Method and system for removing high freeze point components from natural gas. Feed gas is cooled in a heat exchanger and separated into a first vapor portion and a first liquid portion. The first liquid portion is reheated using the heat exchanger and separated into a high freeze point components stream and a non-freezing components stream. A portion of the non-freezing components stream may be at least partially liquefied and received by an absorber tower. The first vapor portion may be cooled and received by the absorber tower. An overhead vapor product which is substantially free of high freeze point freeze components and a bottoms product liquid stream including freeze components and non-freeze components are produced using the absorber tower.
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
F25J 3/08 - Separating gaseous impurities from gases or gaseous mixtures
2.
PROCESS AND APPARATUS FOR HEAVY HYDROCARBON REMOVAL FROM LEAN NATURAL GAS BEFORE LIQUEFACTION
A process is described herein for removing high freeze point hydrocarbons, including benzene compounds, from a mixed feed gas stream. The process involves cooling process streams in one or more heat exchangers and separating condensed compounds in multiple separators to form a methane-rich product gas stream. Select solvent streams from a fractionation train and/or separate solvent streams are employed to lower the freeze point of one or more streams that contain high freeze point hydrocarbons. A corresponding system also is disclosed.
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
3.
Process and apparatus for enhanced removal of contaminants in fluid catalytic cracking processes
Systems for separating a contaminant trapping additive from a cracking catalyst may include a contaminant removal vessel having one or more fluid connections for receiving contaminated cracking catalyst, contaminated contaminant trapping additive, fresh contaminant trapping additive, and a fluidizing gas. In the contaminant removal vessel, the spent catalyst may be contacted with contaminant trapping additive, which may have an average particle size and/or density greater than the cracking catalyst. A separator may be provided for separating an overhead stream from the contaminant removal vessel into a first stream comprising cracking catalyst and lifting gas and a second stream comprising contaminant trapping additive. A recycle line may be used for transferring contaminant trapping additive recovered in the second separator to the contaminant removal vessel, allowing contaminant trapping additive to accumulate in the contaminant removal vessel. A bottoms product line may provide for recovering contaminant trapping additive from the contaminant removal vessel.
C10G 11/18 - Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised bed" technique
B01J 38/00 - Regeneration or reactivation of catalysts, in general
B01J 8/26 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
B01J 8/32 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with introduction into the fluidised bed of more than one kind of moving particles
B01J 38/72 - Regeneration or reactivation of catalysts, in general including segregation of diverse particles
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
4.
Fluid catalytic cracking process and apparatus for maximizing light olefin yield and other applications
Apparatus and processes herein provide for converting hydrocarbon feeds to light olefins and other hydrocarbons. The processes and apparatus include, in some embodiments, feeding a hydrocarbon, a first catalyst and a second catalyst to a reactor, wherein the first catalyst has a smaller average particle size and is less dense than the second catalyst. A first portion of the second catalyst may be recovered as a bottoms product from the reactor, and a cracked hydrocarbon effluent, a second portion of the second catalyst, and the first catalyst may be recovered as an overhead product from the reactor. The second portion of the second catalyst may be separated from the overhead product, providing a first stream comprising the first catalyst and the hydrocarbon effluent and a second stream comprising the separated second catalyst, allowing return of the separated second catalyst in the second stream to the reactor.
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
C10G 11/18 - Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised bed" technique
C10G 51/02 - Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only
B01D 45/06 - Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by reversal of direction of flow
B01D 45/08 - Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
B01J 8/24 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique
B01J 8/26 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
5.
HEAT EXCHANGER CLOSURE ASSEMBLIES AND METHODS OF USING AND INSTALLING THE SAME
A heat exchanger assembly including an elongated tubular heat exchanger enclosure defining an interior chamber. A tube sheet is positioned within the interior chamber of the heat exchanger enclosure separating the interior chamber into a shell side and a channel side. The interior portion is configured to removably receive a tube bundle positioned within the shell side of the interior chamber. An annular sleeve member is positioned within the channel side of the interior chamber of the heat exchanger enclosure. An annular elastic torsion member is positioned within the channel side of the interior chamber of the heat exchanger such that the sleeve member is positioned between the tube sheet and the elastic torsion member. The elastic torsion member has an inner circumference deflectable relative to its outer circumference for torsioning the elastic torsion member.
F16J 15/02 - Sealings between relatively-stationary surfaces
F28D 7/16 - Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
A heat exchanger assembly including an elongated tubular heat exchanger enclosure defining an interior chamber. A tube sheet is positioned within the interior chamber of the heat exchanger enclosure separating the interior chamber into a shell side and a channel side. The interior portion is configured to removably receive a tube bundle positioned within the shell side of the interior chamber. An annular sleeve member is positioned within the channel side of the interior chamber of the heat exchanger enclosure. An annular elastic torsion member is positioned within the channel side of the interior chamber of the heat exchanger such that the sleeve member is positioned between the tube sheet and the elastic torsion member. The elastic torsion member has an inner circumference deflectable relative to its outer circumference for torsioning the elastic torsion member.
F28F 27/00 - Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
F16J 15/02 - Sealings between relatively-stationary surfaces
F28D 7/16 - Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
7.
Processing vacuum residuum and vacuum gas oil in ebullated bed reactor systems
A process for upgrading vacuum residuum and vacuum gas oil hydrocarbons is disclosed. The process may include: contacting a heavy distillate hydrocarbon fraction and hydrogen with a zeolite selective hydrocracking catalyst in a first ebullated bed hydrocracking reaction zone to convert at least a portion of the vacuum gas oil to lighter hydrocarbons. Contacting a residuum hydrocarbon fraction and hydrogen with a non-zeolite base metal hydroconversion catalyst in a second ebullated bed hydroconversion reaction zone may produce a vapor stream containing unconverted hydrogen, acid gases and volatilized hydrocarbons which may be fed along with the vacuum gas oil in the first ebullated bed hydrocracking zone.
B01J 8/20 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles with liquid as a fluidising medium
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 67/06 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
C10G 47/20 - Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
C10G 65/10 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
C10G 47/14 - Inorganic carriers the catalyst containing platinum group metals or compounds thereof
C10G 3/00 - Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
B01J 8/22 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
8.
Process for co-producing C3 olefins, iC4 olefins, nC4 olefins and diolefins, and/or C5 olefins and diolefins
Processes and systems for producing olefins, including: dehydrogenating a first n-alkane to produce a first effluent; and dehydrogenating at least one of a first isoalkane or a second n-alkane to produce a second effluent. The first and second effluents may be compressed and fed to a common separation train to separate the effluents into two or more fractions. In some embodiments, each of the first and second dehydrogenation reaction zones may include two reactors, one reactor in each of the reaction zones operating in a dehydrogenation cycle, one operating in a regeneration cycle, and one operating in a purge or evacuation/reduction cycle. Operation of the reactors in the dehydrogenation cycle is staggered, such that the purge cycle, regeneration cycle, or evacuation/reduction cycle of the reactors may not overlap.
B01J 8/02 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds
9.
Olefin double bond isomerization catalyst with high poison resistance
A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a hydrocarbon stream including olefins with a γ-alumina-titania isomerization catalyst to convert at least a portion of the olefin to its positional isomer. The γ-alumina-titanic isomerization catalysts disclosed herein may also have the activity to convert alcohol into additional olefins, while having increased resistance to oxygenate poisons.
C07C 5/25 - Migration of carbon-to-carbon double bonds
C07C 1/24 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as hetero atoms by elimination of water
C07C 6/04 - Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
B01J 21/06 - Silicon, titanium, zirconium or hafniumOxides or hydroxides thereof
Producing C5 olefins from steam cracker C5 feeds may include reacting a mixed hydrocarbon stream comprising cyclopentadiene, C5 olefins, and C6+ hydrocarbons in a dimerization reactor where cyclopentadiene is dimerized to dicyclopentadiene. The dimerization reactor effluent may be separated into a fraction comprising the C6+ hydrocarbons and dicyclopentadiene and a second fraction comprising C5 olefins and C5 dienes. The second fraction, a saturated hydrocarbon diluent stream, and hydrogen may be fed to a catalytic distillation reactor system for concurrently separating linear C5 olefins from saturated hydrocarbon diluent, cyclic C5 olefins, and C5 dienes contained in the second fraction and selectively hydrogenating C5 dienes. An overhead distillate including the linear C5 olefins and a bottoms product including cyclic C5 olefins are recovered from the catalytic distillation reactor system. Other aspects of the C5 olefin systems and processes, including catalyst configurations and control schemes, are also described.
C07C 5/09 - Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
B01J 19/24 - Stationary reactors without moving elements inside
C07C 6/04 - Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
C07C 7/05 - Purification, separation or stabilisation of hydrocarbonsUse of additives by distillation with the aid of auxiliary compounds
C07C 7/163 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
C07C 7/167 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation for removal of compounds containing a triple carbon-to-carbon bond
C07C 7/177 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound by selective oligomerisation or selective polymerisation of at least one compound of the mixture
C10G 45/32 - Selective hydrogenation of the diolefin or acetylene compounds
C10G 50/00 - Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
C10G 9/36 - Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
Producing C5 olefins from steam cracker C5 reeds may include reacting a mixed hydrocarbon stream comprising cyclopentadiene, C5 olefins, and C6+ hydrocarbons in a dimerization reactor where cyclopentadiene is dimerized to dicyclopentadiene. The dimerization reactor effluent may be separated into a traction comprising the C6+ hydrocarbons and dicyclopentadiene and a second fraction comprising C5 olefins and C5 dienes. The second fraction, a saturated hydrocarbon diluent stream, and hydrogen may be fed to a catalytic distillation reactor system for concurrently separating linear C5 olefins from saturated hydrocarbon diluent, cyclic C5 olefins, and C5 dienes contained in the second fraction and selectively hydrogenating C5 dienes. An overhead distillate including the linear C5 olefins and a bottoms product including cyclic C5 olefins are recovered from the catalytic distillation reactor system. Other aspects of the C5 olefin systems and processes, including catalyst configurations and control schemes, are also described.
B01J 8/04 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
C07C 5/03 - Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
C07C 5/08 - Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
C07C 7/163 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
C10G 45/32 - Selective hydrogenation of the diolefin or acetylene compounds
B01J 19/24 - Stationary reactors without moving elements inside
C07C 6/04 - Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
C07C 7/05 - Purification, separation or stabilisation of hydrocarbonsUse of additives by distillation with the aid of auxiliary compounds
C07C 7/167 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation for removal of compounds containing a triple carbon-to-carbon bond
C07C 7/177 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound by selective oligomerisation or selective polymerisation of at least one compound of the mixture
C10G 50/00 - Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
C10G 9/36 - Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
C10G 45/36 - Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
C10G 45/40 - Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing platinum group metals or compounds thereof
12.
Fluid catalytic cracking process and apparatus for maximizing light olefin yield and other applications
Apparatus and processes herein provide for converting hydrocarbon feeds to light olefins and other hydrocarbons. The processes and apparatus include, in some embodiments, feeding a hydrocarbon, a first catalyst and a second catalyst to a reactor, wherein the first catalyst has a smaller average particle size and is less dense than the second catalyst. A first portion of the second catalyst may be recovered as a bottoms product from the reactor, and a cracked hydrocarbon effluent, a second portion of the second catalyst, and the first catalyst may be recovered as an overhead product from the reactor. The second portion of the second catalyst may be separated from the overhead product, providing a first stream comprising the first catalyst and the hydrocarbon effluent and a second stream comprising the separated second catalyst, allowing return of the separated second catalyst in the second stream to the reactor.
B01J 8/26 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
B01J 8/32 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with introduction into the fluidised bed of more than one kind of moving particles
C10G 11/18 - Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised bed" technique
C10G 51/02 - Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only
B01D 45/08 - Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
B01J 8/24 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
B01D 45/06 - Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by reversal of direction of flow
C07C 4/02 - Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
Apparatus and processes herein provide for converting hydrocarbon feeds to light olefins and other hydrocarbons. The processes and apparatus include, in some embodiments, feeding a hydrocarbon, a first catalyst and a second catalyst to a reactor, wherein the first catalyst has a smaller average particle size and is less dense than the second catalyst. A first portion of the second catalyst may be recovered as a bottoms product from the reactor, and a cracked hydrocarbon effluent, a second portion of the second catalyst, and the first catalyst may be recovered as an overhead product from the reactor. The second portion of the second catalyst may be separated from the overhead product, providing a first stream comprising the first catalyst and the hydrocarbon effluent and a second stream comprising the separated second catalyst, allowing return of the separated second catalyst in the second stream to the reactor.
C10G 11/18 - Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised bed" technique
C10G 11/02 - Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
B01J 8/26 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
B01J 29/40 - Crystalline aluminosilicate zeolitesIsomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
14.
PROCESS AND APPARATUS FOR ENHANCED REMOVAL OF CONTAMINANTS IN FLUID CATALYTIC CRACKING PROCESSES
Systems for separating a contaminant trapping additive from a cracking catalyst may include a contaminant removal vessel having one or more fluid connections for receiving contaminated cracking catalyst, contaminated contaminant trapping additive, fresh contaminant trapping additive, and a fluidizing gas. In the contaminant removal vessel, the spent catalyst may be contacted with contaminant trapping additive, which may have an average particle size and/or density greater than the cracking catalyst. A separator may be provided for separating an overhead stream from the contaminant removal vessel into a first stream comprising cracking catalyst and lifting gas and a second stream comprising contaminant trapping additive. A recycle line may be used for transferring contaminant trapping additive recovered in the second separator to the contaminant removal vessel, allowing contaminant trapping additive to accumulate in the contaminant removal vessel. A bottoms product line may provide for recovering contaminant trapping additive from the contaminant removal vessel.
C10G 1/08 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation with moving catalysts
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
B01J 8/24 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique
B01J 23/70 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the iron group metals or copper
15.
Process and apparatus for enhanced removal of contaminants in fluid catalytic cracking processes
Systems for separating a contaminant trapping additive from a cracking catalyst may include a contaminant removal vessel having one or more fluid connections for receiving contaminated cracking catalyst, contaminated contaminant trapping additive, fresh contaminant trapping additive, and a fluidizing gas. In the contaminant removal vessel, the spent catalyst may be contacted with contaminant trapping additive, which may have an average particle size and/or density greater than the cracking catalyst. A separator may be provided for separating an overhead stream from the contaminant removal vessel into a first stream comprising cracking catalyst and lifting gas and a second stream comprising contaminant trapping additive. A recycle line may be used for transferring contaminant trapping additive recovered in the second separator to the contaminant removal vessel, allowing contaminant trapping additive to accumulate in the contaminant removal vessel. A bottoms product line may provide for recovering contaminant trapping additive from the contaminant removal vessel.
C10G 11/18 - Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised bed" technique
B01J 8/32 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with introduction into the fluidised bed of more than one kind of moving particles
B01J 38/72 - Regeneration or reactivation of catalysts, in general including segregation of diverse particles
B01J 38/00 - Regeneration or reactivation of catalysts, in general
B01J 8/26 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
Method and system for removing high freeze point components from natural gas. Feed gas is cooled in a heat exchanger and separated into a first vapor portion and a first liquid portion. The first liquid portion is reheated using the heat exchanger and separated into a high freeze point components stream and a non-freezing components stream. A portion of the non-freezing components stream may be at least partially liquefied and received by an absorber tower. The first vapor portion may be cooled and received by the absorber tower. An overhead vapor product which is substantially free of high freeze point freeze components and a bottoms product liquid stream including freeze components and non-freeze components are produced using the absorber tower.
Method and system for removing high freeze point components from natural gas. Feed gas is cooled in a heat exchanger and separated into a first vapor portion and a first liquid portion. The first liquid portion is reheated using the heat exchanger and separated into a high freeze point components stream and a non-freezing components stream. A portion of the non-freezing components stream may be at least partially liquefied and received by an absorber tower. The first vapor portion may be cooled and received by the absorber tower. An overhead vapor product which is substantially free of high freeze point freeze components and a bottoms product liquid stream including freeze components and non-freeze components are produced using the absorber tower.
Method and system for removing high freeze point components from natural gas. Feed gas is cooled in a heat exchanger and separated into a first vapor portion and a first liquid portion. The first liquid portion is reheated using the heat exchanger and separated into a high freeze point components stream and a non-freezing components stream. A portion of the non-freezing components stream may be at least partially liquefied and received by an absorber tower. The first vapor portion may be cooled and received by the absorber tower. An overhead vapor product which is substantially free of high freeze point freeze components and a bottoms product liquid stream including freeze components and non-freeze components are produced using the absorber tower.
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
F25J 3/08 - Separating gaseous impurities from gases or gaseous mixtures
4 olefins, and byproducts ethylene and 3-hexene; and fractionating the first metathesis product to form a C3-fraction and a C5 fraction comprising 2-pentene. The 2-pentene may then be advantageously used to produce high purity 1-butene, 3-hexene, 1-hexene, propylene, or other desired products.
B01J 8/04 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
C07C 6/04 - Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
C07C 5/25 - Migration of carbon-to-carbon double bonds
Disclosed is a shell and tube heat exchanger that includes, inter alia, an elongated cylindrical shell that defines a longitudinal axis for the heat exchanger and an internal chamber. The shell has at least one feed gas inlet and feed gas outlet formed in an outer wall for allowing a feed gas to enter and exit the internal chamber. At least one tube sheet is associated with an end of the elongated shell and a plurality of circular baffles are longitudinally spaced apart within the internal chamber of the shell for redirecting feed gas flow within the internal chamber. The heat exchanger also includes a tube bundle which has a plurality of tubes for allowing effluent gas to traverse from an inlet plenum through the internal chamber of the shell to an outlet plenum. Additionally, a shroud distributor is arranged and configured to direct feed gas flow from the feed gas inlet to the internal chamber proximate the at least one tube sheet. The shroud distributor has at least one angled cut formed in an end thereof for distributing the flow of feed gas.
F28D 7/16 - Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
F28F 9/22 - Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
F28F 1/10 - Tubular elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
Disclosed is a shell and tube heat exchanger that includes, inter alia, an elongated cylindrical shell that defines a longitudinal axis for the heat exchanger and an internal chamber. The shell has at least one feed gas inlet and feed gas outlet formed in an outer wall for allowing a feed gas to enter and exit the internal chamber. At least one tube sheet is associated with an end of the elongated shell and a plurality of circular baffles are longitudinally spaced apart within the internal chamber of the shell for redirecting feed gas flow within the internal chamber. The heat exchanger also includes a tube bundle which has a plurality of tubes for allowing effluent gas to traverse from an inlet plenum through the internal chamber of the shell to an outlet plenum. Additionally, a shroud distributor is arranged and configured to direct feed gas flow from the feed gas inlet to the internal chamber proximate the at least one tube sheet. The shroud distributor has at least one angled cut formed in an end thereof for distributing the flow of feed gas.
F28D 7/16 - Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
F28F 9/22 - Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
A butadiene extraction processes designed for flexible operations, with or without a compressor, is disclosed. The ability to run at both high and low pressures provides added process flexibility.
C07C 7/08 - Purification, separation or stabilisation of hydrocarbonsUse of additives by distillation with the aid of auxiliary compounds by extractive distillation
C07C 7/10 - Purification, separation or stabilisation of hydrocarbonsUse of additives by extraction, i.e. purification or separation of liquid hydrocarbons with the aid of liquids
C07C 7/00 - Purification, separation or stabilisation of hydrocarbonsUse of additives
C07C 7/04 - Purification, separation or stabilisation of hydrocarbonsUse of additives by distillation
Embodiments herein relate to a process flow scheme for the processing of gas oils and especially reactive gas oils produced by thermal cracking of residua using a split flow concept. The split flow concepts disclosed allow optimization of the hydrocracking reactor severities and thereby take advantage of the different reactivities of thermally cracked gas oils versus those of virgin gas oils. This results in a lower cost facility for producing base oils as well as diesel, kerosene and gasoline fuels while achieving high conversions and high catalyst lives.
C10G 65/00 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only
C10G 65/10 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 65/18 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only including only cracking steps
C10L 1/04 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons
C10L 1/06 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
C10L 1/08 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
A process for upgrading residuum hydrocarbons and decreasing tendency of the resulting products toward asphaltenic sediment formation in downstream processes is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a hydroconversion catalyst in a hydrocracking reaction zone to convert at least a portion of the residuum hydrocarbon fraction to lighter hydrocarbons; recovering an effluent from the hydrocracking reaction zone; contacting hydrogen and at least a portion of the effluent with a resid hydrotreating catalyst; and separating the effluent to recover two or more hydrocarbon fractions.
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 65/14 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
C10G 65/00 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only
25.
Fluid catalytic cracking process and apparatus for maximizing light olefins or middle distillates and light olefins
4 and naphtha range hydrocarbons, may be recycled and processed in the countercurrent flow reactor. The integration of the countercurrent flow reactor with a conventional FCC riser reactor and catalyst regeneration system may overcome heat balance issues commonly associated with two-stage cracking processes, may substantially increase the overall conversion and light olefins yield, and/or may increases the capability to process heavier feedstocks.
C10G 51/02 - Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
B01J 8/26 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
C10G 51/06 - Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural parallel stages only
C10G 11/18 - Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised bed" technique
26.
Recovery of ethylene from methanol to olefins process
Olefins may be recovered from a methanol to olefins reactor effluent by initially feeding the effluent to an absorber demethanizer to contact the effluent with an absorbent to recover an overheads including methane and ethylene and a bottoms including the absorbent, ethylene, and ethane. The bottoms are separated to recover an ethylene fraction and an ethane fraction. The overheads are cooled and partially condensed in a first heat exchanger to a temperature of −40° C. or greater. The resulting stream, or a portion thereof, may be further cooled and condensed via indirect heat exchange with a mixed refrigerant to a temperature of less than −40° C. The non-condensed vapors are separated from the condensed liquids to form a liquid fraction and a methane fraction. The liquid fraction is fed to the absorber demethanizer as reflux, and the methane and ethane fractions combined to form the mixed refrigerant.
C07C 7/04 - Purification, separation or stabilisation of hydrocarbonsUse of additives by distillation
C07C 7/08 - Purification, separation or stabilisation of hydrocarbonsUse of additives by distillation with the aid of auxiliary compounds by extractive distillation
C07C 7/11 - Purification, separation or stabilisation of hydrocarbonsUse of additives by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of liquids
C07C 1/20 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as hetero atoms
F25J 3/00 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification
C07C 7/00 - Purification, separation or stabilisation of hydrocarbonsUse of additives
B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
27.
Process to produce linear pentenes and metathesis thereof
Mixed pentenes may be converted to propylene by feeding an alcohol, linear pentenes, and isopentenes to an etherification reactor. The alcohol and isopentenes may be reacted in the etherification reactor to convert isopentenes to tertiary amyl alkyl ether, which may be separated from the linear pentenes, recovered as a linear pentene fraction. The tertiary amyl alkyl ether may be fed to a decomposition reactor to convert at least a portion of the tertiary amyl alkyl ether to alcohol and isopentenes. The alcohol and isopentenes may then be separated to recover an isopentene fraction and an alcohol fraction. The isopentene fraction is then fed to a skeletal isomerization reactor to convert at least a portion of the isopentenes to linear pentenes, the effluent from which may be recycled to the etherification reactor. Ethylene and the linear pentene fraction may then be fed to a metathesis reactor to produce propylene.
B01J 10/00 - Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particlesApparatus specially adapted therefor
C07C 6/04 - Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
C07C 41/06 - Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only
C07C 7/148 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound
B01J 19/24 - Stationary reactors without moving elements inside
C07C 1/20 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as hetero atoms
C07C 5/27 - Rearrangement of carbon atoms in the hydrocarbon skeleton
Processes for upgrading resid hydrocarbon feeds are disclosed. The upgrading processes may include: hydrocracking a resid in a first reaction stage to form a first stage effluent; hydrocracking a deasphalted oil fraction in a second reaction stage to form a second stage effluent; fractionating the first stage effluent and the second stage effluent to recover at least one distillate hydrocarbon fraction and a resid hydrocarbon fraction; feeding the resid hydrocarbon fraction to a solvent deasphalting unit to provide an asphaltene fraction and the deasphalted oil fraction.
C10G 65/14 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
C10G 67/04 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
C10G 67/00 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
4 stream comprising butane, butene, and butadiene, with a solvent comprising an organic solvent and water in a butadiene pre-absorber column to recover an overheads fraction comprising at least a portion of the butane, butene, and water, and a first bottoms fraction comprising the organic solvent, butadiene, and at least a portion of the butene; and feeding the first bottoms fraction to a butadiene extraction unit to recover a butene fraction, a crude butadiene fraction, and a solvent fraction.
C07C 5/09 - Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
C07C 7/10 - Purification, separation or stabilisation of hydrocarbonsUse of additives by extraction, i.e. purification or separation of liquid hydrocarbons with the aid of liquids
C07C 7/00 - Purification, separation or stabilisation of hydrocarbonsUse of additives
C07C 7/167 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation for removal of compounds containing a triple carbon-to-carbon bond
B01D 11/04 - Solvent extraction of solutions which are liquid
4 stream comprising butane, butene, and butadiene, with a solvent comprising an organic solvent and water in a butadiene pre-absorber column to recover an overheads fraction comprising at least a portion of the butane, butene, and water, and a first bottoms fraction comprising the organic solvent, butadiene, and at least a portion of the butene; and feeding the first bottoms fraction to a butadiene extraction unit to recover a butene fraction, a crude butadiene fraction, and a solvent fraction.
C07C 7/10 - Purification, separation or stabilisation of hydrocarbonsUse of additives by extraction, i.e. purification or separation of liquid hydrocarbons with the aid of liquids
C07C 7/11 - Purification, separation or stabilisation of hydrocarbonsUse of additives by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of liquids
C07C 4/02 - Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
C07C 5/327 - Formation of non-aromatic carbon-to-carbon double bonds only
C07C 5/48 - Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
A process and system for separating butenes and butanes by extractive distillation using a polar solvent is disclosed. The process may include: contacting a hydrocarbon mixture including butanes and butenes with a lean solvent mixture in an extractive distillation column to form an enriched solvent fraction comprising butenes; recovering an overheads fraction comprising butanes and a bottoms fraction from the extractive distillation column; feeding the bottoms fraction to a stripper including a stripping section and a wash section; recovering the lean solvent mixture as a bottoms fraction and a stripper overheads fraction comprising butenes and water from the stripper; condensing the overheads fraction to form a water fraction and a product butenes fraction; feeding water as reflux to a top of the stripper wash section; feeding at least a portion of the condensed water fraction intermediate the top and bottom of the stripper wash section as a second reflux.
C07C 7/00 - Purification, separation or stabilisation of hydrocarbonsUse of additives
C07C 7/08 - Purification, separation or stabilisation of hydrocarbonsUse of additives by distillation with the aid of auxiliary compounds by extractive distillation
C10G 21/00 - Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
A method of cooling using an extended binary refrigerant system containing methane and a C3 hydrocarbon such as propylene and/or propane is disclosed. The extended binary refrigerant from a compressor final discharge is separated into a methane-rich vapor fraction and at least one C3 rich liquid fraction so as to provide various temperatures and levels of refrigeration in various heat exchange stages. The method and corresponding refrigeration system can be utilized in plants utilizing low pressure or high pressure demethanizers.
F25J 1/02 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
C09K 5/04 - Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice-versa
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
33.
Standpipe-fluid bed hybrid system for char collection, transport, and flow control
A system for gasification of a carbonaceous material and recycling char or solids from a gasifier is disclosed. The recycling system may include a standpipe that receives a solids stream from a separator, the standpipe generating a pressure differential across a bed of accumulated char, thereby producing a bottoms stream having a greater pressure than the inlet solids stream. The recycling system may also include a holding vessel that receives the bottoms stream and a fluidized-bed distribution vessel that receives char from the holding vessel and is configured to provide a continuous and precise flow of recycled char to the gasification reactor.
Producing C5 olefins from steam cracker C5 feeds may include reacting a mixed hydrocarbon stream comprising cyclopentadiene, C5 olefins, and C6+ hydrocarbons in a dimerization reactor where cyclopentadiene is dimerized to dicyclopentadiene. The dimerization reactor effluent may be separated into a fraction comprising the C6+ hydrocarbons and dicyclopentadiene and a second fraction comprising C5 olefins and C5 dienes. The second fraction, a saturated hydrocarbon diluent stream, and hydrogen may be fed to a catalytic distillation reactor system for concurrently separating linear C5 olefins from saturated hydrocarbon diluent, cyclic C5 olefins, and C5 dienes contained in the second fraction and selectively hydrogenating C5 dienes. An overhead distillate including the linear C5 olefins and a bottoms product including cyclic C5 olefins are recovered from the catalytic distillation reactor system. Other aspects of the C5 olefin systems and processes, including catalyst configurations and control schemes, are also described.
C07C 5/09 - Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
B01J 19/24 - Stationary reactors without moving elements inside
C07C 6/04 - Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
C07C 7/05 - Purification, separation or stabilisation of hydrocarbonsUse of additives by distillation with the aid of auxiliary compounds
C07C 7/163 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
C07C 7/167 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation for removal of compounds containing a triple carbon-to-carbon bond
C07C 7/177 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound by selective oligomerisation or selective polymerisation of at least one compound of the mixture
C10G 45/32 - Selective hydrogenation of the diolefin or acetylene compounds
C10G 50/00 - Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
C10G 9/36 - Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
Producing C5 olefins from steam cracker C5 feeds may include reacting a mixed hydrocarbon stream comprising cyclopentadiene, C5 olefins, and C6+ hydrocarbons in a dimerization reactor where cyclopentadiene is dimerized to dicyclopentadiene. The dimerization reactor effluent may be separated into a fraction comprising the C6+ hydrocarbons and dicyclopentadiene and a second fraction comprising C5 olefins and C5 dienes. The second fraction, a saturated hydrocarbon diluent stream, and hydrogen may be fed to a catalytic distillation reactor system for concurrently separating linear C5 olefins from saturated hydrocarbon diluent, cyclic C5 olefins, and C5 dienes contained in the second fraction and selectively hydrogenating C5 dienes. An overhead distillate including the linear C5 olefins and a bottoms product including cyclic C5 olefins are recovered from the catalytic distillation reactor system. Other aspects of the C5 olefin systems and processes, including catalyst configurations and control schemes, are also described.
A system for gasification of a carbonaceous material and recycling char or solids from a gasifier is disclosed. The recycling system may include a standpipe that receives a solids stream from a separator, the standpipe generating a pressure differential across a bed of accumulated char, thereby producing a bottoms stream having a greater pressure than the inlet solids stream. The recycling system may also include a holding vessel that receives the bottoms stream and a fluidized-bed distribution vessel that receives char from the holding vessel and is configured to provide a continuous and precise flow of recycled char to the gasification reactor.
C10J 3/00 - Production of gases containing carbon monoxide and hydrogen, e.g. synthesis gas or town gas, from solid carbonaceous materials by partial oxidation processes involving oxygen or steam
A system for gasification of a carbonaceous material and recycling char or solids from a gasifier is disclosed. The recycling system may include a standpipe that receives a solids stream from a separator, the standpipe generating a pressure differential across a bed of accumulated char, thereby producing a bottoms stream having a greater pressure than the inlet solids stream. The recycling system may also include a holding vessel that receives the bottoms stream and a fluidized-bed distribution vessel that receives char from the holding vessel and is configured to provide a continuous and precise flow of recycled char to the gasification reactor.
4 fraction, where the butadiene extraction processes may be operated at an intermediate pressure using a liquid ring type compressor. The use of a liquid ring compressor, among other process options presented herein, may advantageously reduce capital and operating costs, similar to the compressorless option, while mitigating the risks associated with the higher operating temperatures and pressures associated with the compressorless option. Thus, the embodiments of the processes disclosed herein encompass the best features of the conventional design (low pressure, with a compressor) with the advantages of the compressorless design (low capital and operating cost), as well as other advantages unique to the systems disclosed herein.
C07C 7/08 - Purification, separation or stabilisation of hydrocarbonsUse of additives by distillation with the aid of auxiliary compounds by extractive distillation
Processes and systems for producing olefins, including: dehydrogenating a first n-alkane to produce a first effluent; and dehydrogenating at least one of a first isoalkane or a second n-alkane to produce a second effluent. The first and second effluents may be compressed and fed to a common separation train to separate the effluents into two or more fractions. In some embodiments, each of the first and second dehydrogenation reaction zones may include two reactors, one reactor in each of the reaction zones operating in a dehydrogenation cycle, one operating in a regeneration cycle, and one operating in a purge or evacuation/reduction cycle. Operation of the reactors in the dehydrogenation cycle is staggered, such that the purge cycle, regeneration cycle, or evacuation/reduction cycle of the reactors may not overlap.
Processes and systems for producing olefins, including: dehydrogenating a first n-alkane to produce a first effluent; and dehydrogenating at least one of a first isoalkane or a second n-alkane to produce a second effluent. The first and second effluents may be compressed and fed to a common separation train to separate the effluents into two or more fractions. In some embodiments, each of the first and second dehydrogenation reaction zones may include two reactors, one reactor in each of the reaction zones operating in a dehydrogenation cycle, one operating in a regeneration cycle, and one operating in a purge or evacuation/reduction cycle. Operation of the reactors in the dehydrogenation cycle is staggered, such that the purge cycle, regeneration cycle, or evacuation/reduction cycle of the reactors may not overlap.
B01J 8/02 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds
41.
PROCESS FOR CO-PRODUCING C3 OLEFINS, IC4 OLEFINS, NC4 OLEFINS AND DIOLEFINS, AND/OR C5 OLEFINS AND DIOLEFINS
Processes and systems for producing olefins, including: dehydrogenating a first n-alkane to produce a first effluent; and dehydrogenating at least one of a first isoalkane or a second n-alkane to produce a second effluent. The first and second effluents may be compressed and fed to a common separation train to separate the effluents into two or more fractions. In some embodiments, each of the first and second dehydrogenation reaction zones may include two reactors, one reactor in each of the reaction zones operating in a dehydrogenation cycle, one operating in a regeneration cycle, and one operating in a purge or evacuation/reduction cycle. Operation of the reactors in the dehydrogenation cycle is staggered, such that the purge cycle, regeneration cycle, or evacuation/reduction cycle of the reactors may not overlap.
C07C 2/74 - Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition with simultaneous hydrogenation
C07C 7/163 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
C07C 7/148 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound
Processes for upgrading partially converted vacuum residua hydrocarbon feeds are disclosed. The upgrading processes may include: steam stripping the partially converted vacuum residua to generate a first distillate and a first residuum; solvent deasphalting the first residuum stream to generate a deasphalted oil and an asphaltenes fraction; vacuum fractionating the deasphalted oil to recover a deasphalted gas oil distillate and a heavy deasphalted residuum; contacting the first distillate and the deasphalted gas oil distillate and hydrogen in the presence of a first hydroconversion catalyst to produce a product; contacting the heavy deasphalted residuum stream and hydrogen in the presence of a second hydroconversion catalyst to produce an effluent; and fractionating the effluent to recover a hydrocracked atmospheric residua and a hydrocracked atmospheric distillate.
C10G 67/14 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including at least two different refining steps in the absence of hydrogen
43.
PROCESS TO UPGRADE PARTIALLY CONVERTED VACUUM RESIDUA
Processes for upgrading partially converted vacuum residua hydrocarbon feeds are disclosed. The upgrading processes may include: steam stripping the partially converted vacuum residua to generate a first distillate and a first residuum; solvent deasphalting the first residuum stream to generate a deasphalted oil and an asphaltenes fraction; vacuum fractionating the deasphalted oil to recover a deasphalted gas oil distillate and a heavy deasphalted residuum; contacting the first distillate and the deasphalted gas oil distillate and hydrogen in the presence of a first hydroconversion catalyst to produce a product; contacting the heavy deasphalted residuum stream and hydrogen in the presence of a second hydroconversion catalyst to produce an effluent; and fractionating the effluent to recover a hydrocracked atmospheric residua and a hydrocracked atmospheric distillate.
C10G 55/06 - Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one catalytic cracking step
C10G 53/00 - Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
44.
THERMAL CRACKING OF CRUDES AND HEAVY FEEDS TO PRODUCE OLEFINS IN PYROLYSIS REACTORS
Systems and processes for efficiently cracking of hydrocarbon mixtures, such as mixtures including compounds having a normal boiling temperature of greater than 450°C, 500°C, or even greater than 550°C, such as whole crudes for example, are disclosed.
C07C 6/04 - Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
C07C 5/27 - Rearrangement of carbon atoms in the hydrocarbon skeleton
B01J 8/04 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
C07C 5/25 - Migration of carbon-to-carbon double bonds
C07C 41/05 - Preparation of ethers by addition of compounds to unsaturated compounds
C07C 7/04 - Purification, separation or stabilisation of hydrocarbonsUse of additives by distillation
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
A process for chilling ethylene to required storage temperatures is disclosed, the process including: cooling an ethylene product from at least one of an ethylene production process and an ethylene recovery process via indirect heat exchange with a coolant at a temperature less than about −100° C. to decrease the temperature of the ethylene product; mixing a portion of the cooled ethylene product with methane to form the coolant; expanding at least one of the coolant, the methane, and the portion of the cooled ethylene to reduce a temperature of the coolant to less than −100° C. prior to the cooling; and feeding the heat exchanged coolant to at least one of the ethylene production process, the ethylene recovery process, and an open-loop refrigeration system.
C07C 1/20 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as hetero atoms
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
B01J 19/24 - Stationary reactors without moving elements inside
47.
Upgrading raw shale-derived crude oils to hydrocarbon distillate fuels
Integrated processes for upgrading crude shale-derived oils, such as those produced by oil shale retorting or by in situ extraction or combinations thereof. Processes disclosed provide for a split-flow processing scheme to upgrade whole shale oil. The split flow concepts described herein, i.e., naphtha and kerosene hydrotreating in one or more stages and gas oil hydrotreating in one or more stages, requires additional equipment as compared to the alternative approach of whole oil hydrotreating. While contrary to conventional wisdom as requiring more capital equipment to achieve the same final product specifications, the operating efficiency vis a vis on-stream time efficiency and product quality resulting from the split flow concept far exceed in value the somewhat incrementally higher capital expenditure costs.
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 63/02 - Treatment of naphtha by at least one reforming process and at least one other conversion process plural serial stages only
C10G 45/00 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
C10G 45/02 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing
C10G 45/32 - Selective hydrogenation of the diolefin or acetylene compounds
C10G 45/38 - Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metals, or compounds thereof
C10G 45/44 - Hydrogenation of the aromatic hydrocarbons
C10G 45/50 - Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metal, or compounds thereof
C10G 45/54 - Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
C10G 65/00 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only
C10G 65/08 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
B01J 19/24 - Stationary reactors without moving elements inside
Improved two-stage entrained-flow gasification systems and processes that reduce the cost and complexity of the design and increase the reliability, while maintaining the efficiency by implementing a first chemical quench followed by a second water quench of the produced syngas. The quenched syngas is maintained above the condensation temperature of at least one condensable component of the syngas, allowing residual particulates to be removed by dry particulate filtration.
C10K 3/04 - Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content
C10K 1/04 - Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
C10K 3/00 - Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
49.
Nitrogen removal with ISO-pressure open refrigeration natural gas liquids recovery
3+ hydrocarbons; separating the light fraction into at least two fractions including a nitrogen-enriched fraction and a nitrogen-depleted fraction in a first separator; separating the nitrogen-depleted fraction into a propane-enriched fraction and a propane-depleted fraction in a second separator; feeding at least a portion of the propane-enriched fraction to the fractionating as a reflux; recycling at least a portion of the propane-depleted fraction to the first separator. In some embodiments, the nitrogen-enriched fraction may be separated in a nitrogen removal unit to produce a nitrogen-depleted natural gas stream and a nitrogen-enriched natural gas stream.
F25J 3/00 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
C10L 3/10 - Working-up natural gas or synthetic natural gas
F25J 1/00 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
50.
PROCESS AND APPARATUS FOR HEAVY HYDROCARBON REMOVAL FROM LEAN NATURAL GAS BEFORE LIQUEFACTION
A process is described herein for removing high freeze point hydrocarbons, including benzene compounds, from a mixed feed gas stream. The process involves cooling process streams in one or more heat exchangers and separating condensed compounds in multiple separators to form a methane-rich product gas stream. Select solvent streams from a fractionation train and/or separate solvent streams are employed to lower the freeze point of one or more streams that contain high freeze point hydrocarbons. A corresponding system also is disclosed.
A process is described herein for removing high freeze point hydrocarbons, including benzene compounds, from a mixed feed gas stream. The process involves cooling process streams in one or more heat exchangers and separating condensed compounds in multiple separators to form a methane-rich product gas stream. Select solvent streams from a fractionation train and/or separate solvent streams are employed to lower the freeze point of one or more streams that contain high freeze point hydrocarbons. A corresponding system also is disclosed.
A process for upgrading vacuum residuum and vacuum gas oil hydrocarbons is disclosed. The process may include: contacting a heavy distillate hydrocarbon fraction and hydrogen with a zeolite selective hydrocracking catalyst in a first ebullated bed hydrocracking reaction zone to convert at least a portion of the vacuum gas oil to lighter hydrocarbons. Contacting a residuum hydrocarbon fraction and hydrogen with a non-zeolite base metal hydroconversion catalyst in a second ebullated bed hydroconversion reaction zone may produce a vapor stream containing unconverted hydrogen, acid gases and volatilized hydrocarbons which may be fed along with the vacuum gas oil in the first ebullated bed hydrocracking zone.
A process for upgrading vacuum residuum and vacuum gas oil hydrocarbons is disclosed. The process may include: contacting a heavy distillate hydrocarbon fraction and hydrogen with a zeolite selective hydrocracking catalyst in a first ebullated bed hydrocracking reaction zone to convert at least a portion of the vacuum gas oil to lighter hydrocarbons. Contacting a residuum hydrocarbon fraction and hydrogen with a non-zeolite base metal hydroconversion catalyst in a second ebullated bed hydroconversion reaction zone may produce a vapor stream containing unconverted hydrogen, acid gases and volatilized hydrocarbons which may be fed along with the vacuum gas oil in the first ebullated bed hydrocracking zone.
A process for upgrading vacuum residuum and vacuum gas oil hydrocarbons is disclosed. The process may include: contacting a heavy distillate hydrocarbon fraction and hydrogen with a zeolite selective hydrocracking catalyst in a first ebullated bed hydrocracking reaction zone to convert at least a portion of the vacuum gas oil to lighter hydrocarbons. Contacting a residuum hydrocarbon fraction and hydrogen with a non-zeolite base metal hydroconversion catalyst in a second ebullated bed hydroconversion reaction zone may produce a vapor stream containing unconverted hydrogen, acid gases and volatilized hydrocarbons which may be fed along with the vacuum gas oil in the first ebullated bed hydrocracking zone.
C10G 47/00 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
C10G 47/20 - Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
C10G 65/10 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
C10G 47/14 - Inorganic carriers the catalyst containing platinum group metals or compounds thereof
C10G 3/00 - Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include reacting a triacylglycerides-containing oil-carbon dioxide mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides to a hydrocarbon or mixture of hydrocarbons comprising one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics.
B01J 19/24 - Stationary reactors without moving elements inside
C10G 3/00 - Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
C10G 45/06 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
C10G 45/08 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
C10G 45/10 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing characterised by the catalyst used containing platinum group metals or compounds thereof
B01J 8/02 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 45/00 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
C10G 69/06 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
56.
Conversion of asphaltenic pitch within an ebullated bed residuum hydrocracking process
A process for upgrading residuum hydrocarbons including: feeding pitch, hydrogen, and a partially spent catalyst recovered from a hydrocracking reactor to an ebullated bed pitch hydrocracking reactor; contacting the pitch, hydrogen, and the catalyst in the ebullated bed pitch hydrocracking reactor at reaction conditions of temperature and pressure sufficient to convert at least a portion of the pitch to distillate hydrocarbons; and separating the distillate hydrocarbons from the catalyst. In some embodiments, the process may include selecting the ebullated bed pitch hydrocracking reactor reaction conditions to be at or below the level where sediment formation would otherwise become excessive and prevent continuity of operations.
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
B01J 8/08 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with moving particles
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
B01J 19/24 - Stationary reactors without moving elements inside
C10G 47/00 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions
C10G 47/24 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions with moving solid particles
C10G 47/26 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions with moving solid particles suspended in the oil, e.g. slurries
C10G 65/00 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only
C10G 65/02 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
C10G 65/10 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 1/08 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation with moving catalysts
C10G 67/02 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
57.
CO-CURRENT ADIABATIC REACTION SYSTEM FOR CONVERSION OF TRIACYLGLYCERIDES RICH FEEDSTOCKS
A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include: reacting a triacylglycerides-containing oil-water-hydrogen mixture in a single reactor at a temperature in the range from about 250°C to about 650°C and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides via homogeneously catalyzed hydrothermolysis and heterogeneously catalyzed hydrotreatment.
A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a hydrocarbon stream including olefins with a γ-alumina- titania isomerization catalyst to convert at least a portion of the olefin to its positional isomer. The γ-alumina-titania isomerization catalysts disclosed herein may also have the activity to convert alcohol into additional olefins, while having increased resistance to oxygenate poisons.
C07C 5/22 - Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
B01J 21/06 - Silicon, titanium, zirconium or hafniumOxides or hydroxides thereof
C07C 1/24 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as hetero atoms by elimination of water
Processes for the production of olefins are disclosed, which may include: contacting a hydrocarbon mixture comprising linear butenes with an isomerization catalyst to form an isomerization product comprising 2-butenes and 1 -butenes; contacting the isomerization product with a first metathesis catalyst to form a first metathesis product comprising 2-pentene and propylene, as well as any unreacted C4 olefins, and byproducts ethylene and 3-hexene; and fractionating the first metathesis product to form a C3- fraction and a C5 fraction comprising 2-pentene. The 2-pentene may then be advantageously used to produce high purity 1-butene, 3-hexene, 1-hexene, propylene, or other desired products.
A process for the production of C4 olefins, which may include: contacting a hydrocarbon mixture comprising alpha-pentenes with an isomerization catalyst to form an isomerization product comprising beta-pentenes; contacting ethylene and the beta-pentenes with a first metathesis catalyst to form a first metathesis product comprising butenes and propylene, as well as any unreacted ethylene and C5 olefins; and fractionating the first metathesis product to for an ethylene fraction, a propylene fraction, a butene fraction, and a C5 fraction.
Processes for the production of high purity alpha olefins from a mixture of olefins are disclosed. The processes may include: contacting propylene and a hydrocarbon mixture comprising a mixture of olefins having a carbon number n with a first metathesis catalyst to form a metathesis product comprising a beta-olefin having a carbon number n+1, an alpha-olefin having a carbon number n-1, as well as any unreacted propylene and olefins having a carbon number n. The metathesis product may be fractionated to recover a fraction comprising the beta-olefm having a carbon number n+1. Ethylene and the fraction comprising the beta-olefm having a carbon number n+1 may then be contacted with a second metathesis catalyst to form a second metathesis product comprising an alpha-olefin having a carbon number n and propylene, which may be fractionated to form a propylene fraction and a fraction comprising the alpha olefin having a carbon number n.
A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a hydrocarbon stream including olefins with a γ-alumina-titania isomerization catalyst to convert at least a portion of the olefin to its positional isomer. The γ-alumina-titania isomerization catalysts disclosed herein may also have the activity to convert alcohol into additional olefins, while having increased resistance to oxygenate poisons.
C07C 1/24 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as hetero atoms by elimination of water
C07C 6/04 - Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
B01J 21/06 - Silicon, titanium, zirconium or hafniumOxides or hydroxides thereof
B01J 35/10 - Solids characterised by their surface properties or porosity
4 olefins, and byproducts ethylene and 3-hexene; and fractionating the first metathesis product to form a C3− fraction and a C5 fraction comprising 2-pentene. The 2-pentene may then be advantageously used to produce high purity 1-butene, 3-hexene, 1-hexene, propylene, or other desired products.
C07C 5/22 - Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
C07C 5/23 - Rearrangement of carbon-to-carbon unsaturated bonds
C07C 6/02 - Metathesis reactions at an unsaturated carbon-to-carbon bond
C07C 6/04 - Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
C07C 5/25 - Migration of carbon-to-carbon double bonds
B01J 8/04 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
Processes for the production of high purity alpha olefins from a mixture of olefins are disclosed. The processes may include: contacting propylene and a hydrocarbon mixture comprising a mixture of olefins having a carbon number n with a first metathesis catalyst to form a metathesis product comprising a beta-olefin having a carbon number n+1, an alpha-olefin having a carbon number n−1, as well as any unreacted propylene and olefins having a carbon number n. The metathesis product may be fractionated to recover a fraction comprising the beta-olefin having a carbon number n+1. Ethylene and the fraction comprising the beta-olefin having a carbon number n+1 may then be contacted with a second metathesis catalyst to form a second metathesis product comprising an alpha-olefin having a carbon number n and propylene, which may be fractionated to form a propylene fraction and a fraction comprising the alpha olefin having a carbon number n.
C07C 6/04 - Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
C07C 6/02 - Metathesis reactions at an unsaturated carbon-to-carbon bond
C07C 5/25 - Migration of carbon-to-carbon double bonds
B01J 8/04 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
B01J 23/80 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups with zinc, cadmium or mercury
C01B 3/58 - Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solidsRegeneration of used solids including a catalytic reaction
A process is disclosed herein for recovery of natural gas liquids from a feed gas stream, comprising forming a first portion of the feed gas stream and a second portion of the feed gas stream, wherein the mass ratio of the first portion to the second portion is in the range of 95:5 to 5:95, cooling the first portion in a heat exchanger and at least partially condensing the first portion, and feeding the second portion and the cooled and at least partially condensed first portion to a distillation column wherein lighter components are removed from the distillation column as an overhead vapor stream and heavier components are removed from the distillation column in the bottoms as a product stream, and wherein the second portion is fed into the distillation column at a point one or more vapor-liquid equilibrium stages below the first portion, thereby allowing mass transfer exchange between liquids of the cooled second portion and vapors of the second portion within the column. A corresponding apparatus is also disclosed.
5. In this embodiment the metal sites on the catalyst are sulfided and the catalyst is capable of removing tar from a synthesis gas while performing methanation and water gas shift reactions at a temperature range from 300° C. to 600° C.
C01B 3/12 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
C01B 3/58 - Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solidsRegeneration of used solids including a catalytic reaction
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
B01J 27/188 - PhosphorusCompounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
C01B 3/16 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
69.
Batch process and system for the production of olefins
Disclosed herein is a process for producing an alpha olefin comprising obtaining a feed stream comprising an internal olefin having a first carbon number and an alpha olefin having a first carbon number, isomerizing the feed stream to increase the quantity of the alpha olefin, fractionating, subjecting the overhead material from fractionation to catalytic metathesis to produce a mixed olefin effluent comprising an internal olefin having a second carbon number and other hydrocarbons, fractionating, preparing the first isomerization reactor and fractionator to receive the olefin having a second carbon number, isomerizing the internal olefin intermediate in the prepared first isomerization reactor, and fractionating the second isomerization effluent in the prepared first fractionator to separate the alpha olefin having the second carbon number from the internal olefin having the second carbon number. A corresponding system also is disclosed, along with a heat pump that can be incorporated into the process.
A process for upgrading residuum hydrocarbon feedstocks that may include: contacting a residuum hydrocarbon and hydrogen with a hydroconversion catalyst in a residuum hydroconversion reactor system; recovering an effluent from the residuum hydroconversion reactor system; separating the effluent to recover two or more hydrocarbon fractions including at least a vacuum residuum fraction and a heavy vacuum gas oil fraction; combining at least a portion of the heavy vacuum gas oil fraction and at least a portion of the vacuum residuum fraction to form a mixed heavy hydrocarbon fraction; feeding at least a portion of the mixed heavy hydrocarbon fraction to a coker; operating the coker at conditions to produce anode grade green coke and distillate hydrocarbons; recovering the distillate hydrocarbons from the coker; fractionating the distillate hydrocarbons to recover hydrocarbon fractions including a light distillates fraction, a heavy coker gas oil fraction, and a coker recycle fraction.
C10G 47/02 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions characterised by the catalyst used
C10G 47/30 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions with moving solid particles according to the "fluidised bed" technique
Embodiments herein relate generally to distribution of flow into vessels containing packed beds of media. An example application of such beds is to pressure swing or temperature swing adsorption systems. Systems herein may include a vessel and a distributor for distributing flow into a lower portion of the vessel. The system may include: a vessel comprising a top head and a bottom head; and a bottom head feed/effluent nozzle. A lower distributor having at least one flow permitting surface is disposed within the vessel and encompasses an inlet of the bottom head feed/effluent nozzle. A flow gap is formed between a bottom portion of the lower distributor and the bottom head feed/effluent nozzle.
B01D 53/04 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
F15D 1/02 - Influencing the flow of fluids in pipes or conduits
72.
INTEGRATION OF RESIDUE HYDROCRACKING AND HYDROTREATING
A process for upgrading residuum hydrocarbons is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebuUated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
A process for upgrading residuum hydrocarbons is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebuUated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
Embodiments herein relate generally to distribution of flow into vessels containing packed beds of media. An example application of such beds is to pressure swing or temperature swing adsorption systems. Systems herein may include a vessel and a distributor for distributing flow into a lower portion of the vessel. The system may include: a vessel comprising a top head and a bottom head; and a bottom head feed/effluent nozzle. A lower distributor having at least one flow permitting surface is disposed within the vessel and encompasses an inlet of the bottom head feed/effluent nozzle. A flow gap is formed between a bottom portion of the lower distributor and the bottom head feed/effluent nozzle.
A process for upgrading residuum hydrocarbon feedstocks that may include: contacting a residuum hydrocarbon and hydrogen with a hydroconversion catalyst in a residuum hydroconversion reactor system; recovering an effluent from the residuum hydroconversion reactor system; separating the effluent to recover two or more hydrocarbon fractions including at least a vacuum residuum fraction and a heavy vacuum gas oil fraction; combining at least a portion of the heavy vacuum gas oil fraction and at least a portion of the vacuum residuum fraction to form a mixed heavy hydrocarbon fraction; feeding at least a portion of the mixed heavy hydrocarbon fraction to a coker; operating the coker at conditions to produce anode grade green coke and distillate hydrocarbons; recovering the distillate hydrocarbons from the coker; fractionating the distillate hydrocarbons to recover hydrocarbon fractions including a light distillates fraction, a heavy coker gas oil fraction, and a coker recycle fraction.
C10G 47/02 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions characterised by the catalyst used
C10G 47/30 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions with moving solid particles according to the "fluidised bed" technique
Embodiments herein relate generally to distribution of flow into vessels containing packed beds of media. An example application of such beds is to pressure swing or temperature swing adsorption systems. Systems herein may include a vessel and a distributor for distributing flow into a lower portion of the vessel. The system may include: a vessel comprising a top head and a bottom head; and a bottom head feed/effluent nozzle. A lower distributor having at least one flow permitting surface is disposed within the vessel and encompasses an inlet of the bottom head feed/effluent nozzle. A flow gap is formed between a bottom portion of the lower distributor and the bottom head feed/effluent nozzle.
Embodiments herein relate to a process flow scheme for the processing of gas oils and especially reactive gas oils produced by thermal cracking of residua using a split flow concept. The split flow concepts disclosed allow optimization of the hydrocracking reactor severities and thereby take advantage of the different reactivities of thermally cracked gas oils versus those of virgin gas oils. This results in a lower cost facility for producing base oils as well as diesel, kerosene and gasoline fuels while achieving high conversions and high catalyst lives.
Embodiments herein relate to a process flow scheme for the processing of gas oils and especially reactive gas oils produced by thermal cracking of residua using a split flow concept. The split flow concepts disclosed allow optimization of the hydrocracking reactor seventies and thereby take advantage of the different reactivities of thermally cracked gas oils versus those of virgin gas oils. This results in a lower cost facility for producing base oils as well as diesel, kerosene and gasoline fuels while achieving high conversions and high catalyst lives.
C10G 65/10 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 65/00 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only
C10G 65/18 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only including only cracking steps
C10L 1/04 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons
C10L 1/06 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
C10L 1/08 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
79.
Process for producing distillate fuels and anode grade coke from vacuum resid
A process for upgrading residuum hydrocarbon feedstocks that may include: contacting a residuum hydrocarbon and hydrogen with a hydroconversion catalyst in a residuum hydroconversion reactor system; recovering an effluent from the residuum hydroconversion reactor system; separating the effluent to recover two or more hydrocarbon fractions including at least a vacuum residuum fraction and a heavy vacuum gas oil fraction; combining at least a portion of the heavy vacuum gas oil fraction and at least a portion of the vacuum residuum fraction to form a mixed heavy hydrocarbon fraction; feeding at least a portion of the mixed heavy hydrocarbon fraction to a coker; operating the coker at conditions to produce anode grade green coke and distillate hydrocarbons; recovering the distillate hydrocarbons from the coker; fractionating the distillate hydrocarbons to recover hydrocarbon fractions including a light distillates fraction, a heavy coker gas oil fraction, and a coker recycle fraction.
C10G 69/06 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
C10G 9/00 - Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
C10G 67/00 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
C10G 67/02 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
C07C 4/00 - Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
80.
Integration of residue hydrocracking and hydrotreating
A process for upgrading residuum hydrocarbons is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebullated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
C10G 65/10 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
A process for upgrading residuum hydrocarbons is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebullated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
C10G 65/10 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
A process for upgrading residuum hydrocarbons is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebullated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
C10G 67/04 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
A process for upgrading residuum hydrocarbons and decreasing tendency of the resulting products toward asphaltenic sediment formation in downstream processes is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a hydroconversion catalyst in a hydrocracking reaction zone to convert at least a portion of the residuum hydrocarbon fraction to lighter hydrocarbons; recovering an effluent from the hydrocracking reaction zone; contacting hydrogen and at least a portion of the effluent with a resid hydrotreating catalyst; and separating the effluent to recover two or more hydrocarbon fractions.
C10G 21/00 - Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
C10G 67/04 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
84.
UPGRADING RAW SHALE-DERIVED CRUDE OILS TO HYDROCARBON DISTILLATE FUELS
Integrated processes for upgrading crude shale-derived oils, such as those produced by oil shale retorting or by in situ extraction or combinations thereof. Processes disclosed provide for a split-flow processing scheme to upgrade whole shale oil. The split flow concepts described herein, i.e., naphtha and kerosene hydrotreating in one or more stages and gas oil hydrotreating in one or more stages, requires additional equipment as compared to the alternative approach of whole oil hydrotreating. While contrary to conventional wisdom as requiring more capital equipment to achieve the same final product specifications, the operating efficiency vis a vis on-stream time efficiency and product quality resulting from the split flow concept far exceed in value the somewhat incrementally higher capital expenditure costs.
C10G 1/02 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
C10G 65/02 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
C10G 69/10 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of reforming naphtha hydrocracking of higher boiling fractions into naphtha and reforming the naphtha obtained
85.
INTERGRATION OF RESIDUE HYDROCRACKING AND SOLVENT DEASPHALTING
A process for upgrading residuum hydrocarbons is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebullated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
C10G 67/04 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
Integrated processes for upgrading crude shale-derived oils, such as those produced by oil shale retorting or by in situ extraction or combinations thereof. Processes disclosed provide for a split-flow processing scheme to upgrade whole shale oil. The split flow concepts described herein, i.e., naphtha and kerosene hydrotreating in one or more stages and gas oil hydrotreating in one or more stages, requires additional equipment as compared to the alternative approach of whole oil hydrotreating. While contrary to conventional wisdom as requiring more capital equipment to achieve the same final product specifications, the operating efficiency vis a vis on-stream time efficiency and product quality resulting from the split flow concept far exceed in value the somewhat incrementally higher capital expenditure costs.
C10G 51/06 - Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural parallel stages only
C10G 65/12 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
C10G 45/00 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
C10G 45/02 - Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbonsHydrofinishing
C10G 45/32 - Selective hydrogenation of the diolefin or acetylene compounds
C10G 45/38 - Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metals, or compounds thereof
C10G 45/44 - Hydrogenation of the aromatic hydrocarbons
C10G 45/50 - Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metal, or compounds thereof
C10G 45/54 - Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
C10G 65/00 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only
C10G 65/08 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
A process for upgrading residuum hydrocarbons and decreasing tendency of the resulting products toward asphaltenic sediment formation in downstream processes is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a hydroconversion catalyst in a hydrocracking reaction zone to convert at least a portion of the residuum hydrocarbon fraction to lighter hydrocarbons; recovering an effluent from the hydrocracking reaction zone; contacting hydrogen and at least a portion of the effluent with a resid hydrotreating catalyst; and separating the effluent to recover two or more hydrocarbon fractions.
C10G 67/04 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
C10G 21/00 - Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
88.
CONVERSION OF ASPHALTENIC PITCH WITHIN AN EBULLATED BED RESIDUUM HYDROCRACKING PROCESS
A process for upgrading residuum hydrocarbons including: feeding pitch, hydrogen, and a partially spent catalyst recovered from a hydrocracking reactor to an ebullated bed pitch hydrocracking reactor; contacting the pitch, hydrogen, and the catalyst in the ebullated bed pitch hydrocracking reactor at reaction conditions of temperature and pressure sufficient to convert at least a portion of the pitch to distillate hydrocarbons; and separating the distillate hydrocarbons from the catalyst. In some embodiments, the process may include selecting the ebullated bed pitch hydrocracking reactor reaction conditions to be at or below the level where sediment formation would otherwise become excessive and prevent continuity of operations.
A process for upgrading residuum hydrocarbons including: feeding pitch, hydrogen, and a partially spent catalyst recovered from a hydrocracking reactor to an ebullated bed pitch hydrocracking reactor; contacting the pitch, hydrogen, and the catalyst in the ebullated bed pitch hydrocracking reactor at reaction conditions of temperature and pressure sufficient to convert at least a portion of the pitch to distillate hydrocarbons; and separating the distillate hydrocarbons from the catalyst. In some embodiments, the process may include selecting the ebullated bed pitch hydrocracking reactor reaction conditions to be at or below the level where sediment formation would otherwise become excessive and prevent continuity of operations.
A process for upgrading residuum hydrocarbons including: feeding pitch, hydrogen, and a partially spent catalyst recovered from a hydrocracking reactor to an ebullated bed pitch hydrocracking reactor; contacting the pitch, hydrogen, and the catalyst in the ebullated bed pitch hydrocracking reactor at reaction conditions of temperature and pressure sufficient to convert at least a portion of the pitch to distillate hydrocarbons; and separating the distillate hydrocarbons from the catalyst. In some embodiments, the process may include selecting the ebullated bed pitch hydrocracking reactor reaction conditions to be at or below the level where sediment formation would otherwise become excessive and prevent continuity of operations.
C10G 65/10 - Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
C10G 47/26 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions with moving solid particles suspended in the oil, e.g. slurries
C10G 1/08 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation with moving catalysts
A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include reacting a triacylglycerides-containing oil-carbon dioxide mixture at a temperature in the range from about 250°C to about 560°C and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides to a hydrocarbon or mixture of hydrocarbons comprising one or more of isoolefms, isoparaffins, cycloolefins, cycloparaffms, and aromatics. In some embodiments, the conversion of the triacylglycerides to hydrocarbon products may advantageously be performed in the absence of added water and added hydrogen.
A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include reacting a triacylglycerides-containing oil-carbon dioxide mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides to a hydrocarbon or mixture of hydrocarbons comprising one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics.
A temperature measurement system for a gasifier may employ a first stage gasifier with a refractory wall that defines a first stage gasifier volume. A protruding refractory brick may protrude from the first stage refractory wall and into a gaseous flow path of the first stage gasifier volume. The temperature sensor may reside completely through the refractory wall, which may be a plurality of brick layers, except for a tip end of a temperature sensor that may reside in a blind or non-through hole within the protruding refractory brick. The protruding refractory brick protrudes beyond a normal wall surface of the plurality of brick layers that defines the first stage gasifier volume. The protruding refractory brick may have a face that forms an angle that is not 90 degrees, such as 45 degrees, relative to the gaseous flow path of the fluid stream through the first stage gasifier volume.
A temperature measurement system for a gasifier may employ a first stage gasifier with a refractory wall that defines a first stage gasifier volume. A protruding refractory brick may protrude from the first stage refractory wall and into a gaseous flow path of the first stage gasifier volume. The temperature sensor may reside completely through the refractory wall, which may be a plurality of brick layers, except for a tip end of a temperature sensor that may reside in a blind or non-through hole within the protruding refractory brick. The protruding refractory brick protrudes beyond a normal wall surface of the plurality of brick layers that defines the first stage gasifier volume. The protruding refractory brick may have a face that forms an angle that is not 90 degrees, such as 45 degrees, relative to the gaseous flow path of the fluid stream through the first stage gasifier volume.
C10K 3/04 - Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content
A temperature measurement system for a gasifier may employ a first stage gasifier with a refractory wall that defines a first stage gasifier volume. A protruding refractory brick may protrude from the first stage refractory wall and into a gaseous flow path of the first stage gasifier volume. The temperature sensor may reside completely through the refractory wall, which may be a plurality of brick layers, except for a tip end of a temperature sensor that may reside in a blind or non-through hole within the protruding refractory brick. The protruding refractory brick protrudes beyond a normal wall surface of the plurality of brick layers that defines the first stage gasifier volume. The protruding refractory brick may have a face that forms an angle that is not 90 degrees, such as 45 degrees, relative to the gaseous flow path of the fluid stream through the first stage gasifier volume.
Mixed pentenes may be converted to propylene by feeding an alcohol, linear pentenes, and isopentenes to an etherification reactor. The alcohol and isopentenes may be reacted in the etherification reactor to convert isopentenes to tertiary amyl alkyl ether, which may be separated from the linear pentenes, recovered as a linear pentene fraction. The tertiary amyl alkyl ether may be fed to a decomposition reactor to convert at least a portion of the tertiary amyl alkyl ether to alcohol and isopentenes. The alcohol and isopentenes may then be separated to recover an isopentene fraction and an alcohol fraction. The isopentene fraction is then fed to a skeletal isomerization reactor to convert at least a portion of the isopentenes to linear pentenes, the effluent from which may be recycled to the etherification reactor. Ethylene and the linear pentene fraction may then be to a metathesis reactor to produce propylene.
C07C 6/04 - Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
C07C 41/06 - Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only
C07C 7/148 - Purification, separation or stabilisation of hydrocarbonsUse of additives by treatment giving rise to a chemical modification of at least one compound
97.
PROCESS TO PRODUCE LINEAR PENTENES AND METATHESIS THEREOF
Mixed pentenes may be converted to propylene by feeding an alcohol, linear pentenes, and isopentenes to an etherification reactor. The alcohol and isopentenes may be reacted in the etherification reactor to convert isopentenes to tertiary amyl alkyl ether, which may be separated from the linear pentenes, recovered as a linear pentene fraction. The tertiary amyl alkyl ether may be fed to a decomposition reactor to convert at least a portion of the tertiary amyl alkyl ether to alcohol and isopentenes. The alcohol and isopentenes may then be separated to recover an isopentene fraction and an alcohol fraction. The isopentene fraction is then fed to a skeletal isomerization reactor to convert at least a portion of the isopentenes to linear pentenes, the effluent from which may be recycled to the etherification reactor. Ethylene and the linear pentene fraction may then be to a metathesis reactor to produce propylene.
Olefins may be recovered from a methanol to olefins reactor effluent by initially feeding the effluent to an absorber demethanizer to contact the effluent with an absorbent to recover an overheads including methane and ethylene and a bottoms including the absorbent, ethylene, and ethane. The bottoms are separated to recover an ethylene fraction and an ethane fraction. The overheads are cooled and partially condensed in a first heat exchanger to a temperature of -40°C or greater. The resulting stream, or a portion thereof, may be further cooled and condensed via indirect heat exchange with a mixed refrigerant to a temperature of less than -40°C. The non-condensed vapors are separated from the condensed liquids to form a liquid fraction and a methane fraction. The liquid fraction is fed to the absorber demethanizer as reflux, and the methane and ethane fractions combined to form the mixed refrigerant.
C07C 7/04 - Purification, separation or stabilisation of hydrocarbonsUse of additives by distillation
C07C 7/12 - Purification, separation or stabilisation of hydrocarbonsUse of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
3+ hydrocarbons; separating the light fraction into at least two fractions including a nitrogen-enriched fraction and a nitrogen-depleted fraction in a first separator; separating the nitrogen-depleted fraction into a propane-enriched fraction and a propane-depleted fraction in a second separator; feeding at least a portion of the propane-enriched fraction to the fractionating as a reflux; recycling at least a portion of the propane-depleted fraction to the first separator. In some embodiments, the nitrogen-enriched fraction may be separated in a nitrogen removal unit to produce a nitrogen-depleted natural gas stream and a nitrogen-enriched natural gas stream.
F25J 3/00 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
C10L 3/10 - Working-up natural gas or synthetic natural gas
F25J 1/00 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
A process and system for separating butenes and butanes by extractive distillation using a polar solvent is disclosed. The process may include: contacting a hydrocarbon mixture including butanes and butenes with a lean solvent mixture in an extractive distillation column to form an enriched solvent fraction comprising butenes; recovering an overheads fraction comprising butanes and a bottoms fraction from the extractive distillation column; feeding the bottoms fraction to a stripper including a stripping section and a wash section; recovering the lean solvent mixture as a bottoms fraction and a stripper overheads fraction comprising butenes and water from the stripper; condensing the overheads fraction to form a water fraction and a product butenes fraction; feeding water as reflux to a top of the stripper wash section; feeding at least a portion of the condensed water fraction intermediate the top and bottom of the stripper wash section as a second reflux.
C07C 7/08 - Purification, separation or stabilisation of hydrocarbonsUse of additives by distillation with the aid of auxiliary compounds by extractive distillation
C07C 9/10 - Acyclic saturated hydrocarbons with one to four carbon atoms with four carbon atoms