A reinforcement frame (1) for a battery pack (2) of an electric or hybrid vehicle (37), the battery pack including a plurality of battery cells lying on and secured to a shield element, the reinforcement frame including at least: a reinforcement frame fastening portion (3) provided to be secured to both the battery pack and the body of the vehicle, and a reinforcement frame hollow portion (4) provided to surround at least the battery cells.
H01M 50/249 - MountingsSecondary casings or framesRacks, modules or packsSuspension devicesShock absorbersTransport or carrying devicesHolders specially adapted for aircraft or vehicles, e.g. cars or trains
B60L 50/60 - Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
B60L 50/64 - Constructional details of batteries specially adapted for electric vehicles
H01M 50/262 - MountingsSecondary casings or framesRacks, modules or packsSuspension devicesShock absorbersTransport or carrying devicesHolders with fastening means, e.g. locks
2.
PRESS-HARDENED STEEL PART AND METHOD OF MANUFACTURING THE SAME
The invention deals with a high strength and high bendability press hardened steel part made of a rerolled steel sheet having a composition comprising, by weight percent: C : 0.15 - 0.22 %, Mn : 0.5 – 2.5 %, Si : 0.1 – 1.25 %, Al : 0.01 – 0.1 %, Cr : 0.1 – 1.0 %, B : 0.0005 - 0.004 %, Ti : 0.01 - 0.1 %, Mo : 0.05 - 0.40 %, Nb : 0.01 - 0.08 %, P ≤ 0.020 %, S ≤ 0.010 %, N ≤ 0.02 % and comprising optionally one or more of the following elements, by weight percent: Ca ≤ 0.1 %, the remainder of the composition being iron and unavoidable impurities resulting from the smelting. The press hardened steel part comprises a bulk having a microstructure comprising, in surface fraction, 95% or more of martensite the rest being bainite, an interdiffusion layer, and a coating layer based on aluminium.
The invention deals with a high strength and high bendability press hardened steel part made of a rerolled steel sheet having a composition comprising, by weight percent: C : 0.15 - 0.22 %, Mn : 0.5 – 2.5 %, Si : 0.1 – 1.25 %, Al : 0.01 – 0.1 %, Cr : 0.1 – 1.0 %, B : 0.0005 - 0.004 %, Ti : 0.01 - 0.1 %, Mo : 0.05 - 0.40 %, Nb : 0.01 - 0.08 %, P ≤ 0.020 %, S ≤ 0.010 %, N ≤ 0.02 % and comprising optionally one or more of the following elements, by weight percent: Ca ≤ 0.1 %, the remainder of the composition being iron and unavoidable impurities resulting from the smelting. The press hardened steel part comprises a bulk having a microstructure comprising, in surface fraction, 95% or more of martensite the rest being bainite, an interdiffusion layer, and a coating layer based on aluminium.
The invention deals with a hot worked and annealed graphitic steel product having a composition comprising in weight percent: 0.70 % ≤ C ≤ 1.1 %, 0.35 % ≤ Mn ≤ 0.80 %, 1.0 % ≤ Si ≤ 3.0 %, 0.010 % ≤ Ti ≤ 0.090 %, 0.001 % ≤ Al ≤ 0.09 %, P ≤ 0.090 %, S ≤ 0.2, 0.0090 ≤ N ≤ 0.0150 and comprising optionally one or more of the following elements, by weight percent: 0 % ≤ B ≤ 0.006 %, 0 % ≤ Cr ≤ 1 %, 0 % ≤ Mo ≤ 0.5 %, 0 % ≤ V ≤ 0.2 %, 0 % ≤ Nb ≤ 0.1 %, 0 % ≤ Ni ≤ 3.0 %, 0 % ≤ Co ≤ 3.0 %, 0 % ≤ Cu ≤ 3.0 %, 0 % ≤ Sn ≤ 0.1 %, 0 % ≤ Ce ≤ 0.1 %, 0 % ≤ Mg ≤ 0.1 %, 0 % ≤ Zr ≤ 0.1 % the remainder of the composition being iron and unavoidable impurities resulting from the smelting, said steel having a microstructure comprising 1 to 10% in area fraction of free graphite particles, up to 5% optional cementite, the balance being ferrite.
C22C 38/34 - Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
C22C 38/50 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
C22C 38/54 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
C22C 38/42 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
C22C 38/44 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
C21D 9/22 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for drillsHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for milling cuttersHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for machine cutting tools
C21D 9/00 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor
C21D 8/00 - Modifying the physical properties by deformation combined with, or followed by, heat treatment
A composite steel semi-product having a shell and bulk, said shell having a chemical composition containing, in weight%, Si: from 2.0% to 4.0%, said bulk having a chemical composition containing, in weight%, Si: from 3.0% to 8.0%, said shell and said bulk compositions comprising also the following elements expressed in weight%: C: 0.0001% - 0.05%, Mn: 0.05% - 2.0%, Al: 0.05% - 1.3%, and can contain one or more optional elements, the remainder composition being composed of iron and unavoidable impurities caused by processing, wherein the amount of Si in the bulk is higher than in the shell and wherein said shell is provided on the four longitudinal sides of said semi-product.
B32B 15/01 - Layered products essentially comprising metal all layers being exclusively metallic
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
B22D 11/00 - Continuous casting of metals, i.e. casting in indefinite lengths
B22D 11/041 - Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
B22D 11/108 - Feeding additives, powders, or the like
The invention relates to a sandwich panel comprising a photovoltaic active area positioned on the outer sheet and whose upper, respectively lower, electrical connector is positioned in an upper, respectively lower, cavity, the upper cavity being positioned within the insulation material in the upper half of the sandwich panel, the lower cavity being positioned within the insulation material in the lower half of the sandwich panel and the upper cavity and the lower cavity being either both adjacent to the inner edge rabbet of the inner sheet so that the electrical connectors can be accessed along the inner edge rabbet from their cavity, or both adjacent to the second inner riser of the inner sheet so that the electrical connectors can be accessed along the second inner riser from their cavity.
E04D 3/35 - Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
H02S 20/26 - Building materials integrated with PV modules, e.g. façade elements
H02S 40/36 - Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
The invention relates to a process for manufacturing a sandwich panel comprising a photovoltaic active area positioned on the outer sheet and whose upper, respectively lower, electrical conductor is connected to an upper, respectively lower, cable at the backside of the outer sheet, the process comprising positioning the outer sheet in a mold, inserting a downstream portion of the upper, respectively lower, cable with the upper, respectively lower, electrical connector either in a hole in one of the sides of the mold or in a groove formed in the inner sheet, putting insulation in place and maintaining the inner sheet at a given distance from the outer sheet.
E04D 3/35 - Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
H02S 20/26 - Building materials integrated with PV modules, e.g. façade elements
H02S 40/36 - Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
The invention relates to a sandwich panel comprising a photovoltaic active area positioned on the outer sheet and whose upper, respectively lower, electrical connector is positioned in an upper, respectively lower, cavity, the upper cavity being positioned within the insulation material in the upper half of the sandwich panel, the lower cavity being positioned within the insulation material in the lower half of the sandwich panel and the upper cavity and the lower cavity being either both adjacent to the inner edge rabbet of the inner sheet so that the electrical connectors can be accessed along the inner edge rabbet from their cavity, or both adjacent to the second inner riser of the inner sheet so that the electrical connectors can be accessed along the second inner riser from their cavity.
E04D 3/35 - Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
H02S 20/26 - Building materials integrated with PV modules, e.g. façade elements
H02S 40/36 - Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
A composite steel semi-product having a shell and bulk, said shell having a chemical composition containing, in weight%, Si: from 2.0% to 4.0%, said bulk having a chemical composition containing, in weight%, Si: from 3.0% to 8.0%, said shell and said bulk compositions comprising also the following elements expressed in weight%: C: 0.0001% - 0.05%, Mn: 0.05% - 2.0%, Al: 0.05% - 1.3%, and can contain one or more optional elements, the remainder composition being composed of iron and unavoidable impurities caused by processing, wherein the amount of Si in the bulk is higher than in the shell and wherein said shell is provided on the four longitudinal sides of said semi-product.
B32B 15/01 - Layered products essentially comprising metal all layers being exclusively metallic
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
B22D 11/00 - Continuous casting of metals, i.e. casting in indefinite lengths
B22D 11/041 - Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
B22D 11/108 - Feeding additives, powders, or the like
A composite material consisting of lignocellulosic biomass having a moisture content from 5 to 10% by weight and an iron material comprising at least 30% of iron oxides, the molar ratio Fe/C of said composite material being from 3 to 6.5.
A method to produce a briquette of composite material comprising the steps of providing biochar (2) and an iron material (1) comprising at least 30% of iron oxides, mixing the biochar (2) and the iron material (1) in appropriate amounts to obtain a predefined molar Fe/C ratio in the range from 3 to 6.5 and briquetting the obtained mixture to form a briquette of composite material (6).
A method to produce a briquette of composite material comprising the steps of providing biochar (2) and an iron material (1) comprising at least 30% of iron oxides, mixing the biochar (2) and the iron material (1) in appropriate amounts to obtain a predefined molar Fe/C ratio in the range from 3 to 6.5 and briquetting the obtained mixture to form a briquette of composite material (6).
A steelmaking method comprising a step of melting a metallic load (L) in a vessel (4) to produce a bath of molten metal (1) topped by a slag layer (3), said slag layer (3) having a density Ds, wherein the method further comprises the loading of an iron-carbon composite material (5) into the vessel (4), said composite material (5) having a density Dc inferior or equal to the density Ds of the slag layer (3).
The invention deals with a hot worked and annealed graphitic steel product having a composition comprising in weight percent: 070 % ≤ C ≤ 1.1 %, 0.35 % ≤ Mn ≤ 0.80 %, 1.0 % ≤ Si ≤ 3.0 %, 0.010 % ≤ Ti ≤ 0.090 %, 0.001 % ≤ Al ≤ 0.09 %, 0 ≤ P ≤ 0.090 %, 0 ≤ S ≤ 0.2, 0.0090 ≤ N ≤ 0.0150 and comprising optionally one or more of the following elements, by weight percent: 0 % ≤ B ≤ 0.006 %, 0 % ≤ Cr ≤ 1 %, 0 % ≤ Mo ≤ 0.5 %, 0 % ≤ V ≤ 0.2 %, 0 % ≤ Nb ≤ 0.1 %, 0 % ≤ Ni ≤ 3.0 %, 0 % ≤ Co ≤ 3.0 %, 0 % ≤ Cu ≤ 3.0 %, 0 % ≤ Sn ≤ 0.1 %, 0 % ≤ Ce ≤ 0.1 %, 0 % ≤ Mg ≤ 0.1 %, 0 % ≤ Zr ≤ 0.1 % the remainder of the composition being iron and unavoidable impurities resulting from the smelting, said steel having a microstructure comprising 1 to 10% in area fraction of free graphite particles, up to 5% optional cementite, the balance being ferrite.
C22C 38/34 - Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
C22C 38/50 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
C22C 38/54 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
C22C 38/42 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
C22C 38/44 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
C21D 9/22 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for drillsHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for milling cuttersHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for machine cutting tools
C21D 9/00 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor
C21D 8/00 - Modifying the physical properties by deformation combined with, or followed by, heat treatment
The invention relates to a sandwich panel comprising a photovoltaic active area positioned on the outer sheet and whose upper, respectively lower, electrical connector is positioned in an upper, respectively lower, cavity, the upper cavity being positioned within the insulation material in the upper half of the sandwich panel, the lower cavity being positioned within the insulation material in the lower half of the sandwich panel, the upper cavity and the lower cavity being adjacent to a longitudinal groove in the inner central part of the inner sheet and being either both adjacent to the first longitudinal side of the insulation material or both adjacent to the second longitudinal side of the insulation material so that the first upper respectively lower, electrical connector can be accessed from the upper, respectively lower, cavity along one longitudinal side of the insulation material and can be connected through the longitudinal groove.
H02S 20/26 - Building materials integrated with PV modules, e.g. façade elements
H02S 40/36 - Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
The invention relates to a process for manufacturing a sandwich panel comprising a photovoltaic active area positioned on the outer sheet and whose upper, respectively lower, electrical conductor is connected to an upper, respectively lower, cable at the backside of the outer sheet, the process comprising positioning the outer sheet in a mold, inserting a downstream portion of the upper, respectively lower, cable with the upper, respectively lower, electrical connector either in a hole in one of the sides of the mold or in a groove formed in the inner sheet, putting insulation in place and maintaining the inner sheet at a given distance from the outer sheet.
E04D 3/35 - Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
H02S 20/26 - Building materials integrated with PV modules, e.g. façade elements
H02S 40/36 - Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
The invention relates to a sandwich panel comprising a photovoltaic active area positioned on the outer sheet and whose upper, respectively lower, electrical connector is positioned in an upper, respectively lower, cavity, the upper cavity being positioned within the insulation material in the upper half of the sandwich panel, the lower cavity being positioned within the insulation material in the lower half of the sandwich panel, the upper cavity and the lower cavity being adjacent to a longitudinal groove in the inner central part of the inner sheet and being either both adjacent to the first longitudinal side of the insulation material or both adjacent to the second longitudinal side of the insulation material so that the first upper respectively lower, electrical connector can be accessed from the upper, respectively lower, cavity along one longitudinal side of the insulation material and can be connected through the longitudinal groove.
H02S 40/36 - Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
19.
FORGED PART OF STEEL AND A METHOD OF MANUFACTURING THEREOF
A steel part for the transmission system of an automobile comprising a core made of the following elements0.15% ≦ C ≦ 0.25%;1.0% ≦ Mn ≦1.6%; 0.4% ≦ Si ≦ 0.9%; 0.001% ≦ Al ≦ 0.1 %; 0.10% ≦ Mo ≦ 0.5%; 1% ≦ Cr ≦ 1.5 %; 0 ≦ P ≦ 0.09%; 0 ≦ S ≦ 0.09%; 0% ≦ N ≦ 0.09%; 0 ≦ Nb ≦ 0.06%; 0% ≦ Ni ≦ 1%; 0% ≦ V≦ 0.2%; 0% ≦ Ti ≦ 0.1%; 0% ≦ Cu≦ 1%; 0% ≦ B ≦ 0.008%; 0% ≦ Sn≦ 0.1%; 0% ≦ Ce ≦ 0.1%; 0% ≦ Mg ≦ 0.10%; 0% ≦ Zr ≦ 0.10%; the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of the core of said steel part comprising, by area percentage, at least 90% of Martensite, with a cumulative optional presence of any one or more from Residual Austenite, Pearlite, ferrite and Bainite from 1% to 10% and precipitates of Aluminum and/or Niobium in form of AlN and/or Nb (C,N), wherein the percentage of grains with prior austenite grains size from 3 to 5 is limited to a maximum of 10% of the total grains, such steel part comprising a martensitedeficient layer till the depth of 1mm or less on all its surfaces, such martensite deficient layer comprising from 55% to 72% of martensite, 10% to 40% of bainite and the remainder being any one or more from residual austenite, ferrite or cementite.
C21D 7/13 - Modifying the physical properties of iron or steel by deformation by hot working
C21D 9/28 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for plain shafts
C21D 9/32 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for gear wheels, worm wheels, or the like
A steel part for the transmission system of an automobile comprising a core made of the following elements0.15% ≦ C ≦ 0.25%; 1.0% ≦ Mn ≦1.6%; 0.4% ≦ Si ≦ 0.9%; 0.001% ≦ Al ≦ 0.1 %; 0.10% ≦ Mo ≦ 0.5%;1% ≦ Cr ≦ 1.5 %; 0 ≦ P ≦ 0.09%; 0 ≦ S ≦ 0.09%; 0% ≦ N ≦ 0.09%; 0 ≦ Nb ≦ 0.06%; 0% ≦ Ni ≦ 1%; 0% ≦ V≦ 0.2%; 0% ≦ Ti ≦ 0.1%; 0% ≦ Cu≦ 1%; 0% ≦ B ≦ 0.008%; 0% ≦ Sn≦ 0.1%; 0% ≦ Ce ≦ 0.1%; 0% ≦ Mg ≦ 0.10%; 0% ≦ Zr ≦ 0.10%; the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of the core of said steel part comprising, by area percentage, at least 90% of Martensite, with a cumulative optional presence of any one or more from Residual Austenite, Pearlite, ferrite and Bainite from 1% to 10% and precipitates of Aluminum and/or Niobium in form of AlN and/or Nb (C,N), wherein the percentage of grains with prior austenite grains size from 3 to 5 is limited to a maximum of 10% of the total grains, such steel part comprising a martensitedeficient layer till the depth of 1mm or less on all its surfaces, such martensite deficient layer comprising from 55% to 72% of martensite, 10% to 40% residual austenite and the remainder being any one or more from bainite, ferrite or cementite.
C21D 7/13 - Modifying the physical properties of iron or steel by deformation by hot working
C21D 9/28 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for plain shafts
C21D 9/32 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for gear wheels, worm wheels, or the like
A method to produce reduced iron comprising the step of providing an iron material (1) comprising at least 5% by weight of iron oxides, subjecting this iron material (1) to a thermal treatment at a temperature from 600 to 700°C to reduce the iron oxides to magnetite using a reducing bio-syngas (3), separating magnetite from the remaining part of the iron material using a magnetic separation process to obtain a magnetite concentrate (6), said magnetic separation step being performed at a temperature below 585°C, reducing the magnetite concentrate (6) to iron.
A method for erecting a portion of a transportation structure including a plurality of piers, a plurality of platforms forming a service pathway, a first plurality of girders forming a first assembly of tube segments, capable of being placed under low air pressure and through which pods may travel substantially free of air friction, and forming a first rooftop transportation pathway the method including conveying with vehicle(s) the girders and platforms along the first transportation pathway, positioning them and having the vehicle(s) return along the service pathway. A portion of a transportation structure is also provided.
Method of producing steel with using an electric arc furnace The method of producing steel comprises the steps of loading a metal load (L) in the EAF, the metal load containing steel scrap, melting the metal load in the EAF and generating liquid steel (LS),tapping the liquid steel (LS) into a ladle (42) and refining the chemical composition of the liquid steel (LS) in a secondary metallurgy reactor with addition of a slagging material with nitrogen affinity in the liquid steel (LS) such as to lower the nitrogen content of the liquid steel (LS) in the secondary metallurgy reactor.
A hot dip coating equipment able to coat a steel strip (1) running along a given path, comprising an annealing furnace (2), a snout (3), a snout tip (5) able to be partly immersed in a molten metal tank (6), wherein a tight and deformable gap compensator (4) is fitted between the snout (3) and the snout tip (5).
C23C 2/00 - Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shapeApparatus therefor
B05C 3/12 - Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material for treating work of indefinite length
25.
EQUIPMENT FOR CONTINUOUS HOT-DIP COATING OF A METAL STRIP, AND METHOD THE REPLACE THE SNOUT PART
A hot dip coating equipment able to coat a steel strip (1) running along a given path, comprising an annealing furnace (2), a snout (3), a snout tip (5) able to be partly immersed in a molten metal tank (6), wherein a tight and deformable gap compensator (4) is fitted between the snout (3) and the snout tip (5).
C23C 2/00 - Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shapeApparatus therefor
B05C 3/12 - Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material for treating work of indefinite length
26.
STEEL PART HAVING HIGH STRENGTH AND HIGH BENDABILITY
Steel part having a chemical composition comprising, by weight %, 0.18 ≤ C ≤ 0.27, 0.18 ≤ Si ≤ 0.30, 1.0 ≤ Mn ≤ 1.5, 0.14 ≤ Cr ≤ 0.25, 0.02 ≤ Al ≤ 0.06, 0.02 ≤ Ti ≤ 0.06, 0.0020 ≤ B ≤ 0.0040, 0 ≤ S ≤ 0.008, 0 ≤ N ≤ 0.020, the remainder of the composition being iron and unavoidable impurities resulting from the elaboration process, having a microstructure comprising, in surface fraction, 95% or more of martensite and a prior austenite grain skin refinement ratio equal to or above 1.2, said ratio being defined as PAGS_B / PAGS_S, wherein PAGS_B is the average prior austenite grain diameter in the bulk (3) expressed in µm and PAGS_S is the average prior austenite grain diameter in the skin (2), also expressed in µm.
B32B 15/01 - Layered products essentially comprising metal all layers being exclusively metallic
B21D 22/02 - Stamping using rigid devices or tools
C23C 30/00 - Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
C21D 1/18 - HardeningQuenching with or without subsequent tempering
Floor panel reinforcement member (1) for an automotive vehicle (100) attached to a floor panel (3) and including at least a front longitudinal portion (11) extending substantially longitudinally from a dash panel (4) to a transition portion (31) and forming with the floor panel (3) a front longitudinal hollow volume (10), a front transverse portion (21) extending in a substantially transverse direction between right and left side sills (61, 62) of the vehicle, forming with the floor panel (3) a front transverse hollow volume (20) and connected to the front longitudinal portion (11) in the transition portion (31), wherein the floor panel reinforcement member (1) is manufactured by forming a single metal blank (7).
B62D 21/15 - Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
ijii), a measured scrap amount (1) charged in the EAF, o for at least one residual element, a measured residual content (2) of said element in a liquid steel (S) output by the EAF, - determining, for two or more of said types of scrap: data representative of a probability distribution for the residual content of said residual element, in the type of scrap considered, given the operation data (OD) acquired, using a model of operation for the EAF.
Method of producing steel including the addition of lime The method of producing steel comprises loading a load (L) in a steelmaking furnace (2) for converting the load (L) into steel and adding lime particles (10) to the load (L), the method comprising a step of preheating the lime particles (10) to 500°C or more and a step of coating the pre-heated lime particles (10) with a coating (12) before adding the lime particles (10) to the load (L).
A method for determining a bent-wires indicator, relative to a roller brush (1) made up of metallic wires, the method comprising: - s1: acquiring a base image of a portion of a lateral surface (2) of the roller brush, - s2: determining a first processed image by intensity-filtering of the base image using a first input-output intensity filtering function, and determining a second processed image by intensity-filtering of the base image using a second input- output intensity-filtering function, the second input-output intensity-filtering function being higher than the first input-output intensity-filtering function for intermediate intensity levels, - s3: determining the bent-wires indicator by comparing the first processed image and the second processed image.
Method of producing steel with using an electric arc furnace The method of producing steel comprises the steps of loading a metal load (L) in the EAF, the metal load containing steel scrap, melting the metal load in the EAF and generating liquid steel (LS),tapping the liquid steel (LS) into a ladle (42) and refining the chemical composition of the liquid steel (LS) in a secondary metallurgy reactor with addition of a slagging material with nitrogen affinity in the liquid steel (LS) such as to lower the nitrogen content of the liquid steel (LS) in the secondary metallurgy reactor.
Method of producing steel including the addition of lime The method of producing steel comprises loading a load (L) in a steelmaking furnace (2) for converting the load (L) into steel and adding lime particles (10) to the load (L), the method comprising a step of preheating the lime particles (10) to 500°C or more and a step of coating the pre-heated lime particles (10) with a coating (12) before adding the lime particles (10) to the load (L).
06 - Common metals and ores; objects made of metal
12 - Land, air and water vehicles; parts of land vehicles
Goods & Services
Common metals and their alloys; Steel; coated steels in the form of sheets of metal, slabs, bars, cross pieces, sides, these products being made of metal. Land vehicles; apparatus for locomotion by land, namely (light passenger and commercial vehicles , heavy trucks ); vehicle bodies and body parts, namely bodyworks for motor vehicles.
34.
METHOD FOR MANUFACTURING A HOT STAMPED PART AND ASSOCIATED HOT STAMPED PART
Method for manufacturing a hot stamped part and hot stamped, wherein the hot stamped part is manufactured by hot stamping a steel sheet comprising C : 0.10 - 0.4 %, Mn : 1.0 – 11 %, Si : 0.2 – 2.0 %, Cr ≤ 2.0%, Mo ≤ 0.5 %, Nb ≤ 0.1 %, Al ≤ 0.10 %, Ti : 0.01 - 0.1 %, B : 0.0005 - 0.005 %, P ≤ 0.02 %, S ≤ 0.04 %, N ≤ 0.01 %, Ni ≤ 1.0%, Cu ≤ 1.0%, heating said steel sheet above Ac3, stamping said steel sheet above MS-start, the temperature at which martensite starts to form for said steel sheet, applying to said sheet a deformation, expressed in equivalent plastic strain, which does not exceed 1.0 and which locally at least is greater than or equal to 0.4.
The method for controlling the stirring within a vessel (22) of a steelmaking furnace (20), comprising a metal bath (1) comprising molten metal (3) and a layer of slag (5), the method (100) comprising: - measuring at least two parameters representative of the metal bath (1) contained within the vessel (22) during stirring; - detecting, based on the measurement of the at least two parameters, the formation of an open-eye (8) in the slag layer (5); - adapting the stirring based on the detection of the formation of an open-eye (8); wherein the at least two parameters comprise a visual parameter measured on images of the slag layer (5) captured during stirring and a mechanical parameter representative of mechanical waves generated within the vessel (22) during stirring.
The method for controlling the stirring within a vessel (22) of a steelmaking furnace (20), comprising a metal bath (1) comprising molten metal (3) and a layer of slag (5), the method (100) comprising: - measuring at least two parameters representative of the metal bath (1) contained within the vessel (22) during stirring; - detecting, based on the measurement of the at least two parameters, the formation of an open-eye (8) in the slag layer (5); - adapting the stirring based on the detection of the formation of an open-eye (8); wherein the at least two parameters comprise a visual parameter measured on images of the slag layer (5) captured during stirring and a mechanical parameter representative of mechanical waves generated within the vessel (22) during stirring.
A method to manufacture a press hardening part comprising the following steps: A) Providing a coated steel sheet (4), comprising a base steel for heat treatment (1), coated with an aluminium based metallic coating (2), B) Applying a surface treatment (3) on the coated steel sheet (4) with an aqueous solution to form a wet film having a thickness from 0.5 to 6.0 pm, said aqueous solution having a mass concentration in chromium from 1.0 to 30.0 g/L and a mass concentration in phosphorous from 0.8 to 26.0 g/L, C) Drying said wet film to obtain a treated coated steel sheet (5), D) Trimming or cutting said treated steel sheet (5) into a blank, E) Heating said blank in a furnace at a temperature set from 850 to 950°C, F) Transferring said hot blank into a press tool, G) Forming said hot blank into a part and press hardening said part into a press-hardened part.
C23C 22/07 - Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH < 6 containing phosphates
C23C 28/00 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and
A device for heat transfer comprising: - a chamber including a fluidized bed of solid particles, the solid particles exchanging heat with a metal semi-product, the solid particles circulating along a circulation direction, - a gas injector to inject gas within the chamber, - a heat exchanger having a circulating transfer medium, the heat exchanger being in contact with the fluidized bed so that the solid particles exchange heat with the transfer medium, - means for gathering scale particles released from said metal semi-product into said chamber, - means for removing scale particles from said chamber. The invention also relates to a method of removing scale from a device for heat transfer related to the invention.
A method to manufacture a press hardening part comprising the following steps: A) Providing a coated steel sheet (4), comprising a base steel for heat treatment (1), coated with an aluminium based metallic coating (2), B) Applying a surface treatment (3) on the coated steel sheet (4) with an aqueous solution to form a wet film having a thickness from 0.5 to 6.0 µm, said aqueous solution having a mass concentration in chromium from 1.0 to 30.0 g/L and a mass concentration in phosphorous from 0.8 to 26.0 g/L, C) Drying said wet film to obtain a treated coated steel sheet (5), D) Trimming or cutting said treated steel sheet (5) into a blank, E) Heating said blank in a furnace at a temperature set from 850 to 950°C, F) Transferring said hot blank into a press tool, G) Forming said hot blank into a part and press hardening said part into a press-hardened part.
C23C 22/07 - Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH < 6 containing phosphates
C23C 28/00 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and
41.
METHOD FOR MANUFACTURING A HOT STAMPED PART AND ASSOCIATED HOT STAMPED PART
Method for manufacturing a hot stamped part and hot stamped, wherein the hot stamped part is manufactured by hot stamping a steel sheet comprising C : 0.10 - 0.4 %, Mn : 1.0 – 11 %, Si : 0.2 – 2.0 %, Cr : 0.15% - 2.0%, Mo ≤ 0.5 %, Nb ≤ 0.1 %, Al ≤ 0.10 %, Ti : 0.01 - 0.1 %, B : 0.0005 - 0.005 %, P ≤ 0.02 %, S ≤ 0.04 %, N ≤ 0.01 %, Ni ≤ 1.0%, Cu ≤ 1.0%, heating said steel sheet above Ac3, stamping said steel sheet above MS-start, the temperature at which martensite starts to form for said steel sheet, applying to said sheet a deformation, expressed in equivalent plastic strain, which does not exceed 1.0 and which locally at least is greater than or equal to 0.4.
The invention relates to a taphole (14) for discharging a metallurgical vessel (12) of an electric arc furnace (10), the taphole (14) comprising a central conduit extending along a longitudinal axis (X) between a top end (32) opening into the vessel (12) and a bottom end (34) for discharging molten steel outside the vessel (12) into an enclosure (24), such as a ladle. The central conduit comprises successively an upstream portion and a downstream portion, and a throttle arranged between the upstream and the downstream portions. The throttle has a constricted cross-section compared to a cross-section of the upstream and downstream portions, so as to generate a Venturi effect when discharging the vessel (12) through the taphole (14).
F27B 3/08 - Hearth-type furnaces, e.g. of reverberatory typeElectric arc furnaces heated electrically, e.g. electric arc furnaces, with or without any other source of heat
F27B 3/19 - Arrangement of devices for discharging
F27D 3/15 - Tapping equipmentEquipment for removing slag
F27D 3/16 - Introducing a fluid jet or current into the charge
44.
A TAPHOLE FOR DISCHARGING A METALLURGICAL VESSEL OF AN ELECTRIC ARC FURNACE AND ASSOCIATED FURNACE AND DISCHARGING METHOD
A taphole for discharging a metallurgical vessel of an electric arc furnace and associated furnace and discharging method The invention relates to a taphole (14) for discharging a metallurgical vessel (12) of an electric arc furnace (10), the taphole (14) comprising a central conduit extending along a longitudinal axis (X) between a top end (32) opening into the vessel (12) and a bottom end (34) for discharging molten steel outside the vessel (12) into an enclosure (24), such as a ladle. The central conduit comprises successively an upstream portion and a downstream portion, and a throttle arranged between the upstream and the downstream portions. The throttle has a constricted cross-section compared to a cross-section of the upstream and downstream portions, so as to generate a Venturi effect when discharging the vessel (12) through the taphole (14).
F27B 3/08 - Hearth-type furnaces, e.g. of reverberatory typeElectric arc furnaces heated electrically, e.g. electric arc furnaces, with or without any other source of heat
F27B 3/19 - Arrangement of devices for discharging
F27D 3/15 - Tapping equipmentEquipment for removing slag
F27D 3/16 - Introducing a fluid jet or current into the charge
45.
STEEL PART HAVING HIGH STRENGTH AND HIGH BENDABILITY
Steel part having a chemical composition comprising, by weight %, 0.18 ≤ C ≤ 0.27, 0.18 ≤ Si ≤ 0.30, 1.0 ≤ Mn ≤ 1.5, 0.14 ≤ Cr ≤ 0.25, 0.02 ≤ Al ≤ 0.06, 0.02 ≤ Ti ≤ 0.06, 0.0020 ≤ B ≤ 0.0040, 0 ≤ S ≤ 0.008, 0.008 ≤ N ≤ 0.020, the remainder of the composition being iron and unavoidable impurities resulting from the elaboration process, having a microstructure comprising, in surface fraction, 95% or more of martensite, wherein the surface fraction of TiN particles in the skin portion is equal to or greater than 200*10-6 inclusions / mm² and the average equivalent diameter of said TiN particles in the skin portion is equal to or smaller than 2.0 microns.
A method for erecting a portion of a transportation structure including a first assembly of tube segments, capable of being placed under low air pressure and through which pods may travel substantially free of air friction, the method including: (a) erecting a substructure including a first plurality of girders forming a first transportation pathway and a plurality of platforms forming a service pathway, the erecting step including conveying with vehicle(s) the girders and platforms along the first transportation pathway, positioning them and having the vehicle(s) return along the service pathway, (b) conveying, with vehicle(s), the tube segments along the first transportation pathway, positioning them and having the vehicle(s) return along the service pathway. A portion of a transportation structure is also provided.
2. This allows to manufacture hot pressed parts having a tensile strength equal to or greater than 1300 MPa and a bending angle normalized to 1.5 mm and measured in the transverse direction strictly greater than 48°.
A portion of transportation structure including: 1) a substructure including a plurality of piers, a first plurality of girders positioned on at least some of the piers and forming a first transportation pathway, 2) a first assembly of tube segments, capable of being placed under low air pressure and through which pods may travel substantially free of air friction, the first assembly of tube segments been positioned on the first transportation pathway and each tube segment comprising: a) a main tube with legs distributed along the length of the main tube and suitable for the main tube to rest on the substructure on its legs, b) shims positioned in-between the substructure and at least part of the legs, the thickness of each shim been adapted so that the deflection of the substructure between piers is offset.
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.15% ≤ Manganese ≤ 0.25%, 3.2% ≤ Silicon ≤ 3.8%, 0.7% ≤ Aluminum ≤ 1.3 %, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%,0.001% ≤ Nickel ≤ 0.01, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss less than 33 % when calculated in accordance with Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.630T to 1.65T.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.05% ≤ Manganese ≤ 0.15%, 2.5% ≤ Silicon ≤ 3.1%, 0.26% ≤ Aluminum ≤ 0.7 %, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0% ≤ Nickel ≤ 1%, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss from 35% to 45% when calculated in accordance of Bertotti method.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a double cold rolled non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.15% ≤ Manganese ≤ 0.3%, 3.2% ≤ Silicon ≤ 3.8%, 0.8% ≤ Aluminum ≤ 1.1%, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0.001% ≤ Nickel ≤ 0.01, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss less than 30% when calculated in accordance of Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.66T to 1.69T.
C22C 38/16 - Ferrous alloys, e.g. steel alloys containing copper
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.15% ≤ Manganese ≤ 0.2%, 3% ≤ Silicon ≤ 3.6%, 0.7% ≤ Aluminum ≤ 1.3 %, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09% with 3.85% ≤ Si+Al+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0% ≤ Nickel ≤ 1%, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and eddy current loss in total iron loss of 35 to 55% when calculated in accordance with Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.635T to 1.670T.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.005 %, 0.2% ≤ Manganese ≤ 0.3% 3.1% ≤ Silicon ≤ 3.6%, 0.6% ≤ Aluminum ≤ 1 % 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 % 0 % ≤ Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0% ≤ Nickel ≤ 1% 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss from 30% to 35% when calculated in accordance of Bertotti method.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.09% ≤ Manganese ≤ 0.15%, 2.5% ≤ Silicon ≤ 3%, 0.1% ≤ Aluminum ≤ 0.5 %, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0% ≤ Nickel ≤ 1%, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss from 35% to 45% when calculated in accordance of Bertotti method.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
Method of producing steel with using steel scrap in electric arc furnace The method of producing steel using an Electrical Arc Furnace (EAF) comprising successively loading a load (L) in the EAF, the load (L) containing steel scrap (SC), energizing the electrodes of the EAF for melting the load (L) and generating a melt (M); introducing a desulphurizing slagging agent in the EAF for generating a desulphurizing slag (S1) above the melt (M) and then removing the desulphurizing slag (S1) from the EAF, and injecting oxygen in the EAF for decarburizing the melt (M).
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 % 0.18% ≤ Manganese ≤ 0.5% 3.1% ≤ Silicon ≤ 3.8% 0.7% ≤ Aluminum ≤ 1.3 % Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% with 3.85% ≤ Si+Al+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0% ≤ Nickel ≤ 1% 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin ≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110 microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, less than 34 % when calculated in accordance with Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.60T to 1.65T.
C22C 38/42 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 % 0.15% ≤ Manganese ≤ 0.25% 2.9% ≤ Silicon ≤ 3.4% 0.8% ≤ Aluminum ≤ 1.1 % Phosphorus ≤ 0.15 % Sulfur ≤ 0.006 % Nitrogen ≤ 0.09% with 3.85% ≤ Si+Al+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0% ≤ Nickel ≤ 1% 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, less than 25% when calculated in accordance of Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.625T to 1.690T.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a double cold rolled non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 % 0.2% ≤ Manganese ≤ 0.24% 3.1% ≤ Silicon ≤ 3.5% 0.8% ≤ Aluminum ≤ 1.1% Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0.001% ≤ Nickel ≤ 0.01 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, less from 30% to 35% when calculated in accordance of Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.645T to 1.660T.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 % 0.05% ≤ Manganese ≤ 0.15% 2.5% ≤ Silicon ≤ 3.1% 0.26% ≤ Aluminum ≤ 0.7 % Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0% ≤ Nickel ≤ 1% 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110 microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, from 35% to 45% when calculated in accordance of Bertotti method.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 % 0.17% ≤ Manganese ≤ 0.4% 3% ≤ Silicon ≤ 3.6% 0.7% ≤ Aluminum ≤ 1.3 % Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% with 3.85% ≤ Si+Al+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0% ≤ Nickel ≤ 1% 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, less than 25% when calculated in accordance of Bertotti method.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a double cold rolled non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 % 0.15% ≤ Manganese ≤ 0.3% 3.2% ≤ Silicon ≤ 3.8% 0.8% ≤ Aluminum ≤ 1.1% Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0.001% ≤ Nickel ≤ 0.01 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110 microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, less than 30% when calculated in accordance of Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.66T to 1.69T.
C22C 38/16 - Ferrous alloys, e.g. steel alloys containing copper
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 % 0.30% ≤ Manganese ≤ 0.7% 3% ≤ Silicon ≤ 3.6% 0.4% ≤ Aluminum ≤ 0.8 % 0.05% ≤ Tin≤ 0.15% Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0% ≤ Nickel ≤ 1% 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, from 25% to 35% when calculated in accordance of Bertotti method.
C22C 38/34 - Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
C22C 38/40 - Ferrous alloys, e.g. steel alloys containing chromium with nickel
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 % 0.21% ≤ Manganese ≤ 0.7% 3% ≤ Silicon ≤ 3.6% 0.7% ≤ Aluminum ≤ 1.3 % Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% with 3.85% ≤ Si+Al+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0% ≤ Nickel ≤ 1% 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, from 35% to 45% when calculated in accordance of Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.63T to 1.66T.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 % 0.15% ≤ Manganese ≤ 0.25% 3.2% ≤ Silicon ≤ 3.8% 0.7% ≤ Aluminum ≤ 1.3 % Phosphorus ≤ 0.15 % Sulfur ≤ 0.006 % Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0.001% ≤ Nickel ≤ 0.01 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, less than 33 % when calculated in accordance with Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.630T to 1.65T.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a double cold rolled non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 % 0.1% ≤ Manganese ≤ 0.2% 3.1% ≤ Silicon ≤ 3.6% 0.8% ≤ Aluminum ≤ 1.1% Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0.001% ≤ Nickel ≤ 0.01 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110 microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, is from 35% to 45% when calculated in accordance of Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.64T to 1.66T.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
A method for erecting a portion of a transportation structure including a plurality of piers, a plurality of platforms forming a service pathway, a first plurality of girders forming a first assembly of tube segments and a first rooftop transportation pathway, a second plurality of girders forming a second assembly of tube segments and a second rooftop transportation pathway, both assemblies being capable of being placed under low air pressure and through which pods may travel substantially free of air friction, the method including conveying with vehicle(s) the girders and platforms along the first and/or second rooftop transportation pathway, positioning them and having the vehicle(s) return along the service pathway. A portion of a transportation structure is also provided.
E01D 18/00 - Bridges specially adapted for particular applications or functions not provided for elsewhere, e.g. aqueducts, bridges for supporting pipe-lines
E01D 21/06 - Methods or apparatus specially adapted for erecting or assembling bridges by translational movement of the bridge or bridge sections
A method for erecting a portion of a transportation structure including two assemblies of tube segments, capable of being placed under low air pressure and through which pods may travel substantially free of air friction, the method including: (a) erecting a substructure including a first plurality of girders forming a first transportation pathway and a second plurality of girders forming a second transportation pathway, the erecting step including conveying with vehicle(s) the girders along one single transportation pathway, positioning them and having the vehicle(s) return along the other transportation pathway, (b) conveying, with vehicle(s), the tube segments along one single transportation pathway, positioning them and having the vehicle(s) return along the other transportation pathway. A portion of a transportation structure is also provided.
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.18% ≤ Manganese ≤ 0.5%, 3.1% ≤ Silicon ≤ 3.8%, 0.7% ≤ Aluminum ≤ 1.3 %, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09%, with 3.85% ≤ Si+Al+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0% ≤ Nickel ≤ 1%, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss less than 34 % when calculated in accordance with Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.60T to 1.65T.
C22C 38/42 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.009 %, 0.25% ≤ Manganese ≤ 0.6%, 1% ≤ Silicon ≤ 2.5%, 0.15% ≤ Aluminum ≤ 0.3 %, 0.05% ≤ Tin≤ 0.15%, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0% ≤ Nickel ≤ 1%, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss from 35% to 50% when calculated in accordance of Bertotti method.
C22C 38/08 - Ferrous alloys, e.g. steel alloys containing nickel
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.15% ≤ Manganese ≤ 0.25%, 2.9% ≤ Silicon ≤ 3.4%, 0.8% ≤ Aluminum ≤ 1.1 %, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09%,with 3.85% ≤ Si+Al+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0% ≤ Nickel ≤ 1%, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss less than 25% when calculated in accordance of Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.625T to 1.690T.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.15% ≤ Manganese ≤ 0.7%, 3% ≤ Silicon ≤ 3.6%, 0.7% ≤ Aluminum ≤ 1.3 %, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09% with 3.85% ≤ Si+Al+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0% ≤ Nickel ≤ 1%, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss from 30 to 40% when calculated in accordance with Bertotti method.
C22C 38/34 - Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
C22C 38/42 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a double cold rolled non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.2% ≤ Manganese ≤ 0.24%, 3.1% ≤ Silicon ≤ 3.5%, 0.8% ≤ Aluminum ≤ 1.1%, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0.001% ≤ Nickel ≤ 0.01, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss less from 30% to 35% when calculated in accordance of Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.645T to 1.660T.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.17% ≤ Manganese ≤ 0.4%, 3% ≤ Silicon ≤ 3.6%, 0.7% ≤ Aluminum ≤ 1.3 %, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09%, with 3.85% ≤ Si+Al+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0% ≤ Nickel ≤ 1%, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non- recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss less than 25% when calculated in accordance of Bertotti method.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.15% ≤ Manganese ≤ 0.25%, 2.9% ≤ Silicon ≤ 3.4%, 0.7% ≤ Aluminum ≤ 1.3 %,0.05% ≤ Nickel ≤ 1%, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09%, with 3.85% ≤ Si+Al+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss less than 35% when calculated in accordance of Bertotti method.
C22C 38/34 - Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
C22C 38/42 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a double cold rolled non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.1% ≤ Manganese ≤ 0.2%, 3.1% ≤ Silicon ≤ 3.6%, 0.8% ≤ Aluminum ≤ 1.1%, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0.001% ≤ Nickel ≤ 0.01, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss is from 35% to 45% when calculated in accordance of Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.64T to 1.66T.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.30% ≤ Manganese ≤ 0.7%, 3% ≤ Silicon ≤ 3.6%, 0.4%, ≤ Aluminum ≤ 0.8 %, 0.05% ≤ Tin≤ 0.15%, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0% ≤ Nickel ≤ 1%, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss from 25% to 35% when calculated in accordance of Bertotti method.
C22C 38/34 - Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
C22C 38/40 - Ferrous alloys, e.g. steel alloys containing chromium with nickel
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.21% ≤ Manganese ≤ 0.7%, 3% ≤ Silicon ≤ 3.6%, 0.7% ≤ Aluminum ≤ 1.3 %, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09%, with 3.85% ≤ Si+Al+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0% ≤ Nickel ≤ 1%, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss from 35% to 45% when calculated in accordance of Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.63T to 1.66T.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a double cold rolled non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 %, 0.1% ≤ Manganese ≤ 0.3%, 3.1% ≤ Silicon ≤ 3.8%, 0.6% ≤ Aluminum ≤ 0.8%, 0 % ≤ Phosphorus ≤ 0.15 %, 0 % ≤ Sulfur ≤ 0.006 %, 0 % ≤ Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1%, 0% ≤ Titanium ≤ 0.1%, 0% ≤ Vanadium ≤ 0.1%, 0% ≤ Chromium ≤ 1%, 0% ≤ Molybdenum ≤ 0.5%, 0% ≤ Tungsten≤ 0.1%, 0% ≤ Cobalt ≤ 1%, 0% ≤ Arsenic ≤ 0.05%, 0.001% ≤ Calcium ≤ 0.01%, 0% ≤ Copper ≤ 1%, 0.001% ≤ Nickel ≤ 0.01, 0 % ≤ Boron ≤ 0.05%, 0 % ≤ Lead ≤ 0.2%, 0% ≤ Tin≤ 0.2%, 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current loss in total iron loss of 40 to 50% when calculated in accordance with Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.66T to 1.7T.
C22C 38/20 - Ferrous alloys, e.g. steel alloys containing chromium with copper
C22C 38/34 - Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.009 % 0.25% ≤ Manganese ≤ 0.6% 1% ≤ Silicon ≤ 2.5% 0.15% ≤ Aluminum ≤ 0.3 % 0.05% ≤ Tin≤ 0.15% Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0% ≤ Nickel ≤ 1% 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110 microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, from 35% to 50% when calculated in accordance of Bertotti method.
C22C 38/08 - Ferrous alloys, e.g. steel alloys containing nickel
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001 % ≤ Carbon ≤ 0.007 % 0.09% ≤ Manganese ≤ 0.15% 2.5% ≤ Silicon ≤ 3% 0.1 % ≤ Aluminum ≤ 0.5 % Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1 % 0% ≤ Titanium ≤ 0.1 % 0% ≤ Vanadium ≤ 0.1 % 0% ≤ Chromium ≤ 1 % 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1 % 0% ≤ Cobalt ≤ 1 % 0% ≤ Arsenic ≤ 0.05% 0.001 % ≤ Calcium ≤ 0.01 % 0% ≤ Copper ≤ 1 % 0% ≤ Nickel ≤ 1 % 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, from 35% to 45% when calculated in accordance of Bertotti method.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 % 0.15% ≤ Manganese ≤ 0.7% 3% ≤ Silicon ≤ 3.6% 0.7% ≤ Aluminum ≤ 1.3 % Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% with 3.85% ≤ Si+Al+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0% ≤ Nickel ≤ 1% 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, from 30 to 40% when calculated in accordance with Bertotti method.
C22C 38/34 - Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
C22C 38/42 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001 % ≤ Carbon ≤ 0.007 % 0.15% ≤ Manganese ≤ 0.2% 3% ≤ Silicon ≤ 3.6% 0.7% ≤ Aluminum ≤ 1.3 % Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% with 3.85% ≤ Si+AI+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1 % 0% ≤ Titanium ≤ 0.1 % 0% ≤ Vanadium ≤ 0.1 % 0% ≤ Chromium ≤ 1 % 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten ≤ 0.1 % 0% ≤ Cobalt ≤ 1 % 0% ≤ Arsenic ≤ 0.05% 0.001 % ≤ Calcium ≤ 0.01 % 0% ≤ Copper ≤ 1 % 0% ≤ Nickel ≤ 1 % 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110 microns and eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, of 35 to 55% when calculated in accordance with Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.635T to 1.670T.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 % 0.15% ≤ Manganese ≤ 0.25% 2.9% ≤ Silicon ≤ 3.4% 0.7% ≤ Aluminum ≤ 1.3 % 0.05% ≤ Nickel ≤ 1% Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% with 3.85% ≤ Si+Al+Mn ≤ 5.5% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, less than 35% when calculated in accordance of Bertotti method.
C22C 38/34 - Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
C22C 38/42 - Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.005 % 0.2% ≤ Manganese ≤ 0.3% 3.1% ≤ Silicon ≤ 3.6% 0.6% ≤ Aluminum ≤ 1 % Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0% ≤ Nickel ≤ 1% 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of 18 recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, from 30% to 35% when calculated in accordance of Bertotti method.
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The invention deals with a double cold rolled non-oriented electrical steel sheet having a composition comprising of the following elements, expressed in percentage by weight: 0.0001% ≤ Carbon ≤ 0.007 % 0.1% ≤ Manganese ≤ 0.3% 3.1% ≤ Silicon ≤ 3.8% 0.6% ≤ Aluminum ≤ 0.8% Phosphorus ≤ 0.15 % Sulfur ≤ 0.006% Nitrogen ≤ 0.09% and can contain one or more of the following optional elements 0% ≤ Niobium ≤ 0.1% 0% ≤ Titanium ≤ 0.1% 0% ≤ Vanadium ≤ 0.1% 0% ≤ Chromium ≤ 1% 0% ≤ Molybdenum ≤ 0.5% 0% ≤ Tungsten≤ 0.1% 0% ≤ Cobalt ≤ 1% 0% ≤ Arsenic ≤ 0.05% 0.001% ≤ Calcium ≤ 0.01% 0% ≤ Copper ≤ 1% 0.001% ≤ Nickel ≤ 0.01 0 % ≤ Boron ≤ 0.05% 0 % ≤ Lead ≤ 0.2% 0% ≤ Tin≤ 0.2% 0% ≤Antimony ≤ 0.2% the remainder composition being composed of iron and unavoidable impurities caused by processing, the microstructure of said steel sheet being made of ferrite and comprising in area fraction, 80% to 100% recrystallized microstructure, 0% to 20% non-recrystallized microstructure wherein the average grain size of recrystallized microstructure is from 20 microns to 110microns and having a percentage of eddy current losses in total iron losses, measured at 1 T and 400 Hz according to IEC 60404-2 standards, of 40 to 50% when calculated in accordance with Bertotti method and simultaneously having a magnetic polarization at 5000A/m (J50) from 1.66T to 1.7T.
C22C 38/20 - Ferrous alloys, e.g. steel alloys containing chromium with copper
C22C 38/34 - Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for sheet metals
C21D 8/12 - Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
The method of producing steel using an Electrical Arc Furnace (EAF) comprising successively loading a load (L) in the EAF, the load (L) containing steel scrap (SC), energizing the electrodes of the EAF for melting the load (L) and generating a melt (M); introducing a desulphurizing slagging agent in the EAF in the melt (M) for collecting sulphur in a slag (S1) above the melt (M) and then removing the slag (S1) from the EAF, and injecting oxygen in the EAF for decarburizing the melt (M).
The invention relates to an entry airlock for a vacuum chamber (4) of a facility for the vacuum processing of a moving strip (2), the airlock being of the type comprising at least one liquid tank (5) containing a liquid (11), the liquid tank comprising an upstream compartment (6) and a downstream compartment (7) separated by a vertical partition (8), which creates, in the lower portion of the tank, an unobstructed passage (9) between the two compartments, in which a guide roller (10) for guiding a strip is arranged. The airlock comprises a downstream pumping chamber (13) extending from the downstream compartment (7) and connected to a pumping means (15), in which a liquid extraction means (17) is arranged, wherein the downstream pumping chamber comprises an outlet slot (17) for a strip, and wherein the airlock comprises a means (12) for cooling the liquid (11) contained in the liquid container.
A method for erecting a portion of a transportation structure including two assemblies of tube segments, capable of being placed under low air pressure and through which pods may travel substantially free of air friction, the method including: (a) erecting a substructure including a first plurality of girders forming a first transportation pathway, a second plurality of girders forming a second transportation pathway and a plurality of platforms forming a service pathway, the erecting step including conveying with vehicle(s) the girders and platforms along the first and/or second transportation pathway, positioning them and having the vehicle(s) return along the service pathway, (b) conveying, with vehicle(s), the tube segments along the first and/or second transportation pathway, positioning them and having the vehicle(s) return along the service pathway. A portion of a transportation structure is also provided.
E01D 18/00 - Bridges specially adapted for particular applications or functions not provided for elsewhere, e.g. aqueducts, bridges for supporting pipe-lines
A method for erecting a portion of a transportation structure including a plurality of piers, a first plurality of girders forming a first assembly of tube segments and a first rooftop transportation pathway, a second plurality of girders forming a second assembly of tube segments and a second rooftop transportation pathway, both assemblies being capable of being placed under low air pressure and through which pods may travel substantially free of air friction, the method including conveying with vehicle(s) the girders along one single rooftop transportation pathway, positioning them and having the vehicle(s) return along the other rooftop transportation pathway. A portion of a transportation structure is also provided.
E01D 18/00 - Bridges specially adapted for particular applications or functions not provided for elsewhere, e.g. aqueducts, bridges for supporting pipe-lines
A method of continuous casting of a composite metallic product having a distinct shell and bulk of different compositions, said shell having a constant thickness, said method comprising the steps of: A. pouring an initial stream of liquid metal from a tundish into a mold with an initial flow rate FRini using a continuous casting nozzle, B. injecting raw material into at least one of said mixing chambers to be mixed with liquid metal flowing into said mixing chamber to modify its composition, C. injecting gas below said dome with a defined gas flowrate GFR, D. regulating the initial flow rate FRini, the gas flowrate GFR, the outlets immersion depths D1 and D2 and the casting speed Vc to obtain a composite metallic product.
iii) arranged along a belt (2) of the conveyor, below the belt, - determining a temperature rise slope from at least some of the wind boxes temperatures, the temperature rise slope representing the slope of the temperature as a function of a position along the belt of the conveyor, upstream of a maximum temperature position, - controlling a speed of the belt of the conveyor depending on the temperature rise slope.
The invention relates to a method of continuous casting of a composite metallic product having a shell of a defined thickness, comprising the steps of: A. pouring a stream of liquid metal from a tundish into a mold with a flow rate FR using a nozzle comprising: − a dome − two chambers created by an internal wall − means for injecting raw material − means for injecting gas − channels connected to the chambers and opening into the mold at two different immersion depths D1 and D2, B. injecting raw material into one chamber to be mixed with liquid to modify its composition, creating two pools of liquid metal having different compositions, separated by an interface at a depth Li C. injecting gas below said dome D. regulating FR, D1, D2 and the casting speed to regulate Li to obtain a composite metallic product with a defined shell thickness.
A leak-proof gas injected upper tundish nozzle including a protective can, and a ceramic inner portion disposed within the protective can. The ceramic inner portion may has gas flow pathways therein which have been formed using a sacrificial mold when producing the ceramic inner portion. A gas flow seal is formed on the interior surfaces of the gas flow pathways within the ceramic inner portion. The gas flow seal blocks gas leakage from the gas flow pathways into any cracks in the ceramic inner portion. The gas flow seal is formed of nickel or an alloy of nickel.
A steel sheet having a chemical composition including in wt % C: 0.2-0.4%, Mn: 0.8-2.0%, Si: 0.1-0.5%, Al: 0.01-0.1%, Ti: 0.01-0.1%, B: 0.0005-0.005%, P≤0.040%, Ca≤0.01%, S≤0.006%, N≤0.01%. The steel sheet includes from the bulk to the surface of the coated steel sheet a bulk and a skin layer occupying the outermost 10% of the thickness on either side of the bulk. The bulk is topped by a skin layer occupying the outermost 10% of the thickness on either side of the bulk, the density of TiN/Ti(C,N) inclusions in the skin being smaller than 240 particles/mm2 and the clustering index of MnS inclusions in the skin being lower than 110 μm/mm2. This allows to manufacture hot pressed parts having a tensile strength equal to or greater than 1300 MPa and a bending angle normalized to 1.5 mm and measured in the transverse direction strictly greater than 48°.
A steel sheet having a chemical composition including in wt % C: 0.2-0.4%, Mn: 0.8-2.0%, Si: 0.1-0.5%, Al: 0.01-0.1%, Ti: 0.01-0.1%, B: 0.0005-0.005%, P≤0.040%, Ca≤0.01%, S≤0.006%, N≤0.01%. The steel sheet includes from the bulk to the surface of the coated steel sheet a bulk and a skin layer occupying the outermost 10% of the thickness on either side of the bulk. The bulk is topped by a skin layer occupying the outermost 10% of the thickness on either side of the bulk, the density of TiN/Ti(C,N) inclusions in the skin being smaller than 240 particles/mm2 and the clustering index of MnS inclusions in the skin being lower than 110 μm/mm2. This allows to manufacture hot pressed parts having a tensile strength equal to or greater than 1300 MPa and a bending angle normalized to 1.5 mm and measured in the transverse direction strictly greater than 48°.
A hot dip coating equipment able to coat a steel strip (1) running along a given path, comprising a liquid metal bath, having a bath level (2), provided with one sink roll (3) and at least one stabilizing roll (4), a pair of gas knives (5), wherein said equipment is fitted with at least one drain channel (6) forming a chute starting at the bath level (2), pumping means (7) being connected to the drain channel (6), and wherein said drain channel does not include any portion crossing an extraction line (12) formed by an intersection of the bath level (2) with the steel strip (1) at the point where the strip leaves the bath.
An installation for continuously hot dip coating a steel strip (1) comprising: - a liquid metal bath (2), - gas wiping nozzles equipped with lips (3) and with a lip cleaning tool (4) able to be moved along the nozzle lips, - confinement boxes (5) enclosing the atmosphere around the steel strip path above the wiping nozzles, - a lip cleaning space (6) being provided between said gas wiping nozzles and said confinement boxes, - means for feeding non-oxidizing gas into the confinement boxes (5), - means for feeding gas into said cleaning space (6).
C23C 2/00 - Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shapeApparatus therefor
B05C 11/06 - Apparatus for spreading or distributing liquids or other fluent materials already applied to a surfaceControl of the thickness of a coating with a blast of gas or vapour
C23C 2/06 - Zinc or cadmium or alloys based thereon
C23C 2/16 - Removing excess of molten coatingsControlling or regulating the coating thickness using fluids under pressure, e.g. air knives
C23C 2/18 - Removing excess of molten coatings from elongated material
A steel sheet hasa chemical composition including in wt % C: 0.2-0.4%, Mn: 0.8-2.0%, Si: 0.1-0.5%, Al: 0.01-0.1%, Ti: 0.01-0.1%, B: 0.0005-0.005%, P≤0.040%, Ca≤0.01%, S≤0.006%, N≤0.01%. The steel sheet includes from the bulk to the surface of the coated steel sheet a bulk and a skin layer occupying the outermost 10% of the thickness on either side of the bulk. The bulk includes an inclusion population in which the sum of clustering indexes of MnS and TiN/Ti(C,N) inclusions is less than or equal to 300 μm/mm2. This allows to manufacture hot pressed parts having a tensile strength equal to or greater than 1300 MPa and a bending anisotropy equal to or lower than 7°.
A hot dip coating equipment able to coat a steel strip (1) running along a given path, comprising a liquid metal bath, having a bath level (2), provided with one sink roll (3) and at least one stabilizing roll (4), a pair of gas knives (5), wherein said equipment is fitted with at least one drain channel (6) forming a chute starting at the bath level (2), pumping means (7) being connected to the drain channel (6), and wherein said drain channel does not include any portion crossing an extraction line (12) formed by an intersection of the bath level (2) with the steel strip (1) at the point where the strip leaves the bath.
An installation for continuously hot dip coating a steel strip (1) comprising: - a liquid metal bath (2), - gas wiping nozzles equipped with lips (3) and with a lip cleaning tool (4) able to be moved along the nozzle lips, - confinement boxes (5) enclosing the atmosphere around the steel strip path above the wiping nozzles, - a lip cleaning space (6) being provided between said gas wiping nozzles and said confinement boxes, - means for feeding non-oxidizing gas into the confinement boxes (5), - means for feeding gas into said cleaning space (6).
C23C 2/00 - Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shapeApparatus therefor
B05C 11/06 - Apparatus for spreading or distributing liquids or other fluent materials already applied to a surfaceControl of the thickness of a coating with a blast of gas or vapour
C23C 2/06 - Zinc or cadmium or alloys based thereon
C23C 2/16 - Removing excess of molten coatingsControlling or regulating the coating thickness using fluids under pressure, e.g. air knives
C23C 2/18 - Removing excess of molten coatings from elongated material