An electrical contact includes a base having a first edge and a second edge opposite the first edge. The base is configured to electrically connect with a first electrical component. The electrical contact also includes a first section extending from the first edge and a second section extending from the second edge and including a contact portion to electrically connect with a second electrical component. The second section further includes a pre-load shelf configured to engage with the first section to electrically connect the first electrical component to the second electrical component.
A capacitor that is capable of exhibiting good electrical properties under a wide variety of different conditions is provided. The capacitor contains a capacitor element that includes a sintered porous anode body, a dielectric that overlies the anode body, and a solid electrolyte that overlies the dielectric and includes a conductive polymer. The capacitor also contains multiple exposed anode lead portions that are electrically connected to respective anode terminations and a planar cathode termination that is electrically connected to the solid electrolyte.
This disclosure provides a method and apparatus for a single pair Ethernet (SPE) wire-to-board connector. The SPE connector may include a female connector portion and a male connector portion. The female connector portion may include a first electrical contact having a first press-fit pin and a first female portion, a second electrical contact having a second press-fit pin and a second female portion, and a first outer shield, the first outer shield mechanically secured to the first insulative housing. The first and second electrical contacts may be positioned partially within the first insulative housing. The male connector portion includes a third electrical contact comprising a first insulation displacement contact (IDC) portion and a first male portion, a fourth electrical contact comprising a second IDC portion and a second male portion, and a second outer shield, the second outer shield mechanically secured to a second insulative housing.
A capacitor that comprises a capacitor element is provided. The capacitor element comprises a deoxidized and sintered anode body that is formed from a powder having a specific charge of about 35,000 μF*V/g or more. Further, a dielectric overlies the anode body and a solid electrolyte overlies the dielectric. The capacitor also exhibits a normalized aged leakage current of about 0.1% or less.
A temperature sensor assembly can include a first temperature sensor that can be configured to obtain a first temperature measurement of a user. The temperature sensor assembly can further include a second temperature sensor that can be configured to obtain a second temperature measurement of the user. The temperature sensor assembly can further include one or more processors that can be configured to determine a third temperature measurement indicative of a temperature of the user based at least in part on the first temperature measurement and the second temperature measurement. The temperature sensor assembly can further include a base station communication antenna system that can include a modal antenna that can be configured to communicate the third temperature measurement with a base station based at least in part on a beam steering operation.
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61B 5/01 - Mesure de la température de parties du corps
G16H 50/80 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour la détection, le suivi ou la modélisation d’épidémies ou des pandémies, p. ex. de la grippe
A system for balancing ultracapacitors is provided. The system includes a balancing capacitor and a plurality of switching devices. The system further includes a control circuit. The control circuit is communicatively coupled to each of the plurality of switching devices. The control circuit is configured to control operation of a first pair of the switching devices to couple the balancing capacitor across a first ultracapacitor of a plurality of ultracapacitors to transfer electrical charge from the first ultracapacitor to the balancing capacitor. The control circuit is further configured to control operation of a second pair of the switching devices that is different than the first pair to couple the balancing capacitor across a second ultracapacitor of the plurality of ultracapacitors to transfer at least a portion of the electrical charge from the balancing capacitor to the second ultracapacitor.
A solid electrolytic capacitor containing a capacitor element is provided. The capacitor element contains a sintered porous anode body, a dielectric that overlies the anode body, a solid electrolyte that overlies the dielectric, wherein the solid electrolyte includes a conductive polymer layer, and a moisture barrier that overlies the conductive polymer layer.
A method for monitoring one or more characteristics of an ultracapacitor is provided. The method includes obtaining a plurality of voltage measurements. Each of the voltage measurements can be obtained sequentially at one of a plurality of intervals. Furthermore, each of the voltage measurements can be indicative of a voltage across the ultracapacitor. The method can include determining an actual voltage step of the ultracapacitor based on two consecutive voltage measurements of the plurality of voltage measurements. The method can further include determining whether the actual voltage step exceeds a threshold voltage step of the ultracapacitor. Furthermore, in response to determining the actual voltage step exceeds the threshold voltage, the method can include providing a notification associated with performing a maintenance action on the ultracapacitor.
G01R 19/165 - Indication de ce qu'un courant ou une tension est, soit supérieur ou inférieur à une valeur prédéterminée, soit à l'intérieur ou à l'extérieur d'une plage de valeurs prédéterminée
G01R 27/02 - Mesure de résistances, de réactances, d'impédances réelles ou complexes, ou autres caractéristiques bipolaires qui en dérivent, p. ex. constante de temps
An ultracapacitor assembly is provided. The ultracapacitor assembly includes a plurality of ultracapacitors. The ultracapacitor assembly further includes a first bus bar and a second bus bar. The second bus bar is spaced apart from the first bus bar. The ultracapacitor assembly includes a discharge resistor coupled between the first bus bar and the second bus bar. The ultracapacitor assembly further includes a first plurality of switching devices and a second plurality of switching devices. Each switching device in the first plurality of switching devices is coupled between the first bus bar and a corresponding ultracapacitor of the plurality of ultracapacitors to selectively couple the corresponding ultracapacitor the discharge resistor via the first bus bar. Each switching device in the second plurality of switching devices is coupled between the second bus bar and a corresponding ultracapacitor to selectively couple the corresponding ultracapacitor the discharge resistor via the second bus bar.
H01G 11/26 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface
H01G 11/08 - Combinaisons structurelles, p. ex. assemblage ou connexion de condensateurs hybrides ou EDL avec d’autres composants électriques, au moins un condensateur hybride ou EDL étant le composant principal
A filter can include a monolithic substrate and at least one conductive layer formed over a top surface of the monolithic substrate and along at least a portion of one or more of a first top edge of the monolithic substrate or a second top edge of the monolithic substrate. A cover layer can be arranged over the top surface of the monolithic substrate. A shield layer can connect with one or more of the conductive layer(s) at the first top edge or the second top edge of the monolithic substrate. The shield layer can include a first portion formed over the first side surface of the cover layer, a second portion formed over the top surface of the cover layer, and a third portion formed over the second side surface of the cover layer.
A component array can include a first multilayer ceramic component having a first terminal at a first end and a second terminal at a second end opposite the first end in a first direction. A second component can have a first terminal at a first end and a second terminal at a second end opposite the first end in the first direction. A heat sink layer can be arranged between the first component and the second component in a second direction that is perpendicular to the first direction. The heat sink layer can include a first metallization layer electrically connecting the first terminal of the first multilayer ceramic component with the first terminal of the second multilayer ceramic component and a second metallization layer electrically connecting the second terminal of the first multilayer ceramic component with the second terminal of the second multilayer ceramic component.
A method of screening a lot of capacitors is provided. The method includes measuring a first leakage current of each individual capacitor in a first set of capacitors and calculating a first mean leakage current; removing each of the individual capacitors having a measured first leakage current equal to or above a first predetermined value, forming a second set of capacitors; subjecting the second set of capacitors to a burn in treatment; measuring a second leakage current for each of the individual capacitors in the second set and calculating a second mean leakage current; comparing the second leakage current for each of the individual capacitors to the first leakage current for each of the individual capacitors; and removing each of the individual capacitors having a second leakage current equal to or above a second predetermined value and/or having a second leakage current that does not change by a specified amount compared to the first leakage current for each of the individual capacitors.
G01R 31/52 - Test pour déceler la présence de courts-circuits, de fuites de courant ou de défauts à la terre
G01R 27/26 - Mesure de l'inductance ou de la capacitanceMesure du facteur de qualité, p. ex. en utilisant la méthode par résonanceMesure de facteur de pertesMesure des constantes diélectriques
13.
WIRE-TO-WIRE CONNECTOR WITH SPLICE CONTACT PORTION
A contact for a wire-to-wire electrical connector includes a first contact portion defining a first wire receiving opening to receive a first wire and a second wire receiving opening to receive a second wire. The contact further includes a splice contact portion abutting the first contact portion and defining a third wire receiving opening to receive a third wire. The first contact portion also includes a first plurality of contact tines to electrically connect the first wire and the second wire and the splice contact portion includes a second plurality of contact tines to electrically connect the third wire to the first wire and the second wire.
H01R 13/422 - Fixation de manière démontable sur un socle ou dans un boîtier flexible en une seule pièceSocle ou boîtier en une seule pièce comportant des moyens de verrouillage élastiques
H01R 13/24 - Contacts pour coopération par aboutage élastiquesContacts pour coopération par aboutage montés élastiquement
A solid electrolytic capacitor containing a capacitor element is provided. The capacitor element contains a sintered porous anode body, a dielectric that overlies the anode body, a pre-coat that overlies the dielectric, and a solid electrolyte that overlies the pre-coat. The solid electrolyte includes a conductive polymer having repeating units derived from an aniline monomer having the general formula (I).
A solid electrolytic capacitor containing a capacitor element is provided. The capacitor element contains an anode body, a dielectric that overlies the anode body, a pre-coat that overlies the dielectric and that is formed from an organometallic compound, and a solid electrolyte that overlies the dielectric. The solid electrolyte includes an intrinsically conductive polymer containing repeating thiophene units of a certain formula.
H01G 9/028 - Électrolytes organiques semi-conducteurs, p. ex. TCNQ
H01B 1/12 - Conducteurs ou corps conducteurs caractérisés par les matériaux conducteurs utilisésEmploi de matériaux spécifiés comme conducteurs composés principalement d'autres substances non métalliques substances organiques
C07F 7/08 - Composés comportant une ou plusieurs liaisons C—Si
A solid electrolytic capacitor containing a capacitor element is provided. The capacitor element contains an anode body that contains tantalum, a dielectric that overlies the anode body; and a solid electrolyte that overlies the dielectric. The solid electrolyte includes an intrinsically conductive polymer containing repeating thiophene units. Further, the capacitor exhibits a dielectric strength of about 0.6 volts per nanometer or more. The capacitor also exhibits a charge-discharge capacitance after being subjected to 3,000 cycles of a surge voltage and an initial capacitance prior to being subjected to the surge voltage, wherein the ratio of the charge-discharge capacitance to the initial capacitance is from about 0.75 to 1.
A wire termination device for coupling a wire to a feedthrough device is disclosed. The wire termination device can include a housing having a first end and a second end spaced apart from the first end in a longitudinal direction. The housing can define a cavity and an opening to the cavity at the first end for receiving a pin of the feedthrough device. The pin of the feedthrough device can extend in the longitudinal direction. The wire termination device can include a retention member coupled to the housing and located at least partially within the opening of the housing. The retention member can be configured to engage the pin of the feedthrough device to retain the pin of the feedthrough device in the opening of the housing.
A biosensor having somatic cells immobilized on an electrode formed from a biologically inert material for sensing transepithelial/transendothelial electrical resistance is provided. The biosensor includes a working electrode formed from gold, graphene, carbon nanotube, or alloys or combinations thereof, having somatic cells formed directly thereon. With such a configuration, a very small sample size may be used while still eliciting an electrical response in the presence of a target composition.
H01L 21/768 - Fixation d'interconnexions servant à conduire le courant entre des composants distincts à l'intérieur du dispositif
H01L 23/525 - Dispositions pour conduire le courant électrique à l'intérieur du dispositif pendant son fonctionnement, d'un composant à un autre comprenant des interconnexions externes formées d'une structure multicouche de couches conductrices et isolantes inséparables du corps semi-conducteur sur lequel elles ont été déposées avec des interconnexions modifiables
19.
SOLID ELECTROLTYIC CAPACITOR FOR USE AT HIGH VOLTAGES
A capacitor that is capable of exhibiting good electrical properties even under a variety of conditions is provided. More particularly, the capacitor contains a sintered porous anode body, a dielectric that overlies the anode body, and a solid electrolyte that overlies the dielectric. The solid electrolyte contains an inner layer and an outer layer, wherein the inner layer is formed from an in situ-polymerized conductive polymer and the outer layer is formed from pre-polymerized conductive polymer particles. Further, the in-situ polymerized conductive polymer is formed from an alkylated thiophene monomer.
A solid electrolytic capacitor comprising a capacitor element, anode lead extending from a surface of the capacitor element, an anode termination that is in electrical connection with the anode lead, a cathode termination that is in electrical connection with the solid electrolyte, and a casing material that encapsulates the capacitor element and anode lead is provided. A barrier coating is disposed on at least a portion of the anode termination and/or cathode termination and is in contact with the casing material. The coating contains a hydrophobic resinous material that includes an olefin polymer having a glass transition temperature of from about 20°C to about 160°C.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
A solid electrolytic capacitor that comprises a capacitor element that contains a sintered porous anode body, a dielectric that overlies the anode body, and a solid electrolyte that overlies the dielectric is provided. An anode lead wire extends from the capacitor element in a longitudinal direction, wherein the lead wire defines an external surface having a plurality of distinct recessed regions that are spaced apart along the longitudinal direction. A hydrophobic coating is disposed on at least a portion of the external surface of the anode lead wire. Further, an anode termination is in electrical connection with the anode lead wire and a cathode termination is in electrical connection with the solid electrolyte.
A solid electrolytic capacitor comprising a capacitor element is provided. The capacitor element comprises a sintered porous anode body, a dielectric that overlies the anode body, and a solid electrolyte that overlies the dielectric and that includes conductive polymer particles. The anode body has an exterior surface that spans in a longitudinal direction to define a length of the anode body, wherein at least one channel is recessed into the exterior surface of the anode body. The channel is defined by opposing sidewalls that intersect at a base, wherein the channel has a width of from about 0.4 millimeters to about 3 millimeters and a depth of from about 50 micrometers to about 350 micrometers.
A solid electrolytic capacitor comprising a capacitor element is provided. The capacitor element comprises a sintered porous anode body; a dielectric that overlies the anode body; and a solid electrolyte that overlies the dielectric and that includes a conductive polymer and a depolarizer.
A surface-mountable thin-film fuse component is disclosed that may include a substrate having a top surface, a first end, and a second end that is spaced apart from the first end in a longitudinal direction. The thin-film component may include a fuse layer formed over the top surface of the substrate. The fuse layer may include a thin-film fuse track. An external terminal may be disposed along the first end of the substrate and electrically connected with the thin-film fuse track. The external terminal may include a compliant layer comprising a conductive polymeric composition.
A multilayer ceramic capacitor may include a monolithic body and interleaved first and second pluralities of electrodes extending from the first and second ends, respectively, of the monolithic body towards opposite ends of the monolithic body. A first margin distance and a second margin distance may be formed, respectively, between the electrodes and the opposite ends of the monolithic body. First and second external terminations may be respectively disposed along the first end and second end of the monolithic body and respectively connected with the first and second plurality of electrodes. A margin ratio between a length of the monolithic body and the first margin distance and/or second margin distance may be less than about 10. At least one of the first external termination or the second external termination may include a conductive polymeric composition.
An integrated component may include a multilayer capacitor include a first active termination, a second active termination, at least one ground termination, and a pair of capacitors connected in series between the first active termination and the second active termination. The integrated component may include a discrete varistor comprising a first external varistor termination connected with the first active termination and a second external varistor termination connected with the second active termination of the multilayer capacitor.
H01G 4/40 - Combinaisons structurales de condensateurs fixes avec d'autres éléments électriques non couverts par la présente sous-classe, la structure étant principalement constituée par un condensateur, p. ex. combinaisons RC
H01G 4/232 - Bornes pour la connexion électrique d'au moins deux couches d'un condensateur à empilement ou à enroulement
H01C 7/10 - Résistances fixes constituées par une ou plusieurs couches ou revêtementsRésistances fixes constituées de matériaux conducteurs en poudre ou de matériaux semi-conducteurs en poudre avec ou sans matériaux isolants sensibles à la tension, p. ex. varistances
H01C 7/18 - Résistances fixes constituées par une ou plusieurs couches ou revêtementsRésistances fixes constituées de matériaux conducteurs en poudre ou de matériaux semi-conducteurs en poudre avec ou sans matériaux isolants comprenant une pluralité de couches empilées entre les bornes
A low inductance component may include a multilayer, monolithic device including a first active termination, a second active termination, at least one ground termination, and a pair of capacitors connected in series between the first active termination and the second active termination. The lead(s) may be coupled with the first active termination, second active termination, and/or the at least one ground termination. The lead(s) may have respective length(s) and maximum width(s). A ratio of the length(s) to the respective maximum width(s) of the lead(s) may be less than about 20.
H01G 4/40 - Combinaisons structurales de condensateurs fixes avec d'autres éléments électriques non couverts par la présente sous-classe, la structure étant principalement constituée par un condensateur, p. ex. combinaisons RC
H01C 7/10 - Résistances fixes constituées par une ou plusieurs couches ou revêtementsRésistances fixes constituées de matériaux conducteurs en poudre ou de matériaux semi-conducteurs en poudre avec ou sans matériaux isolants sensibles à la tension, p. ex. varistances
H01C 7/18 - Résistances fixes constituées par une ou plusieurs couches ou revêtementsRésistances fixes constituées de matériaux conducteurs en poudre ou de matériaux semi-conducteurs en poudre avec ou sans matériaux isolants comprenant une pluralité de couches empilées entre les bornes
A system including an electrical header connector assembly is provided. The electrical header connector assembly includes an insulated body with a mating body portion and a strain relief portion, a first self-shorting contact and a second self-shorting contact. Each self-shorting contact includes a contact tail with a wire receiving recess and a contact blade extending opposite and substantially parallel to the contact tail. Each self-shorting contact further includes a shorting beam extending opposite the contact tail. The shorting beam includes a curved portion extending away from the contact blade and a bent tip portion extending toward the contact blade. The shorting beam of the first self-shorting contact is configured to touch the shorting beam of the second self-shorting contact when the electrical header is in a neutral position.
H01R 13/703 - Association structurelle avec des composants électriques incorporés avec interrupteur incorporé actionné par l'engagement ou le retrait des pièces de couplage
H01R 13/516 - Moyens pour maintenir ou envelopper un corps isolant, p. ex. boîtier
H01R 13/24 - Contacts pour coopération par aboutage élastiquesContacts pour coopération par aboutage montés élastiquement
This disclosure provides a method and apparatus for connecting wires and interlocking wires to an electrical component. More specifically, an electrical connector that includes an insulative housing, two electrical contacts, and two interlocking contacts is disclosed. In an embodiment, each electrical contact includes a female end, a press-fit end, and a transition portion. The transition portion is designed such that the first female end and the first press-fit end may be properly aligned depending on the application. The transition portion also provides support and stability to the electrical contacts when they are disposed within the insulative housing. The insulative housing includes four contact recesses. In an embodiment, the electrical connector allows for the safe, efficient, re-usable, and reliable connection for connecting high-voltage wires to a corresponding sensitive electrical component (e.g., a printed circuit board).
H01R 13/707 - Association structurelle avec des composants électriques incorporés avec interrupteur incorporé verrouillé avec les pièces de contact ou la pièce complémentaire
A high power thin film filter is disclosed includes a substrate having a substrate thickness in a Z-direction between a first surface and a second surface. A thin film capacitor may be formed over the first surface. A thin film inductor may be spaced apart from the thin film capacitor by at least the thickness of the substrate. A via may be formed in the substrate that electrically connects the thin film capacitor and the thin film inductor. The via may include a polymeric composition.
A surface mountable coupler may include a monolithic base substrate having a first surface, a second surface, a length in an X-direction, and a width in a Y-direction that is perpendicular to the X-direction. A plurality of ports may be formed over the first surface of the monolithic base substrate including a coupling port, an input port, and an output port. The coupler may include a first thin film inductor and a second thin film inductor that is inductively coupled with the first thin film inductor and electrically connected between the input and output ports. A thin film circuit may electrically connect the first thin film inductor with the coupling port. The thin film circuit may include at least one thin film component.
H01P 5/18 - Dispositifs à accès conjugués, c.-à-d. dispositifs présentant au moins un accès découplé d'un autre accès consistant en deux guides couplés, p. ex. coupleurs directionnels
This disclosure provides a method and apparatus for connecting insulated wires to electrical components. More specifically, an apparatus that includes a wire guide designed to assist with the alignment of wires prior to termination of the wires to electrical components is disclosed. In an embodiment, the wire guide includes a body portion and a latching portion. The body portion includes at least one wire opening and is configured to mechanically secure one or more insulated wires in a desirable position. The latching portion is configured to secure the wire guide to a corresponding device such as an insulation displacement contact connector. A wire guide allows for insulated wires to be quickly and reliably positioned and secured relative to one another in order to safely and efficiently electrically and mechanically connect each insulated wire to a corresponding electrical component.
H01R 4/2433 - Plaques planes, p. ex. plaques planes multi-couches montées sur un support isolant une partie du support pouvant être déplacée pour enfoncer le câble dans l’entaille
33.
HIGH FREQUENCY, SURFACE MOUNTABLE MICROSTRIP BAND PASS FILTER
A high frequency, stripline filter may have a bottom surface for mounting to a mounting surface. The filter may include a monolithic base substrate having a top surface and a plurality of thin-film microstrips, including a first thin-film microstrip and a second thin-film microstrip, formed over the top surface of the substrate. Each of the plurality of thin-film microstrips may have a first arm, a second arm parallel to the first arm, and a base portion connected with the first and second arms. A port may be exposed along the bottom surface of the filter. A conductive path may include a via formed in the substrate. The conductive path may electrically connect the first thin-film microstrip with the port on the bottom surface of the filter. The filter may exhibit an insertion loss that is greater than ‑3.5 dB at a frequency that is greater than about 15 GHz.
The present invention is directed to a multilayer ceramic capacitor. The capacitor comprises a top surface, a bottom surface, and at least one side surface connecting the top surface and the bottom surface. The capacitor comprises a main body containing a plurality of alternating dielectric layers and internal electrode layers comprising a first plurality of internal electrode layers and a second plurality of internal electrode layers. A first through-hole conductive via electrically connects the first plurality of internal electrode layers to a first external terminal on the top surface and a first external terminal on the bottom surface of the capacitor. A second through-hole conductive via electrically connects the second plurality of internal electrode layers to a second external terminal on the top surface and a second external terminal on the bottom surface of the capacitor. The at least one side surface does not include an external terminal.
A multilayer ceramic capacitor may include a monolithic body including a plurality of dielectric layers and a plurality of electrode regions. The plurality of electrode regions can include a dielectric region, an active electrode region, and a shield electrode region. The active electrode region may be located between the dielectric region and the shield electrode region in a Z-direction. The dielectric region may extend from the active electrode region to the top surface of the broadband multilayer ceramic capacitor. The capacitor may include a plurality of active electrodes arranged within the active electrode region and at least one shield electrode arranged within the shield electrode region. The dielectric region may be free of electrode layers that extend greater than 25% of a length of the capacitor. A ratio of a capacitor thickness to a thickness of the dielectric region may be less than about 20.
The present invention is directed to a multilayer ceramic capacitor that includes a plurality of active electrodes and at least one shield electrode that are each arranged within a monolithic body and parallel with a longitudinal direction. The capacitor may exhibit a first insertion loss value at a test frequency, which may be greater than about 2 GHz, in a first orientation relative to the mounting surface. The capacitor may exhibit a second insertion loss value at about the test frequency in a second orientation relative to the mounting surface and the capacitor is rotated 90 degrees or more about the longitudinal direction with respect to the first orientation. The longitudinal direction of the capacitor may be parallel with the mounting surface in each of the first and second orientations. The second insertion loss value may differ from the first insertion loss value by at least about 0.3 dB.
The present invention is directed to a multilayer ceramic capacitor. A plurality of active electrodes may be arranged within a monolithic body of the capacitor and parallel with a longitudinal direction. A first shield electrode may be arranged within the monolithic body and parallel with the longitudinal direction. The first shield electrode may be connected with a first external terminal. The first shield electrode may have a first longitudinal edge and a second longitudinal edge that are each aligned with the lateral direction and face away from the first external terminal. The second longitudinal edge may be offset in the longitudinal direction from the first longitudinal edge by a shield electrode offset distance. A second shield electrode may be connected with a second external terminal. The second shield electrode may be approximately aligned with the first shield electrode in the Z-direction.
A multilayer capacitor may include a monolithic body including a plurality of dielectric layers. A first external terminal may be disposed along a first end, and a second external terminal may be disposed along a second end of the capacitor. The external terminals may include respective bottom portions that extend along a bottom surface of the capacitor. The bottom portions of the external terminals may be spaced apart by a bottom external terminal spacing distance. A bottom shield electrode may be arranged within the monolithic body between a plurality of active electrodes and the bottom surface of the capacitor. The bottom shield electrode may be spaced apart from the bottom surface of the capacitor by a bottom-shield-to-bottom distance that may range from about 3 microns to about 100 microns. A ratio of a length of the capacitor to the bottom external terminal spacing distance may be less than about 4.
A broadband multilayer ceramic capacitor may include a monolithic body including a plurality of dielectric layers stacked in the Z-direction, a first external terminal, and a second external terminal. A plurality of active electrodes, a bottom shield electrode, and a top shield electrode may be arranged within the monolithic body. The top shield electrode may be positioned between the active electrodes and a top surface of the capacitor and spaced apart from the top surface of the capacitor by a top-shield-to-top distance. A bottom shield electrode may be positioned between the active electrodes and the bottom surface of the capacitor and spaced apart from the bottom surface of the capacitor by a bottom-shield-to-bottom distance. A ratio of the top-shield-to-top distance to the bottom-shield-to-bottom distance may be between about 0.8 and about 1.2. The bottom-shield-to-bottom distance may range from about 8 microns to about 100 microns.
A controller and system for tuning a voltage tunable capacitor is provided. The controller may include at least one analog-to-digital converter configured to receive at least one input signal and convert the at least one input signal into at least one digital signal. The controller may include a processor configured to process the at least one digital signal using logic to generate an output signal. The controller may include a charge pump configured to boost the output signal to generate a boosted output signal. The controller may be configured to provide the boosted output signal to the voltage tunable capacitor to adjust a bias voltage of the voltage tunable capacitor.
H01G 7/06 - Condensateurs dont la capacité varie par des moyens non mécaniquesProcédés pour leur fabrication à diélectrique choisi pour sa variation de permittivité en fonction de la tension appliquée, c.-à-d. condensateurs ferro-électriques
A multilayer filter may include a dielectric layer having a top surface, a bottom surface, and a thickness in a Z-direction between the top surface and the bottom surface. The multilayer filter may include a conductive layer formed on the top surface of the dielectric layer. The multilayer filter may include a via assembly formed in the dielectric layer and connected to the conductive layer on the top surface of the dielectric layer. The via assembly may extend to the bottom surface of the dielectric layer. The via assembly may have a length in the Z-direction and a total cross-sectional area in an X-Y plane that is perpendicular to the Z-direction. The via assembly may have an area-to-squared-length ratio that is greater than about 3.25.
H01P 11/00 - Appareils ou procédés spécialement adaptés à la fabrication de guides d'ondes, résonateurs, lignes ou autres dispositifs du type guide d'ondes
H03H 7/01 - Réseaux à deux accès sélecteurs de fréquence
H03H 1/00 - Détails de réalisation des réseaux d'impédances dont le mode de fonctionnement électrique n'est pas spécifié ou est applicable à plus d'un type de réseau
42.
MULTILAYER FILTER INCLUDING A RETURN SIGNAL REDUCING PROTRUSION
A multilayer filter may include a signal path having an input, an output, and a conductive layer overlying at least one of a plurality of dielectric layers. The conductive layer may be elongated in the first direction and may have a first edge aligned with the first direction and a second edge parallel with the first edge. The conductive layer may include a protrusion extending in the second direction and having an end edge that is parallel with the first edge and offset from the first edge in the second direction by a protrusion length that is greater than about 50 microns. The multilayer filter may include an inductor that is electrically connected at a first location with the signal path and electrically connected at a second location with at least one of the signal path or a ground.
H01P 11/00 - Appareils ou procédés spécialement adaptés à la fabrication de guides d'ondes, résonateurs, lignes ou autres dispositifs du type guide d'ondes
H03H 7/01 - Réseaux à deux accès sélecteurs de fréquence
43.
MULTILAYER FILTER INCLUDING A CAPACITOR CONNECTED WITH AT LEAST TWO VIAS
A multilayer filter may include a plurality of dielectric layers stacked in a Z-direction. A first conductive layer may overlie one of the dielectric layers, and a second conductive layer may overlie another of the dielectric layers and be spaced apart from the first conductive layer in the Z-direction. A first via may be connected with the second conductive layer at a first location. A second via may be connected with the second conductive layer at a second location that is spaced apart in a first direction from the first location. The first conductive layer may overlap the second conductive layer at an overlapping area to form a capacitor. At least a portion of the overlapping area may be located between the first location and the second location in the first direction. The second conductive layer may be free of via connections that intersect the overlapping area.
H01P 11/00 - Appareils ou procédés spécialement adaptés à la fabrication de guides d'ondes, résonateurs, lignes ou autres dispositifs du type guide d'ondes
H03H 7/01 - Réseaux à deux accès sélecteurs de fréquence
A high frequency multilayer filter may include a plurality of dielectric layers and a signal path having an input and an output. The multilayer filter may include an inductor including a conductive layer formed over a first dielectric layer. The inductor may be electrically connected at a first location with the signal path and electrically connected at a second location with at least one of the signal path or a ground. The multilayer filter may include a capacitor including a first electrode and a second electrode that is separated from the first electrode by a second dielectric layer. The multilayer filter has a characteristic frequency that is greater than about 6 GHz.
H03H 7/01 - Réseaux à deux accès sélecteurs de fréquence
H03H 1/00 - Détails de réalisation des réseaux d'impédances dont le mode de fonctionnement électrique n'est pas spécifié ou est applicable à plus d'un type de réseau
45.
MULTILAYER ELECTRONIC DEVICE INCLUDING A CAPACITOR HAVING A PRECISELY CONTROLLED CAPACITIVE AREA
A multilayer electronic device may include a plurality of dielectric layers stacked in a Z-direction that is perpendicular to an X-Y plane. The device may include a first conductive layer overlying one of the plurality of dielectric layers. The multilayer electronic device may include a second conductive layer overlying another of the plurality of dielectric layers and spaced apart from the first conductive layer in the Z-direction. The second conductive layer may overlap the first conductive layer in the X-Y plane at an overlapping area to form a capacitor. The first conductive layer may have a pair of parallel edges at a boundary of the overlapping area and an offset edge within the overlapping area that is parallel with the pair of parallel edges. An offset distance between the offset edge and at least one of the pair of parallel edges may be less than about 500 microns.
H05K 1/16 - Circuits imprimés comprenant des composants électriques imprimés incorporés, p. ex. une résistance, un condensateur, une inductance imprimés
H01P 1/201 - Filtres à ondes électromagnétiques transversales
46.
MULTILAYER ELECTRONIC DEVICE INCLUDING A HIGH PRECISION INDUCTOR
A multilayer electronic device may include a plurality of dielectric layers and a signal path having an input and an output. An inductor may include a conductive layer formed on one of the plurality of dielectric layers and may be electrically connected at a first location with the signal path and electrically connected at a second location with at least one of the signal path or a ground. The inductor may include an outer perimeter that includes a first straight edge facing outward in a first direction and a second straight edge parallel to the first straight edge and facing outward in the first direction. The second straight edge may be offset from the first straight edge by an offset distance that is less than about 500 microns and less than about 90% of a first width of the inductor in the first direction at the first straight edge.
A solid electrolytic capacitor containing a capacitor element is provided. The capacitor element contains a sintered porous anode body, a dielectric that overlies the anode body, a solid electrolyte that overlies the dielectric, and an external coating that overlies the solid electrolyte and includes conductive polymer particles. The solid electrolyte includes a conductive polymer containing repeating thiophene units of a certain formula.
A capacitor comprising a solid electrolytic capacitor element that contains a sintered porous anode body, a dielectric film that is formed by sequential vapor deposition and overlies the anode body, and a solid electrolyte that overlies the dielectric film is provided.
H01G 9/042 - Électrodes caractérisées par le matériau
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
A solid electrolytic capacitor and method for making the capacitor are provided. The capacitor includes a sintered porous anode body formed from a valve metal, a metallic physical vapor deposition (PVD) layer disposed directly on a planar surface of the anode body, a dielectric, a cathode, and anode and cathode terminations. The dielectric overlies at least a portion of the anode body and is also formed within the anode body. The cathode overlies at least a portion of the dielectric that overlies the anode body and includes a solid electrolyte, and a portion of a lower surface of the metallic PVD layer is free of both the dielectric and solid electrolyte. The anode termination is electrically connected to the portion of the lower surface of the metallic PVD layer that is free of both the dielectric and solid electrolyte, and the cathode termination is electrically connected to the solid electrolyte.
A surface-mountable component is disclosed. The surface-mountable component may include a substrate having a side surface and a top surface that is perpendicular to the side surface. The component may include an element layer formed on the top surface of the substrate. The element layer may include a thin-film element and a contact pad electrically connected with the thin-film element. The contact pad may extend to the side surface of the substrate. The component may include a terminal that is electrically connected with the contact pad at a connection area. The connection area may be parallel with the top surface of the substrate. The terminal may have a visible edge surface that is approximately aligned with the side surface of the substrate. The visible edge surface may be visible for inspection when the surface-mountable component is mounted to a mounting surface.
A filter assembly is disclosed that includes a monolithic filter having a surface and a heat sink coupled to the surface of the monolithic filter. The heat sink includes a layer of thermally conductive material that can have a thickness greater than about 0.02 mm. The heat sink may provide electrical shielding for the monolithic filter. In some embodiments, the filter assembly may include an organic dielectric material, such as liquid crystalline polymer or polyphenyl ether. In some embodiments, the filter assembly may include an additional monolithic filter.
H01P 11/00 - Appareils ou procédés spécialement adaptés à la fabrication de guides d'ondes, résonateurs, lignes ou autres dispositifs du type guide d'ondes
H01P 1/30 - Dispositifs de compensation des effets de la température ou de l'humidité ou de protection contre ces effets
An electrical spring contact is provided. The electrical spring contact includes a connection portion configured to couple the electrical spring contact to a printed circuit board, a bulge portion, a bend portion having a substantially U-shaped configuration, and an inclined portion extending from the bend portion at an angle relative to a plane that is substantially parallel to the connection portion. The connection portion, the bulge portion, the bend portion, and the inclined portion are formed from a single conductive contact material.
A phased array antenna is provided. The phased array antenna includes a dome shaped substrate. The phased array antenna further includes a plurality of antenna elements disposed on the substrate.
A solid electrolytic capacitor containing a capacitor element is provided. The capacitor element contains a sintered porous anode body, a dielectric that overlies the anode body, a solid electrolyte that overlies the dielectric, and an external polymer coating that overlies the solid electrolyte and includes conductive polymer particles. The solid electrolyte includes a conductive polymer having repeating units derived from an aniline monomer having the following general formula (I).
H01B 1/12 - Conducteurs ou corps conducteurs caractérisés par les matériaux conducteurs utilisésEmploi de matériaux spécifiés comme conducteurs composés principalement d'autres substances non métalliques substances organiques
C08L 65/00 - Compositions contenant des composés macromoléculaires obtenus par des réactions créant une liaison carbone-carbone dans la chaîne principaleCompositions contenant des dérivés de tels polymères
A solid electrolytic capacitor containing a capacitor element is provided. The capacitor element contains a sintered porous anode body, a dielectric that overlies the anode body, a solid electrolyte that overlies the dielectric, and an external coating that overlies the solid electrolyte and includes conductive polymer particles. The solid electrolyte includes an intrinsically conductive polymer containing repeating thiophene units of a certain formula.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
56.
SOLID ELECTROLYTIC CAPACITOR FORMED FROM CONDUCTIVE POLYMER PARTICLES
A solid electrolytic capacitor containing a capacitor element is provided. The capacitor element contains a sintered porous anode body, a dielectric that overlies the anode body, a solid electrolyte that overlies the dielectric that includes conductive polymer particles that contain a complex formed from a thiophene polymer and a copolymer counterion, and an external polymer coating that overlies the solid electrolyte and includes conductive polymer particles.
H01G 11/56 - Électrolytes solides, p. ex. gelsAdditifs pour ceux-ci
H01B 1/20 - Matériau conducteur dispersé dans un matériau organique non conducteur
H01B 1/12 - Conducteurs ou corps conducteurs caractérisés par les matériaux conducteurs utilisésEmploi de matériaux spécifiés comme conducteurs composés principalement d'autres substances non métalliques substances organiques
C08L 65/00 - Compositions contenant des composés macromoléculaires obtenus par des réactions créant une liaison carbone-carbone dans la chaîne principaleCompositions contenant des dérivés de tels polymères
C08L 33/12 - Homopolymères ou copolymères du méthacrylate de méthyle
In general, a varistor including a passivation layer and a method of forming such a varistor are disclosed. The varistor comprises a ceramic body comprising a plurality of alternating dielectric layers and electrode layers. The varistor also comprises a first external terminal on a first end surface and a second external terminal on a second end surface opposite the first end surface wherein at least two side surfaces extend between the first end surface and the second end surface. The varistor also comprises a passivation layer on at least one side surface of the ceramic body between the first external terminal and the second external terminal. The passivation layer includes a phosphate and a metal additive including an alkali metal, an alkaline earth metal, or a mixture thereof. The passivation layer has an average thickness of from 0.1 micron to 30 microns.
H01C 7/10 - Résistances fixes constituées par une ou plusieurs couches ou revêtementsRésistances fixes constituées de matériaux conducteurs en poudre ou de matériaux semi-conducteurs en poudre avec ou sans matériaux isolants sensibles à la tension, p. ex. varistances
H01C 7/18 - Résistances fixes constituées par une ou plusieurs couches ou revêtementsRésistances fixes constituées de matériaux conducteurs en poudre ou de matériaux semi-conducteurs en poudre avec ou sans matériaux isolants comprenant une pluralité de couches empilées entre les bornes
H01C 7/112 - Noyaux de varistance en oxyde métallique du type ZnO
H01C 17/28 - Appareils ou procédés spécialement adaptés à la fabrication de résistances adaptés pour appliquer les bornes
H01C 17/00 - Appareils ou procédés spécialement adaptés à la fabrication de résistances
H01C 17/065 - Appareils ou procédés spécialement adaptés à la fabrication de résistances adaptés pour déposer en couche le matériau résistif sur un élément de base par des techniques de film épais, p. ex. sérigraphie
A feedthrough device for protecting a system from an electrical transient may include a housing having a first end and a second end spaced apart from the first end in a longitudinal direction. A conductive line may extend through the housing from the first end to the second end of the housing. The conductive line may define an input end proximate the first end of the housing and an output end proximate the second end of the housing for connecting the feedthrough device with the system to be protected. A filter may be disposed within the housing and coupled with the conductive line at a first location. A gas discharge tube may be disposed within the housing and coupled with the conductive line at a second location on the conductive line that is proximate the filter and between the input end of the conductive line and the first location.
H01T 1/22 - Moyens pour amorcer l'arc ou pour faciliter l'allumage de l'éclateur par la forme ou la composition des électrodes
H01T 4/12 - Limiteurs de surtension utilisant des éclateurs ayant un intervalle simple ou plusieurs intervalles disposés en parallèle scellés hermétiquement
H02H 9/06 - Circuits de protection de sécurité pour limiter l'excès de courant ou de tension sans déconnexion sensibles à un excès de tension utilisant des éclateurs à étincelles
This disclosure provides a method and apparatus for connecting and disconnecting various electrical components. More specifically, an apparatus that includes an electrical contact and an insulated housing. In an embodiment, the electrical contact includes a first insulation displacement contact, a second insulation displacement contact, and a motion-force portion. The motion-force portion is configured to allow the electrical contact to be actuated around a central axis and relative to the insulated housing. The first and second insulation displacement contacts allow for the electrical contact to create an electrical and mechanical connection between respective wires when the electrical contact is rotated. A rotary insulation displacement contact (IDC) junction connector allows for two wires to be reliably and safely connected in environments where space is limited.
A solid electrolytic capacitor comprising a capacitor element, anode lead extending from a surface of the capacitor element, an anode termination that is in electrical connection with the anode lead, a cathode termination that is in electrical connection with the solid electrolyte, and a casing material that encapsulates the capacitor element and anode lead is provided. An interfacial coating is disposed on at least a portion of the anode termination and/or cathode termination and is in contact with the casing material. The coating contains a hydrophobic resinous material and the adhesion strength of the casing material is about 5 newtons per square millimeter or more as determined at a temperature of about 23C and relative humidity of about 30%.
A solid electrolytic capacitor containing a capacitor element is provided. The capacitor element contains a sintered porous anode body, a dielectric that overlies the anode body, and a solid electrolyte that overlies the dielectric. An anode lead extends from the front surface of the capacitor element in the longitudinal direction. An anode termination is in contact with the anode lead at a connection region, wherein the ratio of the distance between the connection region and the front surface of the capacitor element to the length of the capacitor is 0.13 or more. A cathode termination is in electrical connection with the solid electrolyte and a casing material encapsulates the capacitor element and anode lead. Further, an interfacial coating that is disposed on at least a portion of the anode termination and/or cathode termination and is in contact with the casing material.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
62.
SOLID ELECTROLYTIC CAPACITOR WITH STABLE ELECTRICAL PROPERTIES AT HIGH TEMPERATURES
A solid electrolytic capacitor is provided that contains a casing material that encapsulates the capacitor element. The casing material is formed from a curable resinous matrix that has a coefficient of thermal expansion of about 42 ppm/°C or less at a temperature above the glass transition temperature of the resinous matrix. Further, the capacitor exhibits an initial equivalence series resistance of about 200 mohms or less as determined at an operating frequency of 100 kHz and temperature of 23°C, and the ratio of the equivalence series resistance of the capacitor after being exposed to a temperature of 125°C for 560 hours to the initial equivalence series resistance of the capacitor is about 2.0 or less.
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
A surface mount component is disclosed including an electrically insulating beam that is thermally conductive. The electrically insulating beam has a first end and a second end that is opposite the first end. The surface mount component includes a thin-film component formed on the electrically insulating beam adjacent the first end of the electrically insulating beam. A heat sink terminal is formed on the electrically insulating beam adjacent a second end of the electrically insulating beam. In some embodiments, the thin-film component has an area power capacity of greater than about 0.17 W/mm2 at about 28 GHz.
H01C 1/084 - Dispositions de réfrigération, de chauffage ou de ventilation par refroidissement naturel, p. ex. ailettes, dissipateurs thermiques
H01C 1/014 - MontageSupport la résistance étant maintenue et supportée entre deux éléments de support
H01C 7/00 - Résistances fixes constituées par une ou plusieurs couches ou revêtementsRésistances fixes constituées de matériaux conducteurs en poudre ou de matériaux semi-conducteurs en poudre avec ou sans matériaux isolants
H01C 17/28 - Appareils ou procédés spécialement adaptés à la fabrication de résistances adaptés pour appliquer les bornes
64.
SURFACE MOUNTED CARD EDGE CONTACT PAIR WITH PICK-UP CARRIER
A card edge contact pair for electrically coupling printed circuit board assemblies is provided. The card edge contact pair includes a first contact body and a second contact body. The first contact body includes a first solder joint end and a first deflection end. The second contact body includes a second solder joint end and a second deflection end. The card edge contact pair further includes an integral carrier component. The integral carrier component is detachably coupled to the first contact body and the second contact body.
H01R 13/629 - Moyens additionnels pour faciliter l'engagement ou la séparation des pièces de couplage, p. ex. moyens pour aligner ou guider, leviers, pression de gaz
The present invention is directed to a varistor comprising a dielectric material comprising a sintered ceramic composed of zinc oxide grains and a grain boundary layer between the zinc oxide grains. The grain boundary layer contains a positive temperature coefficient thermistor material in an amount of less than 10 mol% based on the grain boundary layer.
H01C 7/102 - Couche-barrière de varistance, p. ex. couches de surface
H01C 7/112 - Noyaux de varistance en oxyde métallique du type ZnO
H01C 7/00 - Résistances fixes constituées par une ou plusieurs couches ou revêtementsRésistances fixes constituées de matériaux conducteurs en poudre ou de matériaux semi-conducteurs en poudre avec ou sans matériaux isolants
H01C 7/02 - Résistances fixes constituées par une ou plusieurs couches ou revêtementsRésistances fixes constituées de matériaux conducteurs en poudre ou de matériaux semi-conducteurs en poudre avec ou sans matériaux isolants à coefficient de température positif
66.
SOLID ELECTROLYTIC CAPACITOR CONTAINING A SEQUENTIAL VAPOR-DEPOSITED INTERIOR CONDUCTIVE POLYMER FILM
A capacitor comprising a solid electrolytic capacitor element that a sintered porous anode body, a dielectric that overlies the anode body, and a solid electrolyte is provided. The solid electrolyte contains an interior conductive polymer film that overlies the dielectric, which may be formed by sequential vapor deposition. An exterior conductive polymer layer also overlies the interior conductive polymer film.
A capacitor comprising a solid electrolytic capacitor element that contains a sintered porous anode body, a dielectric that overlies the anode body, and a solid electrolyte that overlies the dielectric. The capacitor further contains a barrier film that is formed by vapor deposition and that is positioned between the dielectric and the solid electrolyte or overlies the dielectric.
A capacitor comprising a solid electrolytic capacitor element that contains a sintered porous anode body, a dielectric that overlies the anode body, and a solid electrolyte is provided. The solid electrolyte contains an interior conductive polymer layer overlying the dielectric, an adhesive film that overlies the interior conductive polymer layer, which may be formed by sequential vapor deposition. An exterior conductive polymer layer also overlies the adhesive film.
A supercapacitor assembly is disclosed that includes a supercapacitor enclosed within a housing. The housing may have an outer surface and may be sealed at a seal location. A barrier layer may be formed on a portion of the outer surface that is adjacent at least one of the seal location or a surface to which the supercapacitor is mounted. The barrier layer may be a high performance polymer, such as a thermoplastic polymer or a thermoset polymer.
H01G 11/12 - Condensateurs hybrides ou EDL à empilement
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/70 - Collecteurs de courant caractérisés par leur structure
The invention is directed to a multilayer ceramic capacitor comprising a top surface and an opposing bottom surface and four side surfaces that extend between the top and bottom surfaces, a main body formed from a plurality of dielectric layers and a plurality of internal electrode layers alternately arranged, and external terminals electrically connected to the internal electrode layers wherein a first external terminal is disposed along the top surface and a second external terminal is disposed along the bottom surface. The internal electrode layer includes a first electrode electrically connected to the first external terminal and a second counter electrode electrically connected to the second external terminal, wherein the first electrode includes a central portion extending from the first external terminal toward the second external terminal and wherein the central portion extends 40% to less than 100% a distance from the first external terminal to the second external terminal.
A high frequency coupler is disclosed that is configured for grid array-type surface mounting. The coupler includes a monolithic base substrate having a top surface and a bottom surface. A first thin film microstrip and a second thin film microstrip are each disposed on the top surface of the monolithic base substrate. Each microstrip has an input end and an output end. At least one via extends through the monolithic base substrate from the top surface to the bottom surface of the monolithic base substrate. The via(s) are electrically connected with at least one of the input end or the output end of the first microstrip or the second microstrip. The coupler has a coupling factor that is greater than about -30 dB at about 28 GHz.
H01P 5/18 - Dispositifs à accès conjugués, c.-à-d. dispositifs présentant au moins un accès découplé d'un autre accès consistant en deux guides couplés, p. ex. coupleurs directionnels
H01P 3/00 - Guides d'ondesLignes de transmission du type guide d'ondes
H01P 3/18 - Guides d'ondesLignes de transmission du type guide d'ondes constitués par plusieurs couches pour accroître la surface active, c.-à-d. couches conductrices et diélectriques alternées
H01P 11/00 - Appareils ou procédés spécialement adaptés à la fabrication de guides d'ondes, résonateurs, lignes ou autres dispositifs du type guide d'ondes
72.
MULTILAYER CERAMIC CAPACITOR HAVING ULTRA-BROADBAND PERFORMANCE
The present invention is directed to a multilayer ceramic capacitor comprising a first external terminal disposed along a first end, a second external terminal disposed along a second end that is opposite the first end, and an active electrode region containing alternating dielectric layers and active electrode layers. At least one of the electrode layers comprises a first electrode and a second electrode. The first electrode is electrically connected with the first external terminal and has a first electrode arm comprising a main portion and a step portion. The main portion has a lateral edge extending from the first end of the multilayer capacitor and the step portion has a lateral edge offset from the lateral edge of the main portion. The second electrode is electrically connected with the second external terminal.
A varistor is provided having a rectangular configuration defining first and second opposing end surfaces offset in a lengthwise direction. The varistor may include a first terminal adjacent the first opposing end surface and a second terminal adjacent the second opposing end surface. The varistor may include an active electrode layer including a first electrode electrically connected with the first terminal and a second electrode electrically connected with the second terminal. The first electrode may be spaced apart from the second electrode in the lengthwise direction to form an active electrode end gap. The varistor may include a floating electrode layer including a floating electrode. The floating electrode layer may be spaced apart from the active electrode layer in a height-wise direction to form a floating electrode gap. A ratio of the active electrode end gap to the floating electrode gap may be greater than about 2.
H01C 7/10 - Résistances fixes constituées par une ou plusieurs couches ou revêtementsRésistances fixes constituées de matériaux conducteurs en poudre ou de matériaux semi-conducteurs en poudre avec ou sans matériaux isolants sensibles à la tension, p. ex. varistances
74.
MULTILAYER CERAMIC CAPACITOR HAVING ULTRA-BROADBAND PERFORMANCE
A multilayer ceramic capacitor is disclosed including a first external terminal disposed along a first end of the capacitor, a second external terminal disposed along a second end of the capacitor opposite the first end, an active electrode region containing alternating dielectric layers and active electrode layers, and a shield electrode region including at least two shield electrodes that are spaced apart by a shield layer gap in the longitudinal direction. The distance from the active electrode region to the shield electrode region may range from about 4% to about 20% of a thickness of the capacitor between a top surface and a bottom surface opposing the top surface. The shield layer gap may range from about 3% to about 60% of an external terminal gap between the first external terminal and second external terminal in the longitudinal direction on at least one of the top or bottom surfaces.
A supercapacitor module is provided. In some embodiments, the supercapacitor can include a first supercapacitor, a second supercapacitor, and an interconnect electrically connecting the first and second supercapacitors in series. A casing can encapsulate at least the first and second supercapacitors. The operating voltage of the supercapacitor module can be greater than 3.5 volts, and the equivalent series resistance of the supercapacitor module can be less than about 10 ohm.
H01G 11/16 - Agencements ou procédés de réglage ou de protection des condensateurs hybrides ou EDL contre les surcharges électriques, p. ex. comprenant des fusibles
H01G 11/28 - Électrodes caractérisées par leur structure, p. ex. multicouches, selon la porosité ou les caractéristiques de surface agencées ou disposées sur un collecteur de courantCouches ou phases entre les électrodes et les collecteurs de courant, p. ex. adhésifs
H01G 11/32 - Électrodes caractérisées par leur matériau à base de carbone
H01G 11/10 - Condensateurs hybrides ou condensateurs EDL multiples, p. ex. réseaux ou modules
76.
ELECTRICAL CIRCUIT INCLUDING A SUPERCAPACITOR WITH REDUCED LEAKAGE
An electrical circuit is provided including a substrate having a generally planar surface. A supercapacitor assembly includes a container having a length in a longitudinal direction. The supercapacitor assembly includes an electrode assembly enclosed within the container, and the electrode assembly may have a jelly-roll configuration. An angle ranging from about 0 to about 30 degrees is formed between the longitudinal direction of the container and the generally planar surface of the substrate.
A self-aligning capacitor electrode assembly having an improved breakdown voltage is disclosed. The electrode assembly comprises a first electrode having a generally planar shape and a length in a first direction. The electrode assembly also comprises a second electrode having a generally planar shape and a length in a second direction. The second electrode overlaps the first electrode such that an overlapping region is formed. The overlapping region has an area that is insensitive to a relative misalignment in the first direction between the first electrode and the second electrode that is less than a first offset distance. A ratio of the length of the first electrode to the first offset distance is less than about 45.
A solid electrolytic capacitor and method for making the capacitor are provided. The capacitor includes a porous anode body, an anode foil, a dielectric, a cathode, and anode and cathode terminations. The foil is disposed on a planar surface of the anode body, and both comprise a valve metal. Further, the dielectric overlies at least a portion of the anode body, and the dielectric is also formed within the anode body. The cathode overlies at least a portion of the dielectric that overlies the anode body and includes a solid electrolyte, where at least a portion of a lower surface of the foil is free of both the dielectric and the solid electrolyte. In addition, the anode termination is electrically connected to the portion of the lower surface of the foil that is free of both the dielectric and the solid electrolyte, and the cathode termination is electrically connected to the solid electrolyte.
A phased array antenna is provided. The phased array antenna includes a tube shaped substrate. The phased array antenna further includes a plurality of antenna elements disposed on the substrate.
H01Q 21/22 - Réseaux d'unités d'antennes, de même polarisation, excitées individuellement et espacées entre elles les unités d'antennes du réseau étant excitées d'une façon non uniforme en amplitude ou en phase, p. ex. réseau à prises ou réseau bidirectionnel
H01Q 3/36 - Dispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la phase relative ou l’amplitude relative et l’énergie d’excitation entre plusieurs éléments rayonnants actifsDispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la distribution de l’énergie à travers une ouverture rayonnante faisant varier la phase par des moyens électriques avec des déphaseurs variables
80.
SOLID ELECTROLYTIC CAPACITOR FOR USE AT HIGH TEMPERATURES
A capacitor that comprises a capacitor element that includes an anode that contains a dielectric formed on a sintered porous body, a solid electrolyte overlying the anode that contains manganese dioxide, and a cathode coating is provided. The cathode coating includes a barrier layer overlying the solid electrolyte and a metallization layer overlying the barrier layer. The barrier layer contains a valve metal and the metallization layer contains a metal that exhibits an electrical resistivity of about 150 nΩ. or less (at a temperature of 20°C) and an electric potential of about -0.5 V or more.
A wet electrolytic capacitor is provided. The capacitor comprises an anode that comprises an anodically oxidized pellet formed from a pressed and sintered valve metal powder, a cathode that comprises a metal substrate coated with a conductive coating, a microporous membrane that is positioned between the anode and cathode and contains an olefin polymer having a weight-average molecular weight of about 1,000,000 grams per mole or more, and a fluidic working electrolyte in communication with the anode and the cathode.
A low aspect ratio varistor is disclosed. The varistor may have a rectangular configuration defining first and second opposing side surfaces offset in a widthwise direction and first and second opposing end surfaces offset in a lengthwise direction. The varistor may include a first electrode layer including a first electrode having an electrode length in the lengthwise direction and an electrode width in the widthwise direction. The varistor may also include a second electrode layer including a second electrode having an electrode length in the lengthwise direction and an electrode width in the widthwise direction. The varistor may also include first and second terminals adjacent and connected with the first and second opposing end surfaces, respectively. At least one of the first or second electrodes may have an electrode aspect ratio less than about 1.
H01C 7/10 - Résistances fixes constituées par une ou plusieurs couches ou revêtementsRésistances fixes constituées de matériaux conducteurs en poudre ou de matériaux semi-conducteurs en poudre avec ou sans matériaux isolants sensibles à la tension, p. ex. varistances
H01C 1/14 - Bornes ou points de prise spécialement adaptés aux résistancesDispositions de bornes ou points de prise sur les résistances
83.
WIRE-TO-WIRE CONNECTOR WITH INSULATION DISPLACEMENT CONNECTION CONTACT FOR INTEGRAL STRAIN RELIEF
An apparatus includes a first electrical contact comprising a first aperture and a first insulation displacement opening. Centers of the first aperture and the first insulation displacement opening are aligned. The apparatus also includes an insulated housing comprising a first wire opening, a second wire opening, and a first electrical contact inlet extending through the first and second wire openings. The first electrical contact is at least partially inserted into the first electrical contact inlet such that at least a portion of the first aperture is aligned with the first wire opening.
H01R 4/2462 - Connexions utilisant des organes de contact pénétrant dans, ou transperçant, l'isolation ou les brins du câble les organes de contact étant munis d’arêtes coupant le matériau isolant, p. ex. de type diapason les organes de contact comportant des moyens supplémentaires agissant sur l’isolation ou le fil, p. ex. un ensemble supplémentaire de moyens pour pénétrer dans l’isolation, des moyens d’atténuation de la tension ou des couteaux coupe-fils les organes de contact étant de configuration courbe entaillée, p. ex. coude entaillé
H01R 13/58 - Moyens pour atténuer l'effort de tension sur le câble de connexion, p. ex. serre-câble
84.
EMI FEEDTHROUGH FILTER TERMINAL ASSEMBLY CONTAINING A LAMINATED INSULATIVE SEAL
The present invention is directed to an EMI feedthrough filter terminal assembly. The EMI feedthrough filter terminal assembly comprises: a feedthrough filter capacitor having a plurality of first electrode layers and a plurality of second electrode layers, a first passageway therethrough having a first termination surface conductively coupling the plurality of first electrode layers, a second termination surface conductively coupling the plurality of second electrode layers; a feedthrough ferrule conductively coupled to the feedthrough filter capacitor via the second termination surface; at least one conductive terminal pin extending through the passageway in conductive relation with the plurality of first electrode layers; an insulator fixed to the feedthrough ferrule for conductively isolating the conductive terminal pin from the feedthrough ferrule; and a laminated insulative layer between the insulator and the feedthrough filter capacitor.
H01R 13/658 - Dispositions pour le blindage en haute fréquence, p. ex. protection contre les parasites électromagnétiques ou les impulsions électromagnétiques
85.
EMI FEEDTHROUGH FILTER TERMINAL ASSEMBLY CONTAINING A RESIN COATING OVER A HERMETICALLY SEALING MATERIAL
The present invention is directed to an EMI feedthrough filter terminal assembly. The EMI feedthrough filter terminal assembly comprises: a feedthrough filter capacitor having a plurality of first electrode layers and a plurality of second electrode layers and a first passageway therethrough having a first termination surface conductively coupling the plurality of first electrode layers; at least one conductive terminal pin extending through the passageway in conductive relation with the plurality of first electrode layers; a feedthrough ferrule; an insulator fixed to the feedthrough ferrule for conductively isolating the conductive terminal pin from the feedthrough ferrule; a hermetically sealing material between the insulator and the feedthrough ferrule; and a resin coating over the hermetically sealing material.
A method is disclosed for making a multilayer electronic device. The method includes placing a screen printing mask on a layer of support material and printing a conductive pattern on a layer of support material using the screen printing mask. The conductive pattern includes a plurality of electrode shapes including respective central enlarged portions. The method includes cutting the layer of support material and conductive pattern along a plurality of cutting lines intersecting the central enlarged portions such that at least one of the plurality of electrode shapes is divided into a pair of electrodes along a cutting width. The cutting width is indicative of a cutting accuracy associated with at least one of the cutting lines.
A tunable multilayer capacitor array is provided. The tunable multilayer capacitor includes a plurality of tunable multilayer capacitors that are connected in parallel. The tunable multilayer capacitor has an initial capacitance value greater than about 0.1 microFarads at an operating voltage greater than about 10 volts. The tunable multilayer capacitor is configured to have a tunable capacitance by applying a DC bias voltage to the tunable multilayer capacitor array.
A method of forming an electronic part comprising a metal component is provided. The method includes obtaining an unverified mineral sample from a mine site, analyzing the unverified mineral sample via quantitative mineralogical analysis and comparing data collected during the quantitative mineralogical analysis for the sample to data in a database that corresponds to quantitative mineralogical analysis collected for verified mineral samples sourced from one or more mine sites from the conflict-free geographic region to determine if the unverified mineral sample is sourced from one or more mine sites from the conflict-free geographic region. If it is determined that the unverified mineral sample is sourced from one or more mine sites from the conflict-free geographic region, the method then involves converting the unverified sample into the metal component. The electronic part can be a capacitor, medical device, filter, inductor, active electrode, antenna, sensor, or battery.
G01N 21/71 - Systèmes dans lesquels le matériau analysé est excité de façon à ce qu'il émette de la lumière ou qu'il produise un changement de la longueur d'onde de la lumière incidente excité thermiquement
G01N 23/00 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou
89.
ELECTRICALLY INSULATING THERMAL CONNECTOR HAVING A LOW THERMAL RESISTIVITY
A thermal connector comprising an electrically insulating beam having a first end face at a first end and a second end face at a second end is provided. The second end face may be opposite the first end face in an X direction. The beam may have a width in a Y direction perpendicular to the X direction. The beam may also have a top face and a bottom face offset from the top face in a Z direction. The thermal connector may include a first terminal attached to the bottom face and adjacent the first end and a second terminal attached to the top face and adjacent the first end. The connector may have an overall thickness in the Z direction, which includes the first and second terminals and is greater than 1.27 mm and less than 3.81 mm.
An ultracapacitor that contains at least one electrochemical cell is provided. The cell includes a first electrode that contains a first carbonaceous coating (e.g., activated carbon particles) electrically coupled to a first current collector, a second electrode that contains a second carbonaceous coating (e.g., activated carbon particles) electrically coupled to a second current collector, an aqueous electrolyte in ionic contact with the first electrode and the second electrode and that contains a polyprotic acid (e.g., sulfuric acid), and a separator that is positioned between the first and second electrodes. Through selective control over the particular nature of the materials used to form the ultracapacitor, as well as the manner in which they are formed, a variety of beneficial properties may be achieved.
A supercapacitor module is provided. In some implementations, the supercapacitor module may include a first supercapacitor having a first parameter value for a capacitor parameter in a first test condition. The supercapacitor module may include a second supercapacitor having a second parameter value for the capacitor parameter in about the first test condition. A ratio of the second parameter value to the first parameter value may be from about 0.8 to about 1.2. The supercapacitor module may prevent overvoltages across the first and second supercapacitors, such that the supercapacitor module may satisfactorily operate without a balancing circuit.
A tunable multilayer capacitor is provided. The capacitor comprises a first active electrode in electrical contact with a first active termination and a second active electrode in electrical contact with a second active termination. The capacitor comprises a first DC bias electrode in electrical contact with a first DC bias termination and a second DC bias electrode in electrical contact with a second DC bias termination. A plurality of dielectric layers disposed between the first and second active electrodes and between the first and second bias electrodes. At least a portion of the dielectric layers contain a tunable dielectric material that exhibits a variable dielectric constant upon the application of an applied DC voltage across the first and second DC bias electrodes. A thickness of at least one of the plurality of dielectric layers is greater than about 15 micrometers.
H01G 7/06 - Condensateurs dont la capacité varie par des moyens non mécaniquesProcédés pour leur fabrication à diélectrique choisi pour sa variation de permittivité en fonction de la tension appliquée, c.-à-d. condensateurs ferro-électriques
Disclosed is a filter device comprising at least a shell, a first discoidal capacitor, a second discoidal capacitor, and an inductor. The shell is elongated in a stack direction. The first discoidal capacitor and the second discoidal capacitor are disposed within the shell, where the first discoidal capacitor is stacked above the second discoidal capacitor along the stack direction. The inductor comprises a first patterned conductive line disposed within the shell. The first patterned conductive line is coupled between the first discoidal capacitor and the second discoidal capacitor. The first patterned conductive line is wound in a winding direction traversing the stack direction.
This disclosure provides a method and apparatus for connecting and disconnecting a first wire to a second wire. More specifically, an apparatus that includes a first electrical contact, a second electrical contact, an insulated housing, and a male contact prong (i.e., a shunt) is disclosed. In an embodiment, the first and second electrical contacts conductively connect with a first and second wire, respectively, via an insulation displacement connector. Furthermore, the male contact prong conductively connects (i.e., shunts) the first and second electrical contacts together. A wire-to-wire contact with shunt allows for two wires to be quickly and efficiently connected and disconnected.
H01R 13/703 - Association structurelle avec des composants électriques incorporés avec interrupteur incorporé actionné par l'engagement ou le retrait des pièces de couplage
Systems and methods for introducing DC bias in a radio frequency (RF) signal communicated over a transmission line are provided. In one example implementation, the RF system can include a transmission line having a first port and a second port. The transmission line can be configured to communicate an RF signal between a first port and a second port. One or more DC bias resistors can be coupled to the transmission line at a location between the first port and the second port. Each DC bias resistor can provide a path for injecting DC current to the transmission line to provide DC bias for the RF signal. Each DC bias resistor can be coupled to the transmission line via a point connection.
This disclosure provides a method and apparatus for connecting and disconnecting a first wire to a second wire. More specifically, an apparatus that includes a first electrical contact, a second electrical contact, an insulated housing, and a male contact prong (i.e., a shunt) is disclosed. In an embodiment, the first and second electrical contacts conductively connect with a first and second wire, respectively, via an insulation displacement connector. Furthermore, the male contact prong conductively connects (i.e., shunts) the first and second electrical contacts together. A wire-to-wire contact with shunt allows for two wires to be quickly and efficiently connected and disconnected.
H01R 13/703 - Association structurelle avec des composants électriques incorporés avec interrupteur incorporé actionné par l'engagement ou le retrait des pièces de couplage
97.
BALANCING CIRCUIT FOR AN ELECTRICAL ENERGY STORAGE DEVICE
Balancing circuits for an ultracapacitor module are provided. In some implementations, the balancing circuit can include a regulator having an input. The regulator can be configured to compare an input voltage associated with the ultracapacitor received at the input to a reference voltage and to provide an output via an output node. The balancing circuit can further include a switching circuit coupled to the regulator. The switching circuit can be configured to discharge the ultracapacitor based at least in part on the output of the regulator. The switching circuit can include at least one semiconductor switching element operated in a hard switching manner during operation of the switching element.
This disclosure provides for an apparatus for connecting a first printed circuit board to a second printed circuit board. More specifically, an apparatus that includes a first receptacle assembly, a second receptacle assembly, and a contact bridge is disclosed. In an embodiment, the contact bridge conductively connects with the first receptacle assembly and the second receptacle assembly. In an embodiment, the contact bridge is disposed between sets of contact beams of the first and second receptacle assemblies.
H01R 12/72 - Dispositifs de couplage pour circuits imprimés rigides ou structures similaires se couplant avec la bordure des circuits imprimés rigides ou des structures similaires
H01R 12/73 - Dispositifs de couplage pour circuits imprimés rigides ou structures similaires se couplant avec la bordure des circuits imprimés rigides ou des structures similaires se raccordant à d'autres circuits imprimés rigides ou à des structures similaires
H05K 1/11 - Éléments imprimés pour réaliser des connexions électriques avec ou entre des circuits imprimés
99.
SOLID ELECTROLYTIC CAPACITOR CONTAINING A NANOCOATING
A capacitor that comprises a solid electrolytic capacitor element, a casing material that encapsulates the capacitor element, an anode termination, and a cathode termination is provided. A nanocoating is disposed on at least a portion of the capacitor element, casing material, anode termination, cathode termination, or a combination thereof. The nanocoating has an average thickness of about 2,000 nanometers or less and contains a vapor-deposited polymer.
H01G 9/042 - Électrodes caractérisées par le matériau
H01G 9/00 - Condensateurs électrolytiques, redresseurs électrolytiques, détecteurs électrolytiques, dispositifs de commutation électrolytiques, dispositifs électrolytiques photosensibles ou sensibles à la températureProcédés pour leur fabrication
A capacitor assembly that comprises a solid electrolytic capacitor element is provided. The capacitor assembly also comprises a casing material that encapsulates the capacitor element, an anode termination that is in electrical connection with the anode body and contains a portion that is positioned external to the casing material, and a cathode termination that is in electrical connection with the solid electrolyte and contains a portion that is positioned external to the casing material. A first hydrophobic coating is disposed in contact with the casing material and the external portion of the anode termination and a second hydrophobic coating is disposed in contact with the casing material and the external portion of the cathode termination.