The embodiments described herein describe technologies for non-volatile memory persistence in a multi-tiered memory system including two or more memory technologies for volatile memory and non-volatile memory.
G06F 11/14 - Détection ou correction d'erreur dans les données par redondance dans les opérations, p.ex. en utilisant différentes séquences d'opérations aboutissant au même résultat
G06F 3/06 - Entrée numérique à partir de, ou sortie numérique vers des supports d'enregistrement
G11C 7/20 - Circuits d'initialisation de cellules de mémoire, p.ex. à la mise sous ou hors tension, effacement de mémoire, mémoire d'image latente
G11C 14/00 - Mémoires numériques caractérisées par des dispositions de cellules ayant des propriétés de mémoire volatile et non volatile pour sauvegarder l'information en cas de défaillance de l'alimentation
Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.
G06F 3/06 - Entrée numérique à partir de, ou sortie numérique vers des supports d'enregistrement
G06F 11/00 - Détection d'erreurs; Correction d'erreurs; Contrôle de fonctionnement
G06F 11/14 - Détection ou correction d'erreur dans les données par redondance dans les opérations, p.ex. en utilisant différentes séquences d'opérations aboutissant au même résultat
G06F 12/0802 - Adressage d’un niveau de mémoire dans lequel l’accès aux données ou aux blocs de données désirés nécessite des moyens d’adressage associatif, p.ex. mémoires cache
G06F 12/14 - Protection contre l'utilisation non autorisée de mémoire
G06F 13/16 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus de mémoire
G11C 5/04 - Supports pour éléments d'emmagasinage; Montage ou fixation d'éléments d'emmagasinage sur de tels supports
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
G11C 11/00 - Mémoires numériques caractérisées par l'utilisation d'éléments d'emmagasinage électriques ou magnétiques particuliers; Eléments d'emmagasinage correspondants
G11C 14/00 - Mémoires numériques caractérisées par des dispositions de cellules ayant des propriétés de mémoire volatile et non volatile pour sauvegarder l'information en cas de défaillance de l'alimentation
3.
INTERFACE FOR MEMORY READOUT FROM A MEMORY COMPONENT IN THE EVENT OF FAULT
Memory controllers, devices, modules, systems and associated methods are disclosed. In one embodiment, an integrated circuit (IC) memory component is disclosed that includes a memory core, a primary interface, and a secondary interface. The primary interface includes data input/output (I/O) circuitry and control/address (C/A) input circuitry, and accesses the memory core during a normal mode of operation. The secondary interface accesses the memory core during a fault mode of operation.
G06F 13/16 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus de mémoire
G06F 11/07 - Réaction à l'apparition d'un défaut, p.ex. tolérance de certains défauts
G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p.ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p.ex. contrôle de parité, exclusion des 9 ou des 11
G06F 11/16 - Détection ou correction d'erreur dans une donnée par redondance dans le matériel
G06F 11/20 - Détection ou correction d'erreur dans une donnée par redondance dans le matériel en utilisant un masquage actif du défaut, p.ex. en déconnectant les éléments défaillants ou en insérant des éléments de rechange
Technologies for converting serial data stream to a parallel data and strobe scheme with data strobe preamble information in the serial data stream are described. A device includes an interface circuit that receives a serial data stream and converts the serial data stream to parallel data and a data strobe (DQS) signal associated with the parallel data using N-bit header fields inserted into the serial data stream. The N-bit header fields specify DQS preamble information for the parallel data.
Disclosed is a dynamic random access memory that has columns, data rows, tag rows and comparators. Each comparator compares address bits and tag information bits from the tag rows to determine a cache hit and generate address bits to access data information in the DRAM as a multiway set associative cache.
G06F 12/0864 - Adressage d’un niveau de mémoire dans lequel l’accès aux données ou aux blocs de données désirés nécessite des moyens d’adressage associatif, p.ex. mémoires cache utilisant des moyens pseudo-associatifs, p.ex. associatifs d’ensemble ou de hachage
6.
SECURE ASSET MANAGEMENT INFRASTRUCTURE FOR ENFORCING ACCESS CONTROL POLICIES
An application executing at a first platform receives, from a tester device, a first request to generate a secure data asset. Responsive to authenticating the client, the application sends, to a second platform, a second request to determine whether the client has access to the secure data asset. Responsive to receiving an indication, from the second platform, that the client has access to the secure data asset, the application performs one or more operations to generate the secure data asset. The application sends, to the tester device, the generated secure data asset.
An integrated circuit (IC) memory device includes an array of storage cells configured into multiple regions. Monitoring circuitry is coupled to each of the multiple regions to detect and generate per-region operating parameter information. Refresh circuitry generates per-region refresh information for the multiple regions based on the per-region operating parameter information.
A system receives, from a first provisioning entity, a request for first secure device data related to a semiconductor device. The first secure device data is associated with one or more provisioning operations performed, on the semiconductor device, by a second provisioning entity. Based on determining that the first provisioning entity has permission to access the first secure device data, the first secure device data is provided to the first provisioning entity. Second secure device data associated with one or more provisioning operations performed by the first provisioning entity on the semiconductor device is received from the first provisioning entity.
Technologies for storing burst error information in a buffer structure and signaling to prevent overflow and over-writing the buffer structure are described. One controller device includes error detection logic, a buffer, and buffer control logic. The error detection logic detects an error in a read operation associated with a memory device coupled to the controller device. The buffer stores error information associated with the error. The buffer control logic generates and outputs a first signal responsive to the buffer being full.
G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p.ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p.ex. contrôle de parité, exclusion des 9 ou des 11
G06F 11/14 - Détection ou correction d'erreur dans les données par redondance dans les opérations, p.ex. en utilisant différentes séquences d'opérations aboutissant au même résultat
A first-in-first-out (FIFO) storage structure within an integrated-circuit component is loaded with qualification values corresponding to respective pairs of edges expected within a timing strobe signal transmitted to the integrated-circuit component. The qualification values are sequentially output from the FIFO storage structure during respective cycles of the timing strobe signal and a gate signal is either asserted or deasserted during the respective cycles of the timing strobe signal according to the qualification values output from the FIFO storage structure.
G11C 7/22 - Circuits de synchronisation ou d'horloge pour la lecture-écriture [R-W]; Générateurs ou gestion de signaux de commande pour la lecture-écriture [R-W]
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
A buffer circuit is disclosed. The buffer circuit includes a command address (C/A) interface to receive an incoming activate (ACT) command and an incoming column address strobe (CAS) command. A first match circuit includes first storage to store failure row address information associated with the memory, and first compare logic. The first compare logic is responsive to the ACT command, to compare incoming row address information to the stored failure row address information. A second match circuit includes second storage to store failure column address information associated with the memory, and second compare logic. The second compare logic is responsive to the CAS command, to compare the incoming column address information to the stored failure column address information. Gating logic maintains a state of a matching row address identified by the first compare logic during the comparison carried out by the second compare logic.
G11C 29/44 - Indication ou identification d'erreurs, p.ex. pour la réparation
G11C 5/04 - Supports pour éléments d'emmagasinage; Montage ou fixation d'éléments d'emmagasinage sur de tels supports
G11C 11/401 - Mémoires numériques caractérisées par l'utilisation d'éléments d'emmagasinage électriques ou magnétiques particuliers; Eléments d'emmagasinage correspondants utilisant des éléments électriques utilisant des dispositifs à semi-conducteurs utilisant des transistors formant des cellules nécessitant un rafraîchissement ou une régénération de la charge, c. à d. cellules dynamiques
G11C 29/00 - Vérification du fonctionnement correct des mémoires; Test de mémoires lors d'opération en mode de veille ou hors-ligne
G11C 29/02 - Détection ou localisation de circuits auxiliaires défectueux, p.ex. compteurs de rafraîchissement défectueux
G11C 29/52 - Protection du contenu des mémoires; Détection d'erreurs dans le contenu des mémoires
12.
PROTECTION OF NEURAL NETWORKS BY OBFUSCATION OF ACTIVATION FUNCTIONS
Aspects of the present disclosure involve implementations that may be used to protect neural network models against adversarial attacks by obfuscating neural network operations and architecture. Obfuscation techniques include obfuscating weights and biases of neural network nodes, obfuscating activation functions used by neural networks, as well as obfuscating neural network architecture by introducing dummy operations, dummy nodes, and dummy layers into the neural networks.
G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
13.
PROTECTION OF HOMOMORPHIC ENCRYPTION COMPUTATIONS BY MASKING WITHOUT UNMASKING
Aspects and implementations are directed to systems and techniques for protecting cryptographic operations against side-channel attacks by masking a ciphertext data using one or more masks randomly sampled from a null space associated with a tensor representation of a secret data and generating a plaintext data using the masked ciphertext data.
H04L 9/00 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité
H04L 9/06 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité l'appareil de chiffrement utilisant des registres à décalage ou des mémoires pour le codage par blocs, p.ex. système DES
A memory system employs an addressing scheme to logically divide rows of memory cells into separate contiguous regions, one for data storage and another for error detection and correction (EDC) codes corresponding to that data. Data and corresponding EDC codes are stored in the same row of the same bank. Accessing data and corresponding EDC code in the same row of the same bank advantageously saves power and avoids bank conflicts. The addressing scheme partitions the memory without requiring the requesting processor to have an understanding of the memory partition.
G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p.ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p.ex. contrôle de parité, exclusion des 9 ou des 11
G06F 3/06 - Entrée numérique à partir de, ou sortie numérique vers des supports d'enregistrement
15.
RECONFIGURABLE PROCESSING UNITS FOR EFFICIENT SUPPORT OF MULTIPLE POST-QUANTUM CRYPTOGRAPHIC ALGORITHMS
Disclosed aspects and implementations are directed to devices and techniques for performing cryptographic operations using post-quantum algorithms. Reconfigurable processing devices supports multiple algorithms that deploy various integer and polynomial arithmetic operations including Number Theoretic Transforms, inverse Number Theoretic Transforms, pointwise polynomial multiplications, pairwise polynomial multiplications, pointwise-pairwise polynomial multiplications, Karatsuba multiplications, and/or other operations. The reconfigurable processing device(s) may be integrated into a streaming pipeline that includes a hash value generator and a sampler with matching throughputs for efficient utilization of computational and memory resources.
In a memory component having a command/address interface, timing interface and data interface, the command/address interface receives a first command/address value from a control component during a first interval and a second command/address value from the control component during a second interval. The timing interface receives a data strobe from the control component during the first interval and a data clock from the control component during the second interval, the data strobe departing from a parked voltage level to commence toggling at a time corresponding to reception of the first command/address value, and the data clock toggling throughout the second interval regardless of second command/address value reception-time. The data interface samples first write data corresponding to the first command/address value at times indicated by toggling of the data strobe, and samples second write data corresponding to the second command/address value at times indicated by toggling of the data clock.
G11C 7/22 - Circuits de synchronisation ou d'horloge pour la lecture-écriture [R-W]; Générateurs ou gestion de signaux de commande pour la lecture-écriture [R-W]
A memory is disclosed that includes a logic die having first and second memory interface circuits. A first memory die is stacked with the logic die, and includes first and second memory arrays. The first memory array couples to the first memory interface circuit. The second memory array couples to the second interface circuit. A second memory die is stacked with the logic die and the first memory die. The second memory die includes third and fourth memory arrays. The third memory array couples to the first memory interface circuit. The fourth memory array couples to the second memory interface circuit. Accesses to the first and third memory arrays are carried out independently from accesses to the second and fourth memory arrays.
G11C 11/4093 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. mémoires tampon de données
G11C 5/02 - Disposition d'éléments d'emmagasinage, p.ex. sous la forme d'une matrice
G11C 5/04 - Supports pour éléments d'emmagasinage; Montage ou fixation d'éléments d'emmagasinage sur de tels supports
G11C 11/406 - Organisation ou commande des cycles de rafraîchissement ou de régénération de la charge
G11C 11/4096 - Circuits de commande ou de gestion d'entrée/sortie [E/S, I/O] de données, p.ex. circuits pour la lecture ou l'écriture, circuits d'attaque d'entrée/sortie ou commutateurs de lignes de bits
H01L 23/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide
H01L 23/48 - Dispositions pour conduire le courant électrique vers le ou hors du corps à l'état solide pendant son fonctionnement, p.ex. fils de connexion ou bornes
H01L 25/065 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans le même sous-groupe des groupes , ou dans une seule sous-classe de , , p.ex. ensembles de diodes redresseuses les dispositifs n'ayant pas de conteneurs séparés les dispositifs étant d'un type prévu dans le groupe
H01L 25/10 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans le même sous-groupe des groupes , ou dans une seule sous-classe de , , p.ex. ensembles de diodes redresseuses les dispositifs ayant des conteneurs séparés
H01L 25/18 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant de types prévus dans plusieurs sous-groupes différents du même groupe principal des groupes , ou dans une seule sous-classe de ,
The timing of the synchronous interface is controlled by a clock signal driven by a controller. The clock is toggled in order to send a command to a memory device via the interface. If there are no additional commands to be sent via the interface, the controller suspends the clock signal. When the memory device is ready, the memory device drives a signal back to the controller. The timing of this signal is not dependent upon the clock signal. Receipt of this signal by the controller indicates that the memory device is ready and the clock signal should be resumed so that a status of the command can be returned via the interface, or another command issued via the interface.
G06F 13/42 - Protocole de transfert pour bus, p.ex. liaison; Synchronisation
G06F 1/3206 - Surveillance d’événements, de dispositifs ou de paramètres initiant un changement de mode d’alimentation
G06F 1/3234 - Gestion de l’alimentation, c. à d. passage en mode d’économie d’énergie amorcé par événements Économie d’énergie caractérisée par l'action entreprise
G06F 1/3237 - Gestion de l’alimentation, c. à d. passage en mode d’économie d’énergie amorcé par événements Économie d’énergie caractérisée par l'action entreprise par désactivation de la génération ou de la distribution du signal d’horloge
19.
MEMORY CONTROLLER WITH TRANSACTION-QUEUE-DEPENDENT POWER MODES
A memory controller component of a memory system stores memory access requests within a transaction queue until serviced so that, over time, the transaction queue alternates between occupied and empty states. The memory controller transitions the memory system to a low power mode in response to detecting the transaction queue is has remained in the empty state for a predetermined time. In the transition to the low power mode, the memory controller disables oscillation of one or more timing signals required to time data signaling operations within synchronous communication circuits of one or more attached memory devices and also disables one or more power consuming circuits within the synchronous communication circuits of the one or more memory devices.
G06F 1/3237 - Gestion de l’alimentation, c. à d. passage en mode d’économie d’énergie amorcé par événements Économie d’énergie caractérisée par l'action entreprise par désactivation de la génération ou de la distribution du signal d’horloge
G06F 1/12 - Synchronisation des différents signaux d'horloge
G06F 1/3225 - Surveillance de dispositifs périphériques de mémoires
G06F 1/324 - Gestion de l’alimentation, c. à d. passage en mode d’économie d’énergie amorcé par événements Économie d’énergie caractérisée par l'action entreprise par réduction de la fréquence d’horloge
G06F 3/06 - Entrée numérique à partir de, ou sortie numérique vers des supports d'enregistrement
G06F 12/0855 - Accès de mémoire cache en chevauchement, p.ex. pipeline
G06F 13/16 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus de mémoire
G06F 13/36 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus ou au système à bus communs
G11C 7/04 - Dispositions pour écrire une information ou pour lire une information dans une mémoire numérique avec des moyens d'éviter les effets perturbateurs thermiques
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
G11C 7/22 - Circuits de synchronisation ou d'horloge pour la lecture-écriture [R-W]; Générateurs ou gestion de signaux de commande pour la lecture-écriture [R-W]
G11C 11/4096 - Circuits de commande ou de gestion d'entrée/sortie [E/S, I/O] de données, p.ex. circuits pour la lecture ou l'écriture, circuits d'attaque d'entrée/sortie ou commutateurs de lignes de bits
An integrated circuit memory device is disclosed. The memory device includes an array of storage cells configured into multiple banks. Each bank includes multiple segments. Register storage stores per-segment values representing per-segment refresh parameters. Refresh logic refreshes each segment in accordance with the corresponding per-segment value.
A compute system includes an execution unit (e.g. of a CPU) with a memory controller providing access to a hybrid physical memory. The physical memory is “hybrid” in that it combines a cache of relatively fast, durable, and expensive memory (e.g. DRAM) with a larger amount of relatively slow, wear-sensitive, and inexpensive memory (e.g. flash). A hybrid controller component services memory commands from the memory controller component and additionally manages cache fetch and evict operations that keep the cache populated with instructions and data that have a high degree of locality of reference. The memory controller alerts the hybrid controller of available access slots to the cache so that the hybrid controller can use the available access slots for cache fetch and evict operations with minimal interference to the memory controller.
A memory controller interfaces with one or more memory devices having configurable width data buses and configurable connectivity between data pins of the memory devices and data pins of the memory controller. Upon initialization of the memory devices, the memory controller automatically discovers the connectivity configuration of the one or more memory devices, including both individually selected and jointly selected devices. After discovering connectivity of the connected devices, the memory controller configures the memory devices according to the discovered connectivity and assigns unique addresses to jointly selected devices.
G06F 13/16 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus de mémoire
G06F 12/02 - Adressage ou affectation; Réadressage
G06F 12/06 - Adressage d'un bloc physique de transfert, p.ex. par adresse de base, adressage de modules, extension de l'espace d'adresse, spécialisation de mémoire
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
G11C 7/20 - Circuits d'initialisation de cellules de mémoire, p.ex. à la mise sous ou hors tension, effacement de mémoire, mémoire d'image latente
G11C 7/22 - Circuits de synchronisation ou d'horloge pour la lecture-écriture [R-W]; Générateurs ou gestion de signaux de commande pour la lecture-écriture [R-W]
A dynamic random access memory (DRAM) device includes functions configured to aid with operating the DRAM device as part of data caching functions. The DRAM is configured to respond to at least two types of commands. A first type of command (cache data access command) seeks to access a cache line of data, if present in the DRAM cache. A second type of command (cache probe command) seeks to determine whether a cache line of data is present, but is not requesting the data be returned in response. In response to these types of access commands, the DRAM device is configured to receive cache tag query values and to compare stored cache tag values with the cache tag query values. A hit/miss (HM) interface/bus may indicate the result of the cache tag compare and stored cache line status bits to a controller.
G06F 12/0895 - Mémoires cache caractérisées par leur organisation ou leur structure de parties de mémoires cache, p.ex. répertoire ou matrice d’étiquettes
G06F 12/084 - Systèmes de mémoire cache multi-utilisateurs, multiprocesseurs ou multitraitement avec mémoire cache partagée
G06F 13/16 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus de mémoire
A DRAM device may be configured to retransmit or not retransmit zero or more of command/address signals, write data signals, read data signals, and/or data strobe signals. The DRAM device may have separate, unidirectional read data signal and write data signal interfaces. Combined activate and read or write commands may be implemented. The configuration of the DRAM to retransmit or not retransmit signals may be determined by the DRAM device's physical location on a module via hardwired configuration pins. The various configurations allows a DRAM device to be used on both a long and narrow form factor module and a DIMM module.
G11C 11/4096 - Circuits de commande ou de gestion d'entrée/sortie [E/S, I/O] de données, p.ex. circuits pour la lecture ou l'écriture, circuits d'attaque d'entrée/sortie ou commutateurs de lignes de bits
An integrated circuit device is disclosed including core circuitry and interface circuitry. The core circuitry outputs in parallel a set of data bits, while the interface circuitry couples to the core circuitry. The interface circuitry receives in parallel a first number of data bits among the set of data bits from the core circuitry and outputs in parallel a second number of data bits. The ratio of the first number to the second number is a non-power-of-2 value.
A memory module supports multiple memory channel modes, each including a double-date-rate (DDR) data channel supported by an independent command-and-address (CA) channel. In a two-channel mode, the memory module supports two DDR data channels using two respective DDR CA channels. Each CA channel includes a corresponding set of CA links. In a four-channel mode, the memory module supports two pairs of DDR data channels, each pair supported by a pair of independent CA channels. Memory commands issued in the four-channel mode are time interleaved to share one of the sets of CA links.
A stacked memory device comprises a stack of dies including respective core memories. An interface die in the stack includes interface circuitry for interfacing between a data bus coupled to a memory controller and the respective core memories of the stack of dies. The interface circuitry may implement decoding of data received from the data bus for the respective core memories and encoding of data sent to the data bus from the respective core memories. The respective core memories of the stacked memory device may be arranged in two or more ranks. A memory module includes a set of stacked memory devices. The stacked memory devices may be arranged in various configurations having varying numbers of channels, ranks, and data widths.
A power-management integrated circuit (PMIC) is installed on a memory module to optimize power use among a collection of memory devices. The PMIC includes external power-supply nodes that receive relatively high and low supply voltages. Depending on availability, the PMIC uses one or both of these supply voltages to generate a managed supply voltage for powering the memory devices. The PMIC selects between operational modes for improved efficiency in dependence upon the availability of one or both externally provided supply voltages.
G11C 11/4074 - Circuits d'alimentation ou de génération de tension, p.ex. générateurs de tension de polarisation, générateurs de tension de substrat, alimentation de secours, circuits de commande d'alimentation
Control logic within a memory control component outputs first and second memory read commands to a memory module at respective times, the memory module having memory components disposed thereon. Interface circuitry within the memory control component receives first read data concurrently from a first plurality of the memory components via a first plurality of data paths, respectively, in response to the first memory read command, and receives second read data concurrently from a second plurality of the memory components via a second plurality of data paths, respectively, in response to the second memory read command, the first plurality of the memory components including at least one memory component not included in the second plurality of the memory components and vice-versa.
G11C 16/06 - Circuits auxiliaires, p.ex. pour l'écriture dans la mémoire
G11C 7/04 - Dispositions pour écrire une information ou pour lire une information dans une mémoire numérique avec des moyens d'éviter les effets perturbateurs thermiques
G11C 13/00 - Mémoires numériques caractérisées par l'utilisation d'éléments d'emmagasinage non couverts par les groupes , ou
G11C 16/26 - Circuits de détection ou de lecture; Circuits de sortie de données
H01L 21/324 - Traitement thermique pour modifier les propriétés des corps semi-conducteurs, p.ex. recuit, frittage
A memory controller integrated circuit includes a clock signal generator circuit configured to generate a plurality of strobe signals. The memory controller integrated circuit further includes a memory interface circuit coupled to the clock signal generator circuit, the memory interface circuit configured to transmit the plurality of strobe signals to a memory module, wherein each of the plurality of strobe signals is offset with respect to an adjacent strobe signal, and transmit a plurality of data signals to the memory module, wherein a first subset of the plurality of data signals comprises a first nibble and is phase aligned with a first strobe signal of the plurality of strobe signals, and wherein a second subset of the plurality of data signals comprises a second nibble and is phase aligned with a second strobe signal of the plurality of strobe signals.
G06F 3/06 - Entrée numérique à partir de, ou sortie numérique vers des supports d'enregistrement
G11C 7/22 - Circuits de synchronisation ou d'horloge pour la lecture-écriture [R-W]; Générateurs ou gestion de signaux de commande pour la lecture-écriture [R-W]
31.
FUNCTIONS WITH A PRE-CHARGE OPERATION AND AN EVALUATION OPERATION
An input data may be received. A portion of a cryptographic operation may be performed with the received input data at a first function component. During the performance of the cryptographic operation at the first function component, a pre-charge operation may be performed at a second function component. Furthermore, the second function component may be used to perform another portion of the cryptographic operation with a result of the portion of the cryptographic operation performed at the first function component.
H04L 9/06 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité l'appareil de chiffrement utilisant des registres à décalage ou des mémoires pour le codage par blocs, p.ex. système DES
H04L 9/00 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité
32.
CONCURRENT FORWARD ERROR CORRECTION (FEC) AND CYCLIC REDUNDANCY CHECK (CRC)
A device includes a receiver coupled with a link and including control logic, the control logic to receive data bits corresponding to a first set of data. The control logic may also perform a forward error correction (FEC) operation on the data bits to generate an error location responsive to receiving the data bits. The control logic may also perform a cyclic redundancy check (CRC) operation on the data bits to generate a first CRC value, wherein the CRC operation and FEC operation are performed concurrently. The control logic may determine a second CRC value after performing the FEC operation, the second CRC value based on the error location and generate a third CRC value corresponding to the first set of data responsive to performing the CRC operation and determining the second CRC value.
A memory system includes a memory controller in communication with a memory device via a communication links and a memory interface that can be retrained without interrupting memory access. In a normal operating mode, the entire interface is available to the controller in service of access (read and write) requests. When retraining is required, the memory controller commands the memory device to enter a training mode that divides the interface functionally into two parts that operate concurrently, one that is retrained and another that services normal access requests. The training mode offers a reduced data rate, relative to the normal mode, but also reduced latency relative to interrupting data traffic altogether for training.
Space in a memory is allocated based on the highest used precision. When the maximum used precision is not being used, the bits required for that particular precision level (e.g., floating point format) are transferred between the processor and the memory while the rest are not. A given floating point number is distributed over non-contiguous addresses. Each portion of the given floating point number is located at the same offset within the access units, groups, and/or memory arrays. This allows a sequencer in the memory device to successively access a precision dependent number of access units, groups, and/or memory arrays without receiving additional requests over the memory channel.
G06F 13/16 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus de mémoire
G06F 7/483 - Calculs avec des nombres représentés par une combinaison non linéaire de nombres codés, p.ex. nombres rationnels, système de numération logarithmique ou nombres à virgule flottante
35.
LOW LATENCY METADATA DECRYPTION USING HASH AND PSEUDORANDOM FUNCTIONS
Systems and techniques for cryptographically protecting data in a computer memory are disclosed. The techniques include dividing the data into a first portion and a second portion, encrypting the first portion of the data to create a first stored form of the data, encrypting the second portion of the data, and storing, in the computer memory, the first stored form of the data and a second stored form of the data. The techniques include, to encrypt the second portion, calculating a hash based on the first stored form of the data, applying a first pseudorandom function to the hash to obtain a bit sequence, and combining the bit sequence with the second portion of the data to obtain the second stored form of the data.
H04L 9/06 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité l'appareil de chiffrement utilisant des registres à décalage ou des mémoires pour le codage par blocs, p.ex. système DES
A random access memory device includes memory cells in each row for storing metadata related to accesses to that row. These metadata dedicated memory cells may store counter values that may be updated (e.g., incremented or decremented) when certain events occur (e.g., activate row—ACT, column read—CAS, error detected, etc.). Which events cause an update of the metadata stored in a row, and under what conditions related to the metadata/count value (e.g., threshold, match, threshold value, etc.) cause further action to be taken (e.g., alert controller, set mode register, etc.) are configurable by a controller. Additional functions related to the metadata/counters are also configurable such as scanning counter values to determine the row address with highest or lowest value and pattern matching (e.g., process identification match/mismatch).
G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p.ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p.ex. contrôle de parité, exclusion des 9 ou des 11
37.
MULTI-LANE CRYPTOGRAPHIC ENGINES WITH SYSTOLIC ARCHITECTURE AND OPERATIONS THEREOF
Aspects of the present disclosure involve a cryptographic processor that includes a systolic array having a plurality of processing lanes (PLs), each PL including a systolic sub-array of two or more processing elements (PEs), each PE being configured to multiply two numbers to obtain and store a multiplication product. The cryptographic processor is configured to efficiently perform a variety of operations, including multiplication of large numbers, modular reduction, Montgomery reduction, and the like.
G06F 7/544 - Méthodes ou dispositions pour effectuer des calculs en utilisant exclusivement une représentation numérique codée, p.ex. en utilisant une représentation binaire, ternaire, décimale utilisant des dispositifs non spécifiés pour l'évaluation de fonctions par calcul
G06F 5/06 - Procédés ou dispositions pour la conversion de données, sans modification de l'ordre ou du contenu des données maniées pour modifier la vitesse de débit des données, c. à d. régularisation de la vitesse
G06F 7/72 - Méthodes ou dispositions pour effectuer des calculs en utilisant une représentation numérique non codée, c. à d. une représentation de nombres sans base; Dispositifs de calcul utilisant une combinaison de représentations de nombres codées et non codées utilisant l'arithmétique des résidus
An integrated circuit includes a delay circuit and first and second interface circuits. The delay circuit delays a first timing signal by an internal delay to generate an internal timing signal. The first interface circuit communicates data to an external device in response to the internal timing signal. The second interface circuit transmits an external timing signal for capturing the data in the external device. An external delay is added to the external timing signal in the external device to generate a delayed external timing signal. The delay circuit sets the internal delay based on a comparison between the delayed external timing signal and a calibration signal transmitted by the first interface circuit.
H03K 5/13 - Dispositions ayant une sortie unique et transformant les signaux d'entrée en impulsions délivrées à des intervalles de temps désirés
G06F 13/00 - Interconnexion ou transfert d'information ou d'autres signaux entre mémoires, dispositifs d'entrée/sortie ou unités de traitement
G06F 13/16 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus de mémoire
G06F 13/42 - Protocole de transfert pour bus, p.ex. liaison; Synchronisation
G11C 7/04 - Dispositions pour écrire une information ou pour lire une information dans une mémoire numérique avec des moyens d'éviter les effets perturbateurs thermiques
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
G11C 7/22 - Circuits de synchronisation ou d'horloge pour la lecture-écriture [R-W]; Générateurs ou gestion de signaux de commande pour la lecture-écriture [R-W]
G11C 29/02 - Détection ou localisation de circuits auxiliaires défectueux, p.ex. compteurs de rafraîchissement défectueux
A sense amplifier for a memory device includes a primary latch and a holding latch that are independently controllable. The primary latch comprises a first set of transistors and the holding latch includes a second set of transistors having higher threshold voltages than the first set of transistors. In conjunction with a memory access operation, the primary latch and the holding latch sense and amplify a differential voltage of a pair of bitlines. A connectivity control circuit controls connectivity of the primary latch in different operational modes including pre-charge, offset pre-compensation, and amplification. In an active idle mode in between memory access operations while the wordline may remain active, the connectivity control circuit may turn off the primary latch while the holding latch holds the differential voltage on the bitlines to avoid leakage current through the primary latch.
G11C 11/4091 - Amplificateurs de lecture ou de lecture/rafraîchissement, ou circuits de lecture associés, p.ex. pour la précharge, la compensation ou l'isolation des lignes de bits couplées
G11C 7/06 - Amplificateurs de lecture; Circuits associés
Multiple (e.g., four) memory devices on a module are connected to a common pair of differential data strobe signal conductors. The common pair of differential data strobe conductors are also coupled to a memory controller to time the transmission of data to the multiple memory devices and to time the reception of data from the memory devices. The controller calibrates two or more different data transmission delays relative to its transmission of a write data strobe signal on the common pair of differential data strobe conductors. The controller also calibrates to account for two or more different data reception delays (skew) relative to its reception of a read data strobe signal on the common pair of differential data strobe conductors.
A memory device includes an array of storage cells. Each storage cell is coupled to one of multiple bitlines and one of multiple wordlines. Reference cell circuitry includes reference cells, with each reference cell being coupled to a separate one of the multiple bitlines. For a given storage cell activated during a read operation by a given wordline and bitline, a corresponding reference cell is coupled to the given bitline and cooperates with the given storage cell to form a voltage divider circuit having a sense node. Sense amplifier circuitry, during the read operation, senses a stored state of the given storage cell based on a voltage developed by the voltage divider circuit at the sense node.
H10B 12/00 - Mémoires dynamiques à accès aléatoire [DRAM]
G11C 7/06 - Amplificateurs de lecture; Circuits associés
G11C 7/14 - Gestion de cellules factices; Générateurs de tension de référence de lecture
G11C 11/401 - Mémoires numériques caractérisées par l'utilisation d'éléments d'emmagasinage électriques ou magnétiques particuliers; Eléments d'emmagasinage correspondants utilisant des éléments électriques utilisant des dispositifs à semi-conducteurs utilisant des transistors formant des cellules nécessitant un rafraîchissement ou une régénération de la charge, c. à d. cellules dynamiques
42.
PROVISIONING A VOLATILE SECURITY CONTEXT IN A ROOT OF TRUST
A first device receives, from a second device, a request to provision a security context for the second device. The first device transmits a nonce value to the second device and receives, from the second device, a data structure encoding the security context and a cryptographically signed digest of a combination of the data structure, the nonce value, and a public key. The first device determines a first digest using the nonce value and cryptographically signed digest, and a second digest using the data structure, the nonce value, and the public key. Responsive to determining that the first digest matches the second digest, the first device provisions the security context for the second device by storing the security context on the volatile memory.
H04L 9/32 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité comprenant des moyens pour vérifier l'identité ou l'autorisation d'un utilisateur du système
A memory system in which a timing drift that would occur in distribution of a first timing signal for data transport in a memory device is determined by measuring the actual phase delays occurring in a second timing signal that has a frequency lower than that of the first timing signal and is distributed in one or more circuits mimicking the drift characteristics of at least a portion of distribution of the first timing signal. The actual phase delays are determined in the memory device and provided to a memory controller so that the phases of the timing signals used for data transport may be adjusted based on the determined timing drift.
G06F 13/16 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus de mémoire
H03L 7/07 - Commande automatique de fréquence ou de phase; Synchronisation utilisant un signal de référence qui est appliqué à une boucle verrouillée en fréquence ou en phase utilisant plusieurs boucles, p.ex. pour la génération d'un signal d'horloge redondant
H03L 7/081 - Commande automatique de fréquence ou de phase; Synchronisation utilisant un signal de référence qui est appliqué à une boucle verrouillée en fréquence ou en phase - Détails de la boucle verrouillée en phase avec un déphaseur commandé additionnel
H03L 7/099 - Commande automatique de fréquence ou de phase; Synchronisation utilisant un signal de référence qui est appliqué à une boucle verrouillée en fréquence ou en phase - Détails de la boucle verrouillée en phase concernant principalement l'oscillateur commandé de la boucle
H04L 7/00 - Dispositions pour synchroniser le récepteur avec l'émetteur
H04L 7/10 - Dispositions pour synchronisation initiale
Memory devices and a memory controller that controls such memory devices. Multiple memory devices receive commands and addresses on a command/address (C/A) bus that is relayed point-to-point by each memory device. Data is received and sent from these devices to/from a memory controller in a point-to-point configuration by adjusting the width of each individual data bus coupled between the individual memory devices and the memory controller. Along with the C/A bus are clock signals that are regenerated by each memory device and relayed. The memory controller and memory devices may be packaged on a single substrate using package-on-package technology. Using package-on-package technology allows the relayed C/A signals to connect from memory device to memory device using wire bonding. Wirebond connections provide a short, high-performance signaling environment for the chip-to-chip relaying of the C/A signals and clocks from one memory device to the next in the daisy-chain.
G06F 3/06 - Entrée numérique à partir de, ou sortie numérique vers des supports d'enregistrement
G06F 12/06 - Adressage d'un bloc physique de transfert, p.ex. par adresse de base, adressage de modules, extension de l'espace d'adresse, spécialisation de mémoire
G06F 13/16 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus de mémoire
Disclosed systems and techniques include a cryptographic processor for processing of both unprotected data and protected data using an unprotected data path. In one implementation, the cryptographic processor includes a processing unit, and a control unit to selectively cause the processing unit to operate in a public mode or a secure mode. In the public mode, the processing unit performs a computational operation to compute a nonlinear function of a public data. In the secure mode, the processing unit computes, over a plurality of iterations, a plurality of shares of the nonlinear function of a secure data. At each iteration, the processing unit performs multiple instances of the computational operation to compute a respective share of the nonlinear function of the secure data.
H04L 9/06 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité l'appareil de chiffrement utilisant des registres à décalage ou des mémoires pour le codage par blocs, p.ex. système DES
A memory component and a controller communicate commands and data with each other The commands to activate and then access data, and the data itself, are all communicated between a controller and the memory component at different times. The controller and memory component each calculate a respective error detecting code (EDC) values on the activate command information (e.g., bank address and row address) and store them indexed by the bank address. When the memory component is accessed, retrieved EDC values are combined with EDC values calculated from the access command information, and the data itself. The memory component transmits its combined EDC value to the controller for checking.
G11C 29/42 - Dispositifs de vérification de réponse utilisant des codes correcteurs d'erreurs [ECC] ou un contrôle de parité
G11C 8/18 - Circuits de synchronisation ou d'horloge; Génération ou gestion de signaux de commande d'adresse, p.ex. pour des signaux d'échantillonnage d'adresse de ligne [RAS] ou d'échantillonnage d'adresse de colonne [CAS]
G11C 29/18 - Dispositifs pour la génération d'adresses; Dispositifs pour l'accès aux mémoires, p.ex. détails de circuits d'adressage
G11C 29/44 - Indication ou identification d'erreurs, p.ex. pour la réparation
47.
ENERGY EFFICIENT STORAGE OF ERROR-CORRECTION-DETECTION INFORMATION
Data and error correction information may involve accessing multiple data channels (e.g., 8) and one error detection and correction channel concurrently. This technique requires a total of N+1 row requests for each access, where N is the number of data channels (e.g., 8 data row accesses and 1 error detection and correction row access equals 9 row accesses.) A single (or at least less than N) data channel row may be accessed concurrently with a single error detection and correction row. This reduces the number of row requests to two (2)—one for the data and one for the error detection and correction information. Because, row requests consume power, reducing the number of row requests is more power efficient.
G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p.ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p.ex. contrôle de parité, exclusion des 9 ou des 11
G06F 3/06 - Entrée numérique à partir de, ou sortie numérique vers des supports d'enregistrement
48.
Multi-Modal Refresh of Dynamic, Random-Access Memory
A memory system includes two or more memory controllers capable of accessing the same dynamic, random-access memory (DRAM), one controller having access to the DRAM or a subset of the DRAM at a time. Different subsets of the DRAM are supported with different refresh-control circuitry, including respective refresh-address counters. Whichever controller has access to a given subset of the DRAM issues refresh requests to the corresponding refresh-address counter. Counters are synchronized before control of a given subset of the DRAM is transferred between controllers to avoid a loss of stored data.
A semiconductor memory system includes a first semiconductor memory die and a second semiconductor memory die. The first semiconductor memory die includes a primary data interface to receive an input data stream during write operations and to deserialize the input data stream into a first plurality of data streams, and also includes a secondary data interface, coupled to the primary data interface, to transmit the first plurality of data streams. The second semiconductor memory die includes a secondary data interface, coupled to the secondary data interface of the first semiconductor memory die, to receive the first plurality of data streams.
G11C 5/02 - Disposition d'éléments d'emmagasinage, p.ex. sous la forme d'une matrice
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
G11C 7/22 - Circuits de synchronisation ou d'horloge pour la lecture-écriture [R-W]; Générateurs ou gestion de signaux de commande pour la lecture-écriture [R-W]
G11C 8/18 - Circuits de synchronisation ou d'horloge; Génération ou gestion de signaux de commande d'adresse, p.ex. pour des signaux d'échantillonnage d'adresse de ligne [RAS] ou d'échantillonnage d'adresse de colonne [CAS]
G11C 11/4093 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. mémoires tampon de données
G11C 11/4096 - Circuits de commande ou de gestion d'entrée/sortie [E/S, I/O] de données, p.ex. circuits pour la lecture ou l'écriture, circuits d'attaque d'entrée/sortie ou commutateurs de lignes de bits
A memory module includes one or more memory devices and a memory interface chip coupled to the one or more memory devices via one or more communication links. The memory module further includes a persistent memory storing one or more sets of training and calibration settings corresponding to communication over the one or more communication links, where the one or more sets of training and calibration settings are stored in the persistent memory before operation of the memory module and used to configure one or more components of the memory interface chip during the operation of the memory module.
A value corresponding to a physical variation of a device may be received. Furthermore, helper data associated with the physical variation of the device may be received. A result data may be generated based on a combination of the value corresponding to the physical variation of the device and the helper data. An error correction operation may be performed on the result data to identify one or more code words associated with the error correction operation. Subsequently, a target data may be generated based on the one or more code words.
G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p.ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p.ex. contrôle de parité, exclusion des 9 ou des 11
H04L 9/32 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité comprenant des moyens pour vérifier l'identité ou l'autorisation d'un utilisateur du système
52.
MEMORY SYSTEM USING ASYMMETRIC SOURCE-SYNCHRONOUS CLOCKING
The disclosed embodiments relate to a memory system that generates a multiplied timing signal from a reference timing signal. During operation, the system receives a reference timing signal. Next, the system produces a multiplied timing signal from the reference timing signal by generating a burst comprising multiple timing events for each timing event in the reference timing signal, wherein consecutive timing events in each burst of timing events are separated by a bit time. Then, as the reference clock frequency changes, the interval between bursts of timing events changes while the bit time remains substantially constant.
G06F 1/12 - Synchronisation des différents signaux d'horloge
G11C 7/02 - Dispositions pour écrire une information ou pour lire une information dans une mémoire numérique avec des moyens d'éviter les signaux parasites
G11C 7/04 - Dispositions pour écrire une information ou pour lire une information dans une mémoire numérique avec des moyens d'éviter les effets perturbateurs thermiques
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
G11C 7/22 - Circuits de synchronisation ou d'horloge pour la lecture-écriture [R-W]; Générateurs ou gestion de signaux de commande pour la lecture-écriture [R-W]
A serial presence detect (SPD) device includes nonvolatile memory to store SPD information. Parity information suitable for single error correct and double error detect (SEC-DED) is also stored in association with the SPD information in the nonvolatile memory. The combination of SPD information and parity information is organized into codewords addressable at each memory location. During an initialization period occurring after a power on reset and before the SPD device is accepting I2C commands, the SPD device checks each memory location (codeword) for errors. Each error detected is counted to provide an indicator of device health. Before the initialization period expires, the SPD device writes a corrected codeword back to the nonvolatile memory.
G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p.ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p.ex. contrôle de parité, exclusion des 9 ou des 11
G06F 11/07 - Réaction à l'apparition d'un défaut, p.ex. tolérance de certains défauts
G06F 11/16 - Détection ou correction d'erreur dans une donnée par redondance dans le matériel
Embodiments generally relate to a memory device. In one embodiment, the memory device includes a clock receiver circuit that receives an external clock signal and provides an internal clock signal. The memory device also includes a delay-locked loop circuit (DLL) having an input, and a circuit that receives the internal clock signal. The circuit selects which pulses of the internal clock signal are applied to the input of the DLL, such that no more than two clock pulses selected from at least three consecutive pulses of the external clock signal are applied to the input of the DLL during a predetermined interval. In another embodiment, a method includes receiving an external clock signal at a clock receiver circuit, receiving an internal clock signal from the clock receiver circuit, and selecting which pulses of the internal clock signal are applied to an input of a DLL, where no more than two clock pulses selected from at least three consecutive pulses of the external clock signal are applied to the input of the DLL during a predetermined interval.
G06F 1/324 - Gestion de l’alimentation, c. à d. passage en mode d’économie d’énergie amorcé par événements Économie d’énergie caractérisée par l'action entreprise par réduction de la fréquence d’horloge
G06F 1/3234 - Gestion de l’alimentation, c. à d. passage en mode d’économie d’énergie amorcé par événements Économie d’énergie caractérisée par l'action entreprise
G06F 1/3287 - Gestion de l’alimentation, c. à d. passage en mode d’économie d’énergie amorcé par événements Économie d’énergie caractérisée par l'action entreprise par la mise hors tension d’une unité fonctionnelle individuelle dans un ordinateur
G06F 5/06 - Procédés ou dispositions pour la conversion de données, sans modification de l'ordre ou du contenu des données maniées pour modifier la vitesse de débit des données, c. à d. régularisation de la vitesse
G11C 7/04 - Dispositions pour écrire une information ou pour lire une information dans une mémoire numérique avec des moyens d'éviter les effets perturbateurs thermiques
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
G11C 7/22 - Circuits de synchronisation ou d'horloge pour la lecture-écriture [R-W]; Générateurs ou gestion de signaux de commande pour la lecture-écriture [R-W]
G11C 11/4093 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. mémoires tampon de données
H03L 7/081 - Commande automatique de fréquence ou de phase; Synchronisation utilisant un signal de référence qui est appliqué à une boucle verrouillée en fréquence ou en phase - Détails de la boucle verrouillée en phase avec un déphaseur commandé additionnel
55.
LOW LATENCY DYNAMIC RANDOM ACCESS MEMORY (DRAM) ARCHITECTURE WITH DEDICATED READ-WRITE DATA PATHS
Memory devices, modules, controllers, systems and associated methods are disclosed. In one embodiment, a dynamic random access memory (DRAM) device is disclosed. The DRAM device includes memory core circuitry including an array of DRAM storage cells organized into bank groups. Each bank group includes multiple banks, where each of the multiple banks includes addressable columns of DRAM storage cells. The DRAM device includes signal interface circuitry having dedicated write data path circuitry and dedicated read data path circuitry. Selector circuitry, for a first memory transaction, selectively couples at least one of the addressable columns of DRAM storage cells to the dedicated read data path circuitry or the dedicated write data path circuitry.
Memory controllers, devices, modules, systems and associated methods are disclosed. In one embodiment, an integrated circuit (IC) memory controller is disclosed. The IC memory controller includes a first controller command/address (C/A) interface to transmit first and second read commands for first and second read data to a first memory C/A interface of a first bank group of memory. A second command/address (C/A) interface transmits third and fourth read commands for third and fourth read data to a second memory C/A interface of a second bank group of memory. Receiver circuitry receives the first and second read data via a first data link interface and the third and fourth read data via the second data link interface. For a first operating mode, the first and second read data are received after respective first delays following transmission of the first and second read commands and at a first serialization ratio. For a second operating mode, the first and second read data are received after respective second and third delays following transmission of the first and second read commands. The second and third delays are different from the first delays and from each other. The first and second data are received at a second serialization ratio that is different than the first serialization ratio.
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
G11C 8/18 - Circuits de synchronisation ou d'horloge; Génération ou gestion de signaux de commande d'adresse, p.ex. pour des signaux d'échantillonnage d'adresse de ligne [RAS] ou d'échantillonnage d'adresse de colonne [CAS]
A memory controller includes a request queue and associated logic for efficiently managing the request queue based on various timing constraints of the memory device. A single request queue for the memory device stores read and write requests spanning different banks of the memory device. In each memory controller cycle, selection logic may select both a row request and a column request (relating to a different bank than the row request) for issuing to the memory device based on a set of timing status bits. Following issuance of requests, the memory controller updates the queue to maintain the queued requests in a time-ordered, compressed sequence. The memory controller furthermore updates the timing status bits that are used by the selection logic to select requests from the queue based on a history of past memory requests.
A multi-rank memory system in which calibration operations are performed between a memory controller and one rank of memory while data is transferred between the controller and other ranks of memory. A memory controller performs a calibration operation that calibrates parameters pertaining to transmission of data via a first data bus between the memory controller and a memory device in a first rank of memory. While the controller performs the calibration operation, the controller also transfers data with a memory device in a second rank of memory via a second data bus.
Described are memory modules that support different error detection and correction (EDC) schemes in both single-and multiple-module memory systems. The memory modules are width configurable and support the different EDC schemes for relatively wide and narrow module data widths. Data buffers on the modules support the half-width and full-width modes, and also support time-division-multiplexing to access additional memory components on each module in support of enhanced EDC.
G11C 11/4093 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. mémoires tampon de données
G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p.ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p.ex. contrôle de parité, exclusion des 9 ou des 11
G11C 7/02 - Dispositions pour écrire une information ou pour lire une information dans une mémoire numérique avec des moyens d'éviter les signaux parasites
G11C 11/4096 - Circuits de commande ou de gestion d'entrée/sortie [E/S, I/O] de données, p.ex. circuits pour la lecture ou l'écriture, circuits d'attaque d'entrée/sortie ou commutateurs de lignes de bits
G11C 29/04 - Détection ou localisation d'éléments d'emmagasinage défectueux
G11C 29/52 - Protection du contenu des mémoires; Détection d'erreurs dans le contenu des mémoires
During system initialization, each data buffer device and/or memory device on a memory module is configured with a unique (at least to the module) device identification number. In order to access a single device (rather than multiple buffers and/or memory devices), a target identification number is written to all of the devices using a command bus connected to all of the data buffer devices or memory devices, respectively. The devices whose respective device identification numbers do not match the target identification number are configured to ignore future command bus transactions (at least until the debug mode is turned off.) The selected device that is configured with a device identification number matching the target identification number is configured to respond to command bus transactions.
G06F 11/07 - Réaction à l'apparition d'un défaut, p.ex. tolérance de certains défauts
G06F 13/00 - Interconnexion ou transfert d'information ou d'autres signaux entre mémoires, dispositifs d'entrée/sortie ou unités de traitement
G11C 5/04 - Supports pour éléments d'emmagasinage; Montage ou fixation d'éléments d'emmagasinage sur de tels supports
G11C 7/20 - Circuits d'initialisation de cellules de mémoire, p.ex. à la mise sous ou hors tension, effacement de mémoire, mémoire d'image latente
G11C 8/12 - Circuits de sélection de groupe, p.ex. pour la sélection d'un bloc de mémoire, la sélection d'une puce, la sélection d'un réseau de cellules
A system includes a memory controller and a memory device having a command interface, refresh circuitry, control logic, and a plurality of memory banks, each with a plurality of rows of memory cells. The command interface is operable to receive a refresh command from a memory controller and the refresh circuitry is configured to perform one or more refresh operations to refresh data stored in at least one bank of the plurality of memory banks during a refresh time interval in response to the refresh command from the memory controller. The control logic is to configure the command interface to enter a calibration mode during the refresh time interval, and the command interface is configured to perform a calibration operation in the calibration mode during the refresh time interval.
G06Q 20/00 - Architectures, schémas ou protocoles de paiement
G11C 7/02 - Dispositions pour écrire une information ou pour lire une information dans une mémoire numérique avec des moyens d'éviter les signaux parasites
G11C 11/406 - Organisation ou commande des cycles de rafraîchissement ou de régénération de la charge
62.
SYNCHRONOUS WIRED-OR ACK STATUS FOR MEMORY WITH VARIABLE WRITE LATENCY
A memory controller comprises a command interface to transmit a memory command to a plurality of memory devices associated with the memory controller. The memory controller also comprises an acknowledgement interface to receive an acknowledgment status packet from the plurality of memory devices over a shared acknowledgement link coupled between the memory controller and the plurality of memory devices, the acknowledgement status packet indicating whether the command was received by the plurality of memory devices. In addition, the memory controller comprises a memory controller core to decode the acknowledgment status packet to identify a portion of the acknowledgement status packet corresponding to each of the plurality of memory devices.
G06F 3/06 - Entrée numérique à partir de, ou sortie numérique vers des supports d'enregistrement
G06F 12/00 - Accès à, adressage ou affectation dans des systèmes ou des architectures de mémoires
G06F 12/02 - Adressage ou affectation; Réadressage
G06F 13/16 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus de mémoire
G06F 13/372 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus ou au système à bus communs avec commande d'accès décentralisée utilisant une priorité dépendant du temps, p.ex. des compteurs de temps individuellement chargés ou des tranches de temps
63.
Methods and Circuits for Streaming Data to Processing Elements in Stacked Processor-Plus-Memory Architecture
A stacked processor-plus-memory device includes a processing die with an array of processing elements of an artificial neural network. Each processing element multiplies a first operand—e.g. a weight—by a second operand to produce a partial result to a subsequent processing element. To prepare for these computations, a sequencer loads the weights into the processing elements as a sequence of operands that step through the processing elements, each operand stored in the corresponding processing element. The operands can be sequenced directly from memory to the processing elements or can be stored first in cache. The processing elements include streaming logic that disregards interruptions in the stream of operands.
G06F 15/80 - Architectures de calculateurs universels à programmes enregistrés comprenant un ensemble d'unités de traitement à commande commune, p.ex. plusieurs processeurs de données à instruction unique
A system limits the use (e.g., number of encryptions and/or decryptions using that key value) of cryptographic key values. When a key value's usage count exceeds the limit, that value is "retired", and a new key value is selected. Key identifiers and a key versions are associated with each encrypted data block. The key identifiers are also associated with current key values, a current version indicators, and usage indicators. Key identifiers may also be associated with one or more previous (i.e., 'retired') version indicators and corresponding previous key values. When an encrypted data block associated with a given key identifier is accessed, the key version indicator associated with that block, and the key version indicators associated with the current and previous keys, are used to select the proper key from either the current key value or one of the previous key values.
Technologies for providing write protection to an integrated circuit memory device are described. The integrated circuit memory device has an input port to receive write data and command data and a read data output port to send read data. A device includes a write protection mechanism to prevent write data from being written to a memory core. The write protection mechanism can mask the write data or abort a write operation in response to activation. The write protection mechanism can be activated in response to an error detected by a serial data buffer (SDB) device coupled to the integrated circuit memory device.
A dynamic random access memory (DRAM) device includes functions configured to aid with operating the DRAM device as part of data caching functions. In response to some write and/or read access commands, the DRAM device is configured to copy a cache line (e.g., dirty cache line) from the main DRAM memory array, place it in a flush buffer, and replace the copied cache line in the main DRAM memory array with a new (e.g., different) cache line of data. In response to conditions and/or events (e.g., explicit command, refresh, write-to-read command sequence, unused data bus bandwidth, full flush buffer, etc.) the DRAM device transmits the cache line from the flush buffer to the controller. The controller may then transmit the cache line to other cache levels.
G06F 12/0804 - Adressage d’un niveau de mémoire dans lequel l’accès aux données ou aux blocs de données désirés nécessite des moyens d’adressage associatif, p.ex. mémoires cache avec mise à jour de la mémoire principale
67.
DETERMINING A PHYSICALLY UNCLONABLE FUNCTION (PUF) SELECTION VECTOR
Technologies for generating an M-bit selection vector for a selector circuit that receives as input M binary values from a set of entropy-generation elements and outputs N binary values responsive to the M-bit selection vector are described. N bits in the M-bit selection vector are set to a first logic state, and M-N bits of the M-bit selection vector are set to a second logic state. A determination of which N bits in the M-bit selection vector are set to the first logic state is determined by a process. The process includes determining an accumulated Hamming weight value for M bit positions of the M-bit selection vector using K samples and identifying N bit positions in the M-bit selection vector using the accumulated Hamming weight values. The process sets the N bits corresponding to the N bit positions in the M-bit selection vector to the first logic state.
H04L 9/32 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité comprenant des moyens pour vérifier l'identité ou l'autorisation d'un utilisateur du système
A memory system includes a memory controller, a plurality of serial data buffers, and a plurality of memory devices. The memory controller includes rank configuration logic for composing ranks of memory devices and corresponding serial communication lanes. In different configurations, the ranks may be of varying sizes to accommodate different data widths and/or different levels of striping across memory devices. The memory controller may dynamically change the rank configuration by re-assigning the serial communication lanes to different memory ranks.
Power consumption in a three-dimensional stack of integrated-circuit memory dies is reduced through selective enabling/disabling of physical signaling interfaces in those dies in response to early transmission of chip identifier information relative to command execution.
Systems and methods are provided for detecting and correcting address errors in a memory system. In the memory system, a memory device generates an error-detection code based on an address transmitted via an address bus and transmits the error-detection code to a memory controller. The memory controller transmits an error indication to the memory device in response to the error-detection code. The error indication causes the memory device to remove the received address and prevent a memory operation
G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p.ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p.ex. contrôle de parité, exclusion des 9 ou des 11
G06F 11/07 - Réaction à l'apparition d'un défaut, p.ex. tolérance de certains défauts
G06F 11/16 - Détection ou correction d'erreur dans une donnée par redondance dans le matériel
H03M 13/09 - Détection d'erreurs uniquement, p.ex. utilisant des codes de contrôle à redondance cyclique [CRC] ou un seul bit de parité
An integrated circuit (IC) memory device includes an array of storage cells configured into multiple banks. Interface circuitry receives refresh commands from a host memory controller to refresh the multiple banks for a first refresh mode. On-die refresh control circuitry selectively generates local refresh commands to refresh the multiple banks in cooperation with the host memory controller during a designated hidden refresh interval in a second refresh mode. Mode register circuitry stores a value indicating whether the on-die refresh control circuitry is enabled for use during the second refresh mode. The interface circuitry includes backchannel control circuitry to transmit a corrective action control signal during operation in the second refresh mode.
A multi-element device includes a plurality of memory elements, each of which includes a memory array, access circuitry to control access to the memory array, and power control circuitry. The power control circuitry, which includes one or more control registers for storing first and second control values, controls distribution of power to the access circuitry in accordance with the first control value, and controls distribution of power to the memory array in accordance with the second control value. Each memory element also includes sideband circuitry for enabling a host system to set at least the first control value and the second control value in the one or more control registers.
G06F 1/28 - Surveillance, p.ex. détection des pannes d'alimentation par franchissement de seuils
G06F 1/3234 - Gestion de l’alimentation, c. à d. passage en mode d’économie d’énergie amorcé par événements Économie d’énergie caractérisée par l'action entreprise
G06F 1/3287 - Gestion de l’alimentation, c. à d. passage en mode d’économie d’énergie amorcé par événements Économie d’énergie caractérisée par l'action entreprise par la mise hors tension d’une unité fonctionnelle individuelle dans un ordinateur
G06F 13/42 - Protocole de transfert pour bus, p.ex. liaison; Synchronisation
G11C 5/06 - Dispositions pour interconnecter électriquement des éléments d'emmagasinage
Aspects and implementations include systems and techniques for efficient detection and correction of errors in stored and communicated data. On encoding, data is partitioned into multiple portions of data symbols and corresponding codewords having one or more error correction (EC) symbols are generated. A mixing transformation is then applied to obtain mixed codewords. On decoding, an unmixing transformation is applied to the mixed codewords before one or more EC codes are applied to identify locations of error(s) in the plurality of codewords. Responsive to determining whether a number of the locations of error(s) is above a threshold number, an EC decoder determines if decoding has been successful or declares an uncorrectable decoding error.
H03M 13/15 - Codes cycliques, c. à d. décalages cycliques de mots de code produisant d'autres mots de code, p.ex. codes définis par un générateur polynomial, codes de Bose-Chaudhuri-Hocquenghen [BCH]
H03M 13/37 - Méthodes ou techniques de décodage non spécifiques à un type particulier de codage prévu dans les groupes
H03M 13/00 - Codage, décodage ou conversion de code pour détecter ou corriger des erreurs; Hypothèses de base sur la théorie du codage; Limites de codage; Méthodes d'évaluation de la probabilité d'erreur; Modèles de canaux; Simulation ou test des codes
74.
MEMORY COMPONENT WITH INPUT/OUTPUT DATA RATE ALIGNMENT
First data is read out of a core storage array of a memory component over a first time interval constrained by data output bandwidth of the core storage array. After read out from the core storage array, the first data is output from the memory component over a second time interval that is shorter than the first time interval and that corresponds to a data transfer bandwidth greater than the data output bandwidth of the core storage array.
G06F 3/06 - Entrée numérique à partir de, ou sortie numérique vers des supports d'enregistrement
G06F 13/16 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus de mémoire
G11C 7/06 - Amplificateurs de lecture; Circuits associés
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
G11C 7/22 - Circuits de synchronisation ou d'horloge pour la lecture-écriture [R-W]; Générateurs ou gestion de signaux de commande pour la lecture-écriture [R-W]
G11C 11/4096 - Circuits de commande ou de gestion d'entrée/sortie [E/S, I/O] de données, p.ex. circuits pour la lecture ou l'écriture, circuits d'attaque d'entrée/sortie ou commutateurs de lignes de bits
H01L 25/065 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans le même sous-groupe des groupes , ou dans une seule sous-classe de , , p.ex. ensembles de diodes redresseuses les dispositifs n'ayant pas de conteneurs séparés les dispositifs étant d'un type prévu dans le groupe
75.
DRAM REFRESH CONTROL WITH MASTER WORDLINE GRANULARITY OF REFRESH INTERVALS
DRAM cells need to be periodically refreshed to preserve the charge stored in them. The retention time is typically not the same for all DRAM cells but follows a distribution with multiple orders of magnitude difference between the retention time of cells with the highest charge loss and the cells with the lowest charge loss. Different refresh intervals are used for certain wordlines based on the required minimum retention time of the cells on those wordlines. The memory controller does not keep track of refresh addresses. After initialization of the DRAM devices, the memory controller issues a smaller number of refresh commands when compared to refreshing all wordlines at the same refresh interval.
A first sequence of data bits is shifted into storage elements of a signal receiver during a first sequence of bit-time intervals, and a memory access command indicates that a second sequence of data bits is to be received within the signal receiver during a second sequence of bit-time intervals. Contents of the shift-register storage elements are conditionally overwritten with a predetermined set of seed bits, depending on whether one or more bit-time intervals will transpire between the first and second sequences of bit-time intervals. Equalization signals generated based, at least in part, on contents of the shift-register storage elements are used to adjust respective signal levels representative of one or more bits of the second sequence of data bits.
In one embodiment, a memory device includes a memory core and input receivers to receive commands and data. The memory device also includes a register to store a value that indicates whether a subset of the input receivers are powered down in response to a control signal. A memory controller transmits commands and data to the memory device. The memory controller also transmits the value to indicate whether a subset of the input receivers of the memory device are powered down in response to the control signal. In addition, in response to a self-fresh command, the memory device defers entry into a self-refresh operation until receipt of the control signal that is received after receiving the self-refresh command.
G11C 11/406 - Organisation ou commande des cycles de rafraîchissement ou de régénération de la charge
G06F 1/3234 - Gestion de l’alimentation, c. à d. passage en mode d’économie d’énergie amorcé par événements Économie d’énergie caractérisée par l'action entreprise
G11C 7/02 - Dispositions pour écrire une information ou pour lire une information dans une mémoire numérique avec des moyens d'éviter les signaux parasites
G11C 7/20 - Circuits d'initialisation de cellules de mémoire, p.ex. à la mise sous ou hors tension, effacement de mémoire, mémoire d'image latente
G11C 11/4072 - Circuits pour l'initialisation, pour la mise sous ou hors tension, pour l'effacement de la mémoire ou pour le préréglage
G11C 11/4074 - Circuits d'alimentation ou de génération de tension, p.ex. générateurs de tension de polarisation, générateurs de tension de substrat, alimentation de secours, circuits de commande d'alimentation
G11C 29/02 - Détection ou localisation de circuits auxiliaires défectueux, p.ex. compteurs de rafraîchissement défectueux
An integrated circuit includes a physical layer interface having a control timing domain and a data timing domain, and circuits that enable the control timing domain during a change in power conservation mode in response to a first event, and that enable the data timing domain in response to a second event. The control timing domain can include interface circuits coupled to a command and address path, and the data timing domain can include interface circuits coupled to a data path.
G06F 1/04 - Génération ou distribution de signaux d'horloge ou de signaux dérivés directement de ceux-ci
G06F 1/08 - Générateurs d'horloge ayant une fréquence de base modifiable ou programmable
G06F 1/3234 - Gestion de l’alimentation, c. à d. passage en mode d’économie d’énergie amorcé par événements Économie d’énergie caractérisée par l'action entreprise
G06F 1/3237 - Gestion de l’alimentation, c. à d. passage en mode d’économie d’énergie amorcé par événements Économie d’énergie caractérisée par l'action entreprise par désactivation de la génération ou de la distribution du signal d’horloge
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
G11C 7/20 - Circuits d'initialisation de cellules de mémoire, p.ex. à la mise sous ou hors tension, effacement de mémoire, mémoire d'image latente
G11C 7/22 - Circuits de synchronisation ou d'horloge pour la lecture-écriture [R-W]; Générateurs ou gestion de signaux de commande pour la lecture-écriture [R-W]
G11C 11/4072 - Circuits pour l'initialisation, pour la mise sous ou hors tension, pour l'effacement de la mémoire ou pour le préréglage
G11C 11/4074 - Circuits d'alimentation ou de génération de tension, p.ex. générateurs de tension de polarisation, générateurs de tension de substrat, alimentation de secours, circuits de commande d'alimentation
G11C 11/4096 - Circuits de commande ou de gestion d'entrée/sortie [E/S, I/O] de données, p.ex. circuits pour la lecture ou l'écriture, circuits d'attaque d'entrée/sortie ou commutateurs de lignes de bits
79.
MEMORY DEVICE AND REPAIR METHOD WITH COLUMN-BASED ERROR CODE TRACKING
A memory device is disclosed that includes a row of storage locations that form plural columns. The plural columns include data columns to store data and a tag column to store tag information associated with error locations in the data columns. Each data column is associated with an error correction location including an error code bit location. Logic retrieves and stores the tag information associated with the row in response to activation of the row. A bit error in an accessed data column is repaired by a spare bit location based on the tag information.
G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p.ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p.ex. contrôle de parité, exclusion des 9 ou des 11
G06F 12/02 - Adressage ou affectation; Réadressage
G11C 29/52 - Protection du contenu des mémoires; Détection d'erreurs dans le contenu des mémoires
A four-channel memory module includes four independent twenty (20) data bit memory channels and dual channel memory devices. The channels of the dual channel memory are accessed independently. Thus, the four channels for accessing the memory module each access one channel of a first set and a second set of dual channel memory devices on the module. Error detection and correction codeword configurations and schemes can implement chipkill, Single symbol data correct/double symbol data detect (SSDC/DSDD). Single symbol data correct with fewer memory devices may also be implemented. Error detection and correction codeword configurations and schemes may be switched in response to detecting a failed device, signal line, or memory channel.
G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p.ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p.ex. contrôle de parité, exclusion des 9 ou des 11
The internal row addressing of each DRAM on a module is mapped such that row hammer affects different neighboring row addresses in each DRAM. Because the external row address to internal row address mapping scheme ensures that each set of neighboring rows for a given externally addressed row is different for each DRAM on the module, row hammering of a given externally addressed row spreads the row hammering errors across different externally addressed rows on each DRAM. This has the effect of confining the row hammer errors for each row that is hammered to a single DRAM per externally addressed neighboring row. By confining the row hammer errors to a single DRAM, the row hammer errors are correctible using a single device data correct (SDDC) scheme.
A memory module comprises an address buffer circuit, a command/address channel, and a plurality of memory components controlled by the address buffer circuit via the command/address channel. At least one memory component comprises a plurality of data ports, a memory core to store data, and a data interface. The data interface is capable of transferring data between the memory core and the data ports. The data interface supports a first data width mode in which the data interface transfers data at a first bit width and a first burst length via the data ports. The data interface also supports a second data width mode in which the data interface transfers data at a second bit width and second burst length via the data ports. The first bit width is greater than the second bit width and the first burst length is shorter than the second burst length.
G06F 13/16 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus de mémoire
G06F 13/28 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus d'entrée/sortie utilisant le transfert par rafale, p.ex. acces direct à la mémoire, vol de cycle
83.
Methods and Apparatuses for Addressing Memory Caches
A cache memory includes cache lines to store information. The stored information is associated with physical addresses that include first, second, and third distinct portions. The cache lines are indexed by the second portions of respective physical addresses associated with the stored information. The cache memory also includes one or more tables, each of which includes respective table entries that are indexed by the first portions of the respective physical addresses. The respective table entries in each of the one or more tables are to store indications of the second portions of respective physical addresses associated with the stored information.
G06F 12/1009 - Traduction d'adresses avec tables de pages, p.ex. structures de table de page
G06F 12/0811 - Systèmes de mémoire cache multi-utilisateurs, multiprocesseurs ou multitraitement avec hiérarchies de mémoires cache multi-niveaux
G06F 12/0864 - Adressage d’un niveau de mémoire dans lequel l’accès aux données ou aux blocs de données désirés nécessite des moyens d’adressage associatif, p.ex. mémoires cache utilisant des moyens pseudo-associatifs, p.ex. associatifs d’ensemble ou de hachage
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
The embodiments described herein describe technologies for memory systems. One implementation of a memory system includes a motherboard substrate with multiple module sockets, at least one of which is populated with a memory module. A first set of data lines is disposed on the motherboard substrate and coupled to the module sockets. The first set of data lines includes a first subset of point-to-point data lines coupled between a memory controller and a first socket and a second subset of point-to-point data lines coupled between the memory controller and a second socket. A second set of data lines is disposed on the motherboard substrate and coupled between the first socket and the second socket. The first and second sets of data lines can make up a memory channel.
A memory module includes at least two memory devices. Each of the memory devices perform verify operations after attempted writes to their respective memory cores. When a write is unsuccessful, each memory device stores information about the unsuccessful write in an internal write retry buffer. The write operations may have only been unsuccessful for one memory device and not any other memory devices on the memory module. When the memory module is instructed, both memory devices on the memory module can retry the unsuccessful memory write operations concurrently. Both devices can retry these write operations concurrently even though the unsuccessful memory write operations were to different addresses.
G06F 13/16 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus de mémoire
G06F 5/14 - Moyens de contrôle de niveau de remplissage; Moyens de résolution des conflits d'utilisation, c. à d. des conflits entre des opérations simultanées de mise en file d'attente et de retrait de file d'attente pour la gestion des occurrences du dépassement de la capacité du système ou de sa sous-alimentation, p.ex. drapeaux pleins ou vides
A first-in-first-out (FIFO) storage structure within an integrated-circuit component is loaded with qualification values corresponding to respective pairs of edges expected within a timing strobe signal transmitted to the integrated-circuit component. The qualification values are sequentially output from the FIFO storage structure during respective cycles of the timing strobe signal and a gate signal is either asserted or deasserted during the respective cycles of the timing strobe signal according to the qualification values output from the FIFO storage structure.
G11C 7/22 - Circuits de synchronisation ou d'horloge pour la lecture-écriture [R-W]; Générateurs ou gestion de signaux de commande pour la lecture-écriture [R-W]
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
A device includes a transmitter coupled to a node, where the node is to couple to a wired link. The transmitter has a plurality of modes of operation including a calibration mode in which a range of communication data rates over the wired link is determined in accordance with a voltage margin corresponding to the wired link at a predetermined error rate. The range of communication data rates includes a maximum data rate, which can be a non-integer multiple of an initial data rate.
A lateral transfer path within an adjustable-width signaling interface of an integrated circuit component is formed by a chain of logic segments that may be intercoupled in different groups to effect the lateral data transfer required in different interface width configurations, avoiding the need for a dedicated transfer path per width configuration and thereby substantially reducing number of interconnects (and thus the area) required to implement the lateral transfer structure.
Technologies for providing an integrity tree architecture that reduces the number of memory accesses and verification operations needed to perform a read operation. One inline memory encryption (IME) engine performs operations that include receiving a read command for data stored at a data block. The operations further include obtaining a first authentication tag associated with the data block, a first counter value used to generate the first authentication tag; a root counter value, and an intermediate tag. The operations further include generating a second authentication tag based on the intermediate tag, the first counter value, the root counter value, and the data from the data block, and responsive to determining that a value of the first authentication tag matches a value of the second authentication tag, sending, to the host system, the data stored at the data block.
H04L 9/32 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité comprenant des moyens pour vérifier l'identité ou l'autorisation d'un utilisateur du système
H04L 9/06 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité l'appareil de chiffrement utilisant des registres à décalage ou des mémoires pour le codage par blocs, p.ex. système DES
H04L 9/00 - Dispositions pour les communications secrètes ou protégées; Protocoles réseaux de sécurité
90.
DATA BUFFER FOR MEMORY DEVICES WITH UNIDIRECTIONAL PORTS
A serial data buffer integrated circuit comprises unidirectional host-side input and output ports, and unidirectional memory-side input and output ports. Scheduling logic generates memory device commands for writing to and reading from a memory device based on a set of host-side input packets received from a memory controller. A unidirectional serial host side input port receives host-side input packets from the memory controller. A unidirectional serial memory side output port transmits the memory device commands and the write data to the memory device based on the scheduled timing. A unidirectional serial memory side input port receives read data from the memory device in response to a read command, and a unidirectional serial host side output port transmits the read data to the memory controller within the timing constraints of the memory device.
A dynamic random access memory (DRAM) device includes memory core circuitry and power supply circuitry. The memory core circuitry includes an array of DRAM storage cells, with ones of the DRAM storage cells coupled to wordline and bitline power supply busses. The power supply circuitry is coupled to the wordline and bitline power supply busses. The power supply circuitry is responsive to a control signal to generate one of a first set of respective wordline and bitline voltages for application to the wordline and bitline power supply busses in a first normal mode of operation, or to generate a second set of respective wordline and bitline voltages for application to the wordline and bitline power supply busses in a second normal mode of operation. A value of the control signal is based on a temperature parameter associated with the DRAM device.
G11C 11/4074 - Circuits d'alimentation ou de génération de tension, p.ex. générateurs de tension de polarisation, générateurs de tension de substrat, alimentation de secours, circuits de commande d'alimentation
G06F 12/02 - Adressage ou affectation; Réadressage
G11C 11/4091 - Amplificateurs de lecture ou de lecture/rafraîchissement, ou circuits de lecture associés, p.ex. pour la précharge, la compensation ou l'isolation des lignes de bits couplées
92.
MEMORIES AND MEMORY COMPONENTS WITH INTERCONNECTED AND REDUNDANT DATA INTERFACES
A memory system includes dynamic random-access memory (DRAM) components that include interconnected and redundant component data interfaces. The redundant interfaces facilitate memory interconnect topologies that accommodate considerably more DRAM components per memory channel than do traditional memory systems, and thus offer considerably more memory capacity per channel, without concomitant reductions in signaling speeds. Each DRAM component includes multiplexers that allow either of the data interfaces to write data to or read data from a common set of memory banks, and to selectively relay write and read data to and from other components, bypassing the local banks. Delay elements can impose selected read/write delays to align read and write transactions from and to disparate DRAM components.
G11C 11/4093 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. mémoires tampon de données
G11C 5/02 - Disposition d'éléments d'emmagasinage, p.ex. sous la forme d'une matrice
G11C 5/06 - Dispositions pour interconnecter électriquement des éléments d'emmagasinage
G11C 7/10 - Dispositions d'interface d'entrée/sortie [E/S, I/O] de données, p.ex. circuits de commande E/S de données, mémoires tampon de données E/S
G11C 8/12 - Circuits de sélection de groupe, p.ex. pour la sélection d'un bloc de mémoire, la sélection d'une puce, la sélection d'un réseau de cellules
G11C 11/4096 - Circuits de commande ou de gestion d'entrée/sortie [E/S, I/O] de données, p.ex. circuits pour la lecture ou l'écriture, circuits d'attaque d'entrée/sortie ou commutateurs de lignes de bits
G11C 29/00 - Vérification du fonctionnement correct des mémoires; Test de mémoires lors d'opération en mode de veille ou hors-ligne
H01L 23/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide
H01L 25/065 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans le même sous-groupe des groupes , ou dans une seule sous-classe de , , p.ex. ensembles de diodes redresseuses les dispositifs n'ayant pas de conteneurs séparés les dispositifs étant d'un type prévu dans le groupe
H01L 25/10 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans le même sous-groupe des groupes , ou dans une seule sous-classe de , , p.ex. ensembles de diodes redresseuses les dispositifs ayant des conteneurs séparés
H01L 25/18 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant de types prévus dans plusieurs sous-groupes différents du même groupe principal des groupes , ou dans une seule sous-classe de ,
93.
MEMORY MODULE AND SYSTEM SUPPORTING PARALLEL AND SERIAL ACCESS MODES
A memory module can be programmed to deliver relatively wide, low-latency data in a first access mode, or to sacrifice some latency in return for a narrower data width, a narrower command width, or both, in a second access mode. The narrow, higher-latency mode requires fewer connections and traces. A controller can therefore support more modules, and thus increased system capacity. Programmable modules thus allow computer manufacturers to strike a desired balance between memory latency, capacity, and cost.
A switching power supply employs constant-on-time control to maintain an output-voltage signal across a load. The output-voltage signal includes DC and ripple components. An error amplifier issues an error signal responsive to deviations between the DC component and a reference. A ripple injector integrates the DC and ripple components into a feedback signal. A constant on-time control circuit uses both the error signal and the integrated feedback signal to suppress transient DC fluctuations of the output voltage and improve DC regulation.
H02M 3/156 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs avec commande automatique de la tension ou du courant de sortie, p.ex. régulateurs à commutation
H02M 1/00 - APPAREILS POUR LA TRANSFORMATION DE COURANT ALTERNATIF EN COURANT ALTERNATIF, DE COURANT ALTERNATIF EN COURANT CONTINU OU VICE VERSA OU DE COURANT CONTINU EN COURANT CONTINU ET EMPLOYÉS AVEC LES RÉSEAUX DE DISTRIBUTION D'ÉNERGIE OU DES SYSTÈMES D'ALI; TRANSFORMATION D'UNE PUISSANCE D'ENTRÉE EN COURANT CONTINU OU COURANT ALTERNATIF EN UNE PUISSANCE DE SORTIE DE CHOC; LEUR COMMANDE OU RÉGULATION - Détails d'appareils pour transformation
H02M 1/14 - Dispositions de réduction des ondulations d'une entrée ou d'une sortie en courant continu
A memory device includes a first dynamic random access memory (DRAM) integrated circuit (IC) chip including first memory core circuitry, and first input/output (I/O) circuitry. A second DRAM IC chip is stacked vertically with the first DRAM IC chip. The second DRAM IC chip includes second memory core circuitry, and second I/O circuitry. Solely one of the first DRAM IC chip or the second DRAM IC chip includes a conductive path that electrically couples at least one of the first memory core circuitry or the second memory core circuitry to solely one of the first I/O circuitry or the second I/O circuitry, respectively.
G11C 5/06 - Dispositions pour interconnecter électriquement des éléments d'emmagasinage
G11C 5/02 - Disposition d'éléments d'emmagasinage, p.ex. sous la forme d'une matrice
H01L 23/48 - Dispositions pour conduire le courant électrique vers le ou hors du corps à l'état solide pendant son fonctionnement, p.ex. fils de connexion ou bornes
H01L 25/065 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans le même sous-groupe des groupes , ou dans une seule sous-classe de , , p.ex. ensembles de diodes redresseuses les dispositifs n'ayant pas de conteneurs séparés les dispositifs étant d'un type prévu dans le groupe
H10B 12/00 - Mémoires dynamiques à accès aléatoire [DRAM]
A memory system includes nonvolatile physical memory, such as flash memory, that exhibits a wear mechanism asymmetrically associated with write operations. A relatively small cache of volatile memory reduces the number of writes, and wear-leveling memory access methods distribute writes evenly over the nonvolatile memory.
G06F 12/02 - Adressage ou affectation; Réadressage
G06F 12/08 - Adressage ou affectation; Réadressage dans des systèmes de mémoires hiérarchiques, p.ex. des systèmes de mémoire virtuelle
G06F 12/0802 - Adressage d’un niveau de mémoire dans lequel l’accès aux données ou aux blocs de données désirés nécessite des moyens d’adressage associatif, p.ex. mémoires cache
G06F 12/0804 - Adressage d’un niveau de mémoire dans lequel l’accès aux données ou aux blocs de données désirés nécessite des moyens d’adressage associatif, p.ex. mémoires cache avec mise à jour de la mémoire principale
G06F 12/0891 - Adressage d’un niveau de mémoire dans lequel l’accès aux données ou aux blocs de données désirés nécessite des moyens d’adressage associatif, p.ex. mémoires cache utilisant des moyens d’effacement, d’invalidation ou de réinitialisation
G06F 12/1009 - Traduction d'adresses avec tables de pages, p.ex. structures de table de page
97.
Protocol For Refresh Between A Memory Controller And A Memory Device
The present embodiments provide a system that supports self-refreshing operations in a memory device. During operation, the system transitions the memory device from an auto-refresh state, wherein a memory controller controls refreshing operations for the memory device, to a self-refresh state, wherein the memory device controls the refreshing operations. While the memory device is in the self-refresh state, the system sends progress information for the refreshing operations from the memory device to the memory controller. Next, upon returning from the self-refresh state to the auto-refresh state, the system uses the progress information received from the memory device to control the sequencing of subsequent operations by the memory controller.
A DC-DC converter is disclosed. The DC-DC converter includes a sensing circuit having a first path to sense an output current of the DC/DC converter. A reference circuit generates a reference current to flow along a second path. The reference current is for comparison to the output current. A noise injection circuit couples to the second path and includes a replica circuit of the sensing circuit to sense the reference current. A differential amplifier rejects a common mode noise between the first path and the second path.
H02M 3/157 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant continu sans transformation intermédiaire en courant alternatif par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande utilisant des dispositifs du type triode ou transistor exigeant l'application continue d'un signal de commande utilisant uniquement des dispositifs à semi-conducteurs avec commande automatique de la tension ou du courant de sortie, p.ex. régulateurs à commutation avec commande numérique
H02M 1/00 - APPAREILS POUR LA TRANSFORMATION DE COURANT ALTERNATIF EN COURANT ALTERNATIF, DE COURANT ALTERNATIF EN COURANT CONTINU OU VICE VERSA OU DE COURANT CONTINU EN COURANT CONTINU ET EMPLOYÉS AVEC LES RÉSEAUX DE DISTRIBUTION D'ÉNERGIE OU DES SYSTÈMES D'ALI; TRANSFORMATION D'UNE PUISSANCE D'ENTRÉE EN COURANT CONTINU OU COURANT ALTERNATIF EN UNE PUISSANCE DE SORTIE DE CHOC; LEUR COMMANDE OU RÉGULATION - Détails d'appareils pour transformation
An interconnected stack of one or more Dynamic Random Access Memory (DRAM) die has a base logic die and one or more custom logic or processor die. The processor logic die snoops commands sent to and through the stack. In particular, the processor logic die may snoop mode setting commands (e.g., mode register set—MRS commands). At least one mode setting command that is ignored by the DRAM in the stack is used to communicate a command to the processor logic die. In response the processor logic die may prevent commands, addresses, and data from reaching the DRAM die(s). This enables the processor logic die to send commands/addresses and communicate data with the DRAM die(s). While being able to send commands/addresses and communicate data with the DRAM die(s), the processor logic die may execute software using the DRAM die(s) for program and/or data storage and retrieval.
A programmable crossbar matrix or an array of steering multiplexors (MUXs) coalesces (i.e., routes) the data values from multiple known “bad” bit positions within multiple symbols of a codeword, to bit positions within a single codeword symbol. The single codeword symbol receiving the known “bad” bit positions may correspond to a check symbol (vs. a data symbol). Configuration of the routing logic may occur at boot or initialization time. The configuration of the routing logic may be based upon error mapping information retrieved from system non-volatile memory (e.g., memory module serial presence detect information), or from memory tests performed during initialization. The configuration of the routing logic may be changed on a per-rank basis.
G06F 11/10 - Détection ou correction d'erreur par introduction de redondance dans la représentation des données, p.ex. en utilisant des codes de contrôle en ajoutant des chiffres binaires ou des symboles particuliers aux données exprimées suivant un code, p.ex. contrôle de parité, exclusion des 9 ou des 11