A system and method for plating a workpiece are described. In one aspect, an apparatus includes a deposition chamber, a workpiece holder adapted for insertion into and removal from the deposition chamber, a shield with patterns of apertures corresponding to features on the workpiece, a shield holder also adapted for insertion into and removal from the deposition chamber and a positioning mechanism to position the workpiece in the workpiece holder such that the pattern of apertures on the shield will align with the corresponding features on the workpiece when the workpiece holder and shield holder are inserted into the deposition chamber.
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/68 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for positioning, orientation or alignment
2.
Adaptive focusing and transport system for electroplating
A system and method for plating a workpiece are described. In one aspect, an apparatus includes a deposition chamber, a workpiece holder adapted for insertion into and removal from the deposition chamber, a shield with patterns of apertures corresponding to features on the workpiece, a shield holder also adapted for insertion into and removal from the deposition chamber and a positioning mechanism to position the workpiece in the workpiece holder such that the pattern of apertures on the shield will align with the corresponding features on the workpiece when the workpiece holder and shield holder are inserted into the deposition chamber.
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/68 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for positioning, orientation or alignment
3.
Substrate support features and method of application
H01L 21/683 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
B32B 7/12 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties
B32B 27/12 - Layered products essentially comprising synthetic resin next to a fibrous or filamentary layer
B32B 27/08 - Layered products essentially comprising synthetic resin as the main or only constituent of a layer next to another layer of a specific substance of synthetic resin of a different kind
B32B 27/28 - Layered products essentially comprising synthetic resin comprising copolymers of synthetic resins not wholly covered by any one of the following subgroups
B32B 5/02 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by structural features of a layer comprising fibres or filaments
B32B 37/12 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
B32B 3/08 - Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shapeLayered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
B32B 37/00 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
B32B 7/06 - Interconnection of layers permitting easy separation
B32B 37/08 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
B32B 38/10 - Removing layers, or parts of layers, mechanically or chemically
B32B 7/14 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
B32B 37/06 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
B32B 3/26 - Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shapeLayered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layerLayered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shapeLayered products comprising a layer having particular features of form characterised by a layer with cavities or internal voids
An electrochemical deposition system for depositing metal onto a workpiece, comprises a deposition chamber adapted to receive plating solution, a workpiece holder for holding a workpiece in a first plane, a shield holder for holding a shield in a second plane substantially parallel to the first plane, an agitation plate having a profiled surface to agitate plating solution, wherein the workpiece holder, shield holder and agitation plate are all adapted for insertion into and removal from the deposition chamber, and further comprising an actuator operable to change a relative distance between the workpiece holder and shield holder, in a direction normal to the first and second planes, while they are located within the deposition chamber.
A vapor deposition system comprises a vacuum chamber and two or more process modules each configured for processing a semiconductor substrate. Each process module is removably connected to a respective port of the vacuum chamber such that each process module is in vacuum communication with the vacuum chamber when connected to the respective port. A port sealing mechanism is configured to create a vacuum seal at each port such that when a first port is sealed and a first process module is disconnected from the first port, a vacuum condition is maintained within the vacuum chamber while the first process module is open to atmospheric pressure.
C23C 14/02 - Pretreatment of the material to be coated
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
C23C 14/56 - Apparatus specially adapted for continuous coatingArrangements for maintaining the vacuum, e.g. vacuum locks
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
Techniques herein provide a workpiece holder that can hold relatively flexible and thin workpieces for transport and electrochemical deposition while avoiding electroplating fluid wetting contacts or contact regions of a given workpiece. A workpiece holder frame holds a workpiece by gripping the workpiece on opposing sides of the workpiece. A flexure structure is used for clamping a given workpiece and for providing an electrical path for supplying a current to the workpiece. An elastomer covering provides sealing and insulation of the electrical flexure structure. The workpiece holder also provides tension to the workpiece to help hold the workpiece flat during processing. Each flexure structure can provide an independent electrical path to the workpiece surface.
B23Q 3/00 - Devices holding, supporting, or positioning, work or tools, of a kind normally removable from the machine
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
C25D 17/00 - Constructional parts, or assemblies thereof, of cells for electrolytic coating
C25D 17/06 - Suspending or supporting devices for articles to be coated
Techniques herein provide a workpiece handling and loading apparatus for loading, unloading, and handling relatively flexible and thin substrates for transport and electrochemical deposition. Such a system assists with workpiece holder exchange between a delivery cartridge or magazine, and a workpiece holder. Embodiments include a workpiece handler configured to provide an air cushion to a given workpiece, and maneuvering to a given workpiece holder that can edge clamp the workpiece.
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
C25D 17/00 - Constructional parts, or assemblies thereof, of cells for electrolytic coating
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
Semiconductor manufacturing machines and their component
parts and fittings; electroplating machines for
manufacturing semiconductors and their component parts and
fittings.
Semiconductor manufacturing machines and their component parts and fittings; electroplating machines for manufacturing semiconductors and their component parts and fittings
10.
Electrochemical deposition apparatus with remote catholyte fluid management
Techniques disclosed herein include an electro-chemical deposition apparatus that provides an efficient circulation system, chemical management that provides reliable and uniform plating, and a configuration that provides short maintenance times and greater tool availability. Techniques include a processing tank containing an anolyte fluid, and one or more plating cells each having a catholyte fluid compartment with a circulation path that connects to a separate or remote catholyte reservoir. Thus, with such a configuration, a single pump can be used to flow catholyte (via manifolds) through one or more plating cells. Thus, with the catholyte reservoir maintained off board, instead of dumping catholyte over a weir into a reservoir, catholyte fluid—after flowing through a plating cell—is returned to the catholyte reservoir.
Techniques disclosed herein a method and system for conditioning a polymeric layer on a substrate to enable adhesion of a metal layer to the polymeric layer. Techniques may include conditioning the polymeric layer with nitrogen-containing plasma to generate a nitride layer on the surface of the polymeric layer. In another embodiment, the conditioning may include depositing a CuN layer using a lower power copper sputtering process in a nitrogen rich environment. Following the condition process, a higher power copper deposition or sputtering process may be used to deposit copper onto the polymeric layer with good adhesion properties.
H01L 21/44 - Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups
H01L 21/3205 - Deposition of non-insulating-, e.g. conductive- or resistive-, layers, on insulating layersAfter-treatment of these layers
H01L 23/532 - Arrangements for conducting electric current within the device in operation from one component to another including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
H01L 21/285 - Deposition of conductive or insulating materials for electrodes from a gas or vapour, e.g. condensation
H01L 23/552 - Protection against radiation, e.g. light
12.
Electrochemical deposition apparatus and methods for controlling the chemistry therein
An electrochemical deposition system is described. The electrochemical deposition system includes one or more electrochemical deposition modules arranged on a common platform for depositing one or more metals on a substrate, and a chemical management system coupled to the one or more electrochemical deposition modules. The chemical management system is configured to supply at least one of the one or more electrochemical deposition modules with one or more metal constituents for depositing the one or more metals. The chemical management system can include at least one metal enrichment cell and at least one metal-concentrate generator cell.
C25B 15/08 - Supplying or removing reactants or electrolytesRegeneration of electrolytes
C25B 9/08 - Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
C25B 9/00 - Cells or assemblies of cellsConstructional parts of cellsAssemblies of constructional parts, e.g. electrode-diaphragm assembliesProcess-related cell features
C25B 9/18 - Assemblies comprising a plurality of cells
C25D 5/08 - Electroplating with moving electrolyte, e.g. jet electroplating
An electrochemical deposition system is described. The electrochemical deposition system includes one or more electrochemical deposition modules arranged on a common platform for depositing one or more metals on a substrate, and a chemical management system coupled to the one or more electrochemical deposition modules. The chemical management system is configured to supply at least one of the one or more electrochemical deposition modules with one or more metal constituents for depositing the one or more metals. The chemical management system can include at least one metal enrichment cell and at least one metal-concentrate generator cell.
A method of fluid processing a semiconductor workpiece, including disposing a workpiece holder with a housing capable of containing a fluid, the workpiece holder retaining the workpiece, providing an agitation system connected to the housing and comprising a member disposed within the housing adjacent the workpiece holder, and agitating the fluid by moving the member substantially parallel to a surface of the workpiece with a non-uniform oscillatory motion, the non-uniform oscillatory motion being a series of substantially continuous geometrically asymmetric oscillations wherein each consecutive oscillation of the series is geometrically asymmetric having at least two substantially continuous opposing strokes wherein reversal positions of each substantially continuous stroke of the substantially continuous asymmetric oscillation are disposed asymmetrically with respect to a center point of each immediately preceding substantially continuous stroke of the oscillation.
C25D 17/00 - Constructional parts, or assemblies thereof, of cells for electrolytic coating
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
A substrate edge bevel etch module for etching a material from a peripheral edge of a substrate with an etchant is described. The substrate edge bevel etch module includes a rotatable substrate holder having a support for a substrate, and a surface tension etch applicator comprising a wetted etching surface opposing a substrate surface proximate an edge of the substrate when the surface tension etch applicator is located proximate to the edge of the substrate. The surface tension etch applicator further includes an etchant dispensing portion, proximate the wetted etching surface, which dispenses an etchant in a region between the wetted etching surface and the substrate surface and wet at least a portion of the wetted etching surface and the substrate surface. A spacing between the wetted etching surface and the substrate surface is selected to retain the etchant using surface tension forces and form a meniscus there between.
B44C 1/22 - Removing surface-material, e.g. by engraving, by etching
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/02 - Manufacture or treatment of semiconductor devices or of parts thereof
16.
Substrate loader and unloader having a Bernoulli support
A substrate chuck includes a frame forming a support adapted to support an adhering surface thereon, and a Bernoulli chuck surface coupled to the frame and adapted to support the substrate. The Bernoulli chuck surface is axially moveable relative to the support between first and second positions. In the first position, the substrate is coupled to the adhering surface, and the substrate is separated from the adhering surface with movement of the Bernoulli chuck from the first position to the second position, without contact between the substrate and the Bernoulli chuck surface.
A substrate separation chuck which is adapted to separate a substrate from an adhering surface. The substrate separation chuck has a support adapted to support the adhering surface. An air bearing surface is adapted to support the substrate, the air bearing surface axially moveable relative to the support. The air bearing surface has a first position adjacent the substrate with the substrate coupled to the adhering surface. The air bearing surface is moveable from the first position to a second position separating the substrate from the adhering surface without contact between the substrate and the air bearing surface.
A47J 45/00 - Devices for fastening or gripping kitchen utensils
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/683 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
A substrate loader adapted to load and unload a substrate to and from a moveable holder having a seal. The substrate loader has a base and a holder support frame coupled to the base, the holder support frame adapted to repeatably position the moveable holder relative to a predetermined datum. The substrate transport is coupled to the base and having a substrate chuck and adapted to move and transport the substrate relative to the holder. The substrate transport is deterministically positioned relative to the predetermined datum and is adapted to move the substrate from a first position, with the substrate captured by the moveable holder, to a second position with the substrate disengaged from the holder and the seal, the substrate transport movement of the substrate from the first to the second position effecting disengagement from the holder and the seal substantially without contacting the substrate.
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/683 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping
A rotary chuck adapted to hold a substrate. The rotary chuck has a rotatable chuck portion and an edge grip having a movable grip member movably mounted to the rotatable chuck portion, the moveable grip member being substantially free moving so that rotation of the rotating chuck portion causes the moveable grip member to move in a plane substantially aligned with a surface of the substrate to engage the substrate in a engaged position. A resilient element is coupled to the moveable grip member, the resilient member biasing the grip member to a disengaged position.
B23B 31/14 - Chucks with simultaneously-acting jaws, whether or not also individually adjustable involving the use of centrifugal force
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
F26B 5/08 - Drying solid materials or objects by processes not involving the application of heat by centrifugal treatment
B23B 31/12 - Chucks with simultaneously-acting jaws, whether or not also individually adjustable
A system for processing surfaces of substrates having a process module having a process module frame and a plurality of process elements to process the substrate surfaces without contacting the substrate surfaces. A plurality of substrate holder assemblies, each having a number of substrate holders, each of which is removably coupled to the process module frame, each substrate holder configured to hold a substrate. The process module frame has alignment features aligning the substrate holders in the substrate holder assembly in repeatable alignment with respect to each of the process elements with each of the process elements located between the substrates. A loader module is configured to unload processed substrates from each of the substrate holder assemblies and load unprocessed substrates to each of the substrate holder assemblies. A transporter is configured to transport the substrate holder assemblies to and from the process module and the loader module.
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H01L 21/68 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for positioning, orientation or alignment
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
21.
Parallel single substrate processing system with alignment features on a process section frame
A system for fluid processing substrate surfaces arrayed in a fluid having a process section with a frame having a plurality of process elements to process the substrate surfaces without contacting the substrate surfaces and a substrate holder assembly having a number of substrate holders and configured for transporting substrates as a unit. The substrate holder assembly and each of the substrate holders are configured for removable coupling to the process section frame, each substrate holder configured to hold at least one of the substrates. The process section frame has alignment features disposed so that, on coupling of the substrate holder assembly with the process section frame, the alignment features interface with each substrate holder of the substrate holder assembly and locate each substrate holder in repeatable alignment, at corresponding coupling of each substrate holder and the process section frame, with respect to a predetermined feature of the process section.
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/68 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for positioning, orientation or alignment
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
A substrate drying apparatus for drying a width of a surface of a substrate in a liquid. The substrate drying apparatus has a liquid tank containing the liquid. An injection nozzle is coupled to the liquid tank, the injection nozzle having a continuous knife edge injection surface across the width of the surface of the substrate. A drain is coupled to the injection nozzle, the drain having a continuous drain surface substantially parallel to the continuous knife edge injection surface and across the width of the surface of the substrate. The liquid forms a meniscus between the continuous drain surface and the width of the surface of the substrate. The injection nozzle directs a vapor at the meniscus.
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H01L 21/68 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for positioning, orientation or alignment
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
A system for fluid processing substrate surfaces arrayed in a fluid having a process section with a frame having a plurality of process elements to process the substrate surfaces without contacting the substrate surfaces. A substrate holder assembly having a holder frame and a number of substrate holders, each of which is coupled to the holder frame and is configured for holding a substrate so that each substrate holder holds a different substrate for transport as a unit with the substrate holder assembly to and from the process section. The substrate holder assembly and each substrate holder are removably coupled to the process section frame, and the substrate holders of the substrate holder assembly are movable relative to the holder frame and positionable in repeatable alignment with respect to a predetermined feature of the process section and independent of positioning of the holder frame with respect to the process section.
B23Q 1/25 - Movable or adjustable work or tool supports
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/68 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for positioning, orientation or alignment
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
24.
Electro chemical deposition and replenishment apparatus
A process electrolyte replenishment module adapted to replenish ions in a process electrolyte in a substrate electrochemical deposition apparatus having a first anode and a first cathode, the replenishment module having a second anode. A process electrolyte recirculation compartment is disposed in the frame configured so that the process electrolyte is recirculating between the replenishment module and the deposition apparatus. An anode compartment is coupled to the process electrolyte recirculation compartment having the second anode, that is a soluble anode, for immersion in a secondary anolyte, and having a first ion exchange membrane being a cationic member separating the secondary anolyte from the process electrolyte. A cathode compartment is provided in the frame coupled to the process electrolyte recirculation compartment having a second cathode for immersion in a secondary catholyte, and having a second ion exchange membrane being a monovalent selective membrane separating the secondary catholyte from the process electrolyte.
An electrochemical deposition apparatus adapted to deposit metal onto a surface of a substrate, the apparatus has a frame configured for holding a process electrolyte. A substrate holder is removably coupled to the frame, the substrate holder supporting the substrate in the process electrolyte. An anode fluid compartment is removably coupled to the frame and containing an anolyte and having an anode facing the surface of the substrate, the anode fluid compartment further having a ion exchange membrane disposed between the anode and the surface of the substrate, the anode fluid compartment removable from the frame as a unit with the ion exchange membrane and the anode. The holder, the anode and the membrane are arranged in the frame so that ions from the anode pass through the ion exchange membrane into and primarily replenish ions in the process electrolyte depleted by ion deposition onto the surface of the substrate.
A method and system for coating the interior surfaces of microscale hole features fabricated into the substantially planar surface of a work piece. The method comprises providing a work piece with a barrier metal coating that is substantially continuous and uniform both along the planar surface of the work piece and the inner surfaces of the microscale hole features wherein said barrier metal coating is applied by a substantially surface reaction limited process. The workpiece is provided with a coating, on the planar surface of the work piece, of a thick metal layer anchored to the barrier metal coat and disposed to provide substantially uniform electrical conduction capability to the microscale features located throughout and across the workpiece. An electrical contact path is provided to the electrically conductive coating at the perimeter of the work piece. The workpiece is immersed in a chemical bath, causing said chemical bath to fully contact the interior surfaces of the microscale hole features, said chemical bath containing metal ions suitable for electrodeposition. An electric potential is applied at the perimeter of the work piece to cause electrodeposition of metal ions onto all surfaces of the work piece including the interior surfaces of the microscale hole features to a predetermined finish coating in one step.
A method and apparatus for wetting the surface of a workpiece is disclosed. The apparatus includes a chamber with a vacuum port and a fluid port and a workpiece holder including a body, a ring, and a port. The body includes a surface and defines a cavity extending from the surface. The ring is adapted to retain the workpiece on the surface of body over the cavity. The ring forms a fluid seal relative to the workpiece and to the workpiece holder. The port is defined in the body and in communication with the cavity. The port affects pressure in the cavity to minimize a pressure differential between the front and back surfaces of the workpiece. The fluid port is in communication with the chamber. The fluid port delivers a fluid (e.g., a substantially degassed fluid) to wet the front surface of the workpiece during operation of the chamber at a reduced pressure relative to atmosphere.
A substrate processing pallet can cool a substrate. A substrate processing pallet can include a base member; an interface pad attachable to the base member, the interface pad having substantially the same coefficient of thermal expansion as the base member and adapted to facilitate cooling of the substrate; and a surface of the base member having features for aligning a substrate on the interface pad. A substrate processing pallet can also include a base member; an interface pad attachable to the base member; an electrostatic chuck for gripping the substrate during processing; an energy storage system for storing energy to sustain the electrostatic chuck at sufficient charge to sustain grip the substrate during processing; and a conduit for transporting gas to a backside of the substrate to facilitate cooling of the substrate.
H01L 21/00 - Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid-state devices, or of parts thereof
B05C 11/00 - Component parts, details or accessories not specifically provided for in groups
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H01L 21/683 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping
A method and apparatus for fluid sealing a workpiece retained by a workpiece holder are described. A pressure differential can be formed across a fluid seal to counteract fluid attempting to penetrate the fluid seal, which can contaminate the underside of the workpiece. The apparatus can include a ring forming a barrier to fluid entry with the workpiece and a source providing pressure to form the pressure differential. The pressure or the pressure differential can counteract hydroscopic fluid pressure or hydrostatic fluid pressure that is acting to force fluid through the barrier between the ring and the workpiece.
A method and apparatus for retaining a workpiece against a workpiece holder are described. A flexible member can be used to provide a substantially uniform force to securely retain the workpiece, which can allow the workpiece to be consistently positioned in a process module. In one detailed embodiment, a barrier to fluid entry is formed between the workpiece and a ring for retaining the workpiece against a workpiece holder. This provides a reliable seal during fluid processing to prevent fluid from reaching the underside of a workpiece. In various embodiments, the workpiece holder can be used to align a workpiece in a process module or to hold one or more workpieces in a configuration that allows for higher throughput.