extensible isolated filter stages
Filter assemblies and fluid flow inhibitors that are particularly well suited for use in centrifugal separation enhanced filtration devices are described. Moreover extensible filter assemblies are described. In one aspect of the invention, extensible filtration assemblies can be used to operate in circulating fluid filtration devices. Such extensible filter elements can use fluid manifold to reduce the effects of fluid circulation inside filter elements and to reduce reverse flow problems in such filters. Additionally, indexable filter elements and invertable filtration elements can be used to extend filter life in filtration in filtration devices.
Cleaning assemblies and particulate tolerant fluid bearings that are particularly well suited for use in centrifugal separation enhanced filtration devices are described. In one aspect of the invention, at least one bearing is arranged to carry a circulating cleaning assembly such that the cleaning assembly can rotate around a filter membrane during filtering operation of the filtration device. The bearing is preferably arranged to maintain the circulating cleaning assembly in a substantially coaxial alignment with the filter membrane and in a substantially stable longitudinal position relative to the filter membrane as the circulating cleaning assembly is rotated around the filter membrane. In another aspect of the invention a variety of particulate tolerant bearings are described.
A variety of improved hydroclone based fluid filtering systems are described. The hydroclones generally include a tank having an internal chamber and a filter (preferably a surface filter) that is positioned within the internal chamber. The filter defines a filtered fluid chamber within the internal chamber of the tank. The hydroclone may be operated such that a vortex of flowing fluid is formed between the chamber wall and the filter with the filter being located in the center of the vortex. With this arrangement, the filter acts as a cross-flow filter. In one aspect of the invention, the filter is a stepped filter. In another aspect of the invention, the filter is an surface filter, as for example, an electroformed metal surface filter. In some preferred embodiments, the openings in the filter are arranged as slots that extend substantially vertically so that they are oriented substantially perpendicular to the flow path of fluid flowing in the adjacent portion of the vortex. In another aspect of the invention, a circulating cleaning assembly is provided in the hydroclone region. The cleaning assembly is arranged to help clean the filter and is driven by the vortex of flowing fluid formed in the hydroclone region of the internal chamber. In yet another aspect of the invention, improved hydroclone intake structures are described. The described hydroclones may be used to filter water and other fluids in a wide variety of applications.
A variety of improved hydroclone based fluid filtering systems are described. The hydroclones generally include a tank having an internal chamber and a filter (preferably a surface filter) that is positioned within the internal chamber. The filter defines a filtered fluid chamber within the internal chamber of the tank. The hydroclone may be operated such that a vortex of flowing fluid is formed between the chamber wall and the filter with the filter being located in the center of the vortex. With this arrangement, the filter acts as a cross-flow filter. In one aspect of the invention, the filter is a stepped filter. In another aspect of the invention, the filter is an surface filter, as for example, an electroformed metal surface filter. In some preferred embodiments, the openings in the filter are arranged as slots that extend substantially vertically so that they are oriented substantially perpendicular to the flow path of fluid flowing in the adjacent portion of the vortex. In another aspect of the invention, a circulating cleaning assembly is provided in the hydroclone region. The cleaning assembly is arranged to help clean the filter and is driven by the vortex of flowing fluid formed in the hydroclone region of the internal chamber. In yet another aspect of the invention, improved hydroclone intake structures are described. The described hydroclones may be used to filter water and other fluids in a wide variety of applications.