Nippon Mining & Metals Co., Ltd.

Japan

Back to Profile

1-100 of 138 for Nippon Mining & Metals Co., Ltd. Sort by
Query
Excluding Subsidiaries
Aggregations Reset Report
IPC Class
C23C 14/34 - Sputtering 38
C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working 18
C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent 17
C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon 17
C22C 9/04 - Alloys based on copper with zinc as the next major constituent 14
See more
Found results for  patents
  1     2        Next Page

1.

COPPER FOIL FOR PRINTED CIRCUIT BOARD AND COPPER CLAD LAMINATE PLATE FOR PRINTED CIRCUIT BOARD

      
Application Number JP2009059839
Publication Number 2009/154066
Status In Force
Filing Date 2009-05-29
Publication Date 2009-12-23
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Moriyama Terumasa
  • Kaminaga Kengo

Abstract

Disclosed is a copper foil for a printed circuit board comprising a roughened surface of a copper foil, a layer containing nickel and zinc or compounds of nickel and zinc (hereinafter referred to as a “nickel zinc layer”), and a chromate film layer on the nickel zinc layer.  The copper foil is characterized in that the weight of zinc deposited per unit area of the copper foil in the nikel zinc layer is not less than 180 μg/dm2 and not more than 3500 μg/dm2, and the proportion of the weight of nickel in the plating film, i.e., {weight of nickel deposited/(weight of nickel deposited + weight of zinc deposited)} is not less than 0.38 and not more than 0.7.  The above constitution can establish a surface treatment technique of a copper foil, which can effectively prevent a circuit erosion phenomenon when a copper foil is stacked on a resin base material and a circuit is subjected to soft etching with a sulfuric acid/hydrogen peroxide etching solution.

IPC Classes  ?

  • C23C 28/00 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and
  • B32B 15/01 - Layered products essentially comprising metal all layers being exclusively metallic
  • C25D 7/06 - Wires; Strips; Foils
  • H05K 3/38 - Improvement of the adhesion between the insulating substrate and the metal

2.

SUBSTRATE

      
Application Number JP2009058811
Publication Number 2009/139366
Status In Force
Filing Date 2009-05-12
Publication Date 2009-11-19
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Imori, toru
  • Hisumi, yoshiyuki

Abstract

Provided is a substrate wherein resistances of a gate electrode and a source/drain region are reduced and current efficiency is increased.  Furthermore, the substrate makes microminiaturization possible and can be manufactured without requiring a complicated process. A metal is selectively deposited on a surface of one or a plurality of regions composed of a predetermined composition on a base material having, on a surface, the region composed of the composition different from that of the surrounding regions, and heat treatment is performed.  On a part of or the entire region whereupon the metal is deposited, a compound, which is composed of the metal and an element constituting the base material surface region whereupon the metal is deposited, is formed.  It is preferable that the compound, which is composed of the metal and the element constituting the base material surface region whereupon the metal is deposited, is formed on a part of the region whereupon the metal is deposited, and that a part of the deposited metal is left as an unreacted metal.

IPC Classes  ?

  • H01L 21/28 - Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups
  • C23C 18/16 - Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, i.e. electroless plating
  • C23C 18/31 - Coating with metals
  • H01L 21/288 - Deposition of conductive or insulating materials for electrodes from a liquid, e.g. electrolytic deposition
  • H01L 29/417 - Electrodes characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
  • H01L 29/423 - Electrodes characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
  • H01L 29/49 - Metal-insulator semiconductor electrodes

3.

POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM ION BATTERY, POSITIVE ELECTRODE FOR RECHARGEABLE BATTERY, AND LITHIUM ION BATTERY

      
Application Number JP2009052976
Publication Number 2009/128289
Status In Force
Filing Date 2009-02-20
Publication Date 2009-10-22
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Nagase, Ryuichi
  • Kajiya, Yoshio

Abstract

Disclosed is a positive electrode active material for a positive electrode material in a lithium ion battery that can more reliably ensure the characteristics and safety of a lithium ion battery by investigating the relationship between the content of cobalt (Co) considered as being involved in a crystal structure and a lattice constant, specifying the relationship to realize a positive electrode active material having high crystallinity, high capacity and high safety and using this material. The positive electrode active material comprises a lithium-containing nickel manganese cobalt composite oxide having a layered structure and represented by LiaNixMnyCozO2 wherein 1.0 < a < 1.3 and 0.8 < x + y + z < 1.1. The positive electrode active material satisfies a molar volume upper limit requirement of Vm = 21.276 - 0.0117z and a molar volume lower limit requirement of Vm = 21.164 - 0.0122z in a region of a graph in which a molar volume Vm estimated by a lattice constant calculated from a (018) plane and a (113) plane in a powder X ray diffraction pattern using a CuKα radiation is plotted as the ordinate and the content z of Co in a metal component (% by mole) is plotted as the abscissa. In this case, both the half value width of the (018) plane and the half value width of the (113) plane are not more than 0.200°.

IPC Classes  ?

  • H01M 4/50 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
  • H01M 4/52 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
  • H01M 10/36 - Accumulators not provided for in groups

4.

LOW PARTICULATE-GENERATING SPUTTERING TARGET

      
Application Number JP2009056299
Publication Number 2009/123055
Status In Force
Filing Date 2009-03-27
Publication Date 2009-10-08
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor Koide, Kei

Abstract

Disclosed is a low particulate-generating sputtering target, wherein the target surface contains 1 to 50%, by volume ratio, of an intermetallic compound, oxide, carbide, carbonitride, or other non-ductile substance in a highly ductile matrix phase, and wherein the center-line average surface roughness Ra is 0.1 쎽m or less, the 10-point average roughness Rz is 0.4 쎽m or less, the distance between local peaks (roughness motif) AR is 120 쎽m or less, and the average amplitude in the wave motif AW is 1500 쎽m or greater. Provided are a sputtering target wherein the target surface, which contains large amounts of non-ductile substance, is improved, and whereby the generation of nodules and particles during sputtering can be prevented or suppressed, and a method of processing said surface.

IPC Classes  ?

5.

TIN-PLATED CU-NI-SI ALLOY STRIP WITH EXCELLENT UNSUSCEPTIBILITY TO THERMAL TIN DEPOSIT PEELING

      
Application Number JP2009056539
Publication Number 2009/123139
Status In Force
Filing Date 2009-03-30
Publication Date 2009-10-08
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Nagano, Masayuki

Abstract

A tin-plated Cu-Ni-Si alloy strip having excellent unsusceptibility to thermal tin deposit peeling. The tin-plated copper alloy strip is a tin-plated strip of a copper alloy which contains 1.0-4.5 mass% nickel and contains silicon in an amount of 1/6 to 1/4 the mass% of the nickel and which optionally contains at least one member selected from a group consisting of zinc, tin, magnesium, cobalt, silver, chromium, and magnesium in a total amount of 2.0 mass% or smaller, the remainder being copper and incidental impurities. The interface between the copper alloy and the deposit phase directly overlying the alloy has a silicon concentration which is not higher than 120% of the silicon concentration of the copper alloy composition.

IPC Classes  ?

  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
  • C22C 9/00 - Alloys based on copper
  • C22C 9/02 - Alloys based on copper with tin as the next major constituent
  • C22C 9/04 - Alloys based on copper with zinc as the next major constituent
  • C22C 9/05 - Alloys based on copper with manganese as the next major constituent
  • C25D 5/12 - Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
  • C25D 5/34 - Pretreatment of metallic surfaces to be electroplated
  • C25D 7/00 - Electroplating characterised by the article coated
  • H01B 5/02 - Single bars, rods, wires or strips; Bus-bars

6.

Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME

      
Application Number JP2009054563
Publication Number 2009/122869
Status In Force
Filing Date 2009-03-10
Publication Date 2009-10-08
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Kuwagaki, Hiroshi
  • Era, Naohiko

Abstract

A Cu-Ni-Si-Co alloy is provided which has mechanical and electrical properties which render the alloy suitable as a copper alloy for electronic materials. The alloy is even in mechanical properties. This copper alloy for electronic materials contains 1.0-2.5 mass% nickel, 0.5-2.5 mass% cobalt, and 0.3-1.2 mass% silicon, with the remainder being copper and incidental impurities. This alloy has an average crystal-grain diameter of 15-30 µm, and the average difference between a maximum crystal-grain diameter and a minimum crystal-grain diameter for examination fields of view each having an area of 0.5 mm2 is 10 µm or less.

IPC Classes  ?

  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
  • C22C 9/00 - Alloys based on copper
  • C22C 9/01 - Alloys based on copper with aluminium as the next major constituent
  • C22C 9/02 - Alloys based on copper with tin as the next major constituent
  • C22C 9/04 - Alloys based on copper with zinc as the next major constituent
  • C22C 9/10 - Alloys based on copper with silicon as the next major constituent
  • H01B 1/02 - Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
  • H01B 5/02 - Single bars, rods, wires or strips; Bus-bars
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

7.

CU-NI-SI ALLOY FOR ELECTRONIC MATERIALS

      
Application Number JP2009056535
Publication Number 2009/123136
Status In Force
Filing Date 2009-03-30
Publication Date 2009-10-08
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Ookubo, Mitsuhiro

Abstract

Corson alloy characteristics are improved by controlling the distribution profile of Ni-Si compound particles. Disclosed is a copper alloy for electronic materials comprising Ni: 0.4 to 6.0 mass% and Si: 0.1 to 2.0 mass%, and the remainder of which is composed of Cu and inevitable impurities, in which alloy for electronic materials, small Ni-Si compound particles with a particle size of 0.01 쎽m or greater and less than 0.05 쎽m, and large Ni-Si compound particles with a particle size of 0.05 쎽m or greater and less than 5.0 쎽m are present. The quantitative density of the small particles is 106 to 1010 particles per 1 mm2, and the quantitative density of the large particles is 1/10,000 to 1/10 the aforementioned quantitative density of the small particles.

IPC Classes  ?

  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
  • C22C 9/00 - Alloys based on copper
  • C22C 9/01 - Alloys based on copper with aluminium as the next major constituent
  • C22C 9/02 - Alloys based on copper with tin as the next major constituent
  • C22C 9/04 - Alloys based on copper with zinc as the next major constituent
  • C22C 9/05 - Alloys based on copper with manganese as the next major constituent
  • C22C 9/10 - Alloys based on copper with silicon as the next major constituent
  • H01L 23/48 - Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads or terminal arrangements
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

8.

CU-NI-SI-CO-CR ALLOY FOR ELECTRONIC MATERIAL

      
Application Number JP2009056537
Publication Number 2009/123137
Status In Force
Filing Date 2009-03-30
Publication Date 2009-10-08
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Era, Naohiko
  • Kuwagaki, Hiroshi

Abstract

The issue is to provide a Corson alloy which has significantly improved characteristics, specifically high strength and high conductivity, by better demonstrating the effect of Cr addition to a Cu-Ni-Co-Si type alloy. Disclosed is a copper alloy for electronic materials comprising Ni: 1.0-4.5 mass%, Si: 0.50-1.2 mass%, Co: 0.1-2.5 mass%, Cr: 0.0030-0.3 mass%, and Cu and unavoidable impurities as the remainder. The mass concentration ratio of the total mass of Ni and Co with respect to Si (the [Ni+Co]/Si ratio) is 4 ≤ [Ni+Co]/Si ≤ 5. For the Cr-Si compound with a size in the range of 0.1-5 &mgr;m dispersed in the material, the atom concentration ratio of Cr to Si in the dispersed particles is 1 to 5, and the distribution density is from 1x104 particles/mm2 to 1x106 particles/mm2.

IPC Classes  ?

  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
  • C22C 9/00 - Alloys based on copper
  • C22C 9/01 - Alloys based on copper with aluminium as the next major constituent
  • C22C 9/02 - Alloys based on copper with tin as the next major constituent
  • C22C 9/04 - Alloys based on copper with zinc as the next major constituent
  • C22C 9/05 - Alloys based on copper with manganese as the next major constituent
  • C22C 9/10 - Alloys based on copper with silicon as the next major constituent
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

9.

CU-NI-SI ALLOY TO BE USED IN ELECTRICALLY CONDUCTIVE SPRING MATERIAL

      
Application Number JP2009056540
Publication Number 2009/123140
Status In Force
Filing Date 2009-03-30
Publication Date 2009-10-08
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Maeda, Naofumi

Abstract

A Cu-Ni-Si base alloy containing Ni in an amount of 1.0 to 4.0 mass% and Si in a concentration of 1/6 to 1/4 of that of Ni, wherein the density of twin boundaries (Σ3 boundaries) is 15 to 60% of all the grain boundaries. The alloy may further contain Mg: 0.2% or less, Sn: 0.2 to 1%, Zn: 0.2 to 1%, Co: 1 to 1.5%, and/or Cr: 0.05 to 0.2%.

IPC Classes  ?

  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
  • C22C 9/02 - Alloys based on copper with tin as the next major constituent
  • C22C 9/04 - Alloys based on copper with zinc as the next major constituent
  • H01B 1/02 - Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

10.

TINNED COPPER ALLOY BAR WITH EXCELLENT ABRASION RESISTANCE, INSERTION PROPERTIES, AND HEAT RESISTANCE

      
Application Number JP2009056544
Publication Number 2009/123144
Status In Force
Filing Date 2009-03-30
Publication Date 2009-10-08
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Koike, Kenji

Abstract

Disclosed is a tinned bar with excellent abrasion resistance, insertion properties and heat resistance that is suitable for use as conductive spring material. In an electroplating process, the surface of a copper alloy bar is base-plated and then Sn-plated. This is followed by a reflow process. The height difference between the outermost surface of the Sn plating and the outermost point of the Cu-Sn alloy phase of the copper alloy tinned bar is 0.1-0.5 mm, the maximum height of the roughness curve of the Cu-Sn alloy phase is 0.6-1.2 mm, the average length of the roughness curve of the Cu-Sn alloy phase is 2.0-5.0 mm, and preferably 2.0 ≤ Rsm/(y + Rz) ≤ 4.0. From its surface to the base material, the plating film consists of a Sn layer 0.5-1.5 mm thick, a Cu-Sn alloy layer 0.6-2.0 mm thick, and a Cu layer 0-0.8 mm thick, of a Sn layer 0.5-1.5 mm thick, a Cu-Sn layer 0.4-2.0 mm thick, and a Ni layer 0.1-0.8 mm thick.

IPC Classes  ?

  • C25D 7/00 - Electroplating characterised by the article coated
  • C25D 5/10 - Electroplating with more than one layer of the same or of different metals
  • C25D 5/50 - After-treatment of electroplated surfaces by heat-treatment
  • H01R 13/03 - Contact members characterised by the material, e.g. plating or coating materials

11.

PLATINUM POWDER FOR MAGNETIC MATERIAL TARGET, METHOD FOR PRODUCING THE POWDER, METHOD FOR PRODUCING MAGNETIC MATERIAL TARGET COMPOSED OF PLATINUM SINTERED COMPACT, AND THE SINTERED MAGNETIC MATERIAL TARGET

      
Application Number JP2009052844
Publication Number 2009/119196
Status In Force
Filing Date 2009-02-19
Publication Date 2009-10-01
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Sato, Jin

Abstract

Disclosed is a platinum powder for magnetic material targets, which has a particle size distribution of 0.1-5 μm. The impurities contained in the platinum powder for magnetic material targets are limited as follows: sodium, potassium and calcium contents are all less than 20 wt ppm; hydrogen and chlorine contents are respectively less than 500 wt ppm; carbon, nitrogen and oxygen contents are respectively less than 1000 wt ppm; and the other impurities are respectively less than 10 ppm, and less than 100 ppm in total. The platinum powder contains little impurities and can be obtained at low cost. A material suitable for production of a magnetic recording medium can be obtained by using a high-purity sputtering target produced from the platinum powder.

IPC Classes  ?

  • B22F 1/00 - Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
  • B22F 3/14 - Both compacting and sintering simultaneously
  • B22F 9/24 - Making metallic powder or suspensions thereof; Apparatus or devices specially adapted therefor using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
  • C22C 5/04 - Alloys based on a platinum group metal
  • C23C 14/34 - Sputtering
  • C25C 1/20 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals
  • C25C 5/02 - Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions

12.

SINTERED SILICON WAFER

      
Application Number JP2009054846
Publication Number 2009/119338
Status In Force
Filing Date 2009-03-13
Publication Date 2009-10-01
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Suzuki, Ryo
  • Takamura, Hiroshi

Abstract

Disclosed is a sintered silicon wafer which is characterized by having a maximum crystal grain size of not more than 20 &mgr;m, an average crystal grain size of not less than 1 &mgr;m but not more than 10 &mgr;m, a volume ratio of silicon oxide contained in the wafer of not less than 0.01% but not more than 0.2%, a volume ratio of silicon carbide of not less than 0.01% but not more than 0.15%, and a volume ratio of metal silicides of not more than 0.006%. The sintered silicon wafer has a certain strength even when the wafer has a large diameter, and has mechanical properties and smoothness equal or quite similar to those of a single crystal silicon.

IPC Classes  ?

  • C01B 33/02 - Silicon
  • C30B 1/02 - Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
  • C30B 1/12 - Single-crystal growth directly from the solid state by pressure treatment during the growth
  • C30B 29/06 - Silicon

13.

SPUTTERING TARGET OF NONMAGNETIC-IN-FERROMAGNETIC DISPERSION TYPE MATERIAL

      
Application Number JP2009056298
Publication Number 2009/119812
Status In Force
Filing Date 2009-03-27
Publication Date 2009-10-01
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor Sato, Atsushi

Abstract

A sputtering target consisting of a nonmagnetic-in -ferromagnetic dispersion type material. This sputtering target comprises a phase (A) composed of both a ferromagnetic Co-Cr alloy material consisting of 5 to 20 at% Cr and the balance Co and nonmagnetic material particles dispersed in the ferromagnetic Co-Cr alloy material and a flaky structure (B) of a Co-Cr alloy phase which is present in the phase (A) and 30 to 100 &mgr;m in breadth and 50 to 300 &mgr;m in length. The nonmagnetic material particles are each smaller than any imaginary circle formed with a radius of 1&mgr;m around an arbitrary point present within the particle, or alternatively the nonmagnetic material particles have each such shape and dimension that at least two contact or intersection points exist between the imaginary circle and the interface between the ferromagnetic material and the nonmagnetic material. The sputtering target attains high PTF (pass through flux) and enables high-speed film formation by a DC magnetron sputtering device. Further, the sputtering target is decreased in the quantity of particles (dust) or nodules generated in sputtering, so that the variation of quality is reduced to bring about improvement in the mass productivity. The sputtering target comprises fine crystal grains and has a high density.

IPC Classes  ?

  • C23C 14/34 - Sputtering
  • C22C 1/05 - Mixtures of metal powder with non-metallic powder
  • C22C 1/10 - Alloys containing non-metals
  • C22C 19/07 - Alloys based on nickel or cobalt based on cobalt
  • C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
  • C22C 49/08 - Iron group metals
  • C22C 49/14 - Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
  • G11B 5/851 - Coating a support with a magnetic layer by sputtering
  • H01F 10/16 - Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
  • H01F 41/18 - Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

14.

ELECTROLYTIC SOLUTION FOR PRODUCING ELECTROLYTIC COPPER FOIL

      
Application Number JP2009054566
Publication Number 2009/116432
Status In Force
Filing Date 2009-03-10
Publication Date 2009-09-24
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Hanabusa, Mikio

Abstract

An electrolytic copper solution for producing an electrolytic copper foil is provided which can improve elongation properties while reducing the profile of the rough surface. The electrolytic solution for electrolytic-copper foil production is a sulfuric-acid-acidified aqueous copper sulfate solution containing: bromide ions derived from bromine, an inorganic acid thereof, an inorganic salt thereof, or a mixture of these; a glue; and chloride ions.

IPC Classes  ?

15.

SINTERED TARGET AND METHOD FOR PRODUCTION OF SINTERED MATERIAL

      
Application Number JP2008072296
Publication Number 2009/116213
Status In Force
Filing Date 2008-12-09
Publication Date 2009-09-24
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Fukuyo, Hideaki
  • Yahagi, Masataka
  • Yamakoshi, Yasuhiro
  • Takahashi, Hideyuki

Abstract

Disclosed is a sintered target which comprises the elements (A) and (B) shown below, in which pores having an average diameter of 1 &mgr;m or more are not formed, and in which 100 or less micropores having an average diameter of less than 1 &mgr;m are formed per 40000 &mgr;m2 of the surface of the target: (A) at least one chalcogenide element selected from S, Se and Te; and (B) at least one Vb Group element selected from Bi, Sb, As, P and N. It becomes possible to provide a technique for eliminating a cause of the particle-dropping or the formation of nodules in the target during sputtering and for suppressing the formation of particles.

IPC Classes  ?

  • C23C 14/34 - Sputtering
  • B22F 1/00 - Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
  • B22F 3/14 - Both compacting and sintering simultaneously
  • B22F 3/15 - Hot isostatic pressing
  • G11B 7/243 - Record carriers characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
  • G11B 7/26 - Apparatus or processes specially adapted for the manufacture of record carriers
  • C22C 12/00 - Alloys based on antimony or bismuth
  • C22C 28/00 - Alloys based on a metal not provided for in groups

16.

ELECTRONIC MEMBER WHEREIN BARRIER-SEED LAYER IS FORMED ON BASE

      
Application Number JP2009052916
Publication Number 2009/116346
Status In Force
Filing Date 2009-02-19
Publication Date 2009-09-24
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Sekiguchi, Junnosuke
  • Imori, Toru

Abstract

Disclosed is a technique for forming a ULSI fine copper wiring by a simpler process. Specifically disclosed is an electronic member wherein an alloy thin film of tungsten and a noble metal, which is used as a barrier-seed layer for a ULSI fine copper wiring, is formed on a base. The electronic member is characterized in that the alloy thin film has a composition containing not less than 60 atom% of tungsten and not less than 5 atom% but not more than 40 atom% of the noble metal. The noble metal is preferably composed of one or more metals selected from platinum, gold, silver and palladium.

IPC Classes  ?

  • H01L 21/3205 - Deposition of non-insulating-, e.g. conductive- or resistive-, layers, on insulating layers; After-treatment of these layers
  • C23C 14/14 - Metallic material, boron or silicon
  • C25D 7/12 - Semiconductors
  • H01L 21/285 - Deposition of conductive or insulating materials for electrodes from a gas or vapour, e.g. condensation
  • H01L 21/288 - Deposition of conductive or insulating materials for electrodes from a liquid, e.g. electrolytic deposition
  • H01L 23/52 - Arrangements for conducting electric current within the device in operation from one component to another

17.

ELECTRONIC MEMBER WHEREIN BARRIER-SEED LAYER IS FORMED ON BASE

      
Application Number JP2009052917
Publication Number 2009/116347
Status In Force
Filing Date 2009-02-19
Publication Date 2009-09-24
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Sekiguchi, Junnosuke
  • Imori, Toru

Abstract

Disclosed is a technique for forming a ULSI fine copper wiring by a simpler process. Specifically disclosed is an electronic member wherein an alloy thin film of tungsten and a noble metal, which is used as a barrier-seed layer for a ULSI fine copper wiring, is formed on a base. The electronic member is characterized in that the alloy thin film has a composition containing not less than 50 atom% of tungsten and not less than 5 atom% but not more than 50 atom% of the noble metal. The noble metal is preferably composed of one or more metals selected from ruthenium, rhodium and iridium.

IPC Classes  ?

  • H01L 21/3205 - Deposition of non-insulating-, e.g. conductive- or resistive-, layers, on insulating layers; After-treatment of these layers
  • C23C 14/14 - Metallic material, boron or silicon
  • C25D 7/12 - Semiconductors
  • H01L 21/285 - Deposition of conductive or insulating materials for electrodes from a gas or vapour, e.g. condensation
  • H01L 21/288 - Deposition of conductive or insulating materials for electrodes from a liquid, e.g. electrolytic deposition
  • H01L 23/52 - Arrangements for conducting electric current within the device in operation from one component to another

18.

PROCESS FOR RECOVERY OF VALUABLE METALS FROM SCRAP IZO

      
Application Number JP2008072297
Publication Number 2009/110149
Status In Force
Filing Date 2008-12-09
Publication Date 2009-09-11
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Shindo, Yuichiro
  • Takemoto, Kouichi

Abstract

A process for the recovery of valuable metals from scrap IZO, characterized by conducting electrolysis by using an insoluble electrode as the anode and scrap IZO as the cathode to recover metallic indium and zinc or suboxides of both. The invention provides a process for recovering indium and zinc efficiently from scrap IZO such as indium zinc oxide (IZO) sputtering targets or IZO remnants generated in the production.

IPC Classes  ?

  • C25C 1/16 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
  • C22B 3/44 - Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
  • C22B 5/12 - Dry processes by gases
  • C22B 7/00 - Working-up raw materials other than ores, e.g. scrap, to produce non-ferrous metals or compounds thereof
  • C22B 19/30 - Obtaining zinc or zinc oxide from metallic residues or scraps
  • C22B 58/00 - Obtaining gallium or indium
  • C25C 1/22 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups

19.

SB-TE ALLOY POWDER FOR SINTERING, PROCESS FOR PRODUCTION OF THE POWDER, AND SINTERED TARGET

      
Application Number JP2009052511
Publication Number 2009/107498
Status In Force
Filing Date 2009-02-16
Publication Date 2009-09-03
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Takahashi, Hideyuki

Abstract

An Sb-Ti alloy powder for sintering, characterized by consisting of particles having a mean particle diameter of 0.1 to 200μm and by having an oxygen content of 1000wtppm or below; and a sintered target made of an Sb-Te alloy, characterized by an oxygen content of 1000wtppm or below, a bending strength of 50MPa or above, and a relative density of 99% or above. The sintered target has a uniform and refined structure, and is inhibited from cracking and from arcing in sputtering by virtue of the structure. Further, the surface unevenness caused by sputter erosion is reduced, whereby a high-quality Sb-Te alloy sputtering target can be obtained.

IPC Classes  ?

  • B22F 1/00 - Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
  • C23C 14/34 - Sputtering

20.

METHOD OF RECOVERING VALUABLE METALS FROM IZO SCRAP

      
Application Number JP2009051565
Publication Number 2009/101864
Status In Force
Filing Date 2009-01-30
Publication Date 2009-08-20
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Shindo, Yuichiro
  • Takemoto, Kouichi

Abstract

A method of recovering valuable metals from IZO scraps, characterized by using the IZO scraps respectively as an anode and a cathode to conduct electrolysis while periodically reversing the polarity, and recovering the indium and zinc in the form of hydroxides. The method of recovering valuable metals from IZO scraps may be one characterized in that the hydroxides of indium and zinc obtained by the electrolysis are roasted to recover the indium and zinc in the form of oxides. By the method, indium and zinc can be efficiently recovered from IZO scraps such as an indium-zinc oxide (IZO) sputtering target and IZO fragments generating during production.

IPC Classes  ?

  • C25C 1/22 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups
  • C01G 9/02 - Oxides; Hydroxides
  • C01G 15/00 - Compounds of gallium, indium, or thallium
  • C22B 3/44 - Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
  • C22B 7/00 - Working-up raw materials other than ores, e.g. scrap, to produce non-ferrous metals or compounds thereof
  • C22B 19/20 - Obtaining zinc otherwise than by distilling
  • C22B 19/30 - Obtaining zinc or zinc oxide from metallic residues or scraps
  • C22B 58/00 - Obtaining gallium or indium
  • C25C 1/16 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury

21.

METHOD OF RECOVERING VALUABLE METALS FROM IZO SCRAP

      
Application Number JP2009051564
Publication Number 2009/101863
Status In Force
Filing Date 2009-01-30
Publication Date 2009-08-20
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Shindo, Yuichiro
  • Takemoto, Kouichi

Abstract

A method of recovering valuable metals from an IZO scrap, characterized by using an insoluble electrode as an anode or cathode and using the IZO scrap as a cathode or anode, which serves as a counter electrode for the insoluble electrode, to conduct electrolysis while periodically reversing the polarity, and recovering the indium and zinc in the form of hydroxides from the IZO scrap. The method of recovering valuable metals from an IZO scrap may be one characterized in that the hydroxides of indium and zinc obtained by the electrolysis are roasted to recover the indium and zinc in the form of oxides. By the method, indium and zinc can be efficiently recovered from IZO scraps such as an indium-zinc oxide (IZO) sputtering target and IZO fragments generating during production.

IPC Classes  ?

  • C25C 1/22 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups
  • C01G 9/02 - Oxides; Hydroxides
  • C01G 15/00 - Compounds of gallium, indium, or thallium
  • C22B 3/44 - Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
  • C22B 7/00 - Working-up raw materials other than ores, e.g. scrap, to produce non-ferrous metals or compounds thereof
  • C22B 19/30 - Obtaining zinc or zinc oxide from metallic residues or scraps
  • C22B 58/00 - Obtaining gallium or indium
  • C25C 1/16 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury

22.

ADHESIVE-FREE FLEXIBLE LAMINATE

      
Application Number JP2008073531
Publication Number 2009/098832
Status In Force
Filing Date 2008-12-25
Publication Date 2009-08-13
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Makino, Nobuhito
  • Hokura, Akito
  • Inazumi, Hajime

Abstract

An adhesive-free flexible laminate comprising a polyimide film at least one side of which has been treated with a plasma, a tie-coat layer formed on the plasma-treated surface, a metal seed layer formed on the tie-coat layer, and a metallic conductor layer formed on the metal seed layer. The laminate is characterized in that the ratio of the actual density (ρp) to the theoretical density (ρt), ρp/ρt, in the tie-coat layer satisfies ρp/ρt>0.6. In the adhesive-free flexible laminate (in particular, the laminate with two metallizing layers), the adhesion between the metallic layer(s) and the polyimide film is heightened.

IPC Classes  ?

  • B32B 15/088 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising polyamides
  • B32B 15/08 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
  • C23C 28/02 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and only coatings of metallic material
  • H05K 1/03 - Use of materials for the substrate

23.

YTTERBIUM SPUTTERING TARGET AND METHOD FOR MANUFACTURING THE TARGET

      
Application Number JP2009051931
Publication Number 2009/099121
Status In Force
Filing Date 2009-02-05
Publication Date 2009-08-13
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Tsukamoto, Shiro

Abstract

Provided is a method for manufacturing an ytterbium sputtering target. In the method, an ytterbium target material having a surface Vickers hardness (Hv) of 15 or more but not more than 40 is previously manufactured, and final finish processing is performed by machining to the surface of the ytterbium target material having such surface hardness. Unevenness (tear) that exists on the target surface after the final finish processing of the target material is remarkably reduced and generation of particles while performing sputtering is suppressed.

IPC Classes  ?

  • C23C 14/34 - Sputtering
  • C22F 1/02 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
  • C22F 1/16 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

24.

ULSI MICRO-INTERCONNECT MEMBER HAVING RUTHENIUM ELECTROPLATING LAYER ON BARRIER LAYER

      
Application Number JP2009050112
Publication Number 2009/093483
Status In Force
Filing Date 2009-01-08
Publication Date 2009-07-30
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Sekiguchi, Junnosuke
  • Imori, Toru
  • Kinase, Takashi

Abstract

An object of the invention is to provide a ULSI micro-interconnect member wherein the coverages of especially the inner side surfaces of vias and trenches are adequate, the thickness with respect to the surface portion is even, and the member has a seed layer of little impurity concentration is formed. Another object of the invention is to provide a ULSI micro-interconnect member having a micro-interconnect free of voids and formed by consecutive copper-electroplating by utilizing such a seed layer, a method for forming such a member, and a semiconductor wafer having such a ULSI micro-interconnect. A ULSI micro-interconnect member comprises a substrate and a ULSI micro-interconnect formed on the substrate. The ULSI micro-interconnect is composed of a barrier layer formed on the substrate and a ruthenium electroplating layer formed on the barrier layer is disclosed. Another ULSI micro-interconnect member comprising a ruthenium layer and a copper electroplating layer formed using the ruthenium layer as the seed layer and a method for forming the member are also disclosed.

IPC Classes  ?

  • H01L 21/288 - Deposition of conductive or insulating materials for electrodes from a liquid, e.g. electrolytic deposition
  • C25D 5/10 - Electroplating with more than one layer of the same or of different metals
  • C25D 7/12 - Semiconductors
  • H01L 21/3205 - Deposition of non-insulating-, e.g. conductive- or resistive-, layers, on insulating layers; After-treatment of these layers
  • H01L 23/52 - Arrangements for conducting electric current within the device in operation from one component to another

25.

METHOD FOR MANUFACTURING DOUBLE LAYER COPPER CLAD LAMINATED BOARD, AND DOUBLE LAYER COPPER CLAD LAMINATED BOARD

      
Application Number JP2008072754
Publication Number 2009/084412
Status In Force
Filing Date 2008-12-15
Publication Date 2009-07-09
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor Hanafusa, Mikio

Abstract

Provided is a method for manufacturing a double layer copper clad laminated board characterized in having improved folding endurance of 150 times or more, as a result of folding endurance test conforming to JIS C6471, by performing heat treatment at a temperature of 100°C or higher but not higher than 175°C to the double layer copper clad laminated board having a copper layer formed on a polyimide film by sputtering and plating. The method is provided for manufacturing the double layer copper clad laminated board (double layer CCL material) wherein the copper layer is formed on the polyimide film by sputtering and plating, folding endurance is improved and breakage of an outer lead section of a circuit is eliminated, and such double layer copper clad laminated board is also provided.

IPC Classes  ?

  • B32B 15/088 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising polyamides
  • H05K 1/09 - Use of materials for the metallic pattern
  • H05K 3/00 - Apparatus or processes for manufacturing printed circuits
  • H05K 3/22 - Secondary treatment of printed circuits

26.

HIGHLY PURE LANTHANUM, SPUTTERING TARGET COMPRISING HIGHLY PURE LANTHANUM, AND METAL GATE FILM MAINLY COMPOSED OF HIGHLY PURE LANTHANUM

      
Application Number JP2008069854
Publication Number 2009/084318
Status In Force
Filing Date 2008-10-31
Publication Date 2009-07-09
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Takahata, Masahiro
  • Shindo, Yuichiro
  • Kanou, Gaku

Abstract

Disclosed is highly pure lanthanum which has a purity of 4 N or more as determined by excluding any rare earth element or any gaseous component therefrom, and which contains aluminum, iron and copper each in an amount of 100 wtppm or less. Also disclosed is highly pure lanthanum, which has a purity of 4 N or more as determined by excluding any rare earth element or any gaseous component therefrom, which contains aluminum, iron and copper each in an amount of 100 wtppm or less, which contains oxygen in an amount of 1500 wtppm or less, which contains an alkali metal element and an alkali earth metal element each in an amount of 1 wtppm or less, which contains a transition metal element and a high-melting-point metal element other than those mentioned above each in an amount of 10 wtppm or less, and which contains a radioactive element in an amount of 10 wtppb or less. Further disclosed is a technique for efficiently and stably providing highly pure lanthanum, a sputtering target comprising a highly pure lanthanum material and a metal gate thin film mainly composed of a highly pure lanthanum material.

IPC Classes  ?

  • C22B 59/00 - Obtaining rare earth metals
  • C22B 9/22 - Remelting metals with heating by wave energy or particle radiation
  • C22C 28/00 - Alloys based on a metal not provided for in groups
  • C23C 14/34 - Sputtering
  • H01L 21/283 - Deposition of conductive or insulating materials for electrodes
  • H01L 21/285 - Deposition of conductive or insulating materials for electrodes from a gas or vapour, e.g. condensation
  • H01L 29/423 - Electrodes characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
  • H01L 29/49 - Metal-insulator semiconductor electrodes
  • H01L 29/78 - Field-effect transistors with field effect produced by an insulated gate

27.

PROCESS FOR PRODUCING THIN FILM OF A-IGZO OXIDE

      
Application Number JP2008073439
Publication Number 2009/084537
Status In Force
Filing Date 2008-12-24
Publication Date 2009-07-09
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Ikusawa, Masakatsu
  • Yahagi, Masataka

Abstract

Disclosed is a process for producing a thin film of an a-IGZO oxide that, in a sputtering method, can bring the carrier concentration of the film to a predetermined value with good reproducibility. The process is a process for producing a thin film of an amorphous In-Ga-Zn-O-based oxide and comprises forming a film on a substrate by direct current sputtering at a sputter power density of 2.5 to 5.5 W/cm2 using a sputtering target of an oxide sintered compact that is composed mainly of indium (In), gallium (Ga), zinc (Zn), and oxygen (O), has an atomic ratio of indium to the total amount of indium and gallium, i.e., [In]/([In] + [Ga]), of 20% to 80%, an atomic ratio of zinc to the total amount of indium, gallium, and zinc, i.e., [Zn]/([In] + [Ga] + [Zn]), of 10% to 50%, and has a specific resistance of not more than 1.0 × 10-1 Ωcm.

IPC Classes  ?

  • C23C 14/08 - Oxides
  • C04B 35/00 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
  • C23C 14/34 - Sputtering
  • G02F 1/1368 - Active matrix addressed cells in which the switching element is a three-electrode device
  • H01L 21/336 - Field-effect transistors with an insulated gate
  • H01L 21/363 - Deposition of semiconductor materials on a substrate, e.g. epitaxial growth using physical deposition, e.g. vacuum deposition, sputtering
  • H01L 29/786 - Thin-film transistors

28.

COPPER FOIL FOR PRINTED WIRING BOARD

      
Application Number JP2008073256
Publication Number 2009/081889
Status In Force
Filing Date 2008-12-19
Publication Date 2009-07-02
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Okano, Tomoki
  • Araikawa, Tomohiro
  • Chuuganji, Misato

Abstract

Provided is a copper foil which is to be used for a printed wiring board, has both excellent adhesiveness to an insulating board and excellent etching characteristics and suitable for fine pitches. The copper foil is provided with a copper foil base material and a coat layer which covers at least a part of the surface of the copper foil base material. In the copper foil, (1) the coat layer is composed of a Ni layer and a Cr layer which are sequentially laminated from a surface of the copper foil base material, (2) a Cr of 15-210&mgr;g/dm2 and a Ni of 15-440&mgr;g/dm2 exist in the coat layer, and (3) the maximum thickness is 0.5-5nm and the minimum thickness is 80% or more of the maximum thickness when a cross-section of the coat layer is observed by a transmission electron microscope.

IPC Classes  ?

  • H05K 1/09 - Use of materials for the metallic pattern
  • C23C 14/14 - Metallic material, boron or silicon
  • H05K 3/00 - Apparatus or processes for manufacturing printed circuits

29.

SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME

      
Application Number JP2008071452
Publication Number 2009/078254
Status In Force
Filing Date 2008-11-26
Publication Date 2009-06-25
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Ito, Junichi
  • Yabe, Atsushi
  • Sekiguchi, Junnosuke
  • Imori, Toru

Abstract

Disclosed is a substrate having a barrier film for preventing copper diffusion which has barrier ability and catalytic ability, while being excellent in barrier properties when heated at high temperatures. Also disclosed is a method for manufacturing such a substrate. Specifically disclosed is a substrate characterized by having, on a base, a barrier film for preventing copper diffusion which is composed of one or more metal elements selected from tungsten, molybdenum and niobium, a metal element such as platinum, gold, silver or palladium that has a catalytic ability for electroless plating, and nitrogen contained in the form of a nitride of the one or more metal elements selected from tungsten, molybdenum and niobium. The barrier film for preventing copper diffusion is produced by performing a sputtering process in a nitrogen atmosphere using a target containing one or more metal elements selected from tungsten, molybdenum and niobium, and one or more metal elements selected from the metal elements having a catalytic ability for electroless plating.

IPC Classes  ?

  • H01L 21/3205 - Deposition of non-insulating-, e.g. conductive- or resistive-, layers, on insulating layers; After-treatment of these layers
  • C23C 18/16 - Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, i.e. electroless plating
  • C23C 18/18 - Pretreatment of the material to be coated
  • C23C 18/40 - Coating with copper using reducing agents
  • H01L 21/28 - Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups
  • H01L 21/285 - Deposition of conductive or insulating materials for electrodes from a gas or vapour, e.g. condensation
  • H01L 21/288 - Deposition of conductive or insulating materials for electrodes from a liquid, e.g. electrolytic deposition
  • H01L 23/52 - Arrangements for conducting electric current within the device in operation from one component to another

30.

SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME

      
Application Number JP2008071453
Publication Number 2009/078255
Status In Force
Filing Date 2008-11-26
Publication Date 2009-06-25
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Ito, Junichi
  • Yabe, Atsushi
  • Sekiguchi, Junnosuke
  • Imori, Toru

Abstract

Disclosed is a substrate having a barrier film for preventing copper diffusion which has barrier ability and catalytic ability, while being excellent in barrier properties when heated at high temperatures. Also disclosed is a method for manufacturing such a substrate. Specifically disclosed is a substrate characterized by having, on a base, a barrier film for preventing copper diffusion which is composed of one or more metal elements selected from tungsten, molybdenum and niobium, a metal element such as ruthenium, rhodium or iridium that has a catalytic ability for electroless plating, and nitrogen contained in the form of a nitride of the one or more metal elements selected from tungsten, molybdenum and niobium. The barrier film for preventing copper diffusion is produced by performing a sputtering process in a nitrogen atmosphere using a target containing one or more metal elements selected from tungsten, molybdenum and niobium, and one or more metal elements selected from the metal elements having a catalytic ability for electroless plating.

IPC Classes  ?

  • H01L 21/3205 - Deposition of non-insulating-, e.g. conductive- or resistive-, layers, on insulating layers; After-treatment of these layers
  • C23C 18/16 - Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, i.e. electroless plating
  • C23C 18/18 - Pretreatment of the material to be coated
  • C23C 18/40 - Coating with copper using reducing agents
  • H01L 21/28 - Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups
  • H01L 21/285 - Deposition of conductive or insulating materials for electrodes from a gas or vapour, e.g. condensation
  • H01L 21/288 - Deposition of conductive or insulating materials for electrodes from a liquid, e.g. electrolytic deposition
  • H01L 23/52 - Arrangements for conducting electric current within the device in operation from one component to another

31.

THIN FILM MAINLY COMPOSED OF TITANIUM OXIDE, SINTERED SPUTTERING TARGET SUITABLE FOR THE PRODUCTION OF THIN FILM MAINLY COMPOSED OF TITANIUM OXIDE, AND METHOD FOR PRODUCTION OF THIN FILM MAINLY COMPOSED OF TITANIUM OXIDE

      
Application Number JP2008072295
Publication Number 2009/078306
Status In Force
Filing Date 2008-12-09
Publication Date 2009-06-25
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Takami, Hideo
  • Yahagi, Masataka

Abstract

Disclosed is a thin film mainly composed titanium oxide, which comprises 29.6 to 34.0 at% (inclusive) of Ti and 0.003 to 7.4 at% (inclusive) of Ag, with the remainder being O (oxygen), wherein the ratio of oxygen to the metal components [i.e., O/(2Ti+0.5 Ag)] is 0.97 or more. It becomes possible to provide: a thin film mainly composed of titanium oxide, which has a high refractive index and a low extinction coefficient; a sintered sputtering target which is mainly composed of titanium oxide and which is suitable for the production of the thin film; and a method for producing a thin film mainly composed of titanium oxide. It also becomes possible to provide a thin film which has excellent permeability, which is hardly reduced in its reflectance, and which is useful as an interference film or a protective film for an optical information recording medium. The thin film can be applied to a glass substrate; namely the thin film can be used as a heat ray-reflective film, an antireflection film or an interference film.

IPC Classes  ?

  • C23C 14/08 - Oxides
  • C04B 35/46 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on titanium oxides or titanates
  • C23C 14/34 - Sputtering
  • G11B 7/24 - Record carriers characterised by shape, structure or physical properties, or by the selection of the material 
  • G11B 7/254 - Record carriers characterised by the selection of the material of layers other than recording layers of protective topcoat layers
  • G11B 7/257 - Record carriers characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers, sensitising layers or dielectric layers which are protecting the recording layers
  • G11B 7/26 - Apparatus or processes specially adapted for the manufacture of record carriers

32.

COPPER FOIL INCLUDING RESISTIVE FILM LAYER

      
Application Number JP2008070006
Publication Number 2009/063764
Status In Force
Filing Date 2008-11-04
Publication Date 2009-05-22
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Kurosawa, Toshio
  • Sakamoto, Masaru

Abstract

Copper foil including an electric resistive film layer characterized in that a copper-zinc alloy layer containing 1000 &mgr;g/dm2 to 9000 &mgr;g/dm2 of zinc per unit area is provided on a roughened surface or a glossy surface of the copper foil, a stabilized layer with a thickness between 5 Å and 100 Å made of at least one component selected from among zinc oxide, chromium oxide, and nickel oxide is formed on the copper-zinc alloy layer, and a film layer made of an electric resistive material is provided on the stabilized layer. The additional formation of the electric resistive film layer in the copper foil enables a resistor to be embedded in a substrate, and the copper foil includes the resistive film layer with improved adhesiveness.

IPC Classes  ?

  • B32B 9/00 - Layered products essentially comprising a particular substance not covered by groups
  • B32B 15/04 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance
  • C23C 28/00 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and
  • C25D 9/08 - Electrolytic coating other than with metals with inorganic materials by cathodic processes

33.

COPPER ANODE OR PHOSPHORUS-CONTAINING COPPER ANODE, METHOD FOR ELECTROPLATING COPPER ON SEMICONDUCTOR WAFER, AND SEMICONDUCTOR WAFER WITH PARTICLE NOT SIGNIFICANTLY DEPOSITED THEREON

      
Application Number JP2008068167
Publication Number 2009/057422
Status In Force
Filing Date 2008-10-06
Publication Date 2009-05-07
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Aiba, Akihiro
  • Takahashi, Hirofumi

Abstract

This invention provides a copper anode or a phosphorus-containing copper anode for use in electrolytic copper plating on a semiconductor wafer, characterized in that the purity of the copper anode or the phosphorus-containing copper anode excluding phosphorus is not less than 99.99% by weight, and the content of silicon as an impurity is not more than 10 ppm by weight. There are also provided a method for electroplating copper which, in electrolytic copper plating, can efficiently prevent the deposition of particles onto an object to be plated, particularly onto a semiconductor wafer, a phosphorus-containing copper anode for electrolytic copper plating, and a semiconductor wafer comprising a copper layer, with particles not significantly deposited thereon, formed by electrolytic copper plating using them.

IPC Classes  ?

  • C25D 17/10 - Electrodes
  • C22C 9/00 - Alloys based on copper
  • H01L 21/288 - Deposition of conductive or insulating materials for electrodes from a liquid, e.g. electrolytic deposition

34.

TIN-PLATED MATERIAL FOR ELECTRONIC PART

      
Application Number JP2008069787
Publication Number 2009/057707
Status In Force
Filing Date 2008-10-30
Publication Date 2009-05-07
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Tanaka, Koichiro

Abstract

A tin-plated material having a three-layer structure composed of a nickel layer, a copper-tin alloy layer, and a tin layer. The material is reduced in insertion force and improved in heat resistance. The tin-plated material comprises copper or a copper alloy and, formed by plating on the surface thereof in the following order, a primer deposit layer having a thickness of 0.2-1.5 쎽m made of nickel or a nickel alloy, an intermediate deposit layer having a thickness of 0.1-1.5 쎽m made of a copper-tin alloy, and a surface deposit layer having a thickness of 0.1-1.5 쎽m made of tin or a tin alloy. The copper-tin alloy constituting the intermediate deposit layer has an average crystal grain diameter, as determined through an examination of a section of the deposit layer, of 0.05-0.5 쎽m, excluding 0.5 쎽m.

IPC Classes  ?

  • C25D 7/00 - Electroplating characterised by the article coated
  • C25D 5/12 - Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
  • C25D 5/50 - After-treatment of electroplated surfaces by heat-treatment
  • H01R 13/03 - Contact members characterised by the material, e.g. plating or coating materials

35.

HIGH-PURITY YTTERBIUM, SPUTTERING TARGET MADE OF HIGH-PURITY YTTERBIUM, THIN FILM CONTAINING HIGH-PURITY YTTERBIUM, AND METHOD FOR PRODUCING HIGH-PURITY YTTERBIUM

      
Application Number JP2008067149
Publication Number 2009/054217
Status In Force
Filing Date 2008-09-24
Publication Date 2009-04-30
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Shindo, Yuichiro
  • Yagi, Kazuto

Abstract

Disclosed is a method for producing a high-purity ytterbium, which is characterized in that a high-purity ytterbium is obtained by reducing a crude ytterbium oxide in a vacuum with a reducing metal composed of a metal having a low vapor pressure, and selectively distilling ytterbium. This method enables to increase the purity of ytterbium, which has a high vapor pressure and is hardly purified in a molten state. Also disclosed is a high-purity ytterbium obtained by such a method. Further disclosed is a technique which enables to efficiently and stably obtain a sputtering target composed of a high-purity raw material ytterbium and a thin film for metal gates containing a high-purity raw material ytterbium.

IPC Classes  ?

  • C22B 59/00 - Obtaining rare earth metals
  • C22B 5/04 - Dry processes by aluminium, other metals, or silicon
  • C22B 9/02 - Refining by liquating, filtering, centrifuging, distilling or supersonic wave action
  • C22B 9/16 - Remelting metals
  • C22C 28/00 - Alloys based on a metal not provided for in groups
  • C23C 14/34 - Sputtering

36.

METAL COVERED POLYIMIDE COMPOSITE, PROCESS FOR PRODUCING THE COMPOSITE, AND APPARATUS FOR PRODUCING THE COMPOSITE

      
Application Number JP2008066644
Publication Number 2009/050970
Status In Force
Filing Date 2008-09-16
Publication Date 2009-04-23
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Kohiki, Michiya
  • Michishita, Naonori
  • Makino, Nobuhito

Abstract

This invention provides a metal covered polyimide composite, which can effectively prevent separation in an adhesive-free flexible laminate (particularly a two-layer flexible laminate), particularly can effectively suppress separation from the interface of a copper layer and a tin plating, and a process for producing the composite and an apparatus for producing the composite. The metal covered polyimide composite comprises a polyimide film, a tie-coat layer and a metal seed layer formed on a surface of the polyimide film by electroless plating or a drying method, and a copper layer or a copper alloy layer formed thereon by electroplating. The metal covered polyimide composite is characterized in that the copper plating layer or the copper alloy plating layer comprises three to one copper or copper alloy layer.

IPC Classes  ?

  • C25D 7/00 - Electroplating characterised by the article coated
  • B32B 15/088 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising polyamides
  • C23C 28/02 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and only coatings of metallic material
  • C25D 5/56 - Electroplating of non-metallic surfaces of plastics
  • C25D 7/06 - Wires; Strips; Foils
  • H05K 3/38 - Improvement of the adhesion between the insulating substrate and the metal

37.

METAL COVERED POLYIMIDE COMPOSITE, PROCESS FOR PRODUCING THE COMPOSITE, AND PROCESS FOR PRODUCING ELECTRONIC CIRCUIT SUBSTRATE

      
Application Number JP2008066645
Publication Number 2009/050971
Status In Force
Filing Date 2008-09-16
Publication Date 2009-04-23
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Kohiki, Michiya
  • Michishita, Naonori
  • Makino, Nobuhito

Abstract

This invention provides a metal covered polyimide composite, which can effectively prevent separation in an adhesive-free flexible laminate (particularly a two-layer flexible laminate), particularly can effectively suppress separation from the interface of a copper layer and a tin plating, and a process for producing the composite and a process for producing an electronic circuit substrate. The metal covered polyimide composite comprises a polyimide film, a tie-coat layer and a metal seed layer formed on a surface of the polyimide film by electroless plating or a drying method, and a copper layer or a copper alloy layer formed thereon by electroplating. The copper plating layer or the copper alloy plating layer comprises three to one copper layer or copper alloy layer. When the copper layer or the copper alloy layer has a three-layer or two-layer structure, an impurity concentrated part is present at the boundary of the copper layer or the copper alloy layer. When the copper layer or the copper alloy layer has a single-layer structure, the impurity concentrated part is absent.

IPC Classes  ?

  • C25D 7/00 - Electroplating characterised by the article coated
  • B32B 15/08 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
  • B32B 15/088 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising polyamides
  • C23C 28/02 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and only coatings of metallic material
  • C25D 5/56 - Electroplating of non-metallic surfaces of plastics
  • C25D 7/06 - Wires; Strips; Foils
  • H05K 3/38 - Improvement of the adhesion between the insulating substrate and the metal

38.

COPPER FOIL FOR PRINTED CIRCUIT AND COPPER CLAD LAMINATE

      
Application Number JP2008066518
Publication Number 2009/041292
Status In Force
Filing Date 2008-09-12
Publication Date 2009-04-02
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Higuchi, Naoki

Abstract

With the development of electronic equipment, in semiconductor devices, the size has been further reduced, and the integration density has been further increased. This tendency has led to a demand for the adoption of a higher temperature in treatment in a production process of printed circuits. Further, in electronic equipment using the printed circuits, heat is generated during its use. This invention provides a technique that, even under these circumstances, does not cause a lowering in bonding strength between a copper foil and a resin base material and, further, in soft etching of a copper foil circuit, can effectively prevent penetration in a circuit edge part. Specifically, this invention provides a copper foil for a printed circuit, comprising a copper foil, a roughened layer of a copper-cobalt-nickel alloy plating provided on a surface of the copper foil, a cobalt-nickel alloy plating layer provided on the roughened layer, and a zinc-nickel alloy plating layer provided on the cobalt-nickel alloy plating layer. The copper foil for a printed circuit is characterized in that the total coverage of the zinc-nickel alloy plating layer is 150 to 500 μg/dm2, and the alloy layer has a nickel ratio range of 0.16 (lower limit) to 0.40 (upper limit) and a nickel content of not less than 50 µg/dm2.

IPC Classes  ?

  • C25D 7/06 - Wires; Strips; Foils
  • B32B 15/08 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
  • C23C 28/00 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and
  • C25D 9/08 - Electrolytic coating other than with metals with inorganic materials by cathodic processes
  • H05K 3/00 - Apparatus or processes for manufacturing printed circuits
  • H05K 3/38 - Improvement of the adhesion between the insulating substrate and the metal

39.

FUEL CELL SEPARATOR MATERIAL AND FUEL CELL STACK

      
Application Number JP2008061535
Publication Number 2009/041135
Status In Force
Filing Date 2008-06-25
Publication Date 2009-04-02
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor Shibuya, Yoshitaka

Abstract

[PROBLEMS] To provide a fuel cell separator material which permits the formation of a strong and uniform Au layer or Au-containing layer on the surface of a titanium substrate and which can secure the corrosion resistance requisite to fuel cell separators. [MEANS FOR SOLVING PROBLEMS] A fuel cell separator material comprising a Ti substrate (2) and an alloy layer (6) formed on the surface of the substrate (2) which consists of both Au and the first component consisting of at least one noble metal that is selected from the group consisting of Ru, Rh, Pd, Ir, Os and Pt and that can be oxidized more easily than Au, wherein an interlayer which contains Ti, O, and the above first component and which has an Au content of less than 20% by mass is present between the alloy layer and the Ti substrate and a region of 1nm or above in thickness which spreads from the outermost surface toward the underlayer and which has an Au content of 50% by mass or above is present in the alloy layer or Au simple layer.

IPC Classes  ?

  • H01M 8/02 - Fuel cells; Manufacture thereof - Details
  • H01M 8/10 - Fuel cells with solid electrolytes

40.

HIGH-STRENGTH HIGH-ELECTROCONDUCTIVITY COPPER ALLOY POSSESSING EXCELLENT HOT WORKABILITY

      
Application Number JP2008064931
Publication Number 2009/041194
Status In Force
Filing Date 2008-08-21
Publication Date 2009-04-02
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Eto, Masatoshi

Abstract

This invention provides a copper alloy, for an electronic component, formed of a Cu-Ni-P-base alloy which has good hot workability and, at the same time, can exhibit high strength, high electroconductivity, and high heat conductivity without sacrificing bendability. The copper alloy comprises, by mass, Ni: 0.50% to 1.00% and P: 0.10% to 0.25%. The content ratio of Ni to P is Ni/P = 4.0 to 5.5. The copper alloy further comprises Cr: 0.03% to 0.45% and O: not more than 0.0050%. The content of at least one of Fe, Co, Mn, Ti, and Zr is not more than 0.05%, preferably not more than 0.03%, in total. In the copper alloy, the balance consists of Cu and unavoidable impurities. Regarding the size of Ni-P-base second phase particles, not less than 80% of the area of the total second phase particles contained in the copper alloy is accounted for by second phase particles having an a value of not less than 20 nm and not more than 50 nm and an aspect ratio, a/b, of not less than 1 and not more than 5 wherein a represents a major axis and b represents a minor axis.

IPC Classes  ?

  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
  • H01B 1/02 - Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

41.

CU-NI-SI-CO-BASE COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE COPPER ALLOY

      
Application Number JP2008065020
Publication Number 2009/041197
Status In Force
Filing Date 2008-08-22
Publication Date 2009-04-02
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Era, Naohiko
  • Kuwagaki, Hiroshi

Abstract

This invention provides a Cu-Ni-Si-Co-base alloy possessing excellent strength, electroconductivity and press punchability. The Cu-Ni-Si-Co-base alloy is a copper alloy for an electronic material and comprises Ni: 1.0 to 2.5% by mass, Co: 0.5 to 2.5% by mass, and Si: 0.30 to 1.2% by mass with the balance consisting of Cu and unavoidable impurities. The observation of a cross section parallel to the rolling direction of the copper alloy, for a variation in composition and the area ratio of second phase particles having a diameter of not less than 0.1 &mgr;m and not more than 1 &mgr;m, shows that the middle value ρ (% by mass) of the amount of [Ni + Co + Si] is 20 (% by mass) ≤ ρ ≤ 60 (% by mass), the standard deviation σ(Ni + Co + Si) is σ(Ni + Co + Si) ≤ 30 (% by mass), and the area ratio S (%) is 1% ≤ S ≤ 10%.

IPC Classes  ?

  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
  • B21B 3/00 - Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
  • H01B 1/02 - Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
  • H01B 13/00 - Apparatus or processes specially adapted for manufacturing conductors or cables
  • H01L 23/50 - Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads or terminal arrangements for integrated circuit devices
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

42.

METHOD FOR SUPPORTING METAL NANO PARTICLE, AND SUBSTRATE CARRYING METAL NANO PARTICLE

      
Application Number JP2008066869
Publication Number 2009/038135
Status In Force
Filing Date 2008-09-18
Publication Date 2009-03-26
Owner
  • Nippon Mining & Metals Co., Ltd. (Japan)
  • Nagoya University (Japan)
  • Osaka University (Japan)
Inventor
  • Imori, Toru
  • Hisumi, Yoshiyuki
  • Ito, Junichi
  • Torimoto, Tsukasa
  • Okazaki, Kenichi
  • Kuwabata, Susumu

Abstract

A metal nano particle can be supported and immobilized on a substrate uniformly. Thus, disclosed is a method for supporting a nano metal particle, which comprises applying a silane coupling agent having at least one functional group capable of capturing a metal (e.g., an imidazole group, an amino group, a diamino group, a mercapto group, and a vinyl group) in its molecule on a substrate, and then contacting the silane coupling agent with a nano particle of a metal (e.g., gold, platinum, silver, copper, palladium, nickel, cobalt), wherein the silane coupling agent may be produced by the reaction between an azole compound with an epoxysilane compound, and wherein the metal nano particle to be contacted with the silane coupling agent is preferably coated with an ionic fluid. Also disclosed is a substrate having a metal nano particle supported thereon, which is produced by the method.

IPC Classes  ?

  • H01B 13/00 - Apparatus or processes specially adapted for manufacturing conductors or cables
  • B22F 1/02 - Special treatment of metallic powder, e.g. to facilitate working, to improve properties; Metallic powders per se, e.g. mixtures of particles of different composition comprising coating of the powder
  • B82B 3/00 - Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
  • H01L 21/3205 - Deposition of non-insulating-, e.g. conductive- or resistive-, layers, on insulating layers; After-treatment of these layers

43.

METHOD FOR PRODUCING SINTERED BODY, SINTERED BODY, SPUTTERING TARGET COMPOSED OF THE SINTERED BODY, AND SPUTTERING TARGET-BACKING PLATE ASSEMBLY

      
Application Number JP2008062908
Publication Number 2009/034775
Status In Force
Filing Date 2008-07-17
Publication Date 2009-03-19
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Takahashi, Hideyuki

Abstract

Disclosed is a method for producing a sintered body, which is characterized in that raw material powders respectively composed of a chalcogenide element and a Vb group element or raw material powders of an alloy of two or more elements including a chalcogenide element and a Vb group element are mixed, and the thus-mixed powder is hot pressed under the conditions satisfying the following formula: P (pressure) ≤ {Pf/(Tf-T0)} × (T-T0) + P0 (Pf: final pressure, Tf: final temperature, P0: atmospheric pressure, T: heating temperature, T0: room temperature (temperatures are expressed in degrees Celsius)). This method enables to produce a sintered body which has high density, high strength and large diameter, while containing a chalcogenide element (A) and a Vb group element (B) or containing the elements (A) and (B) and additionally a IVb group element (C) and/or an additive element (D). This sintered body does not suffer from cracks when assembled into and used in a sputtering target-backing plate assembly. Also disclosed are such a sintered body, a sputtering target composed of such a sintered body, and a sputtering target-backing plate assembly.

IPC Classes  ?

  • C22C 1/04 - Making non-ferrous alloys by powder metallurgy
  • B22F 3/14 - Both compacting and sintering simultaneously
  • C22C 12/00 - Alloys based on antimony or bismuth
  • C22C 28/00 - Alloys based on a metal not provided for in groups
  • C23C 14/34 - Sputtering

44.

PLATED MATERIAL HAVING METAL THIN FILM FORMED BY ELECTROLESS PLATING, AND METHOD FOR PRODUCTION THEREOF

      
Application Number JP2008063023
Publication Number 2009/016979
Status In Force
Filing Date 2008-07-18
Publication Date 2009-02-05
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Yabe, Atsushi
  • Ito, Junichi
  • Hisumi, Yoshiyuki
  • Sekiguchi, Junnosuke
  • Imori, Toru

Abstract

Disclosed is a plated material, on which an ultrafine wiring can be formed by electroless plating, which has a thin seed layer having a uniform thickness, and which can eliminate the complication of forming two layers (i.e., a barrier layer and a catalyst metal layer) prior to the formation of the seed layer. Also disclosed is a method for producing the plated material. Specifically disclosed is a plated material which comprises: a base; an alloy thin film formed on the base, wherein the alloy is made of a metal (A) having a catalytic activity for electroless plating and a metal (B) capable of displacement plating with a metal ion contained in an electroless plating solution; and a metal thin film formed on the alloy thin film by electroless displacement and reductive plating. The alloy thin film made of the metal (A) having the catalytic activity and the metal (B) capable of displacement plating contains the metal (A) in an amount of 5 to 40 at.% (inclusive). The metal thin film formed by electroless displacement and reductive plating has a thickness of 10 nm or less and a resistivity of 10 &mgr;Ω cm or less. Preferably, the metal (B) has a barrier function against a metal contained in the metal thin film.

IPC Classes  ?

  • C23C 18/18 - Pretreatment of the material to be coated
  • C23C 14/38 - Diode sputtering by direct current glow discharge
  • C23C 14/42 - Triode sputtering
  • C23C 28/02 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and only coatings of metallic material
  • H01L 21/288 - Deposition of conductive or insulating materials for electrodes from a liquid, e.g. electrolytic deposition
  • H01L 21/3205 - Deposition of non-insulating-, e.g. conductive- or resistive-, layers, on insulating layers; After-treatment of these layers
  • H01L 23/52 - Arrangements for conducting electric current within the device in operation from one component to another

45.

PLATED MATERIAL HAVING METAL THIN FILM FORMED BY ELECTROLESS PLATING, AND METHOD FOR PRODUCTION THEREOF

      
Application Number JP2008063024
Publication Number 2009/016980
Status In Force
Filing Date 2008-07-18
Publication Date 2009-02-05
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Yabe, Atsushi
  • Ito, Junichi
  • Hisumi, Yoshiyuki
  • Sekiguchi, Junnosuke
  • Imori, Toru

Abstract

Disclosed is a plated material, on which an ultrafine wiring can be formed by electroless plating, which has a thin seed layer having a uniform thickness, and which can eliminate the complication of forming two layers (i.e., a barrier layer and a catalyst metal layer) prior to the formation of the seed layer. Also disclosed is a method for producing the plated material. Specifically disclosed is a plated material which comprises: a base; an alloy thin film formed on the base, wherein the alloy is made of a metal (A) having a catalytic activity for electroless plating and a metal (B) capable of displacement plating with a metal ion contained in an electroless plating solution; and a metal thin film formed on the alloy thin film by electroless displacement and reductive plating. The alloy thin film made of the metal (A) having the catalytic activity and the metal (B) capable of displacement plating contains the metal (A) in an amount of 5 to 40 at.% (inclusive). The metal thin film formed by electroless displacement and reductive plating has a thickness of 10 nm or less and a resistivity of 10 &mgr;Ω cm or less. Preferably, the metal (B) has a barrier function against a metal contained in the metal thin film.

IPC Classes  ?

  • C23C 18/18 - Pretreatment of the material to be coated
  • C23C 14/34 - Sputtering
  • C23C 18/32 - Coating with one of iron, cobalt or nickel; Coating with mixtures of phosphorus or boron with one of these metals
  • C23C 18/44 - Coating with noble metals using reducing agents
  • C23C 28/02 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and only coatings of metallic material
  • H01L 21/288 - Deposition of conductive or insulating materials for electrodes from a liquid, e.g. electrolytic deposition
  • H01L 21/3205 - Deposition of non-insulating-, e.g. conductive- or resistive-, layers, on insulating layers; After-treatment of these layers
  • H01L 23/52 - Arrangements for conducting electric current within the device in operation from one component to another

46.

LITHIUM-MANGANESE DOUBLE OXIDE FOR LITHIUM ION BATTERIES AND PROCESS FOR THE PRODUCTION OF THE DOUBLE OXIDE

      
Application Number JP2008057298
Publication Number 2009/011157
Status In Force
Filing Date 2008-04-14
Publication Date 2009-01-22
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Kajiya, Yoshio
  • Sato, Hirohito
  • Nagase, Ryuichi

Abstract

The invention provides a lithium-manganese double oxide for lithium ion batteries which makes it possible to attain excellent high-temperature cycle characteristics and high-capacity battery characteristics. A spinel-type lithium-manganese double oxide for lithium ion batteries, which is represented by the general formula: Li1+xMn2-yMyO4 (wherein M is at least one element selected from among Al, Mg, Si, Ca, Ti, Cu, Ba, W and Pb and x and y satisfy the relationships: -0.1 ≤ x ≤ 0.2 and 0.06 ≤ y ≤ 0.3) and in which d10, d50 and d90 are 2 to 5騜m, 6 to 9騜m, and 12 to 15騜m respectively where d10, d50 and d90 refer to the particles sizes corresponding to the cumulative volumes of 10%, 50% and 90% respectively in the particle size distribution, the BET specific surface area exceeds 1.0m2/g and is 2.0m2/g or below, and the tap density is 0.5g/cm3 or above and below 1.0g/cm3.

IPC Classes  ?

  • C01G 45/00 - Compounds of manganese
  • H01M 4/50 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
  • H01M 4/505 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy

47.

COMPOSITE OXIDE SINTER, PROCESS FOR PRODUCING AMORPHOUS COMPOSITE OXIDE FILM, AMORPHOUS COMPOSITE OXIDE FILM, PROCESS FOR PRODUCING CRYSTALLINE COMPOSITE OXIDE FILM, AND CRYSTALLINE COMPOSITE OXIDE FILM

      
Application Number JP2008062171
Publication Number 2009/011232
Status In Force
Filing Date 2008-07-04
Publication Date 2009-01-22
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Ikisawa, Masakatsu
  • Yahagi, Masataka
  • Osada, Kozo
  • Kakeno, Takashi

Abstract

An amorphous film which consists substantially of indium, tin, calcium, and oxygen, and has a tin content and a calcium content of 5-15% in terms of Sn/(In+Sn+Ca) atom number ratio and 0.1-2.0% in terms of Ca/(In+Sn+Ca) atom number ratio, respectively, with the remainder being indium and oxygen. It is characterized in that the film, upon annealing at 260°C or lower, crystallizes and comes to have a resistivity of 0.4 mΩ or lower. The ITO film is a thin ITO film for use in, e.g., a display electrode for flat panel displays. The amorphous ITO film is obtained by film deposition on a substrate by sputtering without heating the substrate and without water addition during the deposition. This ITO film has the property of crystallizing upon annealing at 260°C or lower, which is not so high, and thereby coming to have a lower resistivity than before the crystallization. Also provided are a process for producing the ITO film and a sinter for the film production.

IPC Classes  ?

  • C04B 35/00 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
  • C23C 14/08 - Oxides
  • C23C 14/34 - Sputtering
  • H01B 5/14 - Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
  • H01B 13/00 - Apparatus or processes specially adapted for manufacturing conductors or cables

48.

SINTERED SILICON WAFER

      
Application Number JP2008062172
Publication Number 2009/011233
Status In Force
Filing Date 2008-07-04
Publication Date 2009-01-22
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Suzuki, Ryo
  • Takamura, Hiroshi

Abstract

Provided is a sintered silicon wafer having a maximum crystal grain diameter of 20μm or less, an average crystal grain diameter of 1μm or more but not more than 10μm. The sintered silicon wafer has the following mechanical characteristics when a plurality of test samples taken from a silicon wafer having a diameter of 400mm or more are measured; an average deflecting strength of 20kgf/mm2 or more but not more than 50kgf/mm2 when measured by three-point bending method, an average tensile strength of 5kgf/mm2 or more but not more than 20kgf/mm2, and an average Vicker's hardness of Hv800 or more but not more than Hv1,200. The sintered wafer has a certain strength and mechanical properties similar to those of a single crystal silicon, even when it is a large disc-like sintered silicon wafer.

IPC Classes  ?

  • C04B 35/00 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products

49.

SINTERED SILICON WAFER

      
Application Number JP2008062173
Publication Number 2009/011234
Status In Force
Filing Date 2008-07-04
Publication Date 2009-01-22
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Suzuki, Ryo
  • Takamura, Hiroshi

Abstract

Provided is a sintered silicon wafer characterized in that a ratio [formula (1): I(220)/I(111)], i.e., a ratio of the strength of a (220) phase to that of a (111) phase measured by x-ray diffraction, is 0.5 or more but not more than 0.8, and a ratio [formula (2): I(311)/I(111)], i.e., a ratio of the strength of a (311) phase to that of the (111) phase measured by x-ray diffraction is 0.3 or more but not more than 0.5. The sintered silicon wafer having a smooth surface has a surface roughness equivalent to that of a single crystal silicon.

IPC Classes  ?

50.

SINTERED SILICON WAFER

      
Application Number JP2008062174
Publication Number 2009/011235
Status In Force
Filing Date 2008-07-04
Publication Date 2009-01-22
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Suzuki, Ryo
  • Takamura, Hiroshi

Abstract

Provided is a sintered silicon wafer wherein the volume ratio of a silicon oxide is 0.01% or more but not more than 0.2%, the volume ratio of a silicon carbide is 0.01% or more but not more than 0.15%, and the volume ratio of a metal silicide is less than 0.006%. The diameter of the sintered silicon wafer is 400mm or more. The sintered silicon wafer has the following mechanical characteristics (1-3), which are measured by taking a plurality of test samples from the sintered silicon wafer; (1) the average deflecting strength obtained by the three-point bending method is 20kgf/mm2-50kgf/mm2, (2) the average tensile strength is 5kgf/mm2-20kgf/mm2, and (3) the average Vickers hardness is Hv800-Hv1,200. Even a large disc-like sintered silicon wafer has a constant strength, and has characteristics similar to mechanical characteristics of a single crystal silicon.

IPC Classes  ?

  • H01L 21/02 - Manufacture or treatment of semiconductor devices or of parts thereof
  • H01L 21/66 - Testing or measuring during manufacture or treatment

51.

AMORPHOUS COMPOSITE OXIDE FILM, CRYSTALLINE COMPOSITE OXIDE FILM, PROCESS FOR PRODUCING AMORPHOUS COMPOSITE OXIDE FILM, PROCESS FOR PRODUCING CRYSTALLINE COMPOSITE OXIDE FILM, AND COMPOSITE OXIDE SINTER

      
Application Number JP2008060861
Publication Number 2009/001693
Status In Force
Filing Date 2008-06-13
Publication Date 2008-12-31
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Ikisawa, Masakatsu
  • Yahagi, Masataka

Abstract

An amorphous film characterized by consisting substantially of indium, tin, magnesium, and oxygen and having a tin content of 5-15% in terms of Sn/(In+Sn+Mg) atom number ratio and a magnesium content of 0.1-2.0% in terms of Mg/(In+Sn+Mg) atom number ratio, with the remainder being indium and oxygen. The film is further characterized by being crystallized by annealing the film at a temperature not higher than 260°C to come to have a resistivity of 0.4 mΩ or lower. An amorphous ITO film for use in producing an ITO thin film for use as, e.g., a display electrode in flat panel displays is obtained by film deposition by sputtering without heating the substrate and without the need of adding water during the film deposition. This amorphous ITO film has the property of being crystallized by annealing at 260°C or lower, which is not so high, and thereby coming to have a reduced resistivity. Also provided are: a process for producing the film; and a sinter for use in the film production.

IPC Classes  ?

  • C23C 14/08 - Oxides
  • C04B 35/00 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
  • C23C 14/34 - Sputtering
  • C23C 14/58 - After-treatment
  • H01B 5/14 - Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
  • H01B 13/00 - Apparatus or processes specially adapted for manufacturing conductors or cables

52.

SPHERICAL COPPER FINE POWDER AND PROCESS FOR PRODUCTION OF THE SAME

      
Application Number JP2008061033
Publication Number 2009/001710
Status In Force
Filing Date 2008-06-17
Publication Date 2008-12-31
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Haga, Takahiro

Abstract

A spherical copper fine powder characterized by having a mean particle diameter of 0.05 to 0.25μm; and a process for the production of spherical copper fine powder through disproportionation, characterized by adding copper suboxide to an aqueous medium containing an additive consisting of a natural resin, a polysaccharide, or a derivative thereof to prepare a slurry, adding a 5 to 50% aqueous solution of an acid to the slurry at once within 15 minutes, and then subjecting the resulting slurry to disproportionation. The process enables speedy, efficient and stable production of metallic copper particles controlled in particle shape or particle size, particularly copper fine powder having smaller particle sizes.

IPC Classes  ?

  • B22F 1/00 - Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
  • B22F 9/24 - Making metallic powder or suspensions thereof; Apparatus or devices specially adapted therefor using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

53.

TERAHERTZ BAND DEVICE ELEMENT AND METHOD FOR MANUFACTURING TERAHERTZ BAND DEVICE ELEMENT

      
Application Number JP2008061417
Publication Number 2009/001796
Status In Force
Filing Date 2008-06-23
Publication Date 2008-12-31
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor Asahi, Toshiaki

Abstract

It is possible to provide a terahertz band device element which can exhibit an excellent characteristic in a terahertz band device such as a terahertz wave generator and a terahertz wave detector. A method for manufacturing the terahertz band device is also provided. The terahertz band device element for generating or detecting a terahertz wave includes a ZnTe monocrystal plate having a crystal orientation (110), (111) or an orientation having the electro-optical effect, a thickness of 5 to 100 &mgr;m, and a surface roughness of 1 &mgr;m or below. Furthermore, the ZnTe monocrystal plate is bonded to a plate-shaped holding member having one or more openings so as to cover the openings, thereby configuring the terahertz band device element.

IPC Classes  ?

  • H01S 1/02 - Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid
  • H01L 31/00 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof

54.

METHOD FOR PRODUCTION OF METAL-COATED POLYIMIDE RESIN SUBSTRATE HAVING EXCELLENT THERMAL AGING RESISTANCE PROPERTY

      
Application Number JP2008060420
Publication Number 2008/152974
Status In Force
Filing Date 2008-06-06
Publication Date 2008-12-18
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Yoshida, Taku
  • Kawamura, Toshifumi

Abstract

Disclosed is a method for producing a metal-coated polyimide resin substrate, which comprises: forming an electroless nickel-plated layer containing a component (B) on both surfaces or one surface of a polyimide resin film; and forming an electrically conductive film on the surface of the electroless nickel-plated layer by the electroless copper plating or the electro copper plating. The method is characterized as follows. Prior to the electroless nickel plating, a treatment of immersing the polyimide resin substrate in a solution comprising an alkali metal hydroxide to thereby render the polyimide resin substrate hydrophilic, a catalyst addition treatment, and a catalyst activation treatment are conducted. The process for forming the electroless nickel layer is divided into two steps. In the first step, an electroless nickel-plated layer having a larger thickness than that formed in the second step is formed, and the resulting layer is subjected to a heat treatment. In the second step, a procedure for forming an electroless nickel-plated layer is conducted again. The method enables to increase the adhesion after thermal aging (i.e., after allowing to left in the atmosphere at 150°C for 168 hours) without deteriorating the initial adhesion which is a measure of the adhesion force of a non-adhesive flexible laminate.

IPC Classes  ?

  • C23C 18/52 - Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, i.e. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups
  • B32B 15/088 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising polyamides
  • C23C 18/20 - Pretreatment of the material to be coated of organic surfaces, e.g. resins
  • H05K 3/00 - Apparatus or processes for manufacturing printed circuits
  • H05K 3/38 - Improvement of the adhesion between the insulating substrate and the metal

55.

RESIN BLEEDING INHIBITOR AND METHOD OF PREVENTING RESIN BLEEDING

      
Application Number JP2008058186
Publication Number 2008/142960
Status In Force
Filing Date 2008-04-28
Publication Date 2008-11-27
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Aiba, Akihiro
  • Mimura, Tomoharu

Abstract

A resin bleeding inhibitor which is reduced in burden to be imposed on a wastewater treatment, exerts no adverse influence on die bonding strength and assembly properties even when applied to a die bonding resin of a low-stress type, and does not impair the effect of a discoloration-preventive treatment or pore-filling treatment. The resin bleeding inhibitor is characterized by containing a phosphoric ester represented by the following general formula. O=P(O-(R2-O)n-R1)m(OH)3-m (In the formula, R1 represents C4-30 (un)saturated hydrocarbon group; R2 represents lower alkylene; n is an integer of 0-10; and m is an integer of 1-3.)

IPC Classes  ?

  • H01L 23/12 - Mountings, e.g. non-detachable insulating substrates
  • C09J 5/02 - Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
  • C23C 26/00 - Coating not provided for in groups
  • H01L 21/52 - Mounting semiconductor bodies in containers

56.

ELECTROLYTIC COPPER FOIL FOR LITHIUM RECHARGEABLE BATTERY AND PROCESS FOR PRODUCING THE COPPER FOIL

      
Application Number JP2008056915
Publication Number 2008/132987
Status In Force
Filing Date 2008-04-08
Publication Date 2008-11-06
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Hanafusa, Mikio

Abstract

This invention provides an electrolytic copper foil for a lithium rechargeable battery, characterized by having a 0.2% proof stress of 18 to 25 Kg/mm2 and an elongation of not less than 10%. There is also provided a process for producing a copper foil for a lithium rechargeable battery, characterized in that a copper foil having a 0.2% proof stress of 18 to 25 Kg/mm2 and an elongation of not less than 10% is produced by annealing an electrolytic copper foil at a temperature in the range of 175 to 300ºC. The electrolytic copper foil has good proof stress and elongation against electrode breaking caused by charge/discharge of the lithium rechargeable battery, and is less likely to break.

IPC Classes  ?

  • H01M 4/66 - Selection of materials
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
  • C25D 1/00 - Electroforming
  • C25D 1/04 - Wires; Strips; Foils
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

57.

SUBSTRATE FOR EPITAXIAL GROWTH AND METHOD FOR PRODUCING NITRIDE COMPOUND SEMICONDUCTOR SINGLE CRYSTAL

      
Application Number JP2008054134
Publication Number 2008/126532
Status In Force
Filing Date 2008-03-07
Publication Date 2008-10-23
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Takakusaki, Misao
  • Morioka, Satoru
  • Shimizu, Takayuki

Abstract

Disclosed is a technique for stabilizing characteristics of an NdGaO3 substrate which is used for epitaxial growth and growing a good-quality nitride compound semiconductor single crystal with good reproducibility. Specifically, an NdGaO3 single crystal grown by a crystal pulling method is subjected to an annealing process in the atmosphere at a temperature not less than 1400˚C but not more than 1500˚C for a certain time (for example, for 10 hours), and this annealed NdGaO3 substrate is used as a substrate for epitaxial growth.

IPC Classes  ?

  • C30B 29/24 - Complex oxides with formula AMeO3, wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co, or Al, e.g. ortho ferrites
  • C23C 16/02 - Pretreatment of the material to be coated
  • C23C 16/34 - Nitrides
  • C30B 25/18 - Epitaxial-layer growth characterised by the substrate
  • C30B 29/38 - Nitrides
  • H01L 21/205 - Deposition of semiconductor materials on a substrate, e.g. epitaxial growth using reduction or decomposition of a gaseous compound yielding a solid condensate, i.e. chemical deposition

58.

COPPER ELECTROLYTE SOLUTION AND TWO-LAYER FLEXIBLE SUBSTRATE OBTAINED BY USING THE SAME

      
Application Number JP2008053987
Publication Number 2008/126522
Status In Force
Filing Date 2008-03-05
Publication Date 2008-10-23
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor Hanafusa, Mikio

Abstract

Disclosed is a two-layer flexible substrate which is free from surface defects, while being excellent in flexural strength, etching characteristics and adhesion to a resist. Specifically disclosed is a copper electrolyte solution which is characterized by containing, as additives, a chloride ion, a sulfur organic compound and a polyethylene glycol. The copper electrolyte solution preferably contains 5-200 ppm of a chloride ion, 2-1000 ppm of a sulfur organic compound, and 5-1500 ppm of a polyethylene glycol. Also specifically disclosed is a two-layer flexible substrate wherein a copper layer is formed by using the copper electrolyte solution. This two-layer flexible substrate is characterized by having an MIT characteristic of 100 times or more, and a copper layer with a surface roughness (Rz) of 1.4-3.0 &mgr;m.

IPC Classes  ?

  • C25D 3/38 - Electroplating; Baths therefor from solutions of copper
  • C25D 7/00 - Electroplating characterised by the article coated
  • H01L 21/60 - Attaching leads or other conductive members, to be used for carrying current to or from the device in operation
  • H05K 1/03 - Use of materials for the substrate
  • H05K 1/09 - Use of materials for the metallic pattern

59.

SUBSTRATE FOR EPITAXIAL GROWTH AND EPITAXIAL GROWTH PROCESS

      
Application Number JP2008055561
Publication Number 2008/123242
Status In Force
Filing Date 2008-03-25
Publication Date 2008-10-16
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Suzuki, Kenji
  • Sato, Tsutomu
  • Hirano, Ryuichi

Abstract

Disclosed is a substrate for epitaxial growth, which enables to obtain an epitaxial layer having uniform PL characteristics when the epitaxial layer is grown on a group III-V compound semiconductor substrate such as an InP substrate. Also disclosed is an epitaxial growth process. Specifically, during a process wherein an epitaxial layer composed of a compound semiconductor such as an InGaAsP layer is vapor deposited on a group III-V semiconductor substrate such as an InP substrate, the preset temperature is adequately controlled by taking it into consideration that the substrate temperature (growth temperature) changes due to the size (major axis) of an elliptical etch pit on the backside of the substrate.

IPC Classes  ?

  • C30B 29/40 - AIIIBV compounds
  • C23C 16/30 - Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
  • C30B 25/18 - Epitaxial-layer growth characterised by the substrate
  • H01L 21/306 - Chemical or electrical treatment, e.g. electrolytic etching
  • H01L 33/00 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof
  • H01S 5/323 - Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- hetero-structures in AIIIBV compounds, e.g. AlGaAs-laser

60.

CU-NI-SI-BASED ALLOY FOR ELECTRONIC MATERIAL

      
Application Number JP2008056138
Publication Number 2008/123433
Status In Force
Filing Date 2008-03-28
Publication Date 2008-10-16
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Era, Naohiko

Abstract

Disclosed is a Corson alloy having dramatically improved properties (e.g., high strength and high conductivity) which are achieved by allowing the effect of the addition of Cr to a Cu-Ni-Si-based alloy to exhibit more effectively. Specifically disclosed is a copper alloy for an electronic material, which comprises 1.0 to 4.5 mass% of Ni, 0.50 to 1.2 mass% of Si, 0.0030 to 0.3 mass% of Cr (provided that the weight-based ratio of Ni to Si (i.e., a Ni/Si ratio) by weight is as follows: 3 ≤ Ni/Si ≤ 5.5), with the remainder being Cu and unavoidable impurities. In the copper alloy, a Cr-Si compound having a size of 0.1 to 5 騜m (inclusive) is dispersed in the material at a dispersion density of 1 × 106 particles/mm2 or less, wherein the atom-based ratio of the concentration of Cr to that of Si in the dispersed particle is 1 to 5.

IPC Classes  ?

  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
  • C22C 9/00 - Alloys based on copper
  • C22C 9/01 - Alloys based on copper with aluminium as the next major constituent
  • C22C 9/02 - Alloys based on copper with tin as the next major constituent
  • C22C 9/04 - Alloys based on copper with zinc as the next major constituent
  • C22C 9/05 - Alloys based on copper with manganese as the next major constituent
  • C22C 9/10 - Alloys based on copper with silicon as the next major constituent
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
  • H01B 1/02 - Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
  • H01B 5/02 - Single bars, rods, wires or strips; Bus-bars
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
  • C22F 1/02 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum

61.

CU-NI-SI-CO-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCTION THEREOF

      
Application Number JP2008056142
Publication Number 2008/123436
Status In Force
Filing Date 2008-03-28
Publication Date 2008-10-16
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Kuwagaki, Hiroshi

Abstract

Disclosed is a Cu-Ni-Si-Co-based alloy reduced in the production of a coarse second phase particle. In the process for producing a Cu-Ni-Si-Co-based alloy; (1) the hot rolling is carried out after heating at 950 to 1050˚C for 1 hour or longer, and the hot rolling termination temperature is fixed at 850˚C or higher, and the cooling is carried out at a rate of 15˚C/s or more; and (2) the solution treatment is carried out at 850 to 1050˚C, and the cooling is carried out at a rate of 15˚C/s or more. Specifically disclosed is a copper alloy for an electronic material, which comprises 1.0 to 2.5 mass% of Ni, 0.5 to 2.5 mass% of Co and 0.30 to 1.20 mass% of Si, with the remainder being Cu and unavoidable impurities. The copper alloy contains no second phase particle having a particle diameter greater than 10 騜m, and contains a second phase particle having a particle diameter of 5 to 10 騜m at a density of 50 particles/mm2 or less in a cross-section parallel to the rolling direction.

IPC Classes  ?

  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
  • C22C 9/00 - Alloys based on copper
  • C22C 9/01 - Alloys based on copper with aluminium as the next major constituent
  • C22C 9/02 - Alloys based on copper with tin as the next major constituent
  • C22C 9/04 - Alloys based on copper with zinc as the next major constituent
  • C22C 9/05 - Alloys based on copper with manganese as the next major constituent
  • C22C 9/10 - Alloys based on copper with silicon as the next major constituent
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
  • H01B 1/02 - Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
  • H01B 5/02 - Single bars, rods, wires or strips; Bus-bars
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

62.

METHOD OF RECOVERING VALUABLE METAL FROM SCRAP CONTAINING CONDUCTIVE OXIDE

      
Application Number JP2008054130
Publication Number 2008/117649
Status In Force
Filing Date 2008-03-07
Publication Date 2008-10-02
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Shindo, Yuichiro
  • Takemoto, Koichi

Abstract

A method of recovering a valuable metal from an oxide-based scrap, characterized by using an insoluble electrode as an anode, using the oxide-based scrap as a cathode, and conducting electrolysis to recover the cathode scrap in the form of metal or suboxide. Thus, a valuable metal is efficiently recovered from an oxide-based scrap, e.g., a sputtering target made of indium-tin oxide (ITO) or fragments resulting from production.

IPC Classes  ?

  • C25C 1/14 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of tin
  • C22B 1/02 - Roasting processes
  • C22B 3/04 - Extraction of metal compounds from ores or concentrates by wet processes by leaching
  • C22B 3/44 - Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
  • C22B 5/12 - Dry processes by gases
  • C22B 7/00 - Working-up raw materials other than ores, e.g. scrap, to produce non-ferrous metals or compounds thereof
  • C22B 19/34 - Obtaining zinc oxide
  • C22B 25/06 - Obtaining tin from scrap, especially tin scrap
  • C22B 58/00 - Obtaining gallium or indium
  • C25B 1/00 - Electrolytic production of inorganic compounds or non-metals
  • C25C 1/16 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
  • C25C 1/22 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups

63.

NON-ADHESIVE-TYPE FLEXIBLE LAMINATE AND METHOD FOR PRODUCTION THEREOF

      
Application Number JP2008051646
Publication Number 2008/114539
Status In Force
Filing Date 2008-02-01
Publication Date 2008-09-25
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Makino, Nobuhito

Abstract

Disclosed is a non-adhesive-type flexible laminate comprising a polyimide film with at least one surface thereof being plasma-treated, a tie coat layer formed on the plasma-treated surface of the polyimide film and a conductive metal layer formed on the tie coat layer, wherein the ratio of the thickness (T) of the tie coat layer to the ten-point average roughness (Rz) of the plasma-treated surface of the polyimide film (i.e., the T/Rz ratio) is 2 or greater. The object is to improve the initial adhesion force which is a measure of the adhesion force and also improve the adhesion force after heat aging (i.e., after being allowed to stand in the air at 150˚C for 168 hours in the air) in a non-adhesive-type flexible laminate (particularly a dual-layered flexible laminate).

IPC Classes  ?

  • H01B 5/14 - Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
  • B32B 15/088 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising polyamides
  • H05K 1/03 - Use of materials for the substrate

64.

SN-PLATED COPPER ALLOY MATERIAL FOR PRINTED BOARD TERMINAL

      
Application Number JP2008055303
Publication Number 2008/114868
Status In Force
Filing Date 2008-03-21
Publication Date 2008-09-25
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Hatano, Takaaki
  • Koike, Kenji

Abstract

An Sn-plated copper alloy material comprising, by mass, 2 to 12% Zn, 0.1 to 1.0% Sn, optionally 0.005 to 0.5%, in total, at least one member selected from among Ni, Mg, Fe, P, Mn, Co, Be, Ti, Cr, Zr, Al and Ag, and the balance copper and unavoidable impurities. The Sn-plated copper alloy material has a thermal conductivity of 150 to 260 W/(m•K) and a micro Vickers hardness of 120 to 215 and has its surface covered with a pure Sn phase of 0.1 to 2.0 &mgr;m average thickness. Further, there is disclosed a printed board terminal being a pin-shaped member of 0.2 to 1.0 mm in thickness (t) of its part mounted on the board and 0.9t to 2.0tmm in width (w) of its part mounted on the board obtained by press working of the above alloy material so that the base material of the copper alloy material is exposed at a press fractured surface, thereby excelling in solder mountability. Thus, there is provided an Sn-plated copper alloy material that even when plating is performed prior to press working, excellent mountability is attained, and provided a printed board terminal obtained by working of the material.

IPC Classes  ?

  • C22C 9/04 - Alloys based on copper with zinc as the next major constituent
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
  • H01B 1/02 - Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

65.

TERAHERTZ ELECTROMAGNETIC WAVE DETECTOR

      
Application Number JP2008054146
Publication Number 2008/111509
Status In Force
Filing Date 2008-03-07
Publication Date 2008-09-18
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor Asahi, Toshiaki

Abstract

A terahertz electromagnetic wave detector which can avoid deterioration in detection sensitivity of terahertz electromagnetic wave resulting from a defect (especially, a slip line along a (111) face) occurring in a ZnTe substrate as an electrooptical element, and can enhance precision of a measuring image utilizing a terahertz electromagnetic wave. The terahertz electromagnetic wave detector comprises a terahertz electromagnetic wave irradiation means for irradiating a terahertz electromagnetic wave, a probe light irradiation means for irradiating probe light, an electrooptical element for receiving the terahertz electromagnetic wave from the terahertz electromagnetic wave irradiation means and the probe light from the probe light irradiation means, and a probe light detecting means for detecting the probe light (intensity) passed through the electrooptical element. A ZnTe single crystal substrate off-angled by 10-45° in the direction from a {110} face to a {001} face is employed as the electrooptical element.

IPC Classes  ?

  • G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
  • G01N 21/3563 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
  • G01N 21/3586 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]

66.

METHODS OF RECOVERING VALUABLE METAL FROM SCRAP CONTAINING ELECTRICALLY CONDUCTIVE OXIDE

      
Application Number JP2008052107
Publication Number 2008/099773
Status In Force
Filing Date 2008-02-08
Publication Date 2008-08-21
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Shindo, Yuichiro
  • Takemoto, Kouichi

Abstract

A method of recovering a valuable metal from scraps containing an electrically conductive oxide, characterized by using scraps containing an electrically conductive oxide and subjecting the scraps to electrolysis while periodically reversing the polarity to thereby recover the metal as a hydroxide. The method of recovering a valuable metal from scraps containing an electrically conductive oxide may be characterized in that the oxide-containing scraps are a substance which is an electrically conductive oxide and can be reduced with hydrogen into a metal or suboxide. Also provided is a method of efficiently recovering a valuable metal from either sputtering-target scraps containing an electrically conductive oxide or scraps generated during production, such as chips of an electrically conductive oxide.

IPC Classes  ?

  • C25B 1/00 - Electrolytic production of inorganic compounds or non-metals
  • C22B 7/00 - Working-up raw materials other than ores, e.g. scrap, to produce non-ferrous metals or compounds thereof

67.

PROCESS FOR PRODUCING COMPOUND SEMICONDUCTOR SINGLE CRYSTAL AND CRYSTAL GROWING APPARATUS

      
Application Number JP2008052319
Publication Number 2008/099839
Status In Force
Filing Date 2008-02-13
Publication Date 2008-08-21
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Asahi, Toshiaki
  • Shimizu, Takayuki

Abstract

This invention provides a process for producing a compound semiconductor single crystal, which is a technique applicable to crystal growth utilizing an LEC method and can produce a large-size ZnTe-base compound semiconductor single crystal at a high yield, and a crystal growing apparatus. The production process is a process for producing a compound semiconductor single crystal by a liquid sealing Czochralski method, comprising placing a semiconductor material and a sealing agent in a material melt storage part comprising a closed end cylindrical first crucible and a second crucible, which is disposed on the inner side of the first crucible and has a hole for communication with the first crucible at its bottom, heating the material storage part to melt the material, bringing a seed crystal into contact with the material melt surface in this state, and allowing a crystal to grow while pulling up the seed crystal. In this process, the crystal is grown while rotating the first crucible and the second crucible in the circumferential direction at a predetermined rotation speed.

IPC Classes  ?

  • C30B 15/30 - Mechanisms for rotating or moving either the melt or the crystal
  • C30B 15/12 - Double crucible methods
  • C30B 27/02 - Single-crystal growth under a protective fluid by pulling from a melt

68.

METHOD OF RECOVERING VALUABLE METAL FROM SCRAP CONTAINING CONDUCTIVE OXIDE

      
Application Number JP2008052108
Publication Number 2008/099774
Status In Force
Filing Date 2008-02-08
Publication Date 2008-08-21
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Shindo, Yuichiro
  • Takemoto, Kouichi

Abstract

A method of recovering a valuable metal from ITO scrap, characterized in that electrolysis under periodic inversion of polarity is carried out with the use of an insoluble electrode as either an anode or a cathode and with the use of a scrap containing a conductive oxide as the opposite cathode or anode employed as the electrode counter thereto to thereby attain recovery of the scrap as a hydroxide. Further, there is provided a method of recovering a valuable metal from a scrap containing a conductive oxide, characterized in that the oxide scrap is a conductive oxide being a substance reducible by hydrogen to a metal or suboxide. By the method, a valuable metal can be efficiently recovered from scraps containing a conductive oxide, such as a sputtering target containing a conductive oxide and target end materials occurring in production process.

IPC Classes  ?

  • C25B 1/00 - Electrolytic production of inorganic compounds or non-metals
  • C22B 7/00 - Working-up raw materials other than ores, e.g. scrap, to produce non-ferrous metals or compounds thereof

69.

TARGET FORMED OF SINTERING-RESISTANT MATERIAL OF HIGH-MELTING POINT METAL ALLOY, HIGH-MELTING POINT METAL SILICIDE, HIGH-MELTING POINT METAL CARBIDE, HIGH-MELTING POINT METAL NITRIDE, OR HIGH-MELTING POINT METAL BORIDE, PROCESS FOR PRODUCING THE TARGET, ASSEMBLY OF THE SPUTTERING TARGET-BACKING PLATE, AND PROCESS FOR PRODUC

      
Application Number JP2008051364
Publication Number 2008/096648
Status In Force
Filing Date 2008-01-30
Publication Date 2008-08-14
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Yamakoshi, Yasuhiro

Abstract

This invention provides a target formed of a sintering-resistant material of a high-melting point metal alloy, a high-melting point metal silicide, a high-melting point metal carbide, a high-melting point metal nitride, or a high-melting point metal boride, characterized by having a structure comprising a target material formed of a sintering-resistant material of a high-melting point metal alloy, a high-melting point metal silicide, a high-melting point metal carbide, a high-melting point metal nitride, or a high-melting point metal boride and a high-melting point metal plate other than the target material joined to each other, and a process for producing the target. In the target and the production process of the target, a target formed of a sintering-resistant material of a high-melting point metal alloy, a high-melting point metal silicide, a high-melting point metal carbide, a high-melting point metal nitride, or a high-melting point metal boride, which has poor machinability, can relatively easily be produced. Further, the occurrence of cracking in the target production and high power sputtering can be effectively suppressed. Furthermore, a reaction of the material for a target with a die in hot pressing can be suppressed, and the warpage of the target can be reduced.

IPC Classes  ?

  • C23C 14/34 - Sputtering
  • B23K 20/00 - Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
  • C04B 37/02 - Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles

70.

ROLL UNIT FOR USE IN SURFACE TREATMENT OF COPPER FOIL

      
Application Number JP2007073818
Publication Number 2008/081688
Status In Force
Filing Date 2007-12-11
Publication Date 2008-07-10
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Sato, Haruo

Abstract

A roll unit for use in a surface treatment of copper foil, comprising an axial sleeve fitted to a shaft of roll so as to realize, via the axial sleeve, rotatable support to bearing. In particular, in the roll unit, the axial sleeve consists of two sleeves, the one being a roll-side sleeve disposed on the side of roll main body while the other being a taper sleeve disposed on the side of an axial end, and not only is an oil seal disposed between the roll-side sleeve and a bearing housing but also the taper sleeve is supported by a bearing disposed in the bearing housing. Thus, there is realized a roll unit for use in the continuous execution of electrochemical surface treatments, such as roughening, rustproof and oxidizing surface treatments, on the surface of a rolled copper foil or electrolytic copper foil, especially a roll unit that not only inhibits any abrasion or corrosion of roll shaft of the roll unit and bearing but also ensures easy replacement of bearing housing, bearing and other parts.

IPC Classes  ?

71.

ROLL UNIT DIPPED IN SURFACE TREATMENT LIQUID

      
Application Number JP2007073819
Publication Number 2008/081689
Status In Force
Filing Date 2007-12-11
Publication Date 2008-07-10
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Sato, Haruo

Abstract

A roll unit to be dipped in a surface treatment liquid for copper foil, characterized in that the roll unit has a bearing housing for accommodation of roll shaft consisting of two separable bearing housings, the one of these bearing housings being a roll-side bearing housing disposed on the side of roll main body while the other being an axial-end-side bearing housing disposed on the side of a roll axial end, and that the roll-side bearing housing in its interior is provided with an axial sleeve covering the outer circumference of the roll shaft and an oil seal superimposed on the outer circumference of the axial sleeve, and that the axial-end-side bearing housing is provided with a bearing supporting the rotation of the shaft. Thus, there is realized a roll unit for use in an apparatus for continuously carrying out electrochemical surface treatments, such as roughening, rustproof and oxidizing surface treatments, on the surface of a rolled copper foil or electrolytic copper foil, especially a roll unit that not only inhibits any corrosion of roll unit dipped in a surface treatment liquid by penetration of the treatment liquid to thereby inhibit any abrasion or corrosion of roll shaft and bearing but also ensures easy replacement of bearing housing, bearing and other parts.

IPC Classes  ?

  • C25D 7/06 - Wires; Strips; Foils
  • F16C 13/00 - Rolls, drums, discs, or the like; Bearings or mountings therefor
  • F16C 13/02 - Bearings
  • F16J 15/32 - Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings

72.

BILAYER COPPER CLAD LAMINATE

      
Application Number JP2007072074
Publication Number 2008/065890
Status In Force
Filing Date 2007-11-14
Publication Date 2008-06-05
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Kohiki, Michiya
  • Nakashima, Koichi
  • Michishita, Naonori

Abstract

A bilayer copper clad laminate having a copper layer provided on a polyimide film by sputtering and plating, characterized by exhibiting the behaviors of shrinking at MD of the copper clad laminate and elongating at TD of the copper clad laminate and by being 20 mm of less in a warpage of laminate. Provided that the warpage is an extent of lift of the bilayer copper clad laminate of 100 mm square exhibited after humidity conditioning at 23°C in 50% humidity for 72 hr. Thus, with respect to a bilayer CCL material having a copper layer provided on a polyimide film by sputtering and plating, there is provided a bilayer CCL material exhibiting a reduced warpage of the laminate and provided a process for producing the same.

IPC Classes  ?

  • B32B 15/088 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising polyamides
  • H05K 1/03 - Use of materials for the substrate

73.

IRON/COPPER COMPOSITE POWDER FOR POWDER METALLURGY AND PROCESS FOR PRODUCING THE SAME

      
Application Number JP2007072068
Publication Number 2008/059855
Status In Force
Filing Date 2007-11-14
Publication Date 2008-05-22
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Narusawa, Yasushi

Abstract

An iron/copper composite powder for powder metallurgy comprising a copper-coated iron powder as a major component. The composite powder comprises a copper-coated iron powder or a powder mixture of a copper-coated iron powder and an electrolytic copper powder, and is characterized by having a copper content of 45-70 wt.%, apparent density of 2.2 g/cm3 or higher, and fluidity of 25 s/50 g or lower. Also provided is a process for producing an iron/copper composite powder for powder metallurgy comprising a copper-coated iron powder as a major component, characterized by plating an iron powder with copper, sintering this copper-coated iron powder alone having a copper content of 45-70 wt.% or a mixture prepared by mixing the copper-coated iron powder with an electrolytic copper powder so as to result in a copper content of 45-70 wt.%, and pulverizing the sinter. By the process for producing a raw powder for powder metallurgy which comprises copper-coated iron as a major component and is for use in producing, e.g., a sintered oil-impregnated bearing, a raw sintering powder is obtained which is improved in flowability and apparent density and in sinter properties including ring compression strength. A cost reduction is also attained.

IPC Classes  ?

  • B22F 1/02 - Special treatment of metallic powder, e.g. to facilitate working, to improve properties; Metallic powders per se, e.g. mixtures of particles of different composition comprising coating of the powder
  • B22F 1/00 - Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
  • C22C 9/00 - Alloys based on copper

74.

SILVER-PLATED FINE COPPER POWDER, CONDUCTIVE PASTE PRODUCED FROM SILVER-PLATED FINE COPPER POWDER, AND PROCESS FOR PRODUCING SILVER-PLATED FINE COPPER POWDER

      
Application Number JP2007071907
Publication Number 2008/059789
Status In Force
Filing Date 2007-11-12
Publication Date 2008-05-22
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Haga, Takahiro

Abstract

A process for producing a silver-plated fine copper powder characterized by treating a fine copper powder with an alkaline solution to remove organic substances present on the surface of the fine copper powder, washing the powder with water, washing an oxide present on the surface of the fine copper powder with an acidic solution, washing the powder with water, subsequently adding a reducing agent to an acidic solution containing this fine copper powder dispersed therein to produce a slurry of the fine copper powder, regulating the pH of the slurry, and then continuously adding to this fine-copper-powder slurry a solution of silver ions complexed with a chelating agent to thereby form a silver layer on the surface of the fine copper powder by electroless displacement plating and reductive plating. This process eliminates problems in conventional silver-plated fine copper powders, e.g., that the fine copper powders obtained through silver plating reaction differ in color tone according to the oxidized state thereof before silver plating and that the silver plating causes a decrease in tap density. The silver-plated fine copper powder is excellent in electrical conductivity and reproducibility in silver plating reaction and has almost the same tap density as the raw fine copper powder.

IPC Classes  ?

  • B22F 1/02 - Special treatment of metallic powder, e.g. to facilitate working, to improve properties; Metallic powders per se, e.g. mixtures of particles of different composition comprising coating of the powder
  • B22F 1/00 - Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
  • C23C 18/44 - Coating with noble metals using reducing agents
  • H01B 1/22 - Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
  • H01B 5/00 - Non-insulated conductors or conductive bodies characterised by their form

75.

METHOD FOR COLLECTION OF VALUABLE METAL FROM ITO SCRAP

      
Application Number JP2007062895
Publication Number 2008/053616
Status In Force
Filing Date 2007-06-27
Publication Date 2008-05-08
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Shindo, Yuichiro
  • Takemoto, Kouichi

Abstract

A method for collecting a valuable metal from an indium-tin oxide (ITO) scrap, characterized by collecting metal indium by the electrolysis of the ITO scrap; a method comprising conducting the electrolysis of the ITO scrap in an electrolytic bath partitioned by a septum or an ion exchange membrane, removing an anolyte temporarily, removing tin from the anolyte by a neutralization technique or a substitution technique, placing a solution produced by the removal of tin into the cathode side again, conducting the electrolysis of the solution, and collecting metal indium selectively; or a method for collecting a valuable metal from an ITO scrap, comprising preparing a solution containing In and Sn in an ITO-electrolyzing bath, removing Sn from the solution, and collecting In in the collecting bath. It becomes possible to provide a method for collecting metal indium at high efficiency from an ITO sputtering target or an ITO scrap (e.g., a ITO waste) produced during the production of the ITO sputtering target.

IPC Classes  ?

  • C25C 1/22 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups
  • C22B 3/00 - Extraction of metal compounds from ores or concentrates by wet processes
  • C22B 25/06 - Obtaining tin from scrap, especially tin scrap

76.

METHOD FOR COLLECTION OF VALUABLE METAL FROM ITO SCRAP

      
Application Number JP2007062897
Publication Number 2008/053618
Status In Force
Filing Date 2007-06-27
Publication Date 2008-05-08
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Shindo, Yuichiro
  • Takemoto, Kouichi

Abstract

Disclosed is a method for collecting a valuable metal from an indium-tin oxide (ITO) scrap, characterized by conducting the electrolysis of the ITO scrap in an pH-adjusted electrolyte solution to collect indium or tin in the form of an oxide. Also disclosed is a method for collecting a valuable metal from an ITO scrap, which comprises conducting the electrolysis of the ITO scrap in an electrolytic bath partitioned by a septum or an ion exchange membrane to precipitate tin hydroxide, removing an anolyte temporarily, causing the precipitation of indium contained in the anolyte in the form of a hydroxide, and collecting the hydroxide. In these methods, indium or tin may be collected in the form of an oxide by roasting the precipitate containing indium or tin. It becomes possible to provide a method for collecting indium at high efficiency from an ITO sputtering target or an ITO scrap (e.g., a ITO waste) produced during the production of the ITO sputtering target.

IPC Classes  ?

  • C25B 1/00 - Electrolytic production of inorganic compounds or non-metals
  • C22B 3/44 - Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
  • C22B 25/06 - Obtaining tin from scrap, especially tin scrap
  • C25C 1/14 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of tin
  • C25C 1/22 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups

77.

METHOD FOR COLLECTION OF VALUABLE METAL FROM ITO SCRAP

      
Application Number JP2007062898
Publication Number 2008/053619
Status In Force
Filing Date 2007-06-27
Publication Date 2008-05-08
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Shindo, Yuichiro
  • Takemoto, Kouichi

Abstract

Disclosed is a method for collecting a valuable metal from an indium-tin oxide (ITO) scrap, characterized by collecting tin by the electrolysis of the ITO scrap. Also disclosed is a method for collecting a valuable metal from an ITO scrap, characterized by providing an ITO-electrolyzing bath and a tin-collecting bath, dissolving the ITO scrap in the electrolyzing bath, and collecting tin in the collecting bath. Further disclosed is a method for collecting a valuable metal from an ITO scrap, characterized by conducting the electrolysis of the ITO scrap in an electrolyte solution by using the ITO scrap as an anode to dissolve the ITO scrap, causing the precipitation of only tin in the solution in the form of metal tin or a tin-containing substance, removing the precipitation product and placed it in a collection bath where the precipitation product is dissolved again to provide a solution of tin hydroxide, and conducting the electrolysis or neutralization of the solution to collect tin. It becomes possible to provide a method for collecting tin at high efficiency from an ITO sputtering target or an ITO scrap (e.g., a ITO waste) produced during the production of the ITO sputtering target.

IPC Classes  ?

  • C25C 1/14 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of tin

78.

METHOD FOR COLLECTION OF VALUABLE METAL FROM ITO SCRAP

      
Application Number JP2007062896
Publication Number 2008/053617
Status In Force
Filing Date 2007-06-27
Publication Date 2008-05-08
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Shindo, Yuichiro
  • Takemoto, Kouichi

Abstract

Disclosed is a method for collecting a valuable metal from an indium-tin oxide (ITO) scrap, characterized by conducting the electrolysis of the ITO scrap in an pH-adjusted electrolyte solution to collect a mixture of indium hydroxide and tin hydroxide or metastannic acid and, if required, roasting the mixture to collect a mixture of indium oxide and tin oxide. It becomes possible to provide a method for collecting indium hydroxide and tin hydroxide or metastannic acid or indium oxide and tin oxide at high efficiency from an ITO sputtering target or an ITO scrap (e.g., a ITO waste) produced during the production of the ITO sputtering target.

IPC Classes  ?

  • C25B 1/00 - Electrolytic production of inorganic compounds or non-metals
  • C25C 1/14 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of tin
  • C25C 1/22 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups

79.

METHOD FOR COLLECTION OF VALUABLE METAL FROM ITO SCRAP

      
Application Number JP2007062899
Publication Number 2008/053620
Status In Force
Filing Date 2007-06-27
Publication Date 2008-05-08
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Shindo, Yuichiro
  • Takemoto, Kouichi

Abstract

Disclosed is a method for collecting a valuable metal from an indium-tin oxide (ITO) scrap, characterized by collecting an indium-tin alloy by the electrolysis of the ITO scrap. Also disclosed is a method for collecting a valuable metal from an ITO scrap, characterized by providing an ITO-electrolyzing bath and an indium-tin alloy-collecting bath, dissolving ITO in the electrolyzing bath, and collecting the indium-tin alloy in the collecting bath. It becomes possible to provide a method for collecting an indium-tin alloy at high efficiency from an ITO sputtering target or an ITO scrap (e.g., a ITO waste) produced during the production of the ITO sputtering target.

IPC Classes  ?

  • C25C 1/24 - Alloys obtained by cathodic reduction of all their ions

80.

ROLLED COPPER FOIL EXCELLENT IN BENDING RESISTANCE

      
Application Number JP2007069177
Publication Number 2008/050584
Status In Force
Filing Date 2007-10-01
Publication Date 2008-05-02
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Yamanishi, Keisuke
  • Miki, Atsushi

Abstract

A rolled copper foil excellent in bending resistance is characterized in that a texture having a bent slip band is formed by 50% or more on the surface of the rolled copper foil. The rolled copper foil excellent in bending resistance is characterized in that a texture has an average crystal particle size exceeding 20 &mgr;m and satisfies a relation I(200)/Io(200)>40, where I(200) is the integration strength of (200) face determined by X ray diffraction on the rolled surface of the rolled copper foil after recrytallization annealing, and Io(200) is the integration strength of (200) face of fine powder copper determined by X ray diffraction. In particular, a rolled copper foil for flexible printed wiring board (FPC) excellent in bending resistance is provided.

IPC Classes  ?

  • C22C 9/00 - Alloys based on copper
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
  • H05K 1/09 - Use of materials for the metallic pattern
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

81.

Sb-Te BASE ALLOY SINTER SPUTTERING TARGET

      
Application Number JP2007069550
Publication Number 2008/044626
Status In Force
Filing Date 2007-10-05
Publication Date 2008-04-17
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Yahagi, Masataka
  • Takahashi, Hideyuki
  • Ajima, Hirohisa

Abstract

An antimony-tellurium base alloy sinter sputtering target comprising antimony and tellurium as major components, characterized in that it has a structure comprising antimony-tellurium base alloy particles and fine carbon or boron particles with which the alloy particles are surrounded, and that when the average diameter of the antimony-tellurium base alloy particles and the particle diameter of the carbon or boron are expressed by X and Y, respectively, then Y/X is in the range of from 1/10 to 1/10,000. The antimony-tellurium base alloy sinter sputtering target has the improved structure, is inhibited from cracking, and prevents arcing from occurring during sputtering.

IPC Classes  ?

  • C23C 14/34 - Sputtering
  • C22C 28/00 - Alloys based on a metal not provided for in groups
  • G11B 7/26 - Apparatus or processes specially adapted for the manufacture of record carriers

82.

METHOD FOR PRODUCTION OF COPPER ALLOY FOR ELECTRONIC MATERIAL

      
Application Number JP2007069269
Publication Number 2008/041696
Status In Force
Filing Date 2007-10-02
Publication Date 2008-04-10
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Kuwagaki, Hiroshi
  • Era, Naohiko

Abstract

Disclosed is a copper alloy for an electronic material, which has a satisfactory balance among strength, electric conductivity and bending workability to be used as a material for a terminal, a connector, a switch or a relay. Specifically disclosed is a copper alloy for an electronic material, which comprises 1.00 to 2.50 mass% of Co and 0.20 to 0.70 mass% of Si, with the remainder being Cu and unavoidable impurities, and which has a mass-based concentration ratio between Co and Si (a Co/Si ratio) satisfying the following formula: 3.5≤Co/Si≤5 and an electric conductivity of 55% IACS or greater, preferably 60% IACS or greater. Preferably, the copper alloy may contain Cr in an amount of 0.05 to 0.50 mass%, have a content of carbon (an unavoidable impurity) of 50 ppm or less, and further contain at least one element selected form Mg, P, As, Sb, Be, B, Mn, Sn, Ti, Zr, Al, Fe, Zn and Ag in an amount of 0.001 to 0.300 mass%. Also disclosed is a method for producing the alloy, which comprises the steps of conducting melting/casting and subsequently conducting hot rolling and cold rolling, wherein a thermal treatment for heating to 700 to 1050˚C and then cooling at a rate of 10˚C/sec. is conducted prior to the final cold rolling procedure.

IPC Classes  ?

  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
  • H01B 1/02 - Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
  • H01R 13/03 - Contact members characterised by the material, e.g. plating or coating materials
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

83.

Cu-Mn ALLOY SPUTTERING TARGET AND SEMICONDUCTOR WIRING

      
Application Number JP2007068501
Publication Number 2008/041535
Status In Force
Filing Date 2007-09-25
Publication Date 2008-04-10
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Irumata, Shuichi
  • Miyata, Chisaka

Abstract

This invention provides a Cu-Mn alloy sputtering target characterized by comprising 0.05 to 20% by weight of Mn and not more than 500 ppm by weight in total of Be, B, Mg, Al, Si, Ca, Ba, La, and Ce with the balance consisting of Cu and unavoidable impurities. There is also provided a copper alloy wiring for a semiconductor, wherein a self-diffusion suppression function can be imparted to the copper alloy wiring for a semiconductor per se to effectively prevent contamination of a part around the wiring by the diffusion of active Cu. Further, in the copper alloy wiring for a semiconductor, for example, electromigration (EM) resistance and corrosion resistance have been improved, a barrier layer can be arbitrarily and easily formed, and, further, the film forming step of a copper alloy wiring for a semiconductor can be simplified. A sputtering target for the formation of the wiring, and a method for forming a copper alloy wiring for a semiconductor are also provided.

IPC Classes  ?

  • C23C 14/34 - Sputtering
  • H01L 21/285 - Deposition of conductive or insulating materials for electrodes from a gas or vapour, e.g. condensation
  • H01L 21/3205 - Deposition of non-insulating-, e.g. conductive- or resistive-, layers, on insulating layers; After-treatment of these layers
  • H01L 23/52 - Arrangements for conducting electric current within the device in operation from one component to another

84.

PROCESS FOR PRODUCING METASTABLE AUSTENITIC STAINLESS STEEL STRIP EXCELLING IN FATIGUE PROPERTY AND THE STEEL STRIP

      
Application Number JP2007069009
Publication Number 2008/041638
Status In Force
Filing Date 2007-09-28
Publication Date 2008-04-10
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Kurosaki, Ikuya

Abstract

A metastable austenitic stainless steel strip excelling in fatigue property that finds appropriate application in parts requiring repeated resilience, such as parts for use in switch portions of various electronic equipments, finding especially appropriate application in metal dome parts for switch. There is provided a process for producing a metastable austenitic stainless steel strip of 1200 MPa or greater tensile strength excelling in fatigue property, comprising performing a final cold rolling of material with an average crystal grain diameter of 5.0 騜m or less so as to attain a martensite content in product thickness of 90% or below. Preferably, there is provided a process comprising sequentially performing cold rolling of material with an average crystal grain diameter of 5.0 騜m or less, recrystallization-annealing aiming at an average crystal grain diameter of 5.0 騜m or less and final cold rolling. Further, there are provided a metastable austenitic stainless steel strip obtained by these processes and a metal dome part for switch consisting of the stainless steel strip.

IPC Classes  ?

  • C21D 9/46 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
  • C22C 38/40 - Ferrous alloys, e.g. steel alloys containing chromium with nickel
  • H01H 1/02 - Contacts characterised by the material thereof
  • H01H 11/04 - Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts

85.

Cu-Ni-Si ALLOY

      
Application Number JP2007068420
Publication Number 2008/038593
Status In Force
Filing Date 2007-09-21
Publication Date 2008-04-03
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Hatano, Takaaki

Abstract

A Cu-Ni-Si alloy for electronic material that with the addition of other alloy elements minimized, simultaneously exhibits enhanced electric conductivity, strength, flexure and stress relaxation performance. There is provided a Cu-Ni-Si alloy comprising 1.2 to 3.5 mass% Ni, Si in a concentration (mass%) of 1/6 to 1/4 of the Ni concentration (mass%) and the balance Cu and impurities whose total amount is 0.05 mass% or less, the Cu-Ni-Si alloy having its configuration of crystal grains and width of nonprecipitation zone regulated so as to fall within appropriate ranges through controlling of solution treatment conditions, aging treatment conditions and degree of roll working. Thus, there can be provided a copper alloy strip of 55 to 62% IACS electric conductivity and 550 to 700 MPa tensile strength, being free from cracking at 180° contact bending and exhibiting a stress relaxation ratio, as measured upon heating at 150°C for 1000 hr, of 30% or below.

IPC Classes  ?

  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
  • C22C 9/04 - Alloys based on copper with zinc as the next major constituent
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
  • H01L 23/50 - Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads or terminal arrangements for integrated circuit devices

86.

PROCESS FOR PRODUCING GaN SINGLE-CRYSTAL, GaN THIN-FILM TEMPLATE SUBSTRATE AND GaN SINGLE-CRYSTAL GROWING APPARATUS

      
Application Number JP2007067942
Publication Number 2008/035632
Status In Force
Filing Date 2007-09-14
Publication Date 2008-03-27
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Morioka, Satoru
  • Takakusaki, Misao
  • Shimizu, Takayuki

Abstract

A process for producing a GaN single-crystal, in which even when use is made of a hydride vapor phase growing technique, the thickness of GaN single-crystal film can be controlled accurately; a GaN thin-film template substrate suitable for growth of a GaN thick film with good properties; and a relevant GaN single-crystal growing apparatus. There is provided a process for producing a GaN single-crystal according to a hydride vapor phase growing technique involving reacting GaCl (gallium chloride) formed by blowing HCl (hydrogen chloride) onto Ga (gallium) melted by heating at given temperature with NH3 (ammonia) gas being a hydride gas on a substrate to thereby form a GaN thin-film, which process comprises supplying the NH3 gas through a nozzle to the vicinity of the substrate (for example, position apart from the substrate by 0.7 to 4.0 times the diameter of the substrate). Further, a substrate of NGO(011) with lattice constants close to those of GaN is used as the substrate.

IPC Classes  ?

  • C30B 29/38 - Nitrides
  • C23C 16/34 - Nitrides
  • C30B 25/14 - Feed and outlet means for the gases; Modifying the flow of the reactive gases
  • H01L 21/205 - Deposition of semiconductor materials on a substrate, e.g. epitaxial growth using reduction or decomposition of a gaseous compound yielding a solid condensate, i.e. chemical deposition

87.

ZINC OXIDE BASED TRANSPARENT ELECTRIC CONDUCTOR, SPUTTERING TARGET FOR FORMING OF THE CONDUCTOR AND PROCESS FOR PRODUCING THE TARGET

      
Application Number JP2007060487
Publication Number 2008/023482
Status In Force
Filing Date 2007-05-23
Publication Date 2008-02-28
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Ikisawa, Masakatsu
  • Yahagi, Masataka

Abstract

A zinc oxide based transparent electric conductor composed mainly of zinc oxide (ZnO) and containing an element being an n-type dopant for the zinc oxide, characterized in that a metal whose parameter P indicating a wetting characteristic with zinc oxide (P=(G+Hmix)/RT, wherein G is the Gibbs free energy of the metal at temperature T; Hmix is the mixing enthalpy of zinc oxide and metal at temperature T; R is gas constant, and T is temperature) is 6 or below, the metal exhibiting a resistivity lower than that of the zinc oxide loaded with the n-type dopant, is contained in an amount of 0.05 to 2.0 atom.% based on all the metal atoms. In the development of transparent electric conductor not having raw material indium (In) that is expensive and feared for resource depletion, crossing the bounds of the conventional development technique according to single doping method, it is intended to indicate the preference guideline for secondary additive material effective for conversion to low resistivity and further the particular type of material and the range of appropriate concentration and to accordingly provide a transparent electric conductor with low resistivity.

IPC Classes  ?

  • H01B 1/08 - Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
  • C04B 35/453 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on zinc, tin or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
  • C23C 14/08 - Oxides
  • C23C 14/34 - Sputtering
  • H01B 5/14 - Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

88.

SEMICONDUCTOR SUBSTRATE FOR EPITAXIAL GROWTH AND PROCESS FOR PRODUCING THE SAME

      
Application Number JP2007066014
Publication Number 2008/023639
Status In Force
Filing Date 2007-08-17
Publication Date 2008-02-28
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Suzuki, Kenji
  • Hirano, Ryuichi
  • Kurita, Hideki

Abstract

A semiconductor substrate for epitaxial growth that does not need any etching treatment as a pretreatment in the stage of performing an epitaxial growth of HgCdTe film. A CdTe compound semiconductor substrate for epitaxial growth of HgCdTe film, within a given period of time (for example, 10 hours) after mirror finish treatment thereof, is accommodated in an inert gas atmosphere to thereby regulate the ratio of Te oxide based on the total amount of Te in the substrate surface as determined by XPS measurement so as to be 30% or below.

IPC Classes  ?

89.

LITHIUM-CONTAINING TRANSITION METAL OXIDE TARGET, PROCESS FOR PRODUCING THE SAME AND LITHIUM ION THIN-FILM SECONDARY BATTERY

      
Application Number JP2007059176
Publication Number 2008/012970
Status In Force
Filing Date 2007-04-27
Publication Date 2008-01-31
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Nagase, Ryuichi
  • Kajiya, Yoshio

Abstract

A lithium-containing transition metal oxide target consisting of a sintered body of lithium-containing transition metal oxide whose crystal system is a hexagonal system, the sintered body having a relative density of 90% or higher and an average crystal grain diameter of 1 to 50 &mgr;m; and a lithium-containing transition metal oxide target consisting of a sintered body of lithium-containing transition metal oxide whose crystal system is a hexagonal system, wherein (003) face, (101) face and (104) face intensity ratios obtained by X-ray diffractometry using CuKα rays satisfy the relationships (1) the peak ratio of (101) face to (003) face is in the range of 0.4 to 1.1 and (2) the peak ratio of (101) face to (104) face is 1.0 or higher. There is provided a lithium-containing transition metal oxide target that is most suitable for forming of a thin-film positive electrode for use in a thin-film battery, such as three-dimensional battery or totally solid battery. Further, there are provided a process for producing the same and a relevant lithium ion thin-film secondary battery. It is especially intended to obtain a positive electrode material target that enables obtaining of a thin film excelling in homogeneity.

IPC Classes  ?

  • C23C 14/34 - Sputtering
  • H01M 4/04 - Processes of manufacture in general
  • H01M 4/58 - Selection of substances as active materials, active masses, active liquids of polyanionic structures, e.g. phosphates, silicates or borates
  • H01M 10/40 -

90.

SPUTTERING TARGET/BACKING PLATE CONJUNCTION ELEMENT

      
Application Number JP2007059359
Publication Number 2008/001547
Status In Force
Filing Date 2007-05-02
Publication Date 2008-01-03
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Oda, Kunihiro
  • Fukushima, Atsushi

Abstract

A sputtering target/copper-zinc alloy backing plate conjunction assembly element characterized by having a structure such that pure copper is embedded in the backing plate position at the central part of the target. A simple structure of sputtering target/backing plate capable of satisfactorily coping with realization of higher power can be provided from an inexpensive copper-zinc alloy backing plate excelling in strength and eddy current resistance characteristics without detriment to its properties.

IPC Classes  ?

  • C23C 14/34 - Sputtering
  • H01L 21/285 - Deposition of conductive or insulating materials for electrodes from a gas or vapour, e.g. condensation

91.

Cu-Zn ALLOY WITH HIGH STRENGTH AND EXCELLENT BENDABILITY

      
Application Number JP2007063012
Publication Number 2008/001852
Status In Force
Filing Date 2007-06-28
Publication Date 2008-01-03
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Egashira, Ryoji

Abstract

A Cu-Zn copper alloy which is for use in electronic parts such as terminals and connectors and has high strength and excellent bendability. The Cu-Zn alloy having high strength and excellent bendability comprises 20-40 mass% Zn and, as the remainder, Cu and unavoidable impurities, and has such crystal grain characteristics that the average crystal grain diameter (mGS) is 1-4 쎽m and the standard deviation (σGS) of the crystal grain diameters is 1/3 mGS or less. In the alloy, the relationship {I(220)+I(111)}/I(200) between X-ray diffraction intensities in an examination of a rolled plane is 2.0-5.0. The Cu-Zn alloy may further contain any one or more of Ni, Si, Fe, Ti, Co, and Sn in an amount of 0.01-0.3 mass%. The alloy preferably has a sulfur content of 30 ppm or lower and has a surface roughness (Ra) of 0.2 쎽m or lower.

IPC Classes  ?

  • C22C 9/04 - Alloys based on copper with zinc as the next major constituent
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

92.

ROLLED COPPER OR COPPER ALLOY FOIL WITH ROUGHENED SURFACE AND METHOD OF ROUGHENING ROLLED COPPER OR COPPER ALLOY FOIL

      
Application Number JP2007061720
Publication Number 2007/145164
Status In Force
Filing Date 2007-06-11
Publication Date 2007-12-21
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Kobayashi, Yousuke
  • Miki, Atsushi
  • Yamanishi, Keisuke

Abstract

A rolled copper or copper alloy foil having a roughened surface comprising fine copper particles, characterized by being obtained by subjecting a rolled copper or copper alloy foil to roughening plating with a plating bath containing copper sulfate (1-50 g/L in terms of Cu amount), 1-150 g/L sulfuric acid, and one or more additives selected among sodium octyl sulfate, sodium decyl sulfate, and sodium dodecyl sulfate under the conditions of a temperature of 20-50°C and a current density of 10-100 A/dm2. The rolled copper or copper alloy foil roughened is reduced in craters, which are a conspicuous defect characteristic of rolled copper or copper alloy foils having a roughened surface. Also provided is a rolled copper or copper alloy foil which has a high strength, strength of adhesion to resin layers, acid resistance, and resistance to tin plating solutions. It further has a high peel strength and is satisfactory in suitability for etching and gloss. It is suitable for use in producing a flexible printed wiring board bearing a fine wiring pattern. Furthermore provided is a method of roughening the foil.

IPC Classes  ?

  • C25D 7/06 - Wires; Strips; Foils
  • C22C 9/00 - Alloys based on copper
  • C22C 9/02 - Alloys based on copper with tin as the next major constituent
  • C22C 9/04 - Alloys based on copper with zinc as the next major constituent
  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
  • C25D 3/38 - Electroplating; Baths therefor from solutions of copper
  • C25D 3/58 - Electroplating; Baths therefor from solutions of alloys containing more than 50% by weight of copper
  • H05K 1/09 - Use of materials for the metallic pattern

93.

ZIRCONIUM CRUCIBLE FOR ANALYTICAL SAMPLE MELTING, METHOD OF PREPARING ANALYTICAL SAMPLE AND METHOD OF ANALYSIS

      
Application Number JP2007053024
Publication Number 2007/138768
Status In Force
Filing Date 2007-02-20
Publication Date 2007-12-06
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Sakaguchi, Masahiro
  • Yamaguchi, Mitsuru
  • Takahashi, Tomio
  • Takemoto, Kouichi

Abstract

A zirconium crucible for analytical sample melting for use in pretreatment of analytical sample, characterized in that the zirconium crucible has a purity of 99.99 wt.% or higher. In view of the recent analytical technology demanding rapid and accurate measurement of high-purity material, there are provided a zirconium crucible for analytical sample melting, method of preparing an analytical sample and method of analysis, which enable inhibiting of mixing of impurities from the crucible and attaining of high-purity analysis without dependence upon difference in analysts and their skill.

IPC Classes  ?

94.

Cu-Zn ALLOY STRIP EXCELLENT IN THERMAL SEPARATION RESISTANCE FOR Sn PLATING AND Sn-PLATED STRIP THEREOF

      
Application Number JP2007060838
Publication Number 2007/139072
Status In Force
Filing Date 2007-05-28
Publication Date 2007-12-06
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Hatano, Takaaki

Abstract

Disclosed is a Cu-Zn alloy strip which is improved in thermal separation resistance for Sn plating. Also disclosed is such a Cu-Zn alloy strip plated with Sn. Specifically disclosed is a Cu-Zn alloy strip consisting of 15-40% by mass of Zn and the balance of Cu and unavoidable impurities, wherein the total concentration of P, As, Sb and Bi is controlled to be 100 ppm by mass or less, the total concentration of Ca and Mg is controlled to be 100 ppm by mass or less, and the concentrations of O and S are respectively controlled to be 30 ppm by mass or less.

IPC Classes  ?

  • C22C 9/04 - Alloys based on copper with zinc as the next major constituent
  • C22F 1/08 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
  • C25D 5/10 - Electroplating with more than one layer of the same or of different metals
  • C25D 5/50 - After-treatment of electroplated surfaces by heat-treatment
  • C25D 7/00 - Electroplating characterised by the article coated
  • H01B 5/02 - Single bars, rods, wires or strips; Bus-bars
  • C22F 1/00 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

95.

HEAT-RESISTANT Sn-PLATED Cu-Zn ALLOY STRIP SUPPRESSED IN WHISKERING

      
Application Number JP2007059080
Publication Number 2007/126010
Status In Force
Filing Date 2007-04-26
Publication Date 2007-11-08
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor Hatano, Takaaki

Abstract

An Sn-plated strip which is composed of a basis material consisting of a copper alloy containing Zn in an average concentration of 15 to 40% by mass and a plated coating constituted of an Sn phase layer, an Sn-Cu alloy phase layer and an Ni phase layer present in this order from the surface to the basis material, wherein the Zn concentration of the surface of the Sn phase layer is adjusted to 0.1 to 5.0% by mass. The basis material can contain one or more arbitrary components selected from among Sn, Ag, Pb, Fe, Ni, Mn, Si, Al and Ti in a total amount of 0.005 to 3.0% by mass, while the basis material may be a copper-base alloy which consists of 15-40% by mass Zn, 8 to 20% by mass Ni, 0 to 0.5% by mass Mn, and the balance Cu with unavoidable impurities and which may further contain one or more of the above arbitrary components in a total amount of 0.005 to 10% by mass. Thus, the invention provides a reflow Sn-plated Cu-Zn alloy strip which has a Cu/Ni double undercoat and is suppressed in whiskering.

IPC Classes  ?

  • C25D 5/12 - Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
  • C22C 9/04 - Alloys based on copper with zinc as the next major constituent
  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent
  • C25D 5/50 - After-treatment of electroplated surfaces by heat-treatment

96.

TIN-PLATED Cu-Ni-Si ALLOY STRIP

      
Application Number JP2007059084
Publication Number 2007/126011
Status In Force
Filing Date 2007-04-26
Publication Date 2007-11-08
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor Hatano, Takaaki

Abstract

Disclosed is a tin-plated strip wherein a copper-base alloy composed of 1.0-4.5% by mass of Ni, 0.2-1.0% by mass of Si and the balance of Cu and unavoidable impurities is used as the base metal. In this tin-plated strip, the concentration of S and the concentration of C in the interface between the base metal and the plating layer are adjusted to be 0.05% by mass or less. The base metal may further contain at least one element selected from the group consisting of Sn, Zn, Mg, Fe, Mn, Co, Ti, Cr, Zr, Al and Ag in an amount of 0.005-3.0% by mass in total. This tin-plated Cu-Ni-Si alloy strip is improved in resistance to heat separation of the tin plating.

IPC Classes  ?

  • C25D 5/12 - Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
  • C22C 9/06 - Alloys based on copper with nickel or cobalt as the next major constituent

97.

ZINC OXIDE-BASED TRANSPARENT CONDUCTOR AND SPUTTERING TARGET FOR FORMING THE TRANSPARENT CONDUCTOR

      
Application Number JP2007052928
Publication Number 2007/108266
Status In Force
Filing Date 2007-02-19
Publication Date 2007-09-27
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Ikisawa, Masakatsu
  • Yahagi, Masataka

Abstract

A zinc oxide-based transparent conductor characterized by comprising zinc oxide as the main ingredient, containing 1-10 at.% element which has a smaller ionic radius than the zinc in the zinc oxide and serves as an n-type dopant for zinc oxide, and containing nitrogen in an amount of 0.3-0.6 in terms of the ratio of the number of nitrogen atoms to that of atoms of the n-type dopant (nitrogen/n-type dopant). In developing a transparent conductor not containing indium, which is an expensive raw material and the resource depletion of which is feared, the limit of the conventional development technique of the single-dopant method is exceeded. A guide to dopant selection as a specific means for realizing the co-doping theory is indicated. A transparent conductor having a low resistivity is provided.

IPC Classes  ?

  • C23C 14/08 - Oxides
  • C04B 35/453 - Shaped ceramic products characterised by their composition; Ceramic compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on zinc, tin or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
  • C23C 14/34 - Sputtering
  • H01B 5/14 - Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

98.

METHOD FOR DETERMINING MACHINING PLANE OF PLANAR MATERIAL, MACHINING METHOD AND DEVICE FOR DETERMINING MACHINING PLANE AND FLAT SURFACE MACHINING DEVICE

      
Application Number JP2007052970
Publication Number 2007/105417
Status In Force
Filing Date 2007-02-19
Publication Date 2007-09-20
Owner NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Nakashima, Koichi
  • Komachi, Nobuyoshi

Abstract

A surface machining method for performing mechanical machining, such as cutting, grinding and electric discharge machining, on a planar material to have a uniform thickness, characterized in that the planar material is mounted on a surface plate, coordinate axes X and Y are set in the plane directions of the planar material, coordinate axis Z is set in the height direction, an XY plane, including the origin in the Z direction measured as a distance (height) Zm,n from the coordinate (Xm, Yn) of a virtual plane ABCD to the plate thickness central plane (S) consisting of the middle point of a line connecting the upper and lower surfaces of the planar material as an object to be measured is assumed, the distance (height) in the Z direction of the plate thickness central plane of the planar material from the origin at an arbitrary XY plane position is measured, and the planar material is cut while being inclined so as to minimize the difference between maximum and minimum values of height data thus obtained. A flat planar material having a uniform thickness is obtained from a planar material having two-or three-dimensional deformation and/or variation in plate thickness, and a method and a device for determining the machining surface of the planar material when surface machining, such as cutting, grinding and electric discharge machining, is performed in order to obtain a flat planar material having a uniform thickness at a lowest machining cost are provided.

IPC Classes  ?

  • G05B 19/4093 - Numerical control (NC), i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine

99.

METAL-COATED LIPID BIMOLECULAR MEMBRANE ENDOPLASMIC RETICULUM AND PROCESS FOR PRODUCING THE SAME

      
Application Number JP2006322216
Publication Number 2007/102253
Status In Force
Filing Date 2006-10-31
Publication Date 2007-09-13
Owner
  • NARA INSTITUTE OF SCIENCE AND TECHNOLOGY (Japan)
  • NIPPON MINING & METALS CO., LTD. (Japan)
Inventor
  • Kikuchi, Jun-Ichi
  • Sasaki, Yoshihiro
  • Hashizume, Mineo
  • Imori, Toru

Abstract

A metal-coated lipid bimolecular membrane endoplasmic reticulum, and a process for producing the same. There is provided a metal-coated lipid bimolecular membrane endoplasmic reticulum having on its surface a network of siloxane bond (Si-O-Si bond). Further, there is provided a process for producing a metal-coated lipid bimolecular membrane endoplasmic reticulum, comprising the steps of (1) at or after the formation by self-assembly of a lipid bimolecular membrane endoplasmic reticulum having on its surface a network of siloxane bond (Si-O-Si bond), furnishing the surface of the lipid bimolecular membrane endoplasmic reticulum with a functional group having metal catalyst carrying capability; (2) fixing a metal catalyst to the surface of the lipid bimolecular membrane endoplasmic reticulum; (3) optionally reducing the metal catalyst; and (4) carrying out an electroless plating.

IPC Classes  ?

  • C23C 18/31 - Coating with metals
  • C23C 18/20 - Pretreatment of the material to be coated of organic surfaces, e.g. resins
  • C07D 233/61 - Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
  • C07F 7/18 - Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages

100.

NICKEL CRUCIBLE FOR MELTING OF ANALYTICAL SAMPLE, METHOD OF PREPARING ANALYTICAL SAMPLE AND METHOD OF ANALYSIS

      
Application Number JP2007052711
Publication Number 2007/097241
Status In Force
Filing Date 2007-02-15
Publication Date 2007-08-30
Owner Nippon Mining & Metals Co., Ltd. (Japan)
Inventor
  • Sakaguchi, Masahiro
  • Yamaguchi, Mitsuru
  • Takahashi, Tomio
  • Takemoto, Kouichi

Abstract

A nickel crucible for melting of analytical sample used in pretreatment of an analytical sample, characterized in that the purity of the nickel crucible is 99.9999 wt.% or higher. Further, there is provided a method of analysis comprising melting a sample by the use of the nickel crucible for melting having a purity of 99.9999 wt.% or higher and analyzing the melt to thereby obtain analytical results wherein the quantitative determination lower limits of Mn, Al, Si, Mg, Pb, Fe, Co, Ti, Cu, Cr, Zr, Mo and W are 5 wtppm, 10 wtppm, 10 wtppm, 5 wtppm, 5 wtppm, 5 wtppm, 5 wtppm, 20 wtppm, 20 wtppm, 10 wtppm, 5 wtppm, 2 wtppm and 10 wtppm, respectively. From the viewpoint of recent analytical technology demanding rapid and accurate measurement of high-purity materials, high-purity analysis is attained through inhibition of mixing of impurities from the crucible.

IPC Classes  ?

  1     2        Next Page