2. A neutral color antireflective glass substrates including an area treated by ion implantation with a mixture of simple charge and multicharge ions according to the method.
C03C 23/00 - Autres traitements de surface du verre, autre que sous forme de fibres ou de filaments
C03C 3/097 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du phosphore, du niobium ou du tantale
C03C 3/087 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant de l'oxyde d'aluminium ou un composé du fer contenant un oxyde d'un métal divalent contenant de l'oxyde de calcium, p. ex. verre à vitre ordinaire ou verre pour récipients creux
B32B 17/10 - Produits stratifiés composés essentiellement d'une feuille de verre ou de fibres de verre, de scorie ou d'une substance similaire comprenant du verre comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique de résine synthétique
C03C 3/062 - Compositions pour la fabrication du verre contenant de la silice avec moins de 40% en poids de silice
C03C 3/064 - Compositions pour la fabrication du verre contenant de la silice avec moins de 40% en poids de silice contenant du bore
C03C 3/078 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant un oxyde d'un métal divalent, p. ex. un oxyde de zinc
C03C 3/083 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant de l'oxyde d'aluminium ou un composé du fer
C03C 3/085 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant de l'oxyde d'aluminium ou un composé du fer contenant un oxyde d'un métal divalent
C03C 3/089 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du bore
C03C 3/091 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du bore contenant de l'aluminium
C03C 4/02 - Compositions pour verres ayant des propriétés particulières pour verre coloré
C03C 4/18 - Compositions pour verres ayant des propriétés particulières pour verre sensible aux ions
2, as well as antireflective glass substrates comprising an area treated by ion implantation with a mixture of simple charge and multicharge ions according to this method.
C03C 23/00 - Autres traitements de surface du verre, autre que sous forme de fibres ou de filaments
C03C 3/087 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant de l'oxyde d'aluminium ou un composé du fer contenant un oxyde d'un métal divalent contenant de l'oxyde de calcium, p. ex. verre à vitre ordinaire ou verre pour récipients creux
C03C 3/091 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du bore contenant de l'aluminium
C03C 3/097 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du phosphore, du niobium ou du tantale
3.
Ion implantation process and ion implanted glass substrates
2.The invention further concerns glass substrates comprising an area treated by implantation of simple charge and multicharge ions according to this process and their use for reducing the probability of scratching on the glass substrate upon mechanical contact.
The invention concerns a method for manufacturing glass substrates with reduced internal reflectance by ion implantation, comprising ionizing a source gas of N2, O2, Ar, and/or He so as to form a mixture of single charge and multicharge ions of N, O, Ar, and/or He forming a beam of single charge and multicharge ions of N, O, Ar, and/or He, by accelerating with an acceleration voltage comprised between 15 kV and 60 kV and an ion dosage comprised between 1017 ions/cm² and 1018 ions/cm². The invention further concerns glass substrates having reduced internal reflectance, comprising an area treated by ion implantation with a mixture of simple charge and multicharge ions according to this method.
The invention concerns a method for manufacturing scratch-resistant antireflective glass substrates by ion implantation, comprising ionizing a source gas of N2 so as to form a mixture of single charge and multicharge ions of N, forming a beam of single charge and multicharge ions of N, by accelerating with an acceleration voltage comprised between 20 kV and 30 kV and an ion dosage comprised between 5 x 1016 ions/cm2 and 1017 ions/cm2. The invention further concerns scratch-resistant antireflective glass substrates comprising an area treated by ion implantation with a mixture of simple charge and multicharge ions according to this method.
The invention concerns a method for manufacturing neutral color antireflective glass substrates by ion implantation, comprising ionizing a N2 source gas so as to form a mixture of single charge and multicharge ions of N, forming a beam of single charge and multicharge ions of N by accelerating with an acceleration voltage A comprised between 20 kV and 25 kV and setting the ion dosage at a value comprised between 6 x 1016 ions/cm2 and - 5.00 x 1015 x A/kV + 2.00 x 1017 ions/cm2. The invention further concerns neutral color antireflective glass substrates comprising an area treated by ion implantation with a mixture of simple charge and multicharge ions according to this method.
The invention concerns a method for manufacturing antireflective glass substrates by ion implantation, comprising selecting a source gas of N2, or O2, ionizing the source gas so as to form a mixture of single charge and multicharge ions of N, or O, forming a beam of single charge and multicharge ions of N, or O by accelerating with an acceleration voltage A comprised between 13 kV and 40 kV and setting the ion dosage at a value comprised between 5.56 x 1014 x A/kV + 4.78 x 1016 ions/cm2 and -2.22 x 1016 x A/kV + 1.09 x 1018 ions/cm2. The invention further concerns antireflective glass substrates comprising an area treated by ion implantation with a mixture of simple charge and multicharge ions according to this method.
The invention concerns a method for manufacturing heat treatable antireflective glass substrates by ion implantation, comprising selecting a source gas of N2, O2, or Ar, ionizing the source gas so as to form a mixture of single charge and multicharge ions of Ar, N, or O, forming a beam of single charge and multicharge ions of Ar, N, or O by accelerating with an acceleration voltage comprised between 15 kV and 60 kV and setting the ion dosage at a value comprised between 7,5 x 1016 and 7,5 x 1017 ions/cm2. The invention further concerns heat treatable and heat treated antireflective glass substrates comprising an area treated by ion implantation with a mixture of simple charge and multicharge ions according to this method.
The invention concerns a method for manufacturing blue reflective glass substrates by ion implantation, comprising ionizing a N2 source gas so as to form a mixture of single charge and multicharge ions of N, forming a beam of single charge and multicharge ions of N by accelerating with an acceleration voltage A comprised between 15 kV and 35 kV and a dosage D is comprised between -9.33 x 1015 x A/kV + 3.87 x 1017 ions/cm2 and 7.50 x 1017 ions/cm2. The invention further concerns blue reflective glass substrates comprising an area treated by ion implantation with a mixture of simple charge and multicharge ions according to this method.
The invention relates to a treatment method for colouring a metal, comprising: a) bombardment of the metal with a beam of singly- or multiply-charged gas ions produced by an electron cyclotron resonance source; b) heat treatment in ambient air so as to colour the implanted metal, comprising the selection of a temperature of between 00°C and 400°C and an exposure time of between 1 minute and 4 hours.
The invention concerns a process for increasing the scratch resistance of a glass substrate by implantation of simple charge and multicharge ions, comprising maintaining the temperature of the area of the glass substrate being treated at a temperature that is less than or equal to the glass transition temperature of the glass substrate, selecting the ions to be implanted among the ions of Ar, He, and N, setting the acceleration voltage for the extraction of the ions at a value comprised between 5 kV and 200 kV and setting the ion dosage at a value comprised between 1014 ions/cm² and 2,5 x 1017 ions/cm².The invention further concerns glass substrates comprising an area treated by implantation of simple charge and multicharge ions according to this process and their use for reducing the probability of scratching on the glass substrate upon mechanical contact.
A treatment method of a sapphire material, said method comprising bombardment of a surface of the sapphire material, said surface facing a medium different from the sapphire material, by a single- and/or multi-charged gas ion beam so as to produce an ion implanted layer in the sapphire material, wherein the ions are selected from ions of the elements from the list consisting of helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), boron (B), carbon (C), nitrogen (N), oxygen (0), fluorine (F), silicon (Si), phosphorus (P) and sulphur (S). The treatment produces an anti-glare effect on treated materials (61, 62, 63) compared to untreated substrates (60). Said method can be used to obtain a capacitive touch panel having a high transmission in the visible range.
C30B 33/04 - Post-traitement des monocristaux ou des matériaux polycristallins homogènes de structure déterminée en utilisant des champs électriques ou magnétiques ou des rayonnements corpusculaires
G02B 1/12 - Revêtements optiques obtenus par application sur les éléments optiques ou par traitement de la surface de ceux-ci par traitement de la surface, p. ex. par irradiation
G06F 3/044 - Numériseurs, p. ex. pour des écrans ou des pavés tactiles, caractérisés par les moyens de transduction par des moyens capacitifs
13.
TREATMENT METHOD FOR MODIFYING THE REFLECTED COLOUR OF A SAPPHIRE MATERIAL SURFACE
A treatment method for modifying the reflected colour of a sapphire material surface comprising bombardment by a single- and/or multi-charged gas ion beam so as to modify the reflected colour of the treated sapphire material surface (31,32,33) compared to untreated surfaces (30), wherein the ions are selected from ions of the elements from the list consisting of helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), boron (B), carbon (C), nitrogen (N), oxygen (0), fluorine (F), silicon (Si), phosphorus (P) and sulphur (S).
C30B 33/04 - Post-traitement des monocristaux ou des matériaux polycristallins homogènes de structure déterminée en utilisant des champs électriques ou magnétiques ou des rayonnements corpusculaires
G02B 1/12 - Revêtements optiques obtenus par application sur les éléments optiques ou par traitement de la surface de ceux-ci par traitement de la surface, p. ex. par irradiation
14.
METHOD OF TREATING POWDER MADE FROM CERIUM OXIDE USING AN ION BEAM
A method of treating a powder (P) made from cerium oxide using an ion beam (F) in which: - the powder is stirred once or a plurality of times; - the ions of the ion beam are selected from the ions of the elements of the list consisting of helium (He), boron (B), carbon (C), nitrogen (N), oxygen (O), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe) - the acceleration voltage of the ions of the beam is between 10 kV and 1000 kV; - the treatment temperature of the powder (P) is less than or equal to Tf/3; - the ion dose per mass unit of powder to be treated is chosen from a range of between 1016 ions/g and 1022 ions/cm2 so as to lower the reduction temperature of the powder made from cerium oxide (P).
A method for treating a glass material with an ion beam in which - the ion acceleration voltage is between 5 kV and 1000 kV; - the temperature of the glass material is less than or equal to the glass-transition temperature; - the dose of nitrogen (N) or oxygen (O) ions per surface unit is chosen from a range of between 1012 ions/cm2 and 10^18 ions/cm2 so as to reduce the contact angle of a drop of water to less than 20° - a prior pre-treatment is carried out with argon (Ar), krypton (Kr) or xenon (Xe) ions in order to increase the durability of the superhydrophilic treatment. Long-lasting superhydrophilic glass materials are advantageously obtained in this way.
A method of treatment using a beam of singly- and multiply-charged gas ions produced by an electron cyclotron resonance (ECR) source of a glass material in which - the ion acceleration voltage of between 5 kV and 1000 kV is chosen to create an implanted layer of a thickness equal to a multiple of 100 nm; - the ion dose per surface unit in a range of between 1012 ions/cm2 and 1018 ions/cm2 is chosen so as to create an atomic concentration of ions equal to 10% with a level of uncertainty of (+/-)5%. Advantageously this makes it possible to obtain materials made from glass that is non-reflective in the visible range.
The invention relates to a method for grafting monomers (M) into a layer located deep inside an organic material by means of an ion beam (X), wherein: the dose of ions per unit of area is selected from a range of 1012 ions/cm2 to 1018 ions/cm2 so as to create a store of free radicals (1) in a large layer of between 0 and 3000 nm; and free radicals (1) of hydrophilic and/or hydrophobic and/or antibacterial monomers (M) are grafted into said store. Organic materials having water-repellant, hydrophilic, and/or antibacterial properties that are effective over a long period of time can thus be obtained.
Method for treating at least one surface of a part made of a bulk polymer into which multi-energy ions X+ and X2+ are implanted simultaneously, where X is the atomic symbol chosen from the list consisting of helium (He), nitrogen (N), oxygen(O), neon (Ne), argon (Ar), krypton (Kr), and xenon(Xe) and in which the RX ratio, where RX = X+/X2+ with X+ and X2+ being expressed in atomic percentages, is less than or equal to 100, for example less than 20. As a result of the very large reductions in the surface resistivity of the parts thus treated, antistatic properties or even electrostatic charge dissipation properties appear. As an example, the X+ and X2+ ions are supplied by an ECR source.
A61F 9/00 - Procédés ou dispositifs pour le traitement des yeuxDispositifs pour mettre en place des verres de contactDispositifs pour corriger le strabismeAppareils pour guider les aveuglesDispositifs protecteurs pour les yeux, portés sur le corps ou dans la main
A61L 2/16 - Procédés ou appareils de désinfection ou de stérilisation de matériaux ou d'objets autres que les denrées alimentaires ou les lentilles de contactAccessoires à cet effet utilisant des substances chimiques
C08J 7/18 - Modification chimique par des composés polymérisables en utilisant des ondes énergétiques ou le rayonnement de particules
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
A61J 1/00 - Récipients spécialement adaptés à des fins médicales ou pharmaceutiques
B65D 1/00 - Réceptacles rigides ou semi-rigides ayant des corps d'une seule pièce formés, p. ex. par coulage d'un matériau en métal, par moulage d'un matériau plastique, par soufflage d'un matériau vitreux, par coulage d'un matériau en céramique, par moulage d'un matériau fibreux cuit ou par étirage d'un matériau en feuille
19.
METHOD FOR TREATING A WELDING STUD WITH AN ION BEAM AND WELDING METHOD IMPLEMENTING SUCH A WELDING STUD
The invention relates to a method for treating a metal welding stud (30) with an ion beam (100) in which: the ions of the beam are nitrogen ions; the ions have an acceleration voltage of 10 kV to 1000 kV; the temperature of the metal welding stud (30) is no higher than Tf; and the load of ions per surface unit is selected in a range of 1014 ions/ cm2 to 1019 ions/ cm2 in order to create a treatment thickness of 10 to 10000 nm. Said method advantageously provides a treatment for reducing welding stud erosion in the context of a method for welding sheet steel to which a zinc-based anti-corrosion treatment has been pre-applied.
The present invention relates to the use of a method for ion implantation into the surface of a material so as to modify the surface properties of said material in order to produce an anti-icing surface, as well as to a method using this technique so as to manufacture a structure having anti-icing surface characteristics.
The invention relates to a method for treating a painted or unpainted composite material using an ion beam, where: the ion acceleration voltage is between 10 kV and 1000 kV; the maximum temperature of the composite material or the paint covering said material is 180°C; the measured amount of ions per surface unit is selected from within a range of 1012 ions/cm2 to 1018 ions/cm2 such that the composite material is cross-linked in order to increase the water drop contact angle by at least 5°. Composite materials having icephobic properties are thus advantageously obtained.
The invention relates to a device for generating a magnetic field so as to be able to create closed isomodule surfaces and to do so in the context of planar symmetry and cusp magnetic structures. The invention also relates to an ECR (Electron Cyclotron Resonance) ion source implementing such a device (M1 and M2) comprising a means for injecting a microwave (B1), a means for injecting gas (B2, B3), a high-voltage-polarised plasma electrode (B6), and a mass-polarised extracting electrode (B7), so as to form an ion beam (B5) which can then be used to treat parts.
H01J 27/18 - Sources d'ionsCanons à ions utilisant une excitation à haute fréquence, p. ex. une excitation par micro-ondes avec un champ magnétique axial appliqué
23.
METHOD FOR TREATING A SURFACE OF AN ELASTOMER PART USING MULTI-ENERGY IONS HE+ AND HE2+
The invention relates to a method for treating at least one surface of a solid elastomer part using helium ions. According to the invention, multi-energy ions He+ and He2+ are implanted simultaneously, and the ratio RHe, where RHe = HeVHe2+ with He+ et He2+ expressed in atomic percentage, is less than or equal to 100, for example less than 20, resulting in very significant reductions in the frictional properties of parts treated in this way. The He+ and He2+ ions are supplied, for example, by an ECR source.
The invention relates to a method for the ion beam (100) treatment of a metal layer (10) deposited on a substrate (30), comprising a step in which: the metal layer (10) has a thickness, efrag, of between 0.2 nm and 20 nm; the ion acceleration voltage is between 10 kV and 1000 kV; the temperature of the metal layer (10) is less than or equal to Tf/3; and the ion dose per surface unit is selected from a range of between 1012 ions/cm2 and 1018 ions/cm2 so as to fragment the metal layer (10) in order to produce metal deposits (40) in the form of nanoparticles on the surface of the substrate, having a maximum thickness of between 0.2 nm and 20 nm and a maximum width of between 0.2 nm and 100 nm.
The invention relates to a method for manufacturing a connector element including a substrate on which a layer of gold is deposited, which includes the following consecutive steps: a) providing a substrate (20); b) treating a surface of the substrate (20) by ion bombardment using an ion beam, wherein the ions are selected from among He, N, Ar, Kr, Xe; c) depositing a porous layer of gold (10) by electrolytic means onto the thus-treated surface of the substrate (20); d) treating the porosity of the porous layer of gold (10) by ion bombardment using an ion beam, wherein the ions are selected from among He, N, Ne, Ar, Kr, Xe. The method provides connector elements with enhanced properties.
The present invention relates to a method for treating a metal element subjected to an ion beam, where: - the ions of the beam are selected from among boron, carbon, nitrogen, and oxygen; - the ion acceleration voltage, greater than or equal to 10 kV, and the power of the beam, between 1 W and 10 kW, as well as the ion load per surface unit are selected so as to enable the implantation of ions onto an implantation area with a thickness eI of 0.05 μm to 5 μm, and also enable the diffusion of ions into an implantation/diffusion area with a thickness eI + eP, of 0.1 μm to 1,000 μm; the temperature TZF of the area of the metal element located under the implantation/diffusion area is less than or equal to a threshold temperature TSD. In this manner, metal surfaces having remarkable mechanical characteristics are advantageously produced.
C23C 14/06 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le matériau de revêtement
C23C 8/36 - Diffusion à l'état solide uniquement d'éléments non métalliques dans la couche superficielle de matériaux métalliquesTraitement chimique de surface par réaction entre le matériau métallique de la surface et un gaz réactif, laissant dans le revêtement des produits de la réaction, p. ex. revêtement de conversion, passivation des métaux au moyen de gaz au moyen de gaz ionisés, p. ex. nitruration ionique
27.
PROCESS FOR TREATING A METAL PART WITH MULTIPLE-ENERGY HE+ AND HE2+ IONS
Process for treating at least one surface of a solid metal part with helium ions, where multiple-energy He+ and He2+ ions are simultaneously implanted. This results in very large increases in the hardness of the parts thus treated. By way of example, the He+ and He2+ ions are supplied by an ECR source.
C23C 8/36 - Diffusion à l'état solide uniquement d'éléments non métalliques dans la couche superficielle de matériaux métalliquesTraitement chimique de surface par réaction entre le matériau métallique de la surface et un gaz réactif, laissant dans le revêtement des produits de la réaction, p. ex. revêtement de conversion, passivation des métaux au moyen de gaz au moyen de gaz ionisés, p. ex. nitruration ionique
28.
METHOD FOR REDUCING POROSITY OF A METAL DEPOSIT BY IONIC BOMBARDMENT
The invention relates to a method for treating a metal deposit to reduce or eliminate the porosity thereof by bombarding the same with an ion source. The source is, for example, an electron cyclotron resonance (RCE) source. The metal can be gold. The ion bombardment has the effect of sealing the porosity of the metal deposit according to the type, energy, amount and angle of incidence of the ions.
C23C 14/06 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le matériau de revêtement
Layer of nickel-titanium alloy containing nitrogen atoms inserted over a thickness of at least 0.05 &mgr;m, for example at least 0.1 &mgr;m, even for example at least 0.2 &mgr;m, or indeed at least 0.5 &mgr;m, and in which the nitrogen concentration profile as a function of the thickness of the layer is a curve resulting from the sum of at least two approximately Gaussian curves. Associated process.
C23C 14/06 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le matériau de revêtement
The invention relates to a titanium or titanium alloy layer having nitrogen atoms inserted therein to a depth higher than or equal to 0.05 &mgr;m, e.g. higher than or equal to 0.1 &mgr;m, even higher than or equal to 0.2 &mgr;m, or even higher than or equal to 0.1 &mgr;m, wherein the concentration profile of nitrogen according to the thickness of the layer is a curve obtained by the addition of two essentially Gaussian curves, while the surface nanohardness is higher than or equal to 10 GPa, and/or the Vickers hardness is higher than or equal to 1000 for a 5 g or even 50 g load. The invention also relates to the associated implantation method.
C23C 14/06 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le matériau de revêtement
31.
COPPER LAYER COMPRISING INSERTED NITROGEN ATOMS, AND ASSOCIATED IMPLANTATION METHOD
The invention relates to a copper layer or low-alloy copper layer having nitrogen atoms inserted to a thickness higher than or equal to 0.05 &mgr;m, for instance higher than or equal to 0.1 &mgr;m, even higher than or equal to 0.2 &mgr;m, or even higher than or equal to 0.5 &mgr;m, said layer being obtained by implantation.
C23C 14/06 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le matériau de revêtement
The invention relates to a gold alloy layer having nitrogen atoms inserted to a thickness higher than or equal to 0.05 &mgr;m and a related multi-energy implantation method.
C23C 14/06 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le matériau de revêtement